1
|
Santos JG, Buffon AC. Anesthetic management of a 9-year-old girl with Congenital Contractures of the Limbs and Face, Hypotonia, and Developmental Delay syndrome: airway difficulties and postoperative apnea during tendon surgery. Anesth Pain Med (Seoul) 2025; 20:46-49. [PMID: 39923770 PMCID: PMC11834880 DOI: 10.17085/apm.24107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND This case report described the anesthetic management and postoperative challenges of a patient diagnosed with Congenital Contractures of the Limbs and Face, Hypotonia, and Developmental Delay (CLIFAHDD) syndrome who underwent tenomyotomy of the right hand tendons. This syndrome, characterized by facial dysmorphisms, musculoskeletal abnormalities, and respiratory disturbances, including central apnea, is caused by a mutation in the NALCN gene. PURPOSE A 9-year-old girl diagnosed with CLIFAHDD syndrome underwent tenomyotomy of the right hand tendon. General anesthesia was administered. Despite stable intraoperative conditions, the patient experienced inadequate ventilation with multiple episodes of apnea after extubation, necessitating assisted ventilation using a face mask. CONCLUSIONS This case highlights the challenges and considerations in the anesthetic management of patients with CLIFAHDD syndrome, emphasizing the need for tailored approaches and vigilant postoperative monitoring to mitigate the potential respiratory complications associated with this rare genetic disorder.
Collapse
Affiliation(s)
- Jessica G. Santos
- Department of Anesthesiology, Hospital Regional de São José Homero de Miranda Gomes, and Hospital Infantil Joana de Gusmão, Sao Jose, Brazil
| | - Alexandre C. Buffon
- Department of Anesthesiology, Hospital Infantil Joana de Gusmão, Sao Jose, Brazil
| |
Collapse
|
2
|
Vecchio D, Macchiaiolo M, Gonfiantini MV, Panfili FM, Petrizzelli F, Liorni N, Cortellessa F, Sinibaldi L, Rana I, Agolini E, Cocciadiferro D, Colantoni N, Semeraro M, Rizzo C, Deodati A, Cotugno N, Caggiano S, Verrillo E, Nucci CG, Alkan S, Saraiva JM, De Sá J, Almeida PM, Krishna J, Buonuomo PS, Martinelli D, Dionisi Vici C, Caputo V, Bartuli A, Novelli A, Mazza T. Widening the infantile hypotonia with psychomotor retardation and characteristic Facies-1 Syndrome's clinical and molecular spectrum through NALCN in-silico structural analysis. Front Genet 2024; 15:1477940. [PMID: 39722796 PMCID: PMC11668739 DOI: 10.3389/fgene.2024.1477940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1, MIM#615419) is a rare, birth onset, autosomal recessive disorder caused by homozygous or compound heterozygous truncating variants in NALCN gene (MIM#611549) resulting in a loss-of-function effect. Methods We enrolled a new IHPRF1 patients' cohort in the framework of an international multicentric collaboration study. Using specialized in silico pathogenicity predictors and ad hoc structural analyses, we assessed the mechanistic consequences of the deleterious variants retrieved on NALCN structure and function. Results To date 38 different NALCN variants have been retrieved from 33 different families, 26 from unrelated and 22 from related patients. We report on five new IHPRF1 patients from four different families, harboring four newly identified and one previously retrieved variant that exhibited a markedly significant functional impact, thereby compromising the functionality of the protein complex. Discussion By widening the functional spectrum of biallelic variants affecting the NALCN gene, this article broadens the IHPRF1 syndrome's genotype-phenotype correlation and gives new insight into its pathogenic mechanism, diagnosis, and clinical management.
Collapse
Affiliation(s)
- Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michaela V. Gonfiantini
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Filippo M. Panfili
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Niccolò Liorni
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabiana Cortellessa
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ippolita Rana
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicole Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michela Semeraro
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Annalisa Deodati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Serena Caggiano
- Pediatric Pulmonology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elisabetta Verrillo
- Pediatric Pulmonology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Carlotta G. Nucci
- Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serpil Alkan
- Department of Pediatrics, Centre Hospitalier Universitaire, CHU, Liège, Belgium
| | - Jorge M. Saraiva
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Joaquim De Sá
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Pedro M. Almeida
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Jayanth Krishna
- Krishna Institute of Medical Sciences (KIMS Hospital), Hyderabad, India
| | - Paola S. Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore region. Proc Natl Acad Sci U S A 2024; 121:e2401591121. [PMID: 38787877 PMCID: PMC11145269 DOI: 10.1073/pnas.2401591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.
Collapse
Affiliation(s)
- Katharina Schott
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Samuel George Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Oscar Serra
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Han Chow Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
4
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536537. [PMID: 38328210 PMCID: PMC10849497 DOI: 10.1101/2023.04.12.536537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The sodium (Na + ) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (Na V s and Ca V s, respectively). Unlike Na V s and Ca V s, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145 and Y1436) that block these openings. Structural data suggest that oc-cluded lateral fenestrations underlie the pharmacological resistance of NALCN to lipophilic compounds, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned resi-dues with alanine (AAAA) and compared the effects of Na V , Ca V and NALCN block-ers on both wild-type (WT) and AAAA channels. Most compounds behaved in a simi-lar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cav-ity through distinct fenestrations, implying structural specificity to their modes of ac-cess. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug bind-ing site(s) within the pore region. Intrigued by the activity of 2-APB and its ana-logues, we tested additional compounds containing the diphenylmethane/amine moiety on WT channels. We identified compounds from existing clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the resistance of NALCN to pharmacological targeting, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties. Significance statement The sodium leak channel (NALCN) is essential for survival: mutations cause life-threatening developmental disorders in humans. However, no treatment is currently available due to the resistance of NALCN to pharmacological targeting. One likely reason is that the lateral fenestrations, a common route for clinically used drugs to enter and block related ion channels, are occluded in NALCN. Using a combination of computational and functional approaches, we unplugged the fenestrations of NALCN which led us to the first molecularly defined drug binding site within the pore region. Besides that, we also identified additional NALCN modulators from existing clinically used therapeutics, thus expanding the pharmacological toolbox for this leak channel.
