1
|
Wei L, Wang H, Ye X, Yue J, Guo H, Mao D, Li X, Sun Y, Liu C, Liu Y, Chen Y. Oxymatrine and astragaloside IV co-loaded liposomes: Scale-up purposes and their enhancement of anti-PD-1 efficacy against breast cancer. Mater Today Bio 2025; 32:101634. [PMID: 40177381 PMCID: PMC11964553 DOI: 10.1016/j.mtbio.2025.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
The response rate of programmed cell death protein-1 (PD-1) inhibitors in breast cancer remains unsatisfactory, primarily due to the limited infiltration and activity of tumor-infiltrating T lymphocytes (TILs). Previous studies demonstrated that oxymatrine (Om) and astragaloside IV (As) could enhance TIL infiltration and function by inhibiting cancer-associated fibroblasts (CAFs) and promoting mitochondrial activity in TILs, respectively. Thus, combining Om and As may be a promising strategy to improve the antitumor effects of PD-1 inhibitors in breast cancer. However, co-delivery above drugs into breast cancer tissue is challenging due to their low bioavailability and distinct physicochemical properties. This study addresses this challenge by formulating Om and As co-loaded liposomes (Om-As-Lip) and comparing the scale-up production methods: high-pressure homogenization (EP-HPH) and microfluidics. Om-As-Lip prepared via microfluidics demonstrated superior entrapment efficiency (As: 99.03 ± 0.04 %, Om: 67.01 ± 0.02 %) and a significantly higher production rate (22.12 mL/min) compared to EP-HPH (1.19 mL/min). Additionally, Om-As-Lip produced by microfluidics increased the area under the curve (AUC) (Om: 6.17-fold, As: 2.07-fold) and maximum concentration (Cmax) (Om: 1.58-fold, As: 3.49-fold) compared to the free drugs. Importantly, Om-As-Lip enhanced the antitumor efficacy of α-PD-1 by inhibiting CAF activation and boosting TIL activity, resulting in a tumor inhibition rate of 61.2 % and extended survival in mice. This work presents a novel perspective for scaling up co-delivered formulations of drugs with differing polarities to improve breast cancer immunotherapy.
Collapse
Affiliation(s)
- Liangyin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Junfan Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yeyang Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
2
|
Hu J, Jin M, Feng W, Nassif-Rausseo B, Reuben A, Ma C, Lizee G, Li F. Clinical and Fundamental Research Progressions on Tumor-Infiltrating Lymphocytes Therapy in Cancer. Vaccines (Basel) 2025; 13:521. [PMID: 40432130 PMCID: PMC12115679 DOI: 10.3390/vaccines13050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Malignant tumors represent a significant threat to human health. Among the various therapeutic strategies available, cancer immunotherapy-encompassing adoptive cell transfer (ACT) and immune checkpoint blockade therapy-has emerged as a particularly promising approach following surgical resection, radiotherapy, chemotherapy, and molecular targeted therapies. This form of treatment elicits substantial antigen-specific immune responses, enhances or restores anti-tumor immunity, thereby facilitating the control and destruction of tumor cells, and yielding durable responses across a range of cancers, which can lead to the eradication of tumor lesions and the prevention of recurrence. Tumor-infiltrating lymphocytes (TILs), a subset of ACT, are characterized by their heterogeneity and are found within tumor tissues, where they play a crucial role in mediating host antigen-specific immune responses against tumors. This review aims to explore recent advancements in the understanding of TILs biology, their prognostic implications, and their predictive value in therapeutic contexts.
Collapse
Affiliation(s)
- Jiandong Hu
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, China; (J.H.); (M.J.)
| | - Mengli Jin
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, China; (J.H.); (M.J.)
| | - Weihong Feng
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, China;
| | - Barbara Nassif-Rausseo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (B.N.-R.); (A.R.); (G.L.)
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandre Reuben
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (B.N.-R.); (A.R.); (G.L.)
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chunhua Ma
- Cancer Diagnosis and Treatment Center, Tianjin Union Medical Cancer Center (The First Affiliated Hospital of Nankai University), Tianjin 300121, China;
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (B.N.-R.); (A.R.); (G.L.)
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fenge Li
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, China; (J.H.); (M.J.)
