1
|
Zhou W, Hu Z, Wu J, Liu Q, Jie Z, Sun H, Zhang W. Integrated analysis of single‑cell and bulk RNA sequencing data to construct a risk assessment model based on plasma cell immune‑related genes for predicting patient prognosis and therapeutic response in lung adenocarcinoma. Oncol Lett 2025; 29:271. [PMID: 40235679 PMCID: PMC11998079 DOI: 10.3892/ol.2025.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/28/2025] [Indexed: 04/17/2025] Open
Abstract
Plasma cells serve a crucial role in the human immune system and are important in tumor progression. However, the specific role of plasma cell immune-related genes (PCIGs) in tumor progression remains unclear. Therefore, the present study aimed to establish a risk assessment model for patients with lung adenocarcinoma (LUAD) based on PCIGs. The data used in the present study were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. After identifying nine PCIGs, a risk assessment model was constructed and a nomogram was developed for predicting patient prognosis. To explore the molecular mechanism and clinical significance, gene set enrichment analysis (GSEA), tumor mutational burden (TMB) analysis, tumor microenvironment (TME) analysis and drug sensitivity prediction were performed. Furthermore, the accuracy of the model was validated using reverse transcription-quantitative PCR (RT-qPCR). The present study constructed a risk assessment model consisting of nine PCIGs. Kaplan-Meier survival curves indicated a worse prognosis in the high-risk subgroup (risk score ≥0.982) compared with that in the low-risk subgroup. The nomogram exhibited predictive value for survival prediction (area under the curve=0.727). GSEA enrichment analysis revealed enrichment of the focal adhesion and extracellular matrix-receptor interaction pathways in the high-risk group. Moreover, the high-risk group exhibited a higher TMB, as demonstrated by the TME analysis showing lower ESTIMATE scores. Drug sensitivity prediction facilitated potential drug selection. Subsequently, differential gene expression was validated in multiple LUAD cell lines using RT-qPCR. In conclusion, the risk assessment model based on nine PCIGs may be used to predict the prognosis and drug selection in patients with LUAD.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qinghua Liu
- Department of Thoracic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China
| | - Zhangning Jie
- Department of Thoracic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China
| | - Hui Sun
- Department of Thoracic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Bauer M, Santos P, Wilfer A, van den Berg E, Zietsman A, Vetter M, Kaufhold S, Wickenhauser C, Dos-Santos-Silva I, Chen WC, Cubasch H, Murugan N, McCormack V, Joffe M, Seliger B, Kantelhardt E. HIV status alters immune cell infiltration and activation profile in women with breast cancer. Nat Commun 2025; 16:4699. [PMID: 40393975 DOI: 10.1038/s41467-025-59408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
The breast cancer (BC)-related mortality is higher and the immunity is altered in women living with HIV (WLWH) compared to HIV-negative women. Therefore, tumor samples of 296 black BC patients from South Africa and Namibia with known age, HIV status, tumor stage, hormone receptor and HER2 status and overall survival (OS) are analyzed for components of the tumor microenvironment (TME). WLWH (n = 117), either with suppressed viral activity (HR = 1.25) or with immune suppression (HR = 2.04), have a shorter OS. HIV status is associated with increased numbers of CD8+ T cells in the TME compared to HIV-negative patients; no correlation is found with CD4+ T cell numbers in the blood. Moreover, an increased expression of CD276/B7-H3 and a more pronounced IFN-γ signaling in the tumors are found in WLWH, independent of age, stage, and BC subtypes. In conclusion, altered T cell composition and CD276 expression in WLWH may contribute to inferior survival and can be used for targeted treatment.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Pablo Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Wilfer
- Institute of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Krukenberg Cancer Center, University Hospital Halle, Halle (Saale), Germany
| | - Eunice van den Berg
- Department of Anatomical Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Annelle Zietsman
- AB May Cancer Centre, Windhoek Central Hospital, Windhoek, Namibia
| | - Martina Vetter
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandy Kaufhold
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Wenlong Carl Chen
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Herbert Cubasch
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nivashini Murugan
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Valerie McCormack
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Maureen Joffe
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Noncommunicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, University Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit,Faculty of Health Sciences, University Witwatersrand, Johannesburg, South Africa
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Translational Immunology, Medical School Theodor Fontane, Brandenburg an der Havel, Germany.
| | - Eva Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
4
|
Stec NE, Barker FG, Brastianos PK. Targeted treatment for craniopharyngioma. J Neurooncol 2025; 172:503-513. [PMID: 39951179 DOI: 10.1007/s11060-025-04942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Craniopharyngioma is a rare solid-cystic tumor of the hypothalamopituitary region. Two distinct craniopharyngioma types (formerly subtypes), adamantinomatous and papillary, have been described. These tumors often manifest with neuroendocrine dysfunction, vision problems, hydrocephalus, and cognitive changes. Despite efforts to spare vital brain structures, conventional treatments such as surgery and radiation can exacerbate preceding deficits and contribute to permanent neurologic impairment. Recent studies have identified BRAF-V600E mutations in nearly all papillary craniopharyngiomas (PCP), and CTNNB1/Wnt pathway alterations in adamantinomatous craniopharyngiomas (ACP). These discoveries have advanced our understanding of craniopharyngioma pathogenesis and have opened opportunities for targeted biological treatments. PURPOSE The primary objective of this article is to review the current landscape of targeted treatments in papillary and adamantinomatous craniopharyngioma. RESULTS Treatment of PCP with BRAF/MEK inhibition has demonstrated durable tumor response in the adjuvant and neoadjuvant settings in multiple case studies and one phase II clinical trial. Although treatment advances are more limited for ACP, CTNNB1/Wnt pathway inhibitors showed promising results in pre-clinical studies and are under continued investigation. CONCLUSION The efficacy of BRAF/MEK inhibition in PCP supports the use of targeted therapy in patients with newly diagnosed PCP. The optimal targeted treatment combinations and their timing, duration, long-term effects, and sequencing with traditional therapeutic modalities have not been established and warrant further study. Targeted therapies represent a significant advancement in the field of oncology, and craniopharyngiomas are viable candidates for these approaches pending further research.
Collapse
Affiliation(s)
- Natalie E Stec
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Priscilla K Brastianos
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Kankotia S, Park S, Thomas J. Novel immunotherapy combinations in head and neck squamous cell carcinoma. Curr Opin Oncol 2025; 37:209-217. [PMID: 40065692 DOI: 10.1097/cco.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Relapsed or metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a deadly disease that historically was treated with palliative chemotherapy-based regimens. Since 2019, immunotherapy-based regimens have become the standard of care for 1 st line treatment in this disease. Over the last several years, there have been numerous studies conducted with novel combination therapies for R/M HNSCC but there has not yet been a new standard of care. RECENT FINDINGS Novel treatment combinations with chemotherapy, targeted therapy, immunotherapy, vaccines, and intratumoral drugs have been evaluated in the treatment of R/M HNSCC. Favorable efficacy has been seen with many of these combinations, although some large studies have failed to improve upon the current standard. SUMMARY Many promising combination regimens are being tested which could lead to a new standard of care in the treatment of R/M HNSCC in the coming years.
Collapse
Affiliation(s)
- Shyam Kankotia
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | | | | |
Collapse
|
6
|
Papavassiliou KA, Sofianidi AA, Papavassiliou AG. The Attractiveness of B7-H3 as a Target for Lung Cancer Treatment. Cancers (Basel) 2025; 17:1546. [PMID: 40361473 PMCID: PMC12071028 DOI: 10.3390/cancers17091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
In 2015, the U [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
7
|
Jiang Y, Qian Z, Wang C, Wu D, Liu L, Ning X, You Y, Mei J, Zhao X, Zhang Y. Targeting B7-H3 inhibition-induced activation of fatty acid synthesis boosts anti-B7-H3 immunotherapy in triple-negative breast cancer. J Immunother Cancer 2025; 13:e010924. [PMID: 40221152 PMCID: PMC11997833 DOI: 10.1136/jitc-2024-010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most malignant breast cancer, highlighting the need for effective immunotherapeutic targets. The immune checkpoint molecule B7-H3 has recently gained attention as a promising therapeutic target due to its pivotal role in promoting tumorigenesis and cancer progression. However, the therapeutic impact of B7-H3 inhibitors (B7-H3i) remains unclear. METHODS Transcriptomic and metabolomic analyses were conducted to explore the underlying mechanisms of B7-H3 inhibition in TNBC. The therapeutic efficacy of the combined treatment strategy was substantiated through comprehensive phenotypic assays conducted in vitro and validated in vivo using animal models. RESULTS B7-H3 blockade induces a "primed for death" stress state in cancer cells, leading to distinct alterations in metabolic pathways. Specifically, B7-H3 knockdown activated the AKT signaling pathway and upregulated sterol regulatory element-binding protein 1 (SREBP1), which in turn elevated FASN expression. The simultaneous inhibition of both B7-H3 and FASN more effectively attenuated the malignant progression of TNBC. CONCLUSIONS Our findings propose an "immune attack-metabolic compensation" dynamic model and suggest the feasibility of a dual-targeting strategy that concurrently inhibits both B7-H3 and FASN to enhance therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Danping Wu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lu Liu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Ning
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yilan You
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Breast Surgery, Women's Hospital of Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Li F, Liu T, Dong Y, Gao Q, Lu R, Deng Z. 5-Methylcytosine RNA modification and its roles in cancer and cancer chemotherapy resistance. J Transl Med 2025; 23:390. [PMID: 40181461 PMCID: PMC11966802 DOI: 10.1186/s12967-025-06217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Recent advancements in cancer therapies have improved clinical outcomes, yet therapeutic resistance remains a significant challenge because of its complex mechanisms. Among epigenetic factors, m5C RNA modification is emerging as a key player in cancer drug resistance, similar to the well-known m6A modification. m5C affects RNA metabolism processes, including splicing, export, translation, and stability, thereby influencing drug efficacy. This review highlights the critical roles of m5C in modulating resistance to chemotherapy, targeted therapy, radiotherapy, and immunotherapy. This review also discusses the functions of key regulators, including methyltransferases, demethylases, and m5C-binding proteins, as essential modulators of the m5C epigenetic landscape that contribute to its dynamic and complex regulatory network. Targeting these regulatory components offers a promising strategy to overcome resistance. We highlight the need for further research to elucidate the specific mechanisms by which m5C contributes to resistance and to develop precise m5C-targeted therapies, presenting m5C-focused strategies as potential novel anticancer treatments.