Collapse
|
5
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Bayat A, Liu Z, Luo S, Fenger CD, Højte AF, Isidor B, Cogne B, Larson A, Zanus C, Faletra F, Keren B, Musante L, Gourfinkel-An I, Perrine C, Demily C, Lesca G, Liao W, Ren D. A new neurodevelopmental disorder linked to heterozygous variants in UNC79. Genet Med 2023; 25:100894. [PMID: 37183800 DOI: 10.1016/j.gim.2023.100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023] Open
Abstract
PURPOSE The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown. METHODS We used international gene-matching efforts to identify patients harboring ultrarare heterozygous loss-of-function UNC79 variants and no other putative responsible genes. We used genetic manipulations in Drosophila and mice to test potential causal relationships between UNC79 variants and the pathology. RESULTS We found 6 unrelated and affected patients with UNC79 variants. Five patients presented with overlapping neurodevelopmental features, including mild to moderate intellectual disability and a mild developmental delay, whereas a single patient reportedly had normal cognitive and motor development but was diagnosed with epilepsy and autistic features. All displayed behavioral issues and 4 patients had epilepsy. Drosophila with UNC79 knocked down displayed induced seizure-like phenotype. Mice with a heterozygous loss-of-function variant have a developmental delay in body weight compared with wild type. In addition, they have impaired ability in learning and memory. CONCLUSION Our results demonstrate that heterozygous loss-of-function UNC79 variants are associated with neurologic pathologies.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Amplexa Genetics A/S, Odense, Denmark
| | - Anne F Højte
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Bertrand Isidor
- Department of Genetics, CHU Nantes, Nantes, France; University of Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogne
- Department of Genetics, CHU Nantes, Nantes, France; University of Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Austin Larson
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Caterina Zanus
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo," Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo," Trieste, Italy
| | - Boris Keren
- Department of Neurology, Epileptology Unit, Reference Center for Rare Epilepsies, Sorbonne University, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Luciana Musante
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo," Trieste, Italy
| | - Isabelle Gourfinkel-An
- Department of Neurology, Epileptology Unit, Reference Center for Rare Epilepsies, Sorbonne University, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Charles Perrine
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP, University of Sorbonne, Paris, France
| | - Caroline Demily
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Vinatier Hospital Center and EDR-Psy Team (National Center for Scientific Research and Lyon 1 Claude Bernard University), Lyon, France; iMIND Excellence Center for Autism and Neurodevelopmental Disorders, Lyon, France
| | - Gaeton Lesca
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Deng X, Yuan L, Jankovic J, Deng H. The role of the PLA2G6 gene in neurodegenerative diseases. Ageing Res Rev 2023; 89:101957. [PMID: 37236368 DOI: 10.1016/j.arr.2023.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
PLA2G6-associated neurodegeneration (PLAN) represents a continuum of clinically and genetically heterogeneous neurodegenerative disorders with overlapping features. Usually, it encompasses three autosomal recessive diseases, including infantile neuroaxonal dystrophy or neurodegeneration with brain iron accumulation (NBIA) 2A, atypical neuronal dystrophy with childhood-onset or NBIA2B, and adult-onset dystonia-parkinsonism form named PARK14, and possibly a certain subtype of hereditary spastic paraplegia. PLAN is caused by variants in the phospholipase A2 group VI gene (PLA2G6), which encodes an enzyme involved in membrane homeostasis, signal transduction, mitochondrial dysfunction, and α-synuclein aggregation. In this review, we discuss PLA2G6 gene structure and protein, functional findings, genetic deficiency models, various PLAN disease phenotypes, and study strategies in the future. Our primary aim is to provide an overview of genotype-phenotype correlations of PLAN subtypes and speculate on the role of PLA2G6 in potential mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Xinyue Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030-4202, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
8
|
Maselli K, Park H, Breilyn MS, Arens R. Severe central sleep apnea in a child with biallelic variants in NALCN. J Clin Sleep Med 2022; 18:2507-2513. [PMID: 35808948 PMCID: PMC9516572 DOI: 10.5664/jcsm.10146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022]
Abstract
The sodium leak channel, nonselective (NALCN), is necessary for the proper function of the neurons that play an important role in the sleep-wake cycle and regulation of breathing patterns during wakefulness and sleep. We report a 38-month-old male with developmental delay, hypotonia, and severe central sleep apnea with periodic breathing requiring noninvasive ventilation during sleep, who was found to have novel biallelic pathogenic variants in NALCN. A review of the literature illustrates 17 additional children with biallelic variants in the NALCN gene. The clinical and sleep manifestations of these children are discussed. CITATION Maselli K, Park H, Breilyn MS, Arens R. Severe central sleep apnea in a child with biallelic variants in NALCN. J Clin Sleep Med. 2022;18(10):2507-2513.
Collapse
Affiliation(s)
- Kristina Maselli
- Sleep Wake Disorders Center, Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Hyunbin Park
- Division of Pediatric Respiratory and Sleep Medicine, Department of Pediatrics, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Margo Sheck Breilyn
- Genetics and Genomics, Department of Pediatrics, The Mount Sinai Hospital, New York, New York
| | - Raanan Arens
- Division of Pediatric Respiratory and Sleep Medicine, Department of Pediatrics, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
Kang Y, Chen L. Structure and mechanism of NALCN-FAM155A-UNC79-UNC80 channel complex. Nat Commun 2022; 13:2639. [PMID: 35550517 PMCID: PMC9098444 DOI: 10.1038/s41467-022-30403-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
NALCN channel mediates sodium leak currents and is important for maintaining proper resting membrane potential. NALCN and FAM155A form the core complex of the channel, the activity of which essentially depends on the presence of both UNC79 and UNC80, two auxiliary proteins. NALCN, FAM155A, UNC79, and UNC80 co-assemble into a large hetero-tetrameric channel complex. Genetic mutations of NALCN channel components lead to neurodevelopmental diseases. However, the structure and mechanism of the intact channel complex remain elusive. Here, we present the cryo-EM structure of the mammalian NALCN-FAM155A-UNC79-UNC80 quaternary complex. The structure shows that UNC79-UNC80 form a large piler-shaped heterodimer which was tethered to the intracellular side of the NALCN channel through tripartite interactions with the cytoplasmic loops of NALCN. Two interactions are essential for proper cell surface localization of NALCN. The other interaction relieves the self-inhibition of NALCN by pulling the auto-inhibitory CTD Interacting Helix (CIH) out of its binding site. Our work defines the structural mechanism of NALCN modulation by UNC79 and UNC80.