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, China;
- Cancer Diagnosis and Treatment Center, Tianjin Union Medical Cancer Center (The First Affiliated Hospital of Nankai University), Tianjin 300121, China;
| |
Collapse
|
3
|
Mortezaee K. T-cell immunoglobulin and ITIM domain as a target in combo anti-PD-(L)1 cancer therapy. Int J Biol Macromol 2025; 310:143557. [PMID: 40294684 DOI: 10.1016/j.ijbiomac.2025.143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Immunoregulatory roles of T-cell immunoglobulin and ITIM domain (TIGIT) in solid tumors, and its interactions with other checkpoints is a focus of research in cancer immunotherapy. The increased activity of TIGIT/CD155 promotes dendritic cell (DC) tolerance and CD8+ T cell exclusion/energy/exhaustion. Increased TIGIT activity also hampers natural killer (NK) cell function and increases immunosuppressive activity of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), with the latter serving as a key cell type to pursue TIGIT regulatory effects in tumor immune ecosystem. Frequent co-expression of TIGIT with programmed death-1 (PD-1) on CD8+ T cells along with the increased TIGIT expression in Tregs after anti-PD-1 therapy, the stimulatory effect of TIGIT+ Tregs on T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), and the inducible effect of anti-programmed death-ligand 1 (PD-L1) on CD155 are all rationalizing a possibility for application of anti-TIGIT as a desired combinatory with anti-PD-(L)1 drugs in cancer immunotherapy. TIGIT can also be a target for development of bispecific antibodies to simultaneously target activities within the TIGIT/CD155 and PD-1/PD-L1 axes or for dual targeting of two inhibitory receptors, such as TIGIT/anti-poliovirus receptor-related immunoglobulin domain-containing protein (PVRIG), with the latter also acting to hamper activation of other inhibitory receptors occurring secondary to the anti-TIGIT therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Zhang H, Zhang X, Zhang Y, Han D, Ha H, Zhang B, Shang P. Pan-Cancer Analysis Shows that KIFC2 is a Potential Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Bladder Cancer. Mol Biotechnol 2025; 67:1641-1658. [PMID: 38658471 DOI: 10.1007/s12033-024-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
KIFC2 plays an important role in prostate cancer progression and chemotherapy resistance, but the mechanism of its involvement in other malignancies remains unclear. Therefore, this study aimed to analyze and validate the mechanism of effect of KIFC2 in multiple tumors. Bioinformatic analysis was performed in conjunction with multiple databases (The Cancer Genome Atlas, Genotype-Tissue Expression Project, Human Protein Atlas, etc.) to fully explore the potential role of KIFC2 within individual tumors and to analyze the correlation with major research components such as prognosis, mutations, and the tumor microenvironment. The expression of KIFC2 demonstrates a significant correlation with the prognosis, clinical phenotype, tumor mutational burden, microsatellite instability, and tumor microenvironment across various malignancies and is associated with the modulation of diverse functional and signaling pathways. The differences in the expression of KIFC2 in the bladder cancer tissues (14 pairs) were statistically significant. The pan-cancer analysis in this study revealed the multifunctionality of KIFC2 in a variety of tumors, indicating a possible prognostic predictor and potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Helin Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Xingxing Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Yuelin Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Dali Han
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Hualan Ha
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Biao Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- The Second Hospital & Clinical Medical School, Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, No. 82 Cui Ying Gate, Cheng Guan District, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Piao M, Zhang N, Li J, Li C, Xun Z, Zhang L, Wang S, Sun B, Li S, Yang X, Yang X, Wang H, Zhao H. Peripheral blood PD-1 + T lymphocytes as biomarkers in liquid biopsies for solid tumors: Clinical significance and prognostic applications. Int Immunopharmacol 2025; 147:114052. [PMID: 39799737 DOI: 10.1016/j.intimp.2025.114052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
A shift toward a T cell exhaustion phenotype is associated with the upregulation of expression of programmed cell death protein 1 (PD-1) on T lymphocytes in patients with malignant solid tumors. The interaction between PD-1 and programmed death-ligand 1 (PD-L1) inhibits PD-1+ T lymphocyte function, impacting their anti-tumor immune activity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have revolutionized the treatment of various solid malignancies, improving therapeutic efficacy and survival outcomes. Peripheral blood analysis of liquid biopsies is being increasingly used to identify populations most likely to benefit from various treatment modalities. PD-1+ T lymphocytes represent the primary cell population responsive to immunotherapeutic interventions for patients with solid malignancies, as evidenced by the altered PD-1 expression levels and proportion of cells comprising the overall population of immunocytes. PD-1+ T cells in peripheral blood exert an associative and reciprocal predictive effect on homologous intratumoral cells. Distinct subpopulations of PD-1+ T cells exhibit differential ability to proliferate in the periphery and can be characterized by tumor antigen-specific and exhaustion phenotypes. These characteristics have prognostic implications, aiding in the prediction of the efficacy of antitumor therapy and predicting survival outcomes. We highlight distinct subpopulations of PD-1+ T cells, their exhaustion and antigen-specific phenotypes, and their dynamic changes over treatment, providing insights into their utility for tailoring personalized therapies. For the first time, this review discusses the role of peripheral PD-1+ T lymphocytes as prognostic biomarkers in liquid biopsies, focusing on their clinical significance, predictive value during therapy, and future research directions.