Collapse
Affiliation(s)
- Fang Li
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Tingting Liu
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Yajing Dong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Gao
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, 215130, Jiangsu, China.
| | - Zhiyong Deng
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
10
|
Tasdogan A, Sullivan RJ, Katalinic A, Lebbe C, Whitaker D, Puig S, van de Poll-Franse LV, Massi D, Schadendorf D. Cutaneous melanoma. Nat Rev Dis Primers 2025; 11:23. [PMID: 40180935 DOI: 10.1038/s41572-025-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
Cutaneous melanoma is a common cancer in Australia and New Zealand, Europe, and North America, and its incidence is still increasing in many regions. Ultraviolet (UV) radiation exposure (for example, through excessive sunlight exposure) remains the primary risk factor for melanoma; however, public awareness campaigns have led to a marked reduction in mortality. In addition to genetic damage from UV radiation, specific genetic alterations have been linked to melanoma. The stage of the tumour at the time of diagnosis is of greater importance for melanoma prognosis than in almost any other cancer. Context-dependent genetic mutations that attenuate tumour-suppressive mechanisms or activate growth-promoting signalling pathways are crucial factors in the development of cutaneous melanoma. In addition to external factors such as UV radiation, the tumour microenvironment can contribute to melanoma progression, invasion and metastasis. Cutaneous melanoma treatment has improved considerably over the past decade with the discovery and development of immune checkpoint inhibitors and therapy targeting BRAF and MEK. Over the next decade, several priorities are likely to influence melanoma research and management, including the continued advance of precision medicine methods to identify the most suitable patients for the most effective treatment, with the aim of improving clinical outcomes.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.
- National Center for Tumour diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany.
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Katalinic
- Institute for Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - Celeste Lebbe
- Université Paris Cite, AP-HP Dermato-oncology and CIC, Cancer institute APHP.nord Paris cité, INSERM U976, Saint Louis Hospital, Paris, France
| | - Dagmar Whitaker
- Melanoma Advisory Board South Africa, Cape Town, South Africa
| | - Susana Puig
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- 8CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lonneke V van de Poll-Franse
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
- Department of Medical and Clinical Psychology, CoRPS - Center of Research on Psychology in Somatic Diseases, Tilburg University, Tilburg, Netherlands
| | - Daniela Massi
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, New York University - College of Dentistry, New York, NY, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.
- National Center for Tumour diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
11
|
Ye H, Liao W, Pan J, Shi Y, Wang Q. Immune checkpoint blockade for cancer therapy: current progress and perspectives. J Zhejiang Univ Sci B 2025; 26:203-226. [PMID: 40082201 PMCID: PMC11906392 DOI: 10.1631/jzus.b2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 03/16/2025]
Abstract
Dysfunction of anti-tumor immune responses is crucial for cancer progression. Immune checkpoint blockade (ICB), which can potentiate T cell responses, is an effective strategy for the normalization of host anti-tumor immunity. In recent years, immune checkpoints, expressed on both tumor cells and immune cells, have been identified; some of them have exhibited potential druggability and have been approved by the US Food and Drug Administration (FDA) for clinical treatment. However, limited responses and immune-related adverse events (irAEs) cannot be ignored. This review outlines the development and applications of ICBs, potential strategies for overcoming resistance, and future directions for ICB-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hongying Ye
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Weijie Liao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Jiongli Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ju Y, Watson J, Wang JJ, Yen YT, Gevorkian L, Chen Z, Tu KH, Salumbides B, Phung A, Zhao C, Kim H, Ji YR, Zhang RY, Lee J, Gong J, Scher K, You S, Chen JF, Tseng HR, Zhu Y, Posadas EM. B7-H3-liquid biopsy for the characterization and monitoring of the dynamic biology of prostate cancer. Drug Resist Updat 2025; 79:101207. [PMID: 39914189 DOI: 10.1016/j.drup.2025.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND B7-H3 is a promising target for cancer therapy, notably in prostate cancer (PCa), particularly in metastatic, castration-resistant PCa (mCRPC). With the development of B7-H3-targeted therapies, there is a need for a rapid, reliable, and cost-effective method to detect and monitor B7-H3 expression. Leveraging their abundance and stability, we developed a liquid biopsy assay using extracellular vesicles (EVs) for this purpose. METHODS B7-H3+ EVs were isolated using a B7-H3 antibody-mediated, click chemistry-based enrichment method. Antibodies were conjugated to methyltetrazine-grafted microbeads. EVs were isolated from 100 µL of plasma from metastatic, castration-sensitive PCa (mCSPC) (n = 43) and mCRPC (n = 103) patients and quantified using RT-qPCR of ACTB. Measurements were compared with the patient's disease status over time. RESULTS The assay detected higher B7-H3+ EVs in mCRPC than mCSPC and increased when mCSPC transitioned to mCRPC. Elevated B7-H3+ EVs were associated with lower overall survival (Hazard ratio (HR) 2.19, p = 0.01). In patients with serial plasma samples, B7-H3+ EV levels reflected treatment response and disease progression. CONCLUSIONS This B7-H3+ EV assay represents a significant advancement in utilizing tumor-derived EVs for a non-invasive, quantitative, and consistent real-time measurement of B7-H3. This assay warrants further development as a companion diagnostic for B7-H3 targeted therapies in PCa and other conditions.
Collapse
Affiliation(s)
- Yong Ju
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Joshua Watson
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Jasmine J Wang
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ying-Tzu Yen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Lilit Gevorkian
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Zijing Chen
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kai Han Tu
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Brenda Salumbides
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Aaron Phung
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Chen Zhao
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Hyoyong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - You-Ren Ji
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Ryan Y Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Jun Gong
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kevin Scher
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Jie-Fu Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA.
| |
Collapse
|
13
|
Tamura Y, Ohki S, Nagai H, Yoshizato R, Nishi S, Jin Y, Kitajima Y, Guo Y, Ichinohe T, Okada S, Kawano Y, Yasuda T. Co-expression of B7-H3 and LAG3 represents cytotoxicity of CD4 + T cells in humans. Front Immunol 2025; 16:1560383. [PMID: 40070836 PMCID: PMC11893609 DOI: 10.3389/fimmu.2025.1560383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Recent studies have highlighted the potential contribution of CD4+ T cells with cytotoxic activity (CD4 CTLs) to anti-tumor immunity. However, their precise roles remain elusive, partly due to the absence of specific markers defining CD4 CTLs with target-killing potential in humans. We previously demonstrated that Epstein-Barr virus (EBV)-driven immortalized B cell lines efficiently induce human CD4 CTLs with cytotoxic functions comparable to cytotoxic CD8+ T cells (CD8 CTLs). Here we show that EBV-driven CD4 CTLs exhibit prolonged proliferation and sustained cytotoxicity compared with CD8 CTLs, although their cytotoxic function markedly decreased during long-term culture. Comparative transcriptomic analysis of CD4 CTLs with varying cytotoxic activities identified B7-H3 and LAG3 as surface molecules associated with highly cytotoxic CD4 CTLs. Co-expression of B7-H3 and LAG3 correlated with CD107a expression and was observed on CD4+ T cells with enhanced cytotoxic potential in a target-dependent manner but not on CD8 CTLs. Furthermore, B7-H3+LAG3+ CD4+ T cells were induced during co-culture with bone marrow cells from pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). These findings suggest that B7-H3 and LAG3 co-expression represents a characteristic feature of functional CD4 CTLs in humans, providing valuable insights into the role of CD4 CTLs in tumor immunity.