Collapse
Affiliation(s)
- Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking. University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, 100871, China.,National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking. University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, 100871, China. .,National Biomedical Imaging Center, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Liao Z, Liu Y, Wang Y, Lu Q, Peng Y, Liu Q. Case Report: A de novo Variant in NALCN Associated With CLIFAHDD Syndrome in a Chinese Infant. Front Pediatr 2022; 10:927392. [PMID: 35911839 PMCID: PMC9326163 DOI: 10.3389/fped.2022.927392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The NALCN encodes a sodium ion leak channel that regulates nerve-resting conductance and excitability. NALCN variants are associated with two neurodevelopmental disorders, one is CLIFAHDD (autosomal dominant congenital contractures of the limbs and face, hypotonia, and developmental delay, OMIM #616266) and another is IHPRF (infantile hypotonia with psychomotor retardation, and characteristic facies 1, OMIM #615419). CASE PRESENTATION In the current study, a Chinese infant that manifested abnormal facial features, adducted thumbs, and neurodevelopmental retardation was diagnosed with CLIFAHDD syndrome. A trio-based whole-exome sequencing revealed that the infant harbored a de novo variant of the NALCN gene (c.4300A>G, p.I1434V). CONCLUSIONS Our findings further enriched the variant spectrum of the NALCN gene and may expand the clinical range of NALCN-related disorders.
Collapse
Affiliation(s)
- Zhenyu Liao
- Neonatology Department of Hunan Children's Hospital, Changsha, China
| | - Yali Liu
- Neonatology Department of Changsha Country Maternal and Child Health Care Hospital, Changsha, China
| | - Yimin Wang
- GeneMind Biosciences Company Limited, ShenZhen, China.,College of Pharmacy, Xiangnan University, Chenzhou, China
| | - Qin Lu
- College of Pharmacy, Xiangnan University, Chenzhou, China.,GeneTalks Biotech Co., Ltd., Changsha, China
| | - Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Qingsong Liu
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
12
|
Kropp PA, Bauer R, Zafra I, Graham C, Golden A. Caenorhabditis elegans for rare disease modeling and drug discovery: strategies and strengths. Dis Model Mech 2021; 14:dmm049010. [PMID: 34370008 PMCID: PMC8380043 DOI: 10.1242/dmm.049010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.
Collapse
Affiliation(s)
| | | | | | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Na + leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson's disease. J Neural Transm (Vienna) 2021; 128:749-762. [PMID: 33961117 DOI: 10.1007/s00702-021-02348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder often accompanied by neuropsychiatric symptoms that stem from the loss of dopaminergic function in the basal ganglia and altered neurotransmission more generally. Akinesia, postural instability, tremors and frozen gait constitute the major motor disturbances, whereas neuropsychiatric symptoms include altered circadian rhythms, disordered sleep, depression, psychosis and cognitive impairment. Evidence is emerging that the motor and neuropsychiatric symptoms may share etiologic factors. Calcium/ion channels (CACNA1C, NALCN), synaptic proteins (SYNJ1) and neuronal RNA-binding proteins (RBFOX1) are among the risk genes that are common to PD and various psychiatric disorders. The Na+ leak-current channel (NALCN) is the focus of this review because it has been implicated in dystonia, regulation of movement, cognitive impairment, sleep and circadian rhythms. It regulates the resting membrane potential in neurons, mediates pace-making activity, participates in synaptic vesicle recycling and is functionally co-localized to the endoplasmic reticulum (ER)-several of the major processes adversely affected in PD. Here, we summarize the literature on mechanisms and pathways that connect the motor and neuropsychiatric symptoms of PD with a focus on recurring relationships to the NALCN. It is hoped that the various connections outlined here will stimulate further discussion, suggest additional areas for exploration and ultimately inspire novel treatment strategies.
Collapse
|
14
|
Mishra S, Girisha KM, Shukla A. Expanding the phenotype of PURA-related neurodevelopmental disorder: a close differential diagnosis of infantile hypotonia with psychomotor retardation and characteristic facies. Clin Dysmorphol 2021; 30:1-5. [PMID: 33229923 PMCID: PMC9944571 DOI: 10.1097/mcd.0000000000000360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purine-rich element-binding protein A (PURA) encodes Pur-alpha, a transcriptional activator protein is crucial for normal brain development. Pathogenic variants in PURA are known to cause mental retardation, autosomal dominant 31, characterized by psychomotor delay, absent or poor speech, hypotonia, feeding difficulties, seizures or 'seizure-like' movements, and dysmorphism. PURA-related neurodevelopmental disorder (PURA-related NDD) result either from heterozygous pathogenic sequence variants in PURA or microdeletions spanning PURA. Singleton whole-exome sequencing (WES) was performed for the proband after a clinical diagnosis of infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) was made. The pathogenic variant was validated by Sanger sequencing in the proband and parents. Comparison of PURA-related NDD and IHPRF was carried out. WES identified a novel, de-novo stop-gain variant c.178G>T in PURA. In addition to typical phenotype, subject also had hypersensitivity to various stimuli which was not reported in PURA-related NDD. Significant phenotypic overlap was observed in subjects with PURA-related NDD and IHPRF especially with IHPRF2, caused by biallelic pathogenic variants in UNC80. This study expands the phenotypic and mutational spectrum of PURA-related NDD. We propose PURA-related NDD to be considered as a close differential diagnosis of IHPRF.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
15
|
Kang Y, Wu JX, Chen L. Structure of voltage-modulated sodium-selective NALCN-FAM155A channel complex. Nat Commun 2020; 11:6199. [PMID: 33273469 PMCID: PMC7712781 DOI: 10.1038/s41467-020-20002-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Resting membrane potential determines the excitability of the cell and is essential for the cellular electrical activities. The NALCN channel mediates sodium leak currents, which positively adjust resting membrane potential towards depolarization. The NALCN channel is involved in several neurological processes and has been implicated in a spectrum of neurodevelopmental diseases. Here, we report the cryo-EM structure of rat NALCN and mouse FAM155A complex to 2.7 Å resolution. The structure reveals detailed interactions between NALCN and the extracellular cysteine-rich domain of FAM155A. We find that the non-canonical architecture of NALCN selectivity filter dictates its sodium selectivity and calcium block, and that the asymmetric arrangement of two functional voltage sensors confers the modulation by membrane potential. Moreover, mutations associated with human diseases map to the domain-domain interfaces or the pore domain of NALCN, intuitively suggesting their pathological mechanisms. The NALCN channel mediates sodium leak currents, which in turn adjusts resting membrane potential and neuronal excitability. Here the authors describe a cryo-EM structure of mammalian NALCN-FAM155A channel complex, showing how selectivity filter contributes to sodium permeation and calcium block and how the voltage sensors contribute to current modulation.