Collapse
Affiliation(s)
- Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Jiongyuan Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Chengjie Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Zhang X, Zhang L, Li B, Wang Q, Chen P, Shi R, Zhou X, Niu X, Zhai W, Wu Y, Shen W, Zhou X, Zhao W. Identification of Epinastine as CD96/PVR inhibitor for cancer immunotherapy. BMC Biol 2025; 23:27. [PMID: 39871281 PMCID: PMC11773930 DOI: 10.1186/s12915-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Poliovirus receptor (PVR) and its receptor system, including TIGIT, CD226, and CD96, play a pivotal role in orchestrating tumor immune evasion. Upon engagement with PVR on tumor cells, CD96 exerts inhibitory effects on the function of T cells and NK cells, thereby fostering tumor immune evasion. Therefore, screening of immune checkpoint inhibitors (ICIs) targeting the CD96/PVR pathway will provide promising candidates for tumor immunotherapy. RESULTS In this investigation, we employed MOE software to conduct virtual screening of small molecules from the FDA-approved drug library. Our results demonstrated that Epinastine exhibited high affinity for CD96, thereby effectively disrupting the interaction between CD96 and PVR. In vitro co-culture experiments further revealed that Epinastine effectively restored the ability of Jurkat cells to secrete IL-2. In the MC38 tumor-bearing model, Epinastine significantly enhanced the infiltration of T cells and NK cells into the tumor site and augmented their secretion of IFN-γ, leading to effective suppression of tumor growth. CONCLUSIONS Our results demonstrated that the development of small molecule inhibitor Epinastine targeting CD96/PVR pathway, which proposed a promising strategy and drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peixin Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe, 462000, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhui Shen
- Department of Head Neck and Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Wang B, Zhu Y, Zhang Y, Ru Z, Chen L, Zhang M, Wu Y, Ding J, Chen Z. Hyperactivity of the IL-33-ILC2s-IL-13-M-MDSCs axis promotes cervical cancer progression. Int Immunopharmacol 2025; 144:113693. [PMID: 39615114 DOI: 10.1016/j.intimp.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The interleukin-33(IL-33) - group 2 innate lymphoid cells (ILC2s) - interleukin-13(IL-13) - monocytic myeloid-derived suppressor cells (M-MDSCs) axis plays a critical role in promoting immune evasion in tumors; however, its specific function in cervical cancer remains poorly understood. In this study, we observed that the proportion of IL-33-ILC2s-IL-13-M-MDSCs were significantly elevated in both cervical cancer patients and the subcutaneous U14 cervical cancer mouse model, compared to normal controls. Our results suggest that IL-33 stimulates ILC2s to secrete IL-13, which, in turn, regulates M-MDSCs to enhance their immune evasion capabilities. Notably, in vitro blockade of IL-33 and IL-13 partially restored the levels and functions of both ILC2s and M-MDSCs. In conclusion, these findings imply that the overactivation of the IL-33-ILC2s-IL-13-M-MDSCs axis may contribute to cervical cancer progression. However, further in vivo blockade studies are required to fully elucidate the precise mechanisms underlying this interaction and to assess its potential therapeutic implications for cervical cancer.
Collapse
Affiliation(s)
- Bihui Wang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yuejie Zhu
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yulian Zhang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Zhenyu Ru
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Liqiao Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Manli Zhang
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yufeng Wu
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine of Xinjiang Medical University, Urumqi 830054, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
10
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Fei Y, Cao D, Dong R, Li Y, Wang Z, Gao P, Zhu M, Wang X, Zuo X, Cai J. The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer. Clin Transl Oncol 2024; 26:2718-2737. [PMID: 38703335 DOI: 10.1007/s12094-024-03495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown. METHODS Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis. RESULTS The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers. CONCLUSIONS We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
12
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liu X, Zhao A, Xiao S, Li H, Li M, Guo W, Han Q. PD-1: A critical player and target for immune normalization. Immunology 2024; 172:181-197. [PMID: 38269617 DOI: 10.1111/imm.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.
Collapse
Affiliation(s)
- Xuening Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Su Xiao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- People's Hospital of Zhoucun, Zibo, Shandong, China
| | - Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Li T, Zhang W, Niu M, Wu Y, Deng X, Zhou J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front Immunol 2024; 15:1342647. [PMID: 38550593 PMCID: PMC10972971 DOI: 10.3389/fimmu.2024.1342647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Background Cervical cancer poses a significant global threat to women's health. However, current therapeutic interventions, such as radiotherapy, chemotherapy, surgical resection, and immune checkpoint inhibitors, face limitations in the advanced stages of the disease. Given the immunosuppressive microenvironment in cervical cancer, it is imperative to explore novel perspectives. In this regard, STING agonists have emerged as promising candidates. Methods The expression profiles and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Prognostic analysis of STING downstream genes (CCL5, CXCL9, CXCL10) and immune infiltration analysis were conducted using Kaplan-Meier Plotter, ESTIMATE, and deconvo_CIBERSOR. Single-cell RNA-seq (scRNA-seq) analysis was conducted to evaluate the potential of MSA-2 in cervical cancer treatment employing SingleR, chi-squared test, and Gene Set Enrichment Analysis (GSEA). Cellular interaction analysis utilized the CellChat package to assess the potentiation of cellular interaction following MSA-2 administration. Murine tumor models involving U14 and TC-1, were conducted, and the IF of tissue was subsequently conducted to assess the tumor microenvironment status after treatment. Results Prognosis in cervical cancer correlated with elevated expression of STING downstream genes, indicating prolonged survival and reduced recurrence. These genes positively correlated with immune infiltration, influencing stromal scores, immune scores, and estimate scores. Specific immune cell populations, including CD8+ T cells, M1-type macrophages, NK cells, and T follicular helper cells, were associated with STING downstream genes. scRNA-seq in a classic immune-excluded model revealed that MSA-2 exerts priming and activating functions on vital components within TME, and intensifies their intercellular communications. The in vivo assay ultimately demonstrated that MSA-2, either as a standalone treatment or in combination with anti-PD-1, effectively suppressed the growth of subcutaneous cervical tumors. Moreover, the combination strategy significantly augmented efficacy compared to anti-PD-1 monotherapy by eliciting a robust antitumor immune response. Conclusion This study highlights the pivotal role of the STING pathway and the potential of MSA-2 in reshaping the immune microenvironment in cervical cancer. Combining MSA-2 with immune checkpoint inhibitors presents a transformative approach, holding promise for improved prognosis. Further investigations are warranted to explore the broader immune landscape and potential long-term effects of MSA-2 in cervical cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Deng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