Collapse
Affiliation(s)
- Yumi Tamura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruna Nagai
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rin Yoshizato
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shizuki Nishi
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuqi Jin
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Dong S, Li X, Huang Q, Li Y, Li J, Zhu X, Xue C, Chen R, Zeng Y, Wu J, Zhong Y, Hu S. Resistance to immunotherapy in non-small cell lung cancer: Unraveling causes, developing effective strategies, and exploring potential breakthroughs. Drug Resist Updat 2025; 81:101215. [PMID: 40081220 DOI: 10.1016/j.drup.2025.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Over the last two decades, advancements in deciphering the intricate interactions between oncology and immunity have fueled a meteoric rise in immunotherapy for non-small cell lung cancer, typified by an explosive growth of immune checkpoint inhibitors. However, resistance to immunotherapy remains inevitable. Herein we unravel the labyrinthine mechanisms of resistance to immunotherapy, characterized by their involvement of nearly all types of cells within the body, beyond the extrinsic cancer cells, and importantly, such cells are not only (inhibitory or excitatory, or both) signal recipients but also producers, acting in a context-dependent manner. At the molecular level, these mechanisms underlie genetic and epigenetic aberrations, which are regulated by or regulate various protein kinases, growth factors, and cytokines with inherently dynamic and spatially heterogeneous properties. Additionally, macroscopic factors such as nutrition, comorbidities, and the microbiome within and around organs or tumor cells are involved. Therefore, developing therapeutic strategies combined with distinct action informed by preclinical, clinical, and real-world evidence, such as radiotherapy, chemotherapy, targeted therapy, antibody-drug conjugates, oncolytic viruses, and cell-based therapies, may stand as a judicious reality, although the ideality is to overcome resistance point-by-point through a novel drug. Notably, we highlight a realignment of treatment aims, moving the primary focus from eliminating cancer cells -- such as through chemotherapy and radiotherapy -- to promoting immune modulation and underscore the value of regulating various components within the host macro- or micro-environment, as their effects, even if seemingly minimal, can cumulatively contribute to visible clinical benefit when applied in combination with ICIs. Lastly, this review also emphasizes the current hurdles scattered throughout preclinical and clinical studies, and explores evolving directions in the landscape of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Xiaoyu Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qing Huang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuanxiang Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | | | - Xianmin Zhu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chang Xue
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Runzhi Chen
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuan Zeng
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jingyi Wu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yi Zhong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| |
Collapse
|
15
|
Yüceer RO, Kaya S, Balcı SN, Eğilmez HR, Yılmaz M, Erdıs E. Prognostic Biomarkers in Isocitrate Dehydrogenase Wild-Type Glioblastoma: A Focus on B7-H3. Brain Sci 2025; 15:212. [PMID: 40002543 PMCID: PMC11853153 DOI: 10.3390/brainsci15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) wild-type (wt) glioblastoma is an aggressive malignancy associated with poor clinical outcomes, marked by high heterogeneity and resistance to treatment. This study aims to investigate the prognostic significance of B7-H3 expression in IDH wt glioblastoma and its potential association with clinical outcomes, including overall survival (OS) and progression-free survival (PFS). Additionally, the relationship between B7-H3 and PD-L1 expression was explored. METHODS A retrospective cohort of 86 IDH wt glioblastoma patients, all of whom underwent surgery, radiotherapy, and temozolomide treatment, was analyzed. B7-H3 expression was quantified using an immunoreactivity score (IRS), classifying samples as low (IRS ≤ 4) or high (IRS > 4). PD-L1 expression was evaluated based on tumor and immune cell staining, with >5% positivity indicating significant expression. RESULTS High B7-H3 expression was significantly associated with poorer OS and PFS. Co-expression of B7-H3 and PD-L1 was prevalent, particularly among younger male patients with unifocal tumors; however, PD-L1 expression did not show a significant correlation with clinical outcomes. CONCLUSIONS B7-H3 appears to be a promising prognostic biomarker in IDH wt glioblastoma and may serve as a target for developing combination therapies, integrating B7-H3-targeting treatments with immune checkpoint inhibitors. Further prospective studies are necessary to validate these findings and to explore potential therapeutic strategies.
Collapse
Affiliation(s)
- Ramazan Oğuz Yüceer
- Department of Pathology, Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey; (S.K.); (H.R.E.)
| | - Seyhmus Kaya
- Department of Pathology, Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey; (S.K.); (H.R.E.)
| | - Sema Nur Balcı
- Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey;
| | - Hatice Reyhan Eğilmez
- Department of Pathology, Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey; (S.K.); (H.R.E.)
| | - Mukaddes Yılmaz
- Department of Clinical Oncology, Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey;
| | - Eda Erdıs
- Department of Radiation Oncology, Sivas Cumhuriyet University School of Medicine, 58140 Sivas, Turkey;
| |
Collapse
|
16
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
17
|
Haberecker M, Rüschoff JH, Andriakopoulou C, Gray SG, Nackaerts K, De Perrot M, Brcic L, Nadal E, Tsimpoukis S, Ampollini L, Aerts JG, Kirschner MB, Monkhorst K, Weynand B, Bavaghar-Zaeimi F, Samarzija M, Llatjos R, Finn SP, Silini E, Von Der Thüsen J, Vagenknecht P, Tsourti Z, Kerr KM, Kammler R, Peters S, Baas P, Opitz I, Stahel RA, Curioni-Fontecedro A. Prevalence and Clinical Association of CD276 (B7-H3) Expression in Pleural Mesothelioma: Results From the European Thoracic Platform Mesoscape Project. JCO Precis Oncol 2025; 9:e2400675. [PMID: 39938010 DOI: 10.1200/po-24-00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
PURPOSE CD276 (B7-H3) is an immunoregulatory protein that plays an important role in the inhibition of T-cell function. CD276 is overexpressed on a variety of human solid cancer cells with limited expression in normal tissues, making it an appealing target for innovative cancer immunotherapy approaches. Pleural mesothelioma (PM) is a highly aggressive disease with a need for new treatment options. Our objective was to investigate the expression of CD276 in the multicenter PM cohort of the European Thoracic Oncology Platform Mesoscape project and correlate the results with annotated clinical data. MATERIALS AND METHODS Using tissue microarrays (TMAs), the expression of CD276, assessed using a semiquantitative aggregate H-score method on the membrane (and secondarily in the cytoplasm), was correlated with clinicopathologic characteristics and survival outcome. RESULTS CD276 immunohistochemistry results were available for 353 patients, with mostly epithelioid histology (71%). Membranous CD276 expression was present in 86%. High membranous CD276 expression (H-score ≥the median H-score of 120) was significantly more common in females (P = .0029; 71% v 47%) and in epithelioid histology (P < .001; 59% v 29%), whereas no significant association in clinical outcome (overall survival [OS]/progression-free survival) was found. Cross-validation of the TMA method using whole sections revealed a moderate agreement for membranous assessment (Cohen's kappa = 0.47) and a lower agreement for cytoplasm assessment (Cohen's kappa = 0.37). In an exploratory analysis, high cytoplasmic CD276 expression was associated with worse prognosis (OS, log-rank P = .043), but was not significant when adjusting for other clinical variables. CONCLUSION Although no prognostic value of CD276 expression was found, its high membranous expression (86%) in the PM samples of the study supports further research of its potential as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Charitini Andriakopoulou
- ETOP Statistical Office, ETOP IBCSG Partners Foundation, Frontier Science Foundation-Hellas, Athens, Greece
| | - Steven G Gray
- Department of Clinical Medicine, St James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Kristiaan Nackaerts
- Department of Respiratory Oncology, KU Leuven-University Hospital Leuven, Leuven, Belgium
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Canada
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Gdansk, Austria
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Sotirios Tsimpoukis
- Medical School of Athens, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Joachim G Aerts
- Thoracic Oncology Department, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Kim Monkhorst
- Division of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Birgit Weynand
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - Miroslav Samarzija
- Department for Lung Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Roger Llatjos
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Stephen P Finn
- Cancer Molecular Diagnostics and Histopathology, St James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Enrico Silini
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Jan Von Der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Patrick Vagenknecht
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Zoi Tsourti
- ETOP Statistical Office, ETOP IBCSG Partners Foundation, Frontier Science Foundation-Hellas, Athens, Greece
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary-NHS Grampian, Aberdeen, United Kingdom
| | - Roswitha Kammler
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Solange Peters
- Department of Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Paul Baas
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Mei J, Luo Z, Cai Y, Wan R, Qian Z, Chu J, Sun Y, Shi Y, Jiang Y, Zhang Y, Yin Y, Chen S. Altered Atlas of Exercise-Responsive MicroRNAs Revealing miR-29a-3p Attacks Armored and Cold Tumors and Boosts Anti-B7-H3 Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0590. [PMID: 39845707 PMCID: PMC11751204 DOI: 10.34133/research.0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers. Here, we reported that miR-29a-3p was the exercise-responsive miRNA, which was lowly expressed in tumor tissues and associated with unfavorable prognosis in BRCA. Mechanistically, miR-29a-3p targeted macrophages, fibroblasts, and tumor cells to down-regulate B7 homolog 3 (B7-H3) expression. Single-cell RNA sequencing (scRNA-seq) and cytometry by time-of-flight (CyTOF) demonstrated that miR-29a-3p attacked the armored and cold tumors, thereby shaping an immuno-hot tumor microenvironment (TME). Translationally, liposomes were developed and loaded with miR-29a-3p (lipo@miR-29a-3p), and lipo@miR-29a-3p exhibited promising antitumor effects in a mouse model with great biocompatibility. In conclusion, we uncovered that miR-29a-3p is a critical exercise-responsive miRNA, which attacked armored and cold tumors by inhibiting B7-H3 expression. Thus, miR-29a-3p restoration could be an alternative strategy for antitumor therapy.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yun Cai
- Department of Central Laboratory, Changzhou Jintan First People’s Hospital, Jiangsu University, Changzhou 213200, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Zhiwen Qian
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Ying Jiang
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yan Zhang