Collapse
Affiliation(s)
- Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
16
|
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, Yan Z. Structure of the human sodium leak channel NALCN in complex with FAM155A. Nat Commun 2020; 11:5831. [PMID: 33203861 PMCID: PMC7672056 DOI: 10.1038/s41467-020-19667-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
NALCN, a sodium leak channel expressed mainly in the central nervous system, is responsible for the resting Na+ permeability that controls neuronal excitability. Dysfunctions of the NALCN channelosome, NALCN with several auxiliary subunits, are associated with a variety of human diseases. Here, we report the cryo-EM structure of human NALCN in complex with FAM155A at an overall resolution of 3.1 angstroms. FAM155A forms extensive interactions with the extracellular loops of NALCN that may help stabilize NALCN in the membrane. A Na+ ion-binding site, reminiscent of a Ca2+ binding site in Cav channels, is identified in the unique EEKE selectivity filter. Despite its 'leaky' nature, the channel is closed and the intracellular gate is sealed by S6I, II-III linker and III-IV linker. Our study establishes the molecular basis of Na+ permeation and voltage sensitivity, and provides important clues to the mechanistic understanding of NALCN regulation and NALCN channelosome-related diseases.
Collapse
Affiliation(s)
- Jiongfang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Meng Ke
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shiyi Lin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jin Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jiabei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Karimi AH, Karimi MR, Farnia P, Parvini F, Foroutan M. A Homozygous Truncating Mutation in NALCN Causing IHPRF1: Detailed Clinical Manifestations and a Review of Literature. APPLICATION OF CLINICAL GENETICS 2020; 13:151-157. [PMID: 32943903 PMCID: PMC7459142 DOI: 10.2147/tacg.s261781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
Infantile hypotonia, with psychomotor retardation and characteristic facies 1 (IHPRF1), is a rare disorder characterized by global developmental delay and dysmorphic features. This syndrome is caused by genetic anomalies within the NALCN gene. The current report examines a 9-year-old female IHPRF1 patient. Our objective was to contribute to the delineation of the underlying factors influencing this rare condition. Whole exome sequencing (WES) was utilized to identify the disease-causing mutation in the affected individual. Subsequently, Sanger sequencing was performed for the patient, her parents, and two close relatives in order to confirm the detected mutation. Moreover, detailed clinical examinations including EEG, echocardiography, and biochemical/physical tests were carried out to elucidate the effects of the mutation. WES identified a homozygous nonsense mutation in the NALCN gene (c.2563C>T p.R855X). This mutation was confirmed by Sanger sequencing in the patient and her family members and segregated with the autosomal recessive inheritance pattern of IHPRF1. Moreover, genotype-phenotype correlation analysis confirmed the disease-causing nature of this mutation. The current report provides the first detailed description of a patient with this homozygous nonsense mutation (c.2563C>T p.R855X) and expands the clinical spectrum of IHPRF1 disease. Possible influences of sex and other factors on this disease are discussed and a review of the literature is also provided.
Collapse
Affiliation(s)
- Amir Hossein Karimi
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Mohammad Reza Karimi
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Poopak Farnia
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Majid Foroutan
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
18
|
Wie J, Bharthur A, Wolfgang M, Narayanan V, Ramsey K, Aranda K, Zhang Q, Zhou Y, Ren D. Intellectual disability-associated UNC80 mutations reveal inter-subunit interaction and dendritic function of the NALCN channel complex. Nat Commun 2020; 11:3351. [PMID: 32620897 PMCID: PMC7335163 DOI: 10.1038/s41467-020-17105-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
The sodium-leak channel NALCN forms a subthreshold sodium conductance that controls the resting membrane potentials of neurons. The auxiliary subunits of the channel and their functions in mammals are largely unknown. In this study, we demonstrate that two large proteins UNC80 and UNC79 are subunits of the NALCN complex. UNC80 knockout mice are neonatal lethal. The C-terminus of UNC80 contains a domain that interacts with UNC79 and overcomes a soma-retention signal to achieve dendritic localization. UNC80 lacking this domain, as found in human patients, still supports whole-cell NALCN currents but lacks dendritic localization. Our results establish the subunit composition of the NALCN complex, uncover the inter-subunit interaction domains, reveal the functional significance of regulation of dendritic membrane potential by the sodium-leak channel complex, and provide evidence supporting that genetic variations found in individuals with intellectual disability are the causes for the phenotype observed in patients.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Apoorva Bharthur
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Morgan Wolfgang
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yandong Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Hahn S, Kim SW, Um KB, Kim HJ, Park MK. N-benzhydryl quinuclidine compounds are a potent and Src kinase-independent inhibitor of NALCN channels. Br J Pharmacol 2020; 177:3795-3810. [PMID: 32436268 DOI: 10.1111/bph.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE NALCN is a Na+ leak, GPCR-activated channel that regulates the resting membrane potential and neuronal excitability. Despite numerous possible roles for NALCN in both normal physiology and disease processes, lack of specific blockers hampers further investigation. EXPERIMENTAL APPROACH The effect of N-benzhydryl quinuclidine compounds on NALCN channels was demonstrated using whole-cell patch-clamp recordings in HEK293T cells overexpressing NALCN and acutely isolated nigral dopaminergic neurons that express NALCN endogenously. Src kinase activity was measured using a Src kinase assay kit, and voltage and current-clamp recordings from nigral dopaminergic neurons were used to measure NALCN currents and membrane potentials. KEY RESULTS N-benzhydryl quinuclidine compounds inhibited NALCN channels without affecting TRPC channels, another important route for Na+ leak. In HEK293T cells overexpressing NALCN, N-benzhydryl quinuclidine compounds potently suppressed muscarinic M3 receptor-activated NALCN currents. Structure-function relationship studies suggest that the quinuclidine ring with a benzhydryl group imparts the ability to inhibit NALCN currents regardless of Src family kinases. Moreover, N-benzhydryl quinuclidine compounds inhibited not only GPCR-activated NALCN currents but also background Na+ leak currents and hyperpolarized the membrane potential in native midbrain dopaminergic neurons that express NALCN endogenously. CONCLUSION AND IMPLICATIONS These findings suggest that N-benzhydryl quinuclidine compounds have a pharmacological potential to directly inhibit NALCN channels and could be a useful tool to investigate functions of NALCN channels.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Chua HC, Wulf M, Weidling C, Rasmussen LP, Pless SA. The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. SCIENCE ADVANCES 2020; 6:eaaz3154. [PMID: 32494638 PMCID: PMC7182417 DOI: 10.1126/sciadv.aaz3154] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
The sodium leak channel (NALCN) is essential for survival in mammals: NALCN mutations are life-threatening in humans and knockout is lethal in mice. However, the basic functional and pharmacological properties of NALCN have remained elusive. Here, we found that robust function of NALCN in heterologous systems requires co-expression of UNC79, UNC80, and FAM155A. The resulting NALCN channel complex is constitutively active and conducts monovalent cations but is blocked by physiological concentrations of extracellular divalent cations. Our data support the notion that NALCN is directly responsible for the increased excitability observed in a variety of neurons in reduced extracellular Ca2+. Despite the smaller number of voltage-sensing residues in NALCN, the constitutive activity is modulated by voltage, suggesting that voltage-sensing domains can give rise to a broader range of gating phenotypes than previously anticipated. Our work points toward formerly unknown contributions of NALCN to neuronal excitability and opens avenues for pharmacological targeting.