15
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Zhu Q, Yang Y, Chen K, Zhang Q, Huang Y, Jian S. Diffuse large B-cell lymphoma: the significance of CD8 + tumor-infiltrating lymphocytes exhaustion mediated by TIM3/Galectin-9 pathway. J Transl Med 2024; 22:174. [PMID: 38369502 PMCID: PMC10874540 DOI: 10.1186/s12967-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Overexpression of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is related to the exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) in diffuse large B-cell lymphoma (DLBCL). However, the mechanism of TIM3-mediated CD8+TILs exhaustion in DLBCL remains poorly understood. Therefore, we aimed to clarify the potential pathway involved in TIM3-mediated CD8+TILs exhaustion and its significance in DLBCL. METHODS The expression of TIM3 and its correlation with CD8+TILs exhaustion, the key ligand of TIM3, and the potential pathway of TIM3-mediated CD8+TILs exhaustion in DLBCL were analyzed using single-cell RNA sequencing and validated by RNA sequencing. The biological significance of TIM3-related pathway in DLBCL was investigated based on RNA sequencing, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction data. Finally, the possible regulatory mechanism of TIM3-related pathway in DLBCL was explored using single-cell RNA sequencing and RNA sequencing. RESULTS Our results demonstrated that CD8+TILs, especially the terminally exhausted state, were the major clusters that expressed TIM3 in DLBCL. Galectin-9, mainly expressed in M2 macrophages, is the key ligand of TIM3 and can induce the exhaustion of CD8+TILs through TIM3/Galectin-9 pathway. Meanwhile, high TIM3/Galectin-9 enrichment is related to immunosuppressive tumor microenvironment, severe clinical manifestations, inferior prognosis, and poor response to CHOP-based chemotherapy, and can predict the clinical efficacy of immune checkpoint blockade therapy in DLBCL. Furthermore, the TIM3/Galectin-9 enrichment in DLBCL may be regulated by the IFN-γ signaling pathway. CONCLUSIONS Our study highlights that TIM3/Galectin-9 pathway plays a crucial role in CD8+TILs exhaustion and the immune escape of DLBCL, which facilitates further functional studies and could provide a theoretical basis for the development of novel immunotherapy in DLBCL.
Collapse
Affiliation(s)
- Qiqi Zhu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Kexin Chen
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Qiaoyu Zhang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yifan Huang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Shunhai Jian
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
17
|
Zhang J, Ren Z, Hu Y, Shang S, Wang R, Ma J, Zhang Z, Wu M, Wang F, Yu J, Chen D. High HPK1 +PD-1 +TIM-3 +CD8 + T cells infiltration predicts poor prognosis to immunotherapy in NSCLC patients. Int Immunopharmacol 2024; 127:111363. [PMID: 38101218 DOI: 10.1016/j.intimp.2023.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
At present the efficacy of immune checkpoint inhibitors (ICIs) remains limited. The lack of responsiveness in certain patients may be attributed to CD8+ T cell exhaustion within the tumor microenvironment (TME). Hematopoietic progenitor kinase 1 (HPK1) has been identified as a mediator of T cell dysfunction, leading to our hypothesis that HPK1 positive exhausted CD8+ T cells could serve as a predictor for ICIs' efficacy in NSCLC patients, and potentially indicate key cellular subset causing ICIs resistance. Here, we retrospectively collected tumor tissue samples from 36 NSCLC patients who underwent first-line immunotherapy. Using multiplex immunohistochemistry, we visualized various PD-1+CD8+ T cell subsets and explore biomarkers for response. The analysis endpoints included overall response rate (ORR), progression free survival (PFS), and overall survival (OS), correlating them with levels of cell infiltration or effective density. We found that the proportion of PD-1+CD8+ T cell subsets did not align with predictions for ORR, PFS, and OS. Conversely, a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells was identified as an independent risk factor for both PFS (P = 0.019) and OS (P = 0.03). These cells were found to express the highest levels of Granzyme B, and the secretion of Granzyme B in CD8+ T cell subsets was related to TCF-1. In conclusion, these data suggest that a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells correlates with poor clinical outcomes in NSCLC patients receiving immunotherapy. These cells may represent terminally exhausted T cells that fail to respond to ICIs, thereby laying the groundwork for the potential integration of HPK1 inhibitors with immunotherapy to enhance treatment strategy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shijie Shang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiyang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiachun Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zengfu Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
18
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
19
|
Ji W, Jin Y, Jiang W. Foxm1-Mediated Transcriptional Inactivation of NLRP3 Inflammasome Promotes Immunosuppression in Cervical Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:35-45. [PMID: 39180206 DOI: 10.1615/critreveukaryotgeneexpr.2024053577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Foxm1 functions as an oncogene in multiple human malignancies, including cervical cancer. However, the potential of Foxm1 in the tumor microenvironment (TME) is still unknown. The purpose of the present study is to investigate the role of Foxm1 in CD8+ T cell anti-tumor immunity. RT-qPCR is conducted to calculate mRNA levels. JASPAR is used to predict the binding sites between Foxm1 and NLRP3. ChIP assay is performed to verify the occupancy of Foxm1 on the promoter of NLRP3. Modulatory relationship between Foxm1 and NLRP3 is verified by luciferase assay. In vivo assays are conducted to further verify the role of Foxm1/NLRP3 axis in cervical cancer. HE staining assay is applied for histological analysis. Flow cytometry is conducted to determine the functions of immune cells. We found that Foxm1 knockdown decreases tumor burden and suppresses tumor growth of cervical cancer. Foxm1 knock-down promotes the infiltration of CD8+ T cells. Foxm1 deficiency inhibits the exhaustion of CD8+ T cells and facilitates the maintenance of CD8+ effector and stem-like T cells. Moreover, Foxm1 transcriptionally inactivates NLRP3 and suppresses the expression of innate cytokines IL-1β and IL-18. However, inhibition of NLRP3 inflammasome or neutralizing IL-1β and IL-18 inhibits anti-tumor immunity and promoted tumor growth in Foxm1 deficiency in CD8+ T cells. In summary, targeting Foxm1 mediates the activation of NLRP3 inflammasome and stimulates CD8+ T cell anti-tumor immunity in cervical cancer.