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Ma Z, Yang J, Jia W, Li L, Li Y, Hu J, Luo W, Li R, Ye D, Lan P. Histone lactylation-driven B7-H3 expression promotes tumor immune evasion. Theranostics 2025; 15:2338-2359. [PMID: 39990209 PMCID: PMC11840737 DOI: 10.7150/thno.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/05/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Tumor cells possess sophisticated strategies to circumvent immune detection, including the modulation of endogenous immune checkpoints, particularly those within the B7 family. Elucidating the mechanisms that govern the induction of B7 family molecules is crucial for the advancement of immunotherapy. Lysine lactylation (Kla), a newly identified epigenetic modification, is suggested may play a role in reshaping the tumor microenvironment and facilitating immune evasion. Methods: We analyzed the glycolysis pathway's enrichment in patients with immune-evading tumors and assessed the impact of lactate treatment on the antitumor immunity of CD8+ T cells in the tumor microenvironment. We interrupted glycolysis using lactate dehydrogenase A (LDHA) knockdown and sodium oxamate, and evaluated its effects on CD8+ T cell cytotoxicity. Additionally, we investigated the correlation between B7-H3 expression and the glycolysis pathway, and explored the molecular mechanisms underlying lactate-induced B7-H3 expression. Results: Our findings revealed that the glycolysis pathway was highly enriched in immune-evading tumors. Lactate treatment inhibited the antitumor immunity of CD8+ T cells, whereas interruption of glycolysis via LDHA knockdown or treatment with sodium oxamate augmented the cytotoxicity of CD8+ T cells, effectively counteracting tumor immune evasion. B7-H3 expression was found to be closely linked with the glycolysis pathway. Mechanistically, lactate-upregulated H3K18la directly bound to the B7-H3 promoter in conjunction with the transcription factor Creb1 and its co-activator Ep300, leading to increased B7-H3 expression and contributing to tumor progression by compromising the proportion and cytotoxicity of tumor-infiltrating CD8+ T cells. In mouse tumor bearing models, inhibiting glycolysis and B7-H3 expression suppressed tumor cell growth, activated tumor-infiltrating CD8+ T cells, and demonstrated potent anti-tumor efficacy. Furthermore, this approach enhanced the efficacy of anti-PD-1 treatment. Conclusions: This study uncovers a novel mechanism by which lactate modulates the immune microenvironment through the glycolysis pathway and B7-H3 expression, providing new avenues for lactate metabolism-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Jincui Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Le Li
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yixin Li
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junjie Hu
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Luo
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ronghui Li
- Department of neurosurgery, Affiliated Hospital of Shandong University of traditional Chinese Medicine, Weifang, 250100, China
| | - Dawei Ye
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| |
Collapse
|
20
|
Arafa AT, Ludwig M, Tuncer O, Kollitz L, Gustafson A, Boytim E, Luo C, Sabal B, Steinberger D, Zhao Y, Dehm SM, Cayci Z, Hwang J, Villalta PW, Antonarakis ES, Drake JM. Isolation of Plasma Extracellular Vesicles for High-Depth Analysis of Proteomic Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients. Cancers (Basel) 2024; 16:4261. [PMID: 39766159 PMCID: PMC11674840 DOI: 10.3390/cancers16244261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction: Prostate cancer treatment has been revolutionized by targeted therapies, including PARP inhibitors, checkpoint immunotherapies, and PSMA-targeted radiotherapies. Despite such advancements, accurate patient stratification remains a challenge, with current methods relying on genomic markers, tissue staining, and imaging. Extracellular vesicle (EV)-derived proteins offer a novel non-invasive alternative for biomarker discovery, holding promise for improving treatment precision. However, the characterization of plasma-derived EVs in prostate cancer patients remains largely unexplored. Methods: We conducted proteomic analyses on EVs isolated from plasma in 27 metastatic castration-resistant prostate cancer (mCRPC) patients. EVs were purified using ultracentrifugation and analyzed via mass spectrometry. Proteomic data were correlated with clinical markers such as serum prostate-specific antigen (PSA) and bone lesion counts. Statistical significance was assessed using Mann-Whitney t-tests and Spearman correlation. Results: The median age of patients was 74 (range: 44-94) years. At the time of blood collection, the median PSA level was 70 (range: 0.5-1000) ng/mL. All patients had bone metastasis. A total of 5213 proteins were detected, including EV-related proteins (CD9, CD81, CD63, FLOT1, TSG101) and cancer-related proteins (PSMA, B7-H3, PD-L1). Proteomic profiling of plasma EVs revealed a significant correlation between specific EV-derived proteins and clinical prognostic markers. B7-H3, LAT1, and SLC29A1 showed a strong association with serum PSA levels and number of bone lesions, indicating potential for these proteins to serve as biomarkers of disease burden and therapy response. Conclusions: Our findings demonstrate the potential of EV-based proteomics for identifying biomarkers in mCRPC patients. Proteins such as B7-H3 and LAT1 could guide precision oncology approaches, improving patient stratification. Future research incorporating outcomes data and EV subpopulation analysis is needed to establish clinical relevance.
Collapse
Affiliation(s)
- Ali T. Arafa
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Onur Tuncer
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lily Kollitz
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ava Gustafson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
| | - Ella Boytim
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
| | - Christine Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
| | - Barbara Sabal
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel Steinberger
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zuzan Cayci
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Justin Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Division of Hematology/Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Division of Hematology/Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin M. Drake
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.A.)
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Liu J, Kadier A, Guo Y, Zhang W, Chen H, Zhang Z, Guo C, Zhang Y, Bao M, Geng J, Zhang J, Mao S, Yao X. Effect of tumor CD276 expression on infiltrating immune cells and clinicopathological features of prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:783-785. [PMID: 37380802 DOI: 10.1038/s41391-023-00690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Advanced prostate cancer (PCa) is often resistant to immunotherapy. In this study, we examined the role of CD276 in mediating immunotherapeutic effects through changes in immune cell infiltration. METHODS Using transcriptomic and proteomic analyses, CD276 was identified as a potential target for immunotherapy. Subsequent in vivo and in vitro experiments confirmed its role as a potential mediator of immunotherapeutic effects. RESULTS Multi-omic analysis suggested that CD276 was identified as a key molecule regulating the immune microenvironment (IM). In vivo experiments revealed that CD276 knockdown was found to enhance CD8+ T cell infiltration into the IM. Immunohistochemical analysis of PCa samples further confirmed the same findings. CONCLUSION CD276 was found to inhibit the enrichment of CD8+ T cells in PCa. Thus, CD276 inhibitors may be potential targets for immunotherapy.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Aimaitiaji Kadier
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhijin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai, 200435, China
| | - Meiyu Bao
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai, 200435, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Li H, Wang F, Zhao H, Cao J, Wang S, Li H, Savoldo B, Rao E, Dotti G, Du H. Preclinical assessment of the efficacy of B7-H3 CAR-T in renal cell carcinoma. Mol Immunol 2024; 176:1-10. [PMID: 39514948 PMCID: PMC11631664 DOI: 10.1016/j.molimm.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
B7-H3 is a type I transmembrane protein that belongs to the B7 immune checkpoint protein family, is aberrantly expressed in cancer cells, but rarely expressed in normal tissues, making it an attractive target for cancer therapy. Here, we found B7-H3 is highly expressed in the renal cell carcinoma (RCC) tumor tissues and RCC cell lines, but is undetectable in normal renal tissues. Therefore, we engineered second-generation CAR-T cells targeting B7-H3, incorporating either CD28 or 4-1BB co-stimulatory domains. Both CAR-T cell variants demonstrated potent antitumor activity against RCC tumors in vitro and in metastatic and orthotopic RCC mouse models. Furthermore, the B7-H3 CAR-T cells exhibited remarkable proliferation and robust cytokine release when co-cultured with RCC cancer cells. These findings demonstrated that targeting B7-H3 by CAR-T cells potentially offering a new treatment option for RCC patients.
Collapse
Affiliation(s)
- Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Haifang Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jiale Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Shiyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hongxia Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Enyu Rao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Hongwei Du
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
23
|
Özalp FR, Yörükoğlu K, Yıldırım EÇ, Uzun M, Semiz HS. Prognostic value of B7-H3 expression in metastatic renal cell carcinoma and its impact on immunotherapy response. BMC Cancer 2024; 24:1471. [PMID: 39614178 DOI: 10.1186/s12885-024-13238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is characterised by its immunogenic and proangiogenic nature and its resistance to conventional therapies. The advent of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) has significantly improved patient survival, but resistance to these treatments remains a challenge. B7-H3, a potential immune checkpoint, has been implicated in modulating the tumour microenvironment and immune escape mechanisms in RCC. METHODS Immunohistochemical analysis of B7-H3 expression was performed in 84 metastatic RCC patients. Tissue microarrays and separate sections of formalin-fixed paraffin-embedded tissue were used for immunohistochemical staining. Membranous staining of the tumor cells was scored and statistical analyses were performed to assess the correlation between B7-H3 expression and treatment outcome. RESULTS B7-H3 expression was absent in 31% of patients, while 33.3% had a score of 1+, 31% had 2+, and 4.8% had 3+. High B7-H3 expression correlated with poorer OS (20 months vs. 45 months, p = 0.012). In patients receiving nivolumab, those with high B7-H3 expression had shorter PFS (2 months vs. 8 months, p = 0.037) and OS (17 months vs. 51 months, p = 0.01). B7-H3 expression was the only factor significantly affecting PFS and OS in multivariate analysis. CONCLUSION High B7-H3 expression is associated with poorer survival outcomes and reduced response to nivolumab in metastatic RCC patients. B7-H3 may serve as a predictive biomarker for immunotherapy response. Future studies should explore targeting B7-H3 in combination with existing therapies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Faruk Recep Özalp
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| | - Kutsal Yörükoğlu
- Department of Pathology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Eda Çalışkan Yıldırım
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Uzun
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Hüseyin Salih Semiz
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
24
|
Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: significance and therapeutic strategies. Front Immunol 2024; 15:1495283. [PMID: 39664380 PMCID: PMC11632391 DOI: 10.3389/fimmu.2024.1495283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer has emerged as the second most prevalent disease and the leading cause of death, claiming the lives of 10 million individuals each year. The predominant varieties of cancer encompass breast, lung, colon, rectal, and prostate cancers. Among the more aggressive malignancies is glioblastoma, categorized as WHO stage 4 brain cancer. Following diagnosis, the typical life expectancy ranges from 12 to 15 months, as current established treatments like surgical intervention, radiotherapy, and chemotherapy using temozolomide exhibit limited effectiveness. Beyond conventional approaches, the exploration of immunotherapy for glioblastoma treatment is underway. A methodology involves CAR-T cells, monoclonal antibodies, ADCC and nanobodies sourced from camelids. Immunotherapy's recent focal point is the cellular ligand B7-H3, notably abundant in tumor cells while either scarce or absent in normal ones. Its expression elevates with cancer progression and serves as a promising prognostic marker. In this article, we delve into the essence of B7-H3, elucidating its function and involvement in signaling pathways. We delineate the receptors it binds to and its significance in glioblastoma and other cancer types. Lastly, we examine its role in immunotherapy and the utilization of nanobodies in this domain.