Collapse
|
21
|
The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate Caenorhabditis elegans Reversal Behavior. G3-GENES GENOMES GENETICS 2020; 10:199-210. [PMID: 31690562 PMCID: PMC6945035 DOI: 10.1534/g3.119.400692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.
Collapse
|
22
|
Novel pharmacological modulation of dystonic phenotypes caused by a gain-of-function mutation in the Na+ leak-current channel. Behav Pharmacol 2019; 31:465-476. [DOI: 10.1097/fbp.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Bouasse M, Impheng H, Servant Z, Lory P, Monteil A. Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep 2019; 9:11791. [PMID: 31409833 PMCID: PMC6692409 DOI: 10.1038/s41598-019-48071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
The excitability of neurons is tightly dependent on their ion channel repertoire. Among these channels, the leak sodium channel NALCN plays a crucial role in the maintenance of the resting membrane potential. Importantly, NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. Unfortunately, the biophysical properties of NALCN are still largely unknown to date, as well as the functional consequences of both IHPRF and CLIFAHDD mutations on NALCN current. Here we have set-up the heterologous expression of NALCN in the neuronal cell line NG108-15 to investigate the electrophysiological properties of NALCN carrying representative IHPRF and CLIFAHDD mutations. Several original properties of the wild-type (wt) NALCN current were retrieved: mainly carried by external Na+, blocked by Gd3+, insensitive to TTX and potentiated by low external Ca2+ concentration. However, we found that this current displays a time-dependent inactivation in the −80/−40 mV range of membrane potential, and a non linear current-voltage relationship indicative of voltage sensitivity. Importantly, no detectable current was recorded with the IHPRF missense mutation p.Trp1287Leu (W1287L), while the CLIFAHDD mutants, p.Leu509Ser (L509S) and p.Tyr578Ser (Y578S), showed higher current densities and slower inactivation, compared to wt NALCN current. This study reveals that heterologous expression of NALCN channel can be achieved in the neuronal cell line NG108-15 to study the electrophysiological properties of wt and mutants. From our results, we conclude that IHPRF and CLIFAHDD missense mutations are loss- and gain-of-function variants, respectively.
Collapse
Affiliation(s)
- Malik Bouasse
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Hathaichanok Impheng
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Zoe Servant
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.
| |
Collapse
|
24
|
Guo YP, Tang BS, Guo JF. PLA2G6-Associated Neurodegeneration (PLAN): Review of Clinical Phenotypes and Genotypes. Front Neurol 2018; 9:1100. [PMID: 30619057 PMCID: PMC6305538 DOI: 10.3389/fneur.2018.01100] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN) includes a series of neurodegenerative diseases that result from the mutations in PLA2G6. PLAN has genetic and clinical heterogeneity, with different mutation sites, mutation types and ethnicities and its clinical phenotype is different. The clinical phenotypes and genotypes of PLAN are closely intertwined and vary widely. PLA2G6 encodes a group of VIA calcium-independent phospholipase A2 proteins (iPLA2β), an enzyme involved in lipid metabolism. According to the age of onset and progressive clinical features, PLAN can be classified into the following subtypes: infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD) and parkinsonian syndrome which contains adult onset dystonia parkinsonism (DP) and autosomal recessive early-onset parkinsonism (AREP). In this review, we present an overview of PLA2G6-associated neurodegeneration in the context of current research.
Collapse
Affiliation(s)
- Yu-Pei Guo
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
25
|
Bramswig NC, Bertoli-Avella AM, Albrecht B, Al Aqeel AI, Alhashem A, Al-Sannaa N, Bah M, Bröhl K, Depienne C, Dorison N, Doummar D, Ehmke N, Elbendary HM, Gorokhova S, Héron D, Horn D, James K, Keren B, Kuechler A, Ismail S, Issa MY, Marey I, Mayer M, McEvoy-Venneri J, Megarbane A, Mignot C, Mohamed S, Nava C, Philip N, Ravix C, Rolfs A, Sadek AA, Segebrecht L, Stanley V, Trautman C, Valence S, Villard L, Wieland T, Engels H, Strom TM, Zaki MS, Gleeson JG, Lüdecke HJ, Bauer P, Wieczorek D. Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet 2018; 137:753-768. [PMID: 30167850 PMCID: PMC6671679 DOI: 10.1007/s00439-018-1929-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/30/2022]
Abstract
NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.