Collapse
Affiliation(s)
- Weipeng Ji
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Wen Jiang
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University
| |
Collapse
|
20
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
21
|
Wu A, Niu J, Hong Z, Gu L, Huang Y, Qiu L. The effects of 5-aminolevulinic acid photodynamic therapy on the local immune response of women with cervical intraepithelial neoplasia grade 2. Front Immunol 2023; 14:1211114. [PMID: 37928525 PMCID: PMC10623119 DOI: 10.3389/fimmu.2023.1211114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To evaluate and elucidate the effects and mechanism of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on the local immune response of women with cervical intraepithelial neoplasia grade 2 (CIN2). Materials and methods Immunofluorescence staining was used to compare immune cells infiltration before and after ALA-PDT in 23 patients with CIN2. The infiltration of immune cells into the cervical tissues of patients with different outcomes was also compared at the 6-month follow-up period. Immune cell counts in samples collected before and after treatment were compared. Results We found an increased number of CD8+ T cell infiltration, an increased proportion of CD8+ T cells expressing Granzyme B (GrB), Chemokine receptor 3 (CXCR3), and CD8+ tissue-resident memory T (TRM) cells, and a decreased proportion of CD8+ T cells expressing PD-1 in patients with CIN2 compared to that before ALA-PDT. Moreover, at the 6-month follow-up, there was higher infiltration of CD8+ T and CD8+ TRM cells, higher expression of GrB and CXCR3, and lower expression of PD-1 on CD8+ T cells in the HPV clearance and CIN2 disappearance groups than in the HPV-positive and CIN2 regression groups. However, no significant difference was observed in the number of CD8+ TSCM following ALA-PDT. Conclusion ALA-PDT could activate CD8+ T cell responses by modulating the expression of CXCR3 and PD-1 in CD8+ T cells and increasing the infiltration of CD8+ TRM cells. And the infiltration of CD8+ T cells is correlated with the prognosis of CIN2.
Collapse
Affiliation(s)
- Anyue Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Niu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zubei Hong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liying Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuli Huang
- Department of Obstetrics and Gynecology, Chongming Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
22
|
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer. Biomed Pharmacother 2023; 166:115355. [PMID: 37647692 DOI: 10.1016/j.biopha.2023.115355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-β (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-β participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-β blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-β and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Han Cui
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
23
|
Zhou R, Chen S, Wu Q, Liu L, Wang Y, Mo Y, Zeng Z, Zu X, Xiong W, Wang F. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett 2023; 573:216381. [PMID: 37660884 DOI: 10.1016/j.canlet.2023.216381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyin Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiwen Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
25
|
Li J, Wan C, Li X, Quan C, Li X, Wu X. Characterization of tumor microenvironment and tumor immunology based on the double-stranded RNA-binding protein related genes in cervical cancer. J Transl Med 2023; 21:647. [PMID: 37735483 PMCID: PMC10515034 DOI: 10.1186/s12967-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers threatening women's health worldwide. Double-stranded RNA-binding proteins (dsRBPs) regulate innate immunity and are therefore believed to be involved in virus-related malignancies, however, their role in cervical cancer is not well known. METHODS We performed RNA-seq of tumor samples from cervical cancer patients in local cohort and also assessed the RNA-seq and clinical data derived from public datasets. By using single sample Gene Set Enrichment Analysis (ssGSEA) and univariate Cox analysis, patients were stratified into distinct dsRBP clusters. Stepwise Cox and CoxBoost were performed to construct a risk model based on optimal dsRBPs clusters-related differentially expressed genes (DEGs), and GSE44001 and CGCI-HTMCP-CC were employed as two external validation cohorts. Single cell RNA sequencing data from GSE168652 and Scissor algorithm were applied to evaluated the signature-related cell population. RESULTS The expression of dsRBP features was found to be associated with HPV infection and carcinogenesis in CESC. However, only Adenosine deaminases acting on RNA (ADAR) and Dicer, Drosha, and Argonautes (DDR) exhibited significant correlations with the overall survival (OS) of CESC patients. Based on these findings, CESC patients were divided into three dsRBP clusters. Cluster 3 showed superior OS but lower levels of ADAR and DDR. Additionally, Cluster 3 demonstrated enhanced innate immunity, with significantly higher activity in cancer immunity cycles, immune scores, and levels of tumor-infiltrating immune cells, particularly CD8+ T cells. Furthermore, a risk model based on nine dsRBP cluster-related DEGs was established. The accuracy of survival prediction for 1 to 5 years was consistently above 0.78, and this model's robust predictive capacity was confirmed by two external validation sets. The low-risk group exhibited significantly higher levels of immune checkpoints, such as PDCD1 and CTLA4, as well as a higher abundance of CD8+ T cells. Analysis of single-cell sequencing data revealed a significant association between the dsRBP signature and glycolysis. Importantly, low-risk patients showed improved OS and a higher response rate to immunotherapy, along with enduring clinical benefits from concurrent chemoradiotherapy. CONCLUSIONS dsRBP played a crucial role in the regulation of prognosis and tumor immunology in cervical cancer, and its prognostic signature provides a strategy for risk stratification and immunotherapy evaluation.