Collapse
|
25
|
Ou A, Hu W, Jiang P, Lu J, Zheng Y, Ke C, Mou Y, Sai K, Li D. Alterations in intratumoral and peripheral immune status in recurrent gliomas and their prognostic implications for patients underwent reoperation. Int Immunopharmacol 2024; 140:112797. [PMID: 39083926 DOI: 10.1016/j.intimp.2024.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Reoperation is a treatment option for recurrent gliomas, yet factors impacting survival following reoperation remain poorly defined. Tumor immunity is profoundly associated with disease progression. Here, we analyze the immune status characteristics and their prognostic implications in recurrent gliomas. METHODS Intratumoral and peripheral immune characteristics between primary and recurrent gliomas were compared by conducting immunohistological staining and hematological examination with our in-house samples, and analyzing bulk and single-cell sequencing data from publicly available sources. Survival analysis was conducted to identify immunological markers with prognostic significances. RESULTS We observed a significant reduction in peripheral lymphocyte count, while an elevation in neutrophil-to-lymphocyte ratio (NLR) and red cell distribution width-to-platelet ratio (RPR) in patients with recurrent gliomas than in newly-diagnosed patients. Higher NLR and RPR indicated worse survival following reoperation in recurrent patients. Transcriptomic and immunohistological analysis showed an increased infiltration of tumor-associated macrophages (TAMs) and CD8+ T cell in recurrent gliomas compared to primary gliomas in both IDH-wildtype and mutant subtypes. Moreover, the abundance of TAMs emerged as an independent indicator for an inferior prognosis in recurrent gliomas. Single-cell profiling revealed a significant heterogeneity in the phenotypes of TAMs between primary and recurrent gliomas. Notably, TAMs enriched in recurrent gliomas exhibited elevated expression of interferon-γ-induced genes, multiple immunosuppressive molecules (TGFB1, CD276), and increased activity in glycose and lipid metabolism, indicating metabolic reprogramming. CONCLUSION Recurrent gliomas demonstrate augmented immune cell infiltration, but they fail to overcome TAMs-induced immunosuppression. Immunosuppressive indices, including TAM abundance, peripheral NLR and RPR, have prognostic implications for recurrent gliomas.
Collapse
Affiliation(s)
- Ailian Ou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jie Lu
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yonggao Mou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Ke Sai
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| | - Depei Li
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
26
|
Saini KS, Somara S, Ko HC, Thatai P, Quintana A, Wallen ZD, Green MF, Mehrotra R, McGuigan S, Pang L, Das S, Yadav K, Neric D, Cantini L, Joshi C, Iwamoto K, Dubbewar S, Vidal L, Chico I, Severson E, Lorini L, Badve S, Bossi P. Biomarkers in head and neck squamous cell carcinoma: unraveling the path to precision immunotherapy. Front Oncol 2024; 14:1473706. [PMID: 39439946 PMCID: PMC11493772 DOI: 10.3389/fonc.2024.1473706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recent strides in understanding the molecular underpinnings of head and neck cancers have sparked considerable interest in identifying precise biomarkers that can enhance prognostication and enable personalized treatment strategies. Immunotherapy has particularly revolutionized the therapeutic landscape for head and neck squamous cell carcinoma, offering new avenues for treatment. This review comprehensively examines the application and limitations of the established and emerging/novel biomarkers for head and neck squamous cell carcinoma. Established biomarkers, including well-characterized genetic mutations, protein expressions, and clinical factors, have been extensively studied and validated in clinical practice. Novel biomarkers identified through molecular analyses, including novel genetic alterations, immune-related markers, and molecular signatures, are currently being investigated and validated in preclinical and clinical settings. Biomarkers hold the potential to deepen our understanding of head and neck squamous cell carcinoma biology and guide therapeutic strategies. The evolving paradigm of predictive biomarkers facilitates the study of individual responses to specific treatments, including targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Kamal S. Saini
- Fortrea Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Soma Das
- Fortrea Inc., Durham, NC, United States
| | - Kavita Yadav
- George Institute for Global Health, New Delhi, India
| | | | | | | | | | | | | | | | | | - Luigi Lorini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
| | - Sunil Badve
- Emory University, Atlanta, GA, United States
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
- Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
27
|
Dong Y, Zhang Z, Luan S, Zheng M, Wang Z, Chen Y, Chen X, Tong A, Yang H. Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3 enhances antitumor efficacy and promotes immune-mediated antitumor responses. J Immunother Cancer 2024; 12:e009710. [PMID: 39357981 PMCID: PMC11448212 DOI: 10.1136/jitc-2024-009710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) offer a promising approach, combining monoclonal antibodies with chemotherapeutic drugs to target cancer cells effectively while minimizing toxicity. METHODS This study examined the therapeutic efficacy and potential mechanisms of a bispecific ADC (BsADC) in laryngeal squamous cell carcinoma. This BsADC selectively targets the immune checkpoints programmed cell death ligand-1 (PD-L1) and B7-H3, and the precise delivery of the small-molecule toxin monomethyl auristatin E. RESULTS Our findings demonstrated that the BsADC outperformed its bispecific antibody and PD-L1 or B7-H3 ADC counterparts, particularly in terms of in vitro/in vivo tumor cytotoxicity, demonstrating remarkable immune cytotoxicity. Additionally, we observed potent activation of tumor-specific immunity and significant induction of markers of immunogenic cell death (ICD) and potential endoplasmic reticulum stress. CONCLUSION In conclusion, this novel BsADC, through immune checkpoint inhibition and promotion of ICD, amplified durable tumor immune cytotoxicity, providing novel insights and potential avenues for future cancer treatments and overcoming resistance.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Shojo K, Tanaka N, Murakami T, Anno T, Teranishi Y, Takamatsu K, Mikami S, Imamura T, Matsumoto K, Oya M. Multiplexed Spatial Imaging at the Single-Cell Level Reveals Mutually Exclusive Expression of B7 Family Proteins. J Transl Med 2024; 104:102131. [PMID: 39244158 DOI: 10.1016/j.labinv.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Targeting novel inhibitory ligands beyond anti-PD-1 and PD-L1 and CTLA-4 therapies is essential for the next decade of the immunotherapy era. Agents for the B7 family molecules B7-H3, B7-H4, and B7-H5 are emerging in clinical trial phases; therefore, further accumulation of evidence from both clinical and basic aspects is vital. Here, we applied a 7-color multiplexed imaging technique to analyze the profile of B7 family B7-H3/B7-H4/B7-H5 expression, in addition to PD-L1, and the spatial characteristics of immune cell infiltrates in urothelial carcinoma (UC). The results revealed that B7-H3 and B7-H4 were mainly expressed on tumor cells and B7-H5 on immune cells in UC, and most of the B7-H3/B7-H4/B7-H5-positive cells were mutually exclusive with PD-L1-positive cells. Also, the expression of B7-H4 was elevated in patients with advanced pathologic stages, and high B7-H4 expression was a significant factor affecting overall mortality following surgery in UC. Furthermore, spatial analysis revealed that the distance from the B7-H4+ cells to the nearest CD8+ cells was markedly far compared with other B7 family-positive tumor cells. Interestingly, the distance from B7-H4+ cells to the nearest CD8+ cells was significantly farther in patients dying from cancer after surgery or immune checkpoint inhibitors compared with cancer survivors; thus, high B7-H4 expression in tumor cells may inhibit CD8 infiltration into the tumor space and that B7-H4-positive cells form a specific spatial niche. In summary, we performed a comprehensive evaluation of B7 family member expression and found that the spatial distribution of B7-H4 suggests the potentially useful role of combination blockade with both B7-H4 and the current anti-PD-1/PD-L1 axis in the treatment of UC.
Collapse
Affiliation(s)
- Kazunori Shojo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | - Tetsushi Murakami
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Tadatsugu Anno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Teranishi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | | | - Shuji Mikami
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan; Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Japan
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Ou A, Hu W, Jiang P, Lu J, Zheng Y, Ke C, Mou Y, Sai K, Li D. Alterations in intratumoral and peripheral immune status in recurrent gliomas and their prognostic implications for patients underwent reoperation. Int Immunopharmacol 2024; 140:112797. [DOI: 39083926 10.1016/j.intimp.2024.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
|
30
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
31
|
Zhang C, Li K, Zhu H, Cheng M, Chen S, Ling R, Wang C, Chen D. ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4 + macrophage infiltration. Nat Commun 2024; 15:7077. [PMID: 39152118 PMCID: PMC11329676 DOI: 10.1038/s41467-024-51096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Enoblituzumab, an immunotherapeutic agent targeting CD276, shows both safety and efficacy in activating T cells and oligodendrocyte-like cells against various cancers. Preclinical studies and mouse models suggest that therapies targeting CD276 may outperform PD1/PD-L1 blockade. However, data from mouse models indicate a significant non-responsive population to anti-CD276 treatment, with the mechanisms of resistance still unclear. In this study, we evaluate the activity of anti-CD276 antibodies in a chemically-induced murine model of head and neck squamous cell carcinoma. Using models of induced and orthotopic carcinogenesis, we identify ITGB6 as a key gene mediating differential responses to anti-CD276 treatment. Through single-cell RNA sequencing and gene-knockout mouse models, we find that ITGB6 regulates the expression of the tumor-associated chemokine CX3CL1, which recruits and activates PF4+ macrophages that express high levels of CX3CR1. Inhibition of the CX3CL1-CX3CR1 axis suppresses the infiltration and secretion of CXCL16 by PF4+ macrophages, thereby reinvigorating cytotoxic CXCR6+ CD8+ T cells and enhancing sensitivity to anti-CD276 treatment. Further investigations demonstrate that inhibiting ITGB6 restores sensitivity to PD1 antibodies in mice resistant to anti-PD1 treatment. In summary, our research reveals a resistance mechanism associated with immune checkpoint inhibitor therapy and identifies potential targets to overcome resistance in cancer treatment.