Collapse
Affiliation(s)
- Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Aida I Al Aqeel
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- American University of Beirut, Beirut, Lebanon
- Alfaisal University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nouriya Al-Sannaa
- John Hopkins Aramco Health Care, Pediatric Services, Dhahran, Saudi Arabia
| | - Maissa Bah
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Katharina Bröhl
- Internal Medicine Department, Waldkrankenhaus Evangelical Hospital, Berlin, Germany
| | - Christel Depienne
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and Inserm U 1127, and CNRS UMR 7225, and ICM, 75013, Paris, France
| | - Nathalie Dorison
- Service de Neurochirurgie Pédiatrique, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Diane Doummar
- AP-HP, Département de neuropédiatrie, GHUEP, Hôpital Armand Trousseau, Paris, France
| | - Nadja Ehmke
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Hasnaa M Elbendary
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Svetlana Gorokhova
- Département de Génétique Médicale, APHM, CHU Timone Enfants, Marseille, France
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Delphine Héron
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kiely James
- Departments of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California San Diego, Rady Children's Institute for Genomic Medicine, La Jolla, CA, 92093, USA
| | - Boris Keren
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Samira Ismail
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Isabelle Marey
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Michèle Mayer
- AP-HP, Département de neuropédiatrie, GHUEP, Hôpital Armand Trousseau, Paris, France
| | - Jennifer McEvoy-Venneri
- Departments of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California San Diego, Rady Children's Institute for Genomic Medicine, La Jolla, CA, 92093, USA
| | - Andre Megarbane
- CEMEDIPP-Centre Medico Psychopedagogique, Beirut, Lebanon
- Institut Jerome Lejeune, Paris, France
| | - Cyril Mignot
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Sarar Mohamed
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Prince Abdullah bin Khaled Coeliac Disease Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Caroline Nava
- Groupe de Recherche Clinique sorbonne Université "Déficiences Intellectuelles et Autisme", Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and Inserm U 1127, and CNRS UMR 7225, and ICM, 75013, Paris, France
| | - Nicole Philip
- Département de Génétique Médicale, APHM, CHU Timone Enfants, Marseille, France
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Cecile Ravix
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Arndt Rolfs
- CENTOGENE AG, The Rare Disease Company, Rostock, Germany
- Albrecht Kossel Institute, University of Rostock, Rostock, Germany
| | - Abdelrahim Abdrabou Sadek
- Pediatric Neurology Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohâg, Egypt
| | - Lara Segebrecht
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Valentina Stanley
- Departments of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California San Diego, Rady Children's Institute for Genomic Medicine, La Jolla, CA, 92093, USA
| | - Camille Trautman
- Departments of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California San Diego, Rady Children's Institute for Genomic Medicine, La Jolla, CA, 92093, USA
| | - Stephanie Valence
- AP-HP, Département de neuropédiatrie, GHUEP, Hôpital Armand Trousseau, Paris, France
| | - Laurent Villard
- Département de Génétique Médicale, APHM, CHU Timone Enfants, Marseille, France
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Departments of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California San Diego, Rady Children's Institute for Genomic Medicine, La Jolla, CA, 92093, USA
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
- Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Bauer
- CENTOGENE AG, The Rare Disease Company, Rostock, Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
- Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Bourque DK, Dyment DA, MacLusky I, Kernohan KD, McMillan HJ. Periodic breathing in patients with NALCN mutations. J Hum Genet 2018; 63:1093-1096. [PMID: 29968795 DOI: 10.1038/s10038-018-0484-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023]
Abstract
Biallelic mutations in NALCN are responsible for infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1). Common features of this condition include severe neonatal-onset hypotonia and profound global developmental delay. Given the rarity of this condition, long-term natural history studies are limited. Here, we present a 9-year-old male with a homozygous nonsense mutation in NALCN (c.3910C>T, p.Arg1304X) leading to profound intellectual disability, seizures, feeding difficulties, and significant periodic breathing. Breathing irregularity was also reported in three previous patients; similar to our patient, those children demonstrated periodic breathing that was characterized by alternating apneic periods with deep, rapid breathing. As the phenotype associated with NALCN mutations continues to be delineated, attention should be given to abnormal respiratory patterns, which may be an important distinguishing feature of this condition.
Collapse
Affiliation(s)
- Danielle K Bourque
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ian MacLusky
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Respirology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| |
Collapse
|
27
|
McConville DO, Archbold GP, Lewis A, Morrison PJ. Zygodactyly (Syndactyly Type A1) Associated With Midfoot Charcot Neuropathy and Diabetes. Diabetes Care 2018; 41:e74-e75. [PMID: 29472431 DOI: 10.2337/dc18-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Anthony Lewis
- Diabetes Clinic, Belfast Health and Social Care Trust, Belfast, U.K
| | - Patrick J Morrison
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, U.K. .,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, U.K
| |
Collapse
|
28
|
Bélteky J, Agnvall B, Bektic L, Höglund A, Jensen P, Guerrero-Bosagna C. Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans. Genet Sel Evol 2018; 50:13. [PMID: 29609558 PMCID: PMC5880090 DOI: 10.1186/s12711-018-0384-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Background Domestication of animals leads to large phenotypic alterations within a short evolutionary time-period. Such alterations are caused by genomic variations, yet the prevalence of modified traits is higher than expected if they were caused only by classical genetics and mutations. Epigenetic mechanisms may also be important in driving domesticated phenotypes such as behavior traits. Gene expression can be modulated epigenetically by mechanisms such as DNA methylation, resulting in modifications that are not only variable and susceptible to environmental stimuli, but also sometimes transgenerationally stable. To study such mechanisms in early domestication, we used as model two selected lines of red junglefowl (ancestors of modern chickens) that were bred for either high or low fear of humans over five generations, and investigated differences in hypothalamic DNA methylation between the two populations. Results Twenty-two 1-kb windows were differentially methylated between the two selected lines at p < 0.05 after false discovery rate correction. The annotated functions of the genes within these windows indicated epigenetic regulation of metabolic and signaling pathways, which agrees with the changes in gene expression that were previously reported for the same tissue and animals. Conclusions Our results show that selection for an important domestication-related behavioral trait such as tameness can cause divergent epigenetic patterns within only five generations, and that these changes could have an important role in chicken domestication. Electronic supplementary material The online version of this article (10.1186/s12711-018-0384-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johan Bélteky
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Beatrix Agnvall
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Lejla Bektic
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Andrey Höglund
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Carlos Guerrero-Bosagna
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
29
|
Campbell J, FitzPatrick DR, Azam T, Gibson NA, Somerville L, Joss SK, Urquhart DS. NALCN Dysfunction as a Cause of Disordered Respiratory Rhythm With Central Apnea. Pediatrics 2018; 141:S485-S490. [PMID: 29610177 DOI: 10.1542/peds.2017-0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 11/24/2022] Open
Abstract
The sodium leak channel nonselective protein (NALCN) is a regulator of the pacemaker neurons that are responsible for rhythmic behavior (including respiration), maintaining the resting membrane potential, and are required for action potential production. NALCN-null mice show early death associated with disrupted respiratory rhythms, characterized by frequent and profound apneas. We report 3 children (2 siblings) with compound heterozygous mutations in NALCN associated with developmental impairment, hypotonia, and central sleep-disordered breathing causing apneas. Supplemental oxygen normalized the respiratory rhythm. NALCN mutations have been previously reported to cause severe hypotonia, speech impairment, and cognitive delay as well as infantile neuroaxonal dystrophy and facial dysmorphism. Nonsynonymous changes in the 2 affected extracellular loops may be responsible for the deleterious effect on the stability of the respiratory rhythm. Although oxygen is known to be a stabilizer of respiratory rhythm in central apnea in children, its role in NALCN dysfunction requires further investigation.