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci 2023; 24:12958. [PMID: 37629138 PMCID: PMC10455395 DOI: 10.3390/ijms241612958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed in tumors of different origins where it promotes cell migration and proliferation. In addition to this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT, expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches. Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has already been included in clinical trials. The aim of this review is to summarize all these potential therapies, highlighting the still controversial role of CD155 during tumor progression.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
27
|
Zhou J, Xu L, Zhou H, Wang J, Xing X. Prediction of Prognosis and Chemotherapeutic Sensitivity Based on Cuproptosis-Associated lncRNAs in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes (Basel) 2023; 14:1381. [PMID: 37510286 PMCID: PMC10379127 DOI: 10.3390/genes14071381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer is the fourth most common cancer. The 5-year survival rate for metastatic cervical cancer is less than 10%. The survival time of patients with recurrent cervical cancer is approximately 13-17 months. Cuproptosis is a novel type of cell death related to mitochondrial respiration. Accumulative studies showed that long non-coding RNAs (lncRNAs) regulated cervical cancer progression. Compressive bioinformatic analysis showed that nine cuproptosis-related lncRNAs (CRLs), including C002128.2, AC002563.1, AC009237.14, AC048337.1, AC145423.1, AL117336.1, AP001542.3, ATP2A1-AS1, and LINC00426, were independently correlated with the overall survival (OS) of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. The time-dependent area under curve value reached 0.716 at 1 year, 0.718 at 3 years, and 0.719 at 5 years. Notably, CESC patients in the low-risk group had increased immune cell infiltration and expression of several immune checkpoints, which indicated that they may benefit more from immune checkpoint blockade therapy. In addition, we also used the model for drug sensitivity analysis. Several drug sensitivities were more sensitive in high-risk patients and showed significant correlations with the risk models, such as Bortezomib_1191, Luminespib_1559, and Rapamycin_1084, suggesting that these drugs may be candidate clinical drugs for patients with a high risk of CESC. In summary, this study further explored the mechanism of CRLs in CESC and provided a more optimized prognostic model and some insights into chemotherapy of CESC.
Collapse
Affiliation(s)
- Jianghong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Lili Xu
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Hong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Jingjin Wang
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Xiaoliang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
28
|
Liu F, Yuan D, Liu X, Zhuo S, Liu X, Sheng H, Sha M, Ye J, Yu H. A demonstration based on multi-omics transcriptome sequencing data revealed disulfidptosis heterogeneity within the tumor microenvironment of esophageal squamous cell carcinoma. Discov Oncol 2023; 14:96. [PMID: 37306828 DOI: 10.1007/s12672-023-00711-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND It is of great concern to identify prognostic signatures for the prediction and prediction of esophageal squamous cell carcinoma (ESCC), which is the lethal pathological type of malignancy. METHOD Bulk RNA sequencing and scRNA-seq data were retrieved from GSE53624, GSE53622, and GSE188900. Disulfidptosis-related differentially expressed genes (DEGs) were identified between disulfidptosis-high score and disulfidptosis-low score groups. Functional annotation of DEGs were analyzed by Gene Ontology (GO). Consistent clustering and co-expression modules were analyzed, and then constructed a risk score model via multivariate Cox regression analysis. Immune infiltration and immunotherapy response analyses were conducted based on risk score. qRT-PCR, colony formation assay, and flow cytometry analysis were conducted in KYSE-150 and TE-1 cell lines. RESULTS Seven genes (CD96, CXCL13, IL2RG, LY96, TPK1, ACAP1, and SOX17) were selected as marker genes. CD96 and SOX17 are independent prognostic signatures for ESCC patients, with a significant correlation with infiltrated immune cells. ESCC patients had worse response to nivolumab in the high-risk group. Through cellular experiments, we found that CD96 expression was associated with apoptosis and cell cycle ESCC cells. CONCLUSION In a word, the risk score based on disulfidptosis is associated with prognosis and the immune microenvironment, which may direct immunotherapy of ESCC. The key gene of risk score, namely CD96, plays a role in proliferation and apoptosis in ESCC. We offer an insight into the exploration of the genomic etiology of ESCC for its clinical management.