Collapse
MESH Headings
- Animals
- Mice
- B7 Antigens/metabolism
- B7 Antigens/genetics
- B7 Antigens/antagonists & inhibitors
- Humans
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/pathology
- Mice, Knockout
- CX3C Chemokine Receptor 1/metabolism
- CX3C Chemokine Receptor 1/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
- Squamous Cell Carcinoma of Head and Neck/drug therapy
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/genetics
- Squamous Cell Carcinoma of Head and Neck/pathology
- Squamous Cell Carcinoma of Head and Neck/metabolism
- Disease Models, Animal
- Female
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Caihua Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kang Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongzhang Zhu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Cheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Zucca LER, Laus AC, Sorroche BP, Paro E, Sussuchi L, Marques RF, Teixeira GR, Berardinelli GN, Arantes LMRB, Reis RM, Cárcano FM. Immune-checkpoint gene expression and BCG response in non-muscle invasive bladder cancer. Transl Oncol 2024; 46:102003. [PMID: 38838438 PMCID: PMC11214516 DOI: 10.1016/j.tranon.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
METHODS One-hundred-six patients diagnosed with non-muscle invasive bladder cancer and treated with intravesical BCG were included and divided into two groups, BCG-responsive (n = 47) and -unresponsive (n = 59). Immunohistochemistry was used to evaluate PD-L1 expression and MSI was assessed by a commercial multiplex PCR kit. The mRNA expression profile of 15 immune checkpoints was performed using the nCounter technology. For in silico validation, two distinct cohorts sourced from the Gene Expression Omnibus (GEO) database were used. RESULTS Among the 106 patients, only one (<1 %) exhibited MSI instability. PD-L1 expression was present in 9.4 % of cases, and no association was found with BCG-responsive status. We found low gene expression of canonic actionable immune checkpoints PDCD1 (PD-1), CD274 (PD-L1), and CTLA4, while high expression was observed for CD276 (B7-H3), CD47, TNFRSF14, IDO1 and PVR (CD155) genes. High IDO1 expression levels was associated with worst overall survival. The PDCD1, CTLA4 and TNFRSF14 expression levels were associated with BCG responsiveness, whereas TIGIT and CD276 were associated with unresponsiveness. Finally, CD276 was validated in silico cohorts. CONCLUSION In NMIBC, MSI is rare and PD-L1 expression is present in a small subset of cases. Expression levels of PDCD1, CTLA4, TNFRSF14, TIGIT and CD276 could constitute predictive biomarkers of BCG responsiveness.
Collapse
Affiliation(s)
- Luis Eduardo Rosa Zucca
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Instituto do Câncer Brasil, Taubaté, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Eduarda Paro
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Luciane Sussuchi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; 3ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Flavio Mavignier Cárcano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Oncoclinicas & Co - Medica Scientia Innovation Research (MEDSIR), Sao Paulo, Brazil.
| |
Collapse
|
33
|
Park R, Yu J, Shahzad M, Lee S, Ji JD. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res 2024; 72:526-537. [PMID: 38265550 DOI: 10.1007/s12026-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.
Collapse
Affiliation(s)
- Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - James Yu
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Moazzam Shahzad
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Sunggon Lee
- Department of Internal Medicine, Korea University, Seoul, South Korea
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
34
|
Lee DK, Park SR, Kim YH, Lee YG, Shin SJ, Ahn BC, Lee SS, Lim SM, Kim HR, Cho BC, Hong MH. A phase 2 study of spartalizumab (PDR001) among patients with recurrent or metastatic esophageal squamous cell carcinoma (KCSG HN18-17, K-MASTER project 12). Oncoimmunology 2024; 13:2371563. [PMID: 38919826 PMCID: PMC11197908 DOI: 10.1080/2162402x.2024.2371563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Spartalizumab (PDR001) is a humanized IgG4 monoclonal antibody targeting programmed cell death protein 1 (PD-1). We conducted a single-arm, phase 2 trial to investigate the efficacy and safety of spartalizumab in patients with refractory esophageal squamous cell carcinoma (ESCC). Patients with histologically confirmed ESCC who experienced disease progression after platinum-based chemotherapy received 300 mg of intravenous spartalizumab every three weeks until disease progression or occurrence of unacceptable toxicity. The primary endpoint was centrally assessed objective response according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Adverse events were closely monitored throughout the study. From March 2020 through April 2021, 44 patients with ESCC were enrolled. Of the 44 patients, the objective response rate was 20.5% (95% confidence interval: 8.5-32.4). With a median follow-up of 10.9 months, median progression-free survival and overall survival were 3.2 months and 11.2 months, respectively. In addition, the median duration of response was 24.7 months. The most common grade 3 or 4 adverse event was grade 3 dysphagia (eight [18%] patients). Biomarker analyses explored programmed cell death ligand 1 and CD20 as potential predictive markers for PD-1 blockade. Spartalizumab showed promising activity with a manageable safety profile, indicating its potential as a new treatment option for patients with refractory ESCC. Trial registration The trial was registered at ClinicalTrials.gov under the identifier NCT03785496.
Collapse
Affiliation(s)
- Dong Ki Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeul Hong Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Beung-Chul Ahn
- Center for Lung Cancer, National Cancer Center, Goyang-si, South Korea
| | - Sung Sook Lee
- Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Li Y, Xu L, Li J, Wang Q, Ma J. Diagnostic and prognostic value of serum soluble B7-H3 in nonsmall cell lung cancer. Anticancer Drugs 2024; 35:426-432. [PMID: 38386015 DOI: 10.1097/cad.0000000000001577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The aim of this study was to investigate the utility of serum soluble B7-H3 (sB7-H3) as a diagnostic marker for early-stage nonsmall cell lung cancer (NSCLC) and its potential for evaluating the prognosis of patients with advanced-stage NSCLC. In this study, an ELISA was employed to detect the expression levels of sB7-H3 in a cohort of patients diagnosed with NSCLC ( n = 122) and a control group ( n = 42) during the same observation period. Comparative analyses were conducted to ascertain the variations in sB7-H3 concentrations between the NSCLC cohort and the healthy control group, as well as across pathological types and the presence and absence of lymph node metastasis. (1) The concentration of sB7-H3 in patients diagnosed with NSCLC exhibited a statistically significant increase compared to that observed in the healthy control group ( P < 0.05). Elevated expression levels of sB7-H3 demonstrated a significant correlation with pathological type, lymph node metastasis, tumor, node and metastasis stage and programmed cell death ligand (PD-L1) expression ( P < 0.05). (2) The diagnostic utility of sB7-H3 for the diagnosis of NSCLC and the heightened expression of PD-L1 demonstrated high levels of sensitivity and specificity. (3) Elevated levels of sB7-H3 emerged as an independent risk factor impacting the overall survival of patients diagnosed with advanced NSCLC. The findings of this study suggest that sB7-H3 holds promise as a diagnostic tool for early-stage NSCLC. The elevated expression of sB7-H3 appears to serve as a reliable indicator for assessing the prognosis of patients diagnosed with advanced NSCLC.