Collapse
Affiliation(s)
- Jamie Campbell
- Department of Clinical Genetics, Centre for Genomic and Experimental Medicine and
| | - David R FitzPatrick
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tara Azam
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, United Kingdom
| | - Neil A Gibson
- Department of Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom
| | - Laura Somerville
- Specialist Children's Services, The West Centre, Glasgow, United Kingdom
| | - Shelagh K Joss
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Govan, United Kingdom
| | | | - Don S Urquhart
- Department of Pediatric Respiratory and Sleep Medicine, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Novel PLA2G6 mutations and clinical heterogeneity in Chinese cases with phospholipase A2-associated neurodegeneration. Parkinsonism Relat Disord 2018; 49:88-94. [DOI: 10.1016/j.parkreldis.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
|
31
|
Angius A, Cossu S, Uva P, Oppo M, Onano S, Persico I, Fotia G, Atzeni R, Cuccuru G, Asunis M, Cucca F, Pruna D, Crisponi L. Novel NALCN biallelic truncating mutations in siblings with IHPRF1 syndrome. Clin Genet 2018; 93:1245-1247. [PMID: 29399786 DOI: 10.1111/cge.13162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
Infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1) is a severe autosomal recessive neurologic disorder with onset at birth or in early infancy. It is caused by mutations in the NALCN gene that encodes a voltage-independent, cation channel permeable to NM, K+ and Ca2+ and forms a channel complex with UNCSO and UNC79. So far, only 4 homozygous mutations have been found in 11 cases belonging to 4 independent consanguineous families. We studied a Sardinian family with 2 siblings presenting dysmorphic facies, hypotonia, psychomotor retardation, epilepsy, absent speech, sleep disturbance, hyperkinetic movement disorder, cachexia and chronic constipation. Polymorphic generalized seizures started at 4 and 6 years, respectively. Anti-epileptic drugs (AEDs) therapy was efficient for female proband's epilepsy, but the male still has weekly seizures. Whole exome sequencing identified 2 novel truncating mutations in NALCN allowing to assess the clinical phenotype to IHPRF1. This is the fifth family reported worldwide, and these are the first European cases with IHPRF1 syndrome with biallelic truncating mutations of NALCN.
Collapse
Affiliation(s)
- A Angius
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy
| | - S Cossu
- Department of Neuroscience and Neuro-Rehabilitation, UOC of Neurosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - P Uva
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Italy
| | - M Oppo
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy.,Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - S Onano
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy.,Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - I Persico
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy
| | - G Fotia
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Italy
| | - R Atzeni
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Italy
| | - G Cuccuru
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Italy
| | - M Asunis
- Azienda Ospedaliera Brotzu, SSD of Neurology and Pediatric Epilettology, Cagliari, Italy
| | - F Cucca
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy.,Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - D Pruna
- Azienda Ospedaliera Brotzu, SSD of Neurology and Pediatric Epilettology, Cagliari, Italy
| | - L Crisponi
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cagliari, Italy.,Department of Biomedical Science, University of Sassari, Sassari, Italy
| |
Collapse
|
32
|
Takenouchi T, Inaba M, Uehara T, Takahashi T, Kosaki K, Mizuno S. Biallelic mutations in NALCN: Expanding the genotypic and phenotypic spectra of IHPRF1. Am J Med Genet A 2017; 176:431-437. [PMID: 29168298 DOI: 10.1002/ajmg.a.38543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/09/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023]
Abstract
Loss-of function mutations in NALCN on chromosome 13q, a sodium leak channel that maintains baseline neuronal excitability, cause infantile hypotonia with psychomotor retardation and characteristic faces 1 (IHPRF1, OMIM #615419). Here, we document two individuals with early onset hypotonia with poor feeding and intellectual disability who were compatible with a diagnosis of IHPRF1. The two patients had bi-allelic mutations in NALCN through two different genetic mechanisms: Patient 1 had bi-allelic splice site mutations, that is c.1267-2A>G, derived from heterozygous parents, while Patient 2 had a partial maternal uniparental isodisomy that harbored a frameshift mutation, that is c.2022_2023delAT, in chromosome 13 that was detected through a dedicated algorithm for homozygosity data mapping in whole exome sequencing. The delineation of the exact pattern of inheritance provided vital information regarding the risk of recurrence. In animal models with Nalcn mutations, two behavioral phenotypes, that are, postnatal dyspnea and sleep disturbance, have been reported. Our observations of the two patients with postnatal dyspnea and one patient with sleep disturbance support an association between these two behavioral phenotypes and NALCN mutations in humans. The routine use of a detection algorithm for homozygosity data mapping might improve the diagnostic yields of next-generation sequencing.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mie Inaba
- Department of Pediatrics, Aichi Human Service Center, Central Hospital, Aichi, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Aichi Human Service Center, Central Hospital, Aichi, Japan
| |
Collapse
|
33
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
34
|
Nalcn Is a "Leak" Sodium Channel That Regulates Excitability of Brainstem Chemosensory Neurons and Breathing. J Neurosci 2017; 36:8174-87. [PMID: 27488637 DOI: 10.1523/jneurosci.1096-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The activity of background potassium and sodium channels determines neuronal excitability, but physiological roles for "leak" Na(+) channels in specific mammalian neurons have not been established. Here, we show that a leak Na(+) channel, Nalcn, is expressed in the CO2/H(+)-sensitive neurons of the mouse retrotrapezoid nucleus (RTN) that regulate breathing. In RTN neurons, Nalcn expression correlated with higher action potential discharge over a more alkalized range of activity; shRNA-mediated depletion of Nalcn hyperpolarized RTN neurons, and reduced leak Na(+) current and firing rate. Nalcn depletion also decreased RTN neuron activation by the neuropeptide, substance P, without affecting pH-sensitive background K(+) currents or activation by a cotransmitter, serotonin. In vivo, RTN-specific knockdown of Nalcn reduced CO2-evoked neuronal activation and breathing; hypoxic hyperventilation was unchanged. Thus, Nalcn regulates RTN neuronal excitability and stimulation by CO2, independent of direct pH sensing, potentially contributing to respiratory effects of Nalcn mutations; transmitter modulation of Nalcn may underlie state-dependent changes in breathing and respiratory chemosensitivity. SIGNIFICANCE STATEMENT Breathing is an essential, enduring rhythmic motor activity orchestrated by dedicated brainstem circuits that require tonic excitatory drive for their persistent function. A major source of drive is from a group of CO2/H(+)-sensitive neurons in the retrotrapezoid nucleus (RTN), whose ongoing activity is critical for breathing. The ionic mechanisms that support spontaneous activity of RTN neurons are unknown. We show here that Nalcn, a unique channel that generates "leak" sodium currents, regulates excitability and neuromodulation of RTN neurons and CO2-stimulated breathing. Thus, this work defines a specific function for this enigmatic channel in an important physiological context.
Collapse
|
35
|
The NCA-1 and NCA-2 Ion Channels Function Downstream of G q and Rho To Regulate Locomotion in Caenorhabditis elegans. Genetics 2017; 206:265-282. [PMID: 28325749 DOI: 10.1534/genetics.116.198820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric G protein Gq positively regulates neuronal activity and synaptic transmission. Previously, the Rho guanine nucleotide exchange factor Trio was identified as a direct effector of Gq that acts in parallel to the canonical Gq effector phospholipase C. Here, we examine how Trio and Rho act to stimulate neuronal activity downstream of Gq in the nematode Caenorhabditis elegans Through two forward genetic screens, we identify the cation channels NCA-1 and NCA-2, orthologs of mammalian NALCN, as downstream targets of the Gq-Rho pathway. By performing genetic epistasis analysis using dominant activating mutations and recessive loss-of-function mutations in the members of this pathway, we show that NCA-1 and NCA-2 act downstream of Gq in a linear pathway. Through cell-specific rescue experiments, we show that function of these channels in head acetylcholine neurons is sufficient for normal locomotion in C. elegans Our results suggest that NCA-1 and NCA-2 are physiologically relevant targets of neuronal Gq-Rho signaling in C. elegans.
Collapse
|
36
|
Lozic B, Johansson S, Lovric Kojundzic S, Markic J, Knappskog PM, Hahn AF, Boman H. Novel NALCN variant: altered respiratory and circadian rhythm, anesthetic sensitivity. Ann Clin Transl Neurol 2016; 3:876-883. [PMID: 27844033 PMCID: PMC5099533 DOI: 10.1002/acn3.362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022] Open
Abstract
The sodium leak channel, a Na+‐permeable, nonselective cation channel, is widely expressed in the nervous system, contributing a basal Na+‐leak conductance and regulating neuronal excitability. A 3‐year‐old girl, heterozygous for a de novo missense mutation in NALCN (c.956C>T; p.Ala319Val) predicted to be deleterious, presented from birth with: stimulus‐induced, episodic contractures of the limbs and face with associated respiratory distress; distal arthrogryposis; severe axial hypotonia; and severe global developmental delay (CLIFAHDD syndrome). In infancy, she manifested a reversed sleep‐wake rhythm, nocturnal life‐threatening respiratory rhythm disturbances with central apnea. Sevoflurane sensitivity caused respiratory depression and cardiac arrest.
Collapse
Affiliation(s)
- Bernarda Lozic
- Department of Pediatrics University Hospital Centre Split Split Croatia
| | - Stefan Johansson
- K.G. Jebsen Center for Diabetes Research Department of Clinical Science University of Bergen Bergen Norway; Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| | - Sanja Lovric Kojundzic
- Department of Diagnostic and Interventional Radiology University Hospital Centre Split Split Croatia
| | - Josko Markic
- Department of Pediatrics University Hospital Centre Split Split Croatia
| | - Per Morten Knappskog
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital BergenNorway; K.G. Jebsen Center for Research on Neuropsychiatric Disorders University of Bergen Bergen Norway
| | - Angelika F Hahn
- Department of Clinical Neurological Sciences London Health Sciences Centre Western University London Ontario Canada
| | - Helge Boman
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| |
Collapse
|
37
|
Arnold WD. Comment: Genotype–phenotype correlation with CRISPR-Cas9—. Neurology 2016; 87:1138. [DOI: 10.1212/wnl.0000000000003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Bend EG, Si Y, Stevenson DA, Bayrak-Toydemir P, Newcomb TM, Jorgensen EM, Swoboda KJ. NALCN channelopathies: Distinguishing gain-of-function and loss-of-function mutations. Neurology 2016; 87:1131-9. [PMID: 27558372 PMCID: PMC5027803 DOI: 10.1212/wnl.0000000000003095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 11/15/2022] Open
Abstract
Objective: To perform genotype–phenotype analysis in an infant with congenital arthrogryposis due to a de novo missense mutation in the NALCN ion channel and explore the mechanism of pathogenicity using a Caenorhabditis elegans model. Methods: We performed whole-exome sequencing in a preterm neonate with congenital arthrogryposis and a severe life-threatening clinical course. We examined the mechanism of pathogenicity of the associated NALCN mutation by engineering the orthologous mutation into the nematode C elegans using CRISPR-Cas9. Results: We identified a de novo missense mutation in NALCN, c.1768C>T, in an infant with a severe neonatal lethal form of the recently characterized CLIFAHDD syndrome (congenital contractures of the limbs and face with hypotonia and developmental delay). We report novel phenotypic features including prolonged episodes of stimulus-sensitive sustained muscular contraction associated with life-threatening episodes of desaturation and autonomic instability, extending the severity of previously described phenotypes associated with mutations in NALCN. When engineered into the C elegans ortholog, this mutation results in a severe gain-of-function phenotype, with hypercontraction and uncoordinated movement. We engineered 6 additional CLIFAHDD syndrome mutations into C elegans and the mechanism of action could be divided into 2 categories: half phenocopied gain-of-function mutants and half phenocopied loss-of-function mutants. Conclusions: The clinical phenotype of our patient and electrophysiologic studies show sustained muscular contraction in response to transient sensory stimuli. In C elegans, this mutation causes neuronal hyperactivity via a gain-of-function NALCN ion channel. Testing human variants of NALCN in C elegans demonstrates that CLIFAHDD can be caused by dominant loss- or gain-of-function mutations in ion channel function.
Collapse
Affiliation(s)
- Eric G Bend
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston
| | - Yue Si
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston
| | - David A Stevenson
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston
| | - Pinar Bayrak-Toydemir
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston
| | - Tara M Newcomb
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston
| | - Erik M Jorgensen
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston.
| | - Kathryn J Swoboda
- From the Department of Biology and Howard Hughes Medical Institute (E.G.B., E.M.J.), and Department of Pathology (Y.S., P.B.-T.), University of Utah, Salt Lake City; ARUP Institute for Clinical and Experimental Pathology (Y.S., P.B.-T.), Salt Lake City, UT; Division of Medical Genetics (D.A.S.), Department of Pediatrics, Stanford University, CA; Department of Neurology (T.M.N.), Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City; and Department of Neurology (K.J.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
39
|
Valkanas E, Schaffer K, Dunham C, Maduro V, du Souich C, Rupps R, Adams DR, Baradaran-Heravi A, Flynn E, Malicdan MC, Gahl WA, Toro C, Boerkoel CF. Phenotypic evolution of UNC80 loss of function. Am J Med Genet A 2016; 170:3106-3114. [PMID: 27513830 DOI: 10.1002/ajmg.a.37929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/03/2016] [Indexed: 12/27/2022]
Abstract
Failure to thrive arises as a complication of a heterogeneous group of disorders. We describe two female siblings with spastic paraplegia and global developmental delay but also, atypically for the HSPs, poor weight gain classified as failure to thrive. After extensive clinical and biochemical investigations failed to identify the etiology, we used exome sequencing to identify biallelic UNC80 mutations (NM_032504.1:c.[3983-3_3994delinsA];[2431C>T]. The paternally inherited NM_032504.1:c.3