Collapse
Affiliation(s)
- Fuxing Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Donglan Yuan
- Department of Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Xia Liu
- Department of Pathology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, 221000, Jiangsu, China
| | - Shichao Zhuo
- Department of Pathology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, 221000, Jiangsu, China
| | - Xinyun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Haihui Sheng
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Min Sha
- Translational Medicine Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Jun Ye
- Translational Medicine Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
29
|
Trumet L, Weber M, Hahn A, Kunater L, Geppert C, Glajzer J, Struckmeier AK, Möst T, Lutz R, Kesting M, Ries J. The Immune Checkpoint Receptor CD96: A Local and Systemic Immune Modulator in Oral Cancer? Cancers (Basel) 2023; 15:cancers15072126. [PMID: 37046787 PMCID: PMC10093349 DOI: 10.3390/cancers15072126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: As immunotherapy of oral squamous cell carcinomas (OSCCs), using PD1 inhibitors, is only efficient in a small proportion of patients, additional immune checkpoints need to be identified as potential therapeutic targets. There is evidence that a blockade of CD96 might positively affect the anti-tumor immune response. The aim of this study was to analyze the gene and protein expression of CD96 in the tissue and peripheral blood of OSCC patients compared to healthy controls, while also checking for potential associations with a differential expression to the histomorphological parameters. In addition, possible correlations with the expression of PD1 and PD-L1 as well as the macrophage markers CD68 and CD163 should be tested to obtain further insights into the potential effectiveness of combined checkpoint blockage. Material and Methods: For real-time quantitative polymerase chain reaction (RT-qPCR), a total of 183 blood and tissue samples, divided into a patient and a control group, were included. Additionally, 141 tissue samples were examined by immunohistochemistry (IHC). The relative expression differences between the groups were calculated using statistical tests including the Mann–Whitney U test and AUC method. The Chi-square test was used to determine whether CD96 overexpression in individual samples is associated with malignancy. Correlation analysis was performed using the Spearman correlation test. Results: There was a significant CD96 mRNA and protein overexpression in the OSCC group compared to the controls (p = 0.001). In contrast, CD96 mRNA expression in the peripheral blood of the OSCC patients was significantly lower compared to the control group (p = 0.007). In the Chi-square test, the OSCC tissue samples showed a highly significant upregulation of CD96 mRNA expression (p < 0.001) and protein expression (p = 0.005) compared to the healthy mucosa. CD96 mRNA and protein expression correlated significantly (p = 0.005). In addition, there was a significant positive correlation of CD96 expression with PD1 (p ≤ 0.001), PD-L1 (p ≤ 0.001), and CD163 (p = 0.006) at the mRNA level. Conclusions: CD96 expression in the tumor tissue and peripheral blood of OSCC patients is differentially regulated and appears to be a relevant immune checkpoint.
Collapse
Affiliation(s)
- Leah Trumet
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Alina Hahn
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lina Kunater
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jacek Glajzer
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ann-Kristin Struckmeier
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Tobias Möst
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
30
|
CD96 as a Potential Immune Regulator in Cancers. Int J Mol Sci 2023; 24:ijms24021303. [PMID: 36674817 PMCID: PMC9866520 DOI: 10.3390/ijms24021303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The discovery of CTLA-4 and PD-1 checkpoints has prompted scientific researchers and the pharmaceutical industry to develop and conduct extensive research on tumor-specific inhibitors. As a result, the list of potential immune checkpoint molecules is growing over time. Receptors for nectin and nectin-like proteins have recently emerged as promising targets for cancer immunotherapy. Potential immune checkpoints, including CD226, TIGIT, and CD96, belong to this receptor class. Among them, CD96 has received little attention. In this mini-review, we aim to discuss the basic biology of CD96 as well as the most recent relevant research on this as a promising candidate for cancer immunotherapy.
Collapse
|
31
|
Li Y, Shen F, Tan Q, Chen Y, Gu Y. Research Progress of Immuno-Inhibitory Receptors in Gynecological Cervical Cancer. Technol Cancer Res Treat 2023; 22:15330338231208846. [PMID: 37908109 PMCID: PMC10621300 DOI: 10.1177/15330338231208846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/03/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
The mortality rate of cervical cancer is the highest among female malignant tumors and seriously threatens women's lives and health. Persistent high-risk human papillomavirus (HPV) infection is the leading cause of cervical cancer, which provides the basis for immunotherapy. In recent years, owing to progress in targeted therapy and immunotherapy, the survival time of patients with cervical cancer has been significantly extended. However, effective treatments for advanced, recurrent, and metastatic cancers are lacking. "Tumor immunotherapy" has been described as a viable option for tumor therapy but the efficacy of immunotherapy for cervical cancer has only been demonstrated in phase I or II clinical trials. Immune checkpoint inhibitors (ICIs) have shown promising clinical results particularly for treating recurrent and advanced cervical cancer, however, they remain inadequate in some patients. Immune checkpoint is the target of immunotherapy. Therefore, the identification of novel therapeutic targets is essential. In this paper, the structure, expression, function, biological effect of immune inhibitory receptors (IRs) and related clinical studies were reviewed, in order to further explore the application potential of these immune checkpoints and apply them to the future clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingqing Tan
- Department of Gynecological Oncology, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Yao S, Gan C, Wang T, Zhang Q, Zhang M, Cheng H. High ALDH2 expression is associated with better prognosis in patients with gastric cancer. Am J Cancer Res 2022; 12:5425-5439. [PMID: 36628272 PMCID: PMC9827082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