Collapse
Affiliation(s)
- Yinpeng Li
- Department of Respiratory and Critical Care, Hebei PetroChina Central Hospital, Langfang, China
| | - Leiqian Xu
- Department of Surgery, Charite-University Medicine Berlin, Campus Benjamin Franklin (CBF), Germany
| | - Jing Li
- Department of Respiratory and Critical Care, Hebei PetroChina Central Hospital, Langfang, China
| | - Qian Wang
- Department of Respiratory and Critical Care, Hebei PetroChina Central Hospital, Langfang, China
| | - Jiao Ma
- Department of Respiratory and Critical Care, Hebei PetroChina Central Hospital, Langfang, China
| |
Collapse
|
36
|
Miller CD, Lozada JR, Zorko NA, Elliott A, Makovec A, Radovich M, Heath EI, Agarwal N, Mckay RR, Garje R, Bastos BR, Hoon DS, Orme JJ, Sartor O, VanderWalde A, Nabhan C, Sledge G, Shenderov E, Dehm SM, Lou E, Miller JS, Hwang JH, Antonarakis ES. Pan-Cancer Interrogation of B7-H3 (CD276) as an Actionable Therapeutic Target Across Human Malignancies. CANCER RESEARCH COMMUNICATIONS 2024; 4:1369-1379. [PMID: 38709075 PMCID: PMC11138391 DOI: 10.1158/2767-9764.crc-23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
B7-H3 (CD276) is a transmembrane glycoprotein of the B7 immune checkpoint superfamily that has emerged as a promising therapeutic target. To better understand the applicability of B7-H3-directed therapies, we analyzed 156,791 samples comprising 50 cancer types to interrogate the clinical, genomic, transcriptomic, and immunologic correlates of B7-H3 mRNA expression. DNA (592-gene/whole-exome) and RNA (whole-transcriptome) sequencing was performed from samples submitted to Caris Life Sciences. B7-H3 high versus low expression was based on top and bottom quartiles for each cancer type. Patients' overall survival was determined from insurance claims data. Pathway analysis was performed using gene set enrichment analyses. Immune cell fractions were inferred using quanTIseq. B7-H3 is expressed across several human malignancies including prostate, pancreatic, ovarian, and lung cancers. High B7-H3 expression is associated with differences in overall survival, possibly indicating a prognostic role of B7-H3 for some cancers. When examining molecular features across all cancer types, we did not identify recurrent associations between B7-H3 expression and genetic alterations in TP53, RB1, and KRAS. However, we find consistent enrichment of epithelial-to-mesenchymal transition, Wnt, TGFβ, and Notch signaling pathways. In addition, tumors with high B7-H3 expression are associated with greater proportions of M1 macrophages, but lower fractions of CD8+ T cells. We have begun to define the genomic, transcriptomic, clinical, and immunologic features associated with B7-H3 expression in 50 cancer types. We report novel clinical and molecular features of B7-H3-high tumors which may inform how current B7-H3 therapeutics should be deployed and prioritized. SIGNIFICANCE B7-H3-targeting therapeutics have shown promising results in initial clinical trials. In this pan-cancer analysis of B7-H3 mRNA expression, we found that B7-H3 exhibits robust expression in many common cancer types. These results may inform further development of B7-H3-targeting therapeutics and may guide clinical decisions for patients with limited treatment options.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - John R. Lozada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas A. Zorko
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Allison Makovec
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Rana R. Mckay
- University of California San Diego, La Jolla, California
| | - Rohan Garje
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Bruno R. Bastos
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Dave S.B. Hoon
- Saint John's Cancer Institute PHS, Santa Monica, California
| | - Jacob J. Orme
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Oliver Sartor
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | | | | | | | - Eugene Shenderov
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
37
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Joshi V, Beecher K, Lim M, Stacey A, Feng Y, Jat PS, Duijf PHG, Simpson PT, Lakhani SR, McCart Reed AE. B7-H3 Expression in Breast Cancer and Brain Metastasis. Int J Mol Sci 2024; 25:3976. [PMID: 38612786 PMCID: PMC11012592 DOI: 10.3390/ijms25073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Brain metastasis is a significant challenge for some breast cancer patients, marked by its aggressive nature, limited treatment options, and poor clinical outcomes. Immunotherapies have emerged as a promising avenue for brain metastasis treatment. B7-H3 (CD276) is an immune checkpoint molecule involved in T cell suppression, which is associated with poor survival in cancer patients. Given the increasing number of clinical trials using B7-H3 targeting CAR T cell therapies, we examined B7-H3 expression across breast cancer subtypes and in breast cancer brain metastases to assess its potential as an interventional target. B7-H3 expression was investigated using immunohistochemistry on tissue microarrays of three clinical cohorts: (i) unselected primary breast cancers (n = 347); (ii) brain metastatic breast cancers (n = 61) and breast cancer brain metastases (n = 80, including a subset of 53 patient-matched breast and brain metastasis cases); and (iii) mixed brain metastases from a range of primary tumours (n = 137). In primary breast cancers, B7-H3 expression significantly correlated with higher tumour grades and aggressive breast cancer subtypes, as well as poorer 5-year survival outcomes. Subcellular localisation of B7-H3 impacted breast cancer-specific survival, with cytoplasmic staining also correlating with a poorer outcome. Its expression was frequently detected in brain metastases from breast cancers, with up to 90% expressing B7-H3. However, not all brain metastases showed high levels of expression, with those from colorectal and renal tumours showing a low frequency of B7-H3 expression (0/14 and 2/16, respectively). The prevalence of B7-H3 expression in breast cancers and breast cancer brain metastases indicates potential opportunities for B7-H3 targeted therapies in breast cancer management.
Collapse
Affiliation(s)
- Vaibhavi Joshi
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Andrew Stacey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Yufan Feng
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Parmjit S. Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, London W1W 7FF, UK;
| | - Pascal H. G. Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide 5001, Australia;
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| |
Collapse
|
39
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
40
|
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, Wang X, Liang Y, Tian G, Zhou R, Zhu Y, Ma J, Liu J, Lin S, Xu H, Chen D, Li Y, Peng L. CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun 2024; 15:2818. [PMID: 38561369 PMCID: PMC10985117 DOI: 10.1038/s41467-024-46735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Collapse
Affiliation(s)
- Maosheng Cheng
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518057, China
| | - Caihua Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihui Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhu
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahong Liu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China
| | - Shuibin Lin
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Demeng Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Li
- Department of Genetics, School of Life Sciences, Anhui Medical University, Hefei, 230031, China.
| | - Liang Peng
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
41
|
Davoudi F, Moradi A, Sadeghirad H, Kulasinghe A. Tissue biomarkers of immune checkpoint inhibitor therapy. Immunol Cell Biol 2024; 102:179-193. [PMID: 38228572 DOI: 10.1111/imcb.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cancer immunotherapy has been rejuvenated by the growing understanding of the immune system's role in tumor activity over the past two decades. During cancer initiation and progression, tumor cells employ various mechanisms that resemble peripheral immune tolerance to evade the antitumor responses of the immune system. Immune checkpoint molecules are the major mechanism of immune resistance that are exploited by tumor cells to inhibit T-cell activation and suppress immune responses. The targeting of immune checkpoint pathways has led to substantial improvements in survival rates in a number of solid cancers. However, a lack of understanding of the heterogeneity of the tumor microenvironment (TME) has resulted in inefficient therapy responses. A greater understanding of the TME is needed to identify patients likely to respond, and those that will have resistance to immune checkpoint inhibitors (ICIs). Advancement in spatial single-cell technologies has allowed deeper insight into the phenotypic and functional diversities of cells in the TME. In this review, we provide an overview of ICI biomarkers and highlight how high-dimensional spatially resolved, single-cell approaches provide deep molecular insights into the TME and allow for the discovery of biomarkers of clinical benefit.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Meci A, Goyal N, Slonimsky G. Mechanisms of Resistance and Therapeutic Perspectives in Immunotherapy for Advanced Head and Neck Cancers. Cancers (Basel) 2024; 16:703. [PMID: 38398094 PMCID: PMC10887076 DOI: 10.3390/cancers16040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Immunotherapy is emerging as an effective treatment for advanced head and neck cancers and interest in this treatment modality has led to rapid expansion of this research. Pembrolizumab and nivolumab, monoclonal antibodies directed against the programmed cell death-1 (PD-1) receptor, are US Food and Drug Administration (FDA)- and European Medical Agency (EMA)-approved immunotherapies for head and neck squamous cell carcinoma (HNSCC). Resistance to immunotherapy is common, with about 60% of patients with recurrent or metastatic HNSCC not responding to immunotherapy and only 20-30% of patients without disease progression in the long term. Overcoming resistance to immunotherapy is therefore essential for augmenting the effectiveness of immunotherapy in HNSCC. This review details the innate and adaptive mechanisms by which head and neck cancers can become resistant to immunotherapeutic agents, biomarkers that can be used for immunotherapy patient selection, as well as other factors of the tumor microenvironment correlated with therapeutic response and prognosis. Numerous combinations and novel immunotherapies are currently being trialed, based on better understood immune evasion mechanisms. These potential treatments hold the promise of overcoming resistance to immunotherapy in head and neck cancers.
Collapse
Affiliation(s)
- Andrew Meci
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Neerav Goyal
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| | - Guy Slonimsky
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| |
Collapse
|
43
|
Feustel K, Martin J, Falchook GS. B7-H3 Inhibitors in Oncology Clinical Trials: A Review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:53-66. [PMID: 38327753 PMCID: PMC10846634 DOI: 10.36401/jipo-23-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 02/09/2024]
Abstract
B7-H3 is a transmembrane receptor highly prevalent on malignant cells and plays an important role in adaptive immunity that is not fully elucidated. Targeted B7-H3 inhibitors, including antibody-drug conjugates, radioimmunotherapy, and monoclonal antibodies, are a new class of antineoplastic agents showing promising preliminary clinical efficacy, observed with several of these agents against multiple tumor types. Particularly promising treatments are enoblituzumab for prostate cancer, 131I-omburtamab for central nervous system malignancies, and HS-20093 for small-cell lung cancer but further studies are warranted. There are clinical trials on the horizon that have not yet enrolled patients examining chimeric antigen receptor T-cell therapies, bi- and tri-specific killer engagers, and dual-affinity retargeting proteins. These data will be telling of the efficacy of B7-H3 inhibitors in both hematologic and solid malignancies. This study aimed to compile available results of B7-H3 inhibitors in oncology clinical trials.
Collapse
Affiliation(s)
- Kavanya Feustel
- Early Phase Clinical Trials Unit, Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| | - Jared Martin
- Rocky Vista University Medical School, Greenwood Village, CO, USA
| | - Gerald S. Falchook
- Early Phase Clinical Trials Unit, Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| |
Collapse
|
44
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
45
|
Fabrizio FP, Muscarella LA, Rossi A. B7-H3/CD276 and small-cell lung cancer: What's new? Transl Oncol 2024; 39:101801. [PMID: 37865049 PMCID: PMC10728701 DOI: 10.1016/j.tranon.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
Immunotherapy revolutionized the treatment landscape of several cancers, including small-cell lung cancer (SCLC), with a huge number of practice-changing trials, and becoming a new frontier for their management. The addition of an anti-PD-L1, atezolizumab or durvalumab, to platinum/etoposide regimen became the standard of care for first-line therapy of extensive-stage (ES)-SCLC with the 12 months median survival exceeded for the first time. Nevertheless, most patients show primary or acquired resistance to anti-PD-L1 therefore new promising therapeutic immune-targets are under clinical investigation in several solid tumors. Among these, B7-H3, also known as CD276, is a member of the B7 family overexpressed in tumor tissues, including SCLC, while showing limited expression in normal tissues becoming an attractive and promising target for cancer immunotherapy. B7-H3 plays a dual role in the immune system during the T-cell activation, acting as a T-cell costimulatory/coinhibitory immunoregulatory protein, and promoting pro-tumorigenic functions such as tumor migration, invasion, metastases, resistance, and metabolism. Immunohistochemistry, flow cytometry, and immunofluorescence were the most used methods to assess B7-H3 expression levels and validate a possible relationship between B7-H3 staining patterns and clinicopathological features in lung cancer patients. To date, there are no clinically available therapeutics/drugs targeting B7-H3 in any solid tumors. The most promising preliminary clinical results have been reported by DS7300a and HS-20093, both are antibody-drug conjugates, that are under investigation in ongoing trials for the treatment of pretreated SCLC. This review will provide an overview of B7-H3 and corresponding inhibitors and the clinical development in the management of SCLC.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan 20019, Italy
| |
Collapse
|
46
|
Xu P, Fang Q, Zhao Z, Cao F, Wu D, Liu X. Evaluation of neoadjuvant chemotherapy combined with PD-1 inhibitors in patients with oropharyngeal and hypopharyngeal squamous cell carcinoma: a comparative study of antitumor activity. Cancer Immunol Immunother 2023; 72:4209-4219. [PMID: 37837458 PMCID: PMC10991092 DOI: 10.1007/s00262-023-03557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE To assess the antitumor activity of neoadjuvant chemotherapy in conjunction with PD-1 inhibitors (neoadjuvant chemoimmunotherapy) among patients with oropharyngeal and hypopharyngeal squamous cell carcinoma (OPHSCC) and compare its efficacy with neoadjuvant chemotherapy alone. METHODS We conducted a retrospective analysis using data from patients diagnosed with OPHSCC and treated at the Sun Yat-sen University Cancer Center between September 2012 and August 2022. We included patients who received neoadjuvant chemotherapy alone or combined with PD-1 inhibitors. We assessed the clinical response using the Response Evaluation Criteria in Solid Tumors and evaluated progression-free survival (PFS) and overall survival (OS). RESULTS Preliminary results demonstrate that neoadjuvant chemoimmunotherapy exhibited robust antitumor activity in OPHSCC, with an impressive overall response rate (ORR) of 81.0%. Complete response and partial response rates were 14.9% and 65.9%, respectively. Notably, neoadjuvant chemoimmunotherapy demonstrated superior PFS and OS to neoadjuvant chemotherapy alone. The 1-year PFS rate was 80.7%, and the 2-year rate was 61.1%. Additionally, the 1-year OS rate reached 92.3%. Finally, a multivariate analysis identified the American Joint Committee on Cancer stage reduction post-treatment as a favorable predictor of PFS. CONCLUSION Our results underscore the promising potential of neoadjuvant chemoimmunotherapy in enhancing antitumor activity in patients with OPHSCC. The robust ORR, along with improved PFS and OS, supports the utility of this combined approach. These results pave the way for further investigations to validate and refine the application of neoadjuvant chemoimmunotherapy in this challenging clinical context.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Qi Fang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zheng Zhao
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Fei Cao
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Di Wu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Xuekui Liu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
47
|
Miller EJ, Galsky MD. Precision Medicine in Urothelial Carcinoma: Current Markers to Guide Treatment and Promising Future Directions. Curr Treat Options Oncol 2023; 24:1870-1888. [PMID: 38085403 DOI: 10.1007/s11864-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
OPINION STATEMENT The treatment landscape for urothelial cancer has changed dramatically in the last 10 years, with the approval of several new treatments. At the same time, profiling of individual tumors has become more commonplace with widespread availability of molecular testing and immunohistochemistry. For urothelial cancer, this has led to current guidelines recommending that molecular testing be obtained in the metastatic setting, and that it be considered in the setting of locally advanced disease. Between molecular testing and immunohistochemistry testing of tumors, the only current guideline-directed application of these tests is in the identification of FGFR3 or FGFR2 alterations for use of FGFR inhibitors. While additional recurrent molecular alterations linked to the pathogenesis of urothelial cancer have been identified, the ability to successfully "drug" the pathways association with such alterations remains limited. There has been extensive research into whether expression of particular proteins might inform specific treatment approaches such as the use of PD-L1 testing to guide immune checkpoint blockade. With the integration of antibody-drug conjugates into the treatment armamentarium for urothelial cancer, ongoing research is seeking to determine whether expression of the targets of these therapies, such as Nectin 4, Trop-2, or HER2, could help to guide treatment.
Collapse
Affiliation(s)
- Eric J Miller
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai/Tisch Cancer Institute, New York, NY, 10029, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai/Tisch Cancer Institute, New York, NY, 10029, USA.
| |
Collapse
|
48
|
Kang D, Liu S, Yuan X, Liu S, Zhang Z, He Z, Yin X, Mao H. A systematic review and meta-analysis of prognostic indicators in patients with head and neck malignancy treated with immune checkpoint inhibitors. J Cancer Res Clin Oncol 2023; 149:18215-18240. [PMID: 38078963 DOI: 10.1007/s00432-023-05504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Tumor immunotherapy has recently emerged as a crucial focal point in oncology treatment research. Among tumor immunotherapy approaches, tumor immune checkpoint inhibitors (ICIs) have attracted substantial attention in clinical research. However, this treatment modality has benefitted only a limited number of patients. We conducted a meta-analysis of various biomarkers to decipher their prognostic implications in patients with head and neck squamous cell carcinoma (HNSCC) who are treated with ICIs, and thus identify predictive markers with practical clinical relevance. METHODS A systematic search of electronic databases was conducted to identify clinical studies that examined the correlation between biomarkers and treatment outcomes in the HNSCC patients. The included articles were screened and analyzed to extract data regarding overall survival (OS) and progression-free survival (PFS). RESULTS The relationship between the biomarkers included in the summary and prognosis was as follows: HPV positivity was associated with improved OS (HR = 0.76, 95% CI = 0.58-1.99), PFS (HR = 1.16, 95% CI = 0.81-1.67), and response (OR = 1.67, 95% CI = 1.37-2.99). PD-L1 positivity was associated with OS (HR = 0.71, 95% CI = 0.59-0.85), PFS (HR = 0.56 95% CI = 0.43-0.73), and response (OR = 2.16, 95% CI = 1.51-3.10). Neither HPV positivity nor PD-L1 positivity was associated with DCR. The following markers were collected for OS and PFS data and were associated with longer OS: lower Glasgow prognostic score (GPS/mGPS) grading, lower PS grading, high body mass index (BMI), low neutrophil-to-lymphocyte ratio (NLR), low platelet-to-lymphocyte ratio (PLR), high albumin (Alb), low lactate dehydrogenase (LDH). Factors associated with better PFS were lower GPS/mGPS grading, lower PS grading, high BMI, low NLR, high absolute lymphocyte count, and low LDH. Hyperprogressive disease was associated with worse OS and PFS. Fewer clinical studies have been completed on the tumor microenvironment and hypoxia, microsatellite instability/DNA mismatch repair, and microbiome and systematic analysis is difficult. CONCLUSION In our meta-analysis, different immune checkpoint factors were associated with different prognoses in HNSCC patients receiving immunotherapy. HPV, PD-L1, BMI, Alb, HPD, PS, GPS/mGPS, LDH, NLR, and PLR predicted the ICI outcome in HNSCC patients.
Collapse
Affiliation(s)
- Dengxiong Kang
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Siping Liu
- Department of Imaging, Yangzhou Hospital of TCM, Yangzhou, China
| | - Xin Yuan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shenxiang Liu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhengrong Zhang
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhilian He
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xudong Yin
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Haiyan Mao
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
49
|
Wang T, Zhang K, You F, Ma R, Yang N, Tian S, An G, Yang L. Preconditioning of radiotherapy enhances efficacy of B7-H3-CAR-T in treating solid tumor models. Life Sci 2023; 331:122024. [PMID: 37574043 DOI: 10.1016/j.lfs.2023.122024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
AIMS Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models. METHODS Irradiated tumor cell lines were prepared and tested. A humanized B7-H3-CAR-T was constructed, and it was evaluated that B7-H3-CAR-T cytotoxicity against solid tumor models with preconditioning of radiotherapy in vitro and vivo. RESULTS Irradiation was found to increase expression level of B7-H3 in pancreatic cancer (PANC-1), colorectal cancer (HCT-15, SW620), acute myelocytic leukemia (AML-5), epidermoid carcinoma (KB) and glioma (U87-MG) human cell lines significantly. 6Gy irradiation was also found to up-regulate tumor-infiltration molecule like intracellular adhesion molecule-1 ICAM-1 or FAS in HCT-15 cells, supporting a possible synergistic enhancement effect of radiotherapy. In vitro and in vivo experiments demonstrated that irradiation indeed significantly enhanced the ability of B7-H3-CAR-T to infiltrate and kill tumors. Interestingly in dual-tumor mouse model study, not only tumor cells on irradiation side were eradicated completely, irradiation also enhanced CAR-T tumor-killing ability on non-irradiated side, confirming the abscopal effect of irradiation existed with CAR-T therapy. CONCLUSIONS Our results suggest that B7-H3-CAR-T therapy combined with radiotherapy may be a promising modality in treating solid tumors.
Collapse
Affiliation(s)
- Tian Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Kailu Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengtao You
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Renyuxue Ma
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Nan Yang
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Shuaiyu Tian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Gangli An
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lin Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China.
| |
Collapse
|
50
|
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer. Biomed Pharmacother 2023; 166:115355. [PMID: 37647692 DOI: 10.1016/j.biopha.2023.115355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-β (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-β participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-β blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-β and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Han Cui
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|