The relationship among alcohol, acetaldehyde, and gastric cancer (GC) is a very interesting research direction. Although many studies have focused on the correlation between ALDH2 polymorphism and GC, ALDH2 expression in GC and its relationship with the prognosis of GC patients remain to be fully understood. To explore these, 455 GC cases were included in this study. The relationships of ALDH2 expression with patients' survival and clinicopathological characteristics were assessed. The immune infiltration characteristics of ALDH2 in GC were also analyzed. Furthermore, the gene regulatory network and functional pathways of ALDH2 in GC were investigated. We found that high expression of ALDH2 was associated with better prognosis in GC patients. GC patients with high ALDH2 expression had a lower degree of pathological malignancy, consistent with our hypothesis that ALDH2 may play as a tumor suppressor role in GC. Mechanistically, ALDH2 may cooperate with genes such as C5orf32, TSPAN8 and RILP to inhibit GC progression via regulating multiple signaling pathways and chemical carcinogenesis. Therefore, our study suggested that ALDH2, an important variant gene in Asians, might serve as a prognostic marker and a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Tao Wang
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Mingjun Zhang
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Research Center for Translational Medicine, The Second Hospital of Anhui Medical UniversityHefei, Anhui, China,Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
33
|
Yu YC, Shi TM, Gu SL, Li YH, Yang XM, Fan Q, Wang YD. A novel cervix carcinoma biomarker: Pathological-epigenomics, integrated analysis of MethylMix algorithm and pathology for predicting response to cancer immunotherapy. Front Oncol 2022; 12:1053800. [PMID: 36408176 PMCID: PMC9667097 DOI: 10.3389/fonc.2022.1053800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, A non-invasive pathomics approach was developed to reveal the methylation status in patients with cervical squamous cell carcinoma and predict clinical outcomes and treatment response. Using the MethylMix algorithm, 14 methylation-driven genes were selected for further analysis. We confirmed that methylation-driven genes were differentially expressed in immune, stromal, and tumor cells. In addition, we constructed a methylation-driven model and explored the alterations in immunocyte infiltration between the different models. The methylation-driven subtypes identified in our investigation could effectively predict the clinical outcomes of cervical cancer. To further evaluate the level of methylation-driven patterns, we constructed a risk model with four genes. Significant correlations were observed between the score and immune response markers, including PD1 and CTLA4. Multiple immune infiltration algorithms evaluated the level of immunocyte infiltration between the high- and low-risk groups, while the components of anti-tumor immunocytes in the low-risk group were significantly increased. Subsequently, a total of 205 acquired whole-slide imaging (WSI) images were processed to capture image signatures, and the pathological algorithm was employed to construct an image prediction model based on the risk score classification. The model achieved an area under the curve (AUC) of 0.737 and 0.582 for the training and test datasets, respectively. Moreover, we conducted vitro assays for validation of hub risk gene. The proposed prediction model is a non-invasive method that combines pathomics features and genomic profiles and shows satisfactory performance in predicting patient survival and treatment response. More interdisciplinary fields combining medicine and electronics should be explored in the future.
Collapse
Affiliation(s)
- Yu-Chong Yu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Ming Shi
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Lan Gu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Hong Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ming Yang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Fan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yu-Dong Wang, ; Qiong Fan,
| | - Yu-Dong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology Affiliated to The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yu-Dong Wang, ; Qiong Fan,
| |
Collapse
|
34
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
35
|
The new progress in cancer immunotherapy. Clin Exp Med 2022:10.1007/s10238-022-00887-0. [DOI: 10.1007/s10238-022-00887-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe cross talk between immune and non-immune cells in the tumor microenvironment leads to immunosuppression, which promotes tumor growth and survival. Immunotherapy is an advanced treatment that boosts humoral and cellular immunity rather than using chemotherapy or radiation-based strategy associated with non-specific targets and toxic effects on normal cells. Immune checkpoint inhibitors and T cell-based immunotherapy have already exhibited significant effects against solid tumors and leukemia. Tumor cells that escape immune surveillance create a major obstacle to acquiring an effective immune response in cancer patients. Tremendous progress had been made in recent years on a wide range of innate and adaptive immune checkpoints which play a significant role to prevent tumorigenesis, and might therefore be potential targets to suppress tumor cells growth. This review aimed to summarize the underlying molecular mechanisms of existing immunotherapy approaches including T cell and NK-derived immune checkpoint therapy, as well as other intrinsic and phagocytosis checkpoints. Together, these insights will pave the way for new innate and adaptive immunomodulatory targets for the development of highly effective new therapy in the future.
Collapse
|
36
|
Ge Y, Zhang Y, Zhao KN, Zhu H. Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Des Devel Ther 2022; 16:3055-3070. [PMID: 36110399 PMCID: PMC9470119 DOI: 10.2147/dddt.s374672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanjun Ge
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Haiyan Zhu, Shanghai First Maternity and Infant Hospital, No. 2699 Gaokexi Road, Shanghai, 200092, People’s Republic of China, Tel +86 13758465255, Email
| |
Collapse
|
37
|
HPV-Positive and -Negative Cervical Cancers Are Immunologically Distinct. J Clin Med 2022; 11:jcm11164825. [PMID: 36013065 PMCID: PMC9410291 DOI: 10.3390/jcm11164825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Although infection with human papillomavirus (HPV) is associated with nearly all cervical cancers (CC), a small proportion are HPV-negative. Recently, it has become clear that HPV-negative CC represent a distinct disease phenotype compared to HPV-positive disease and exhibit increased mortality. In addition, variations between different HPV types associated with CC have been linked to altered molecular pathology and prognosis. We compared the immune microenvironments of CC caused by HPV α9 species (HPV16-like), HPV α7 species (HPV18-like) and HPV-negative disease. HPV-negative CC appeared distinct from other subtypes, with greatly reduced levels of lymphocyte infiltration compared to either HPV α9 or α7 CC. Besides reduced levels of markers indicative of B, T, and NK lymphocytes, the expression of T-cell effector molecules, activation/exhaustion markers, and T-cell receptor diversity were also significantly lower in HPV-negative CC. Interestingly, HPV-negative CC expressed much higher levels of potential neoantigens than HPV-positive CC. These results identify profound differences between the immune landscape of HPV-positive and HPV-negative CC as well as modest differences between HPV α9 and α7 CC. These differences may contribute to altered patient outcomes between HPV-negative and HPV-positive CC and potentially between CC associated with different HPV types.
Collapse
|
38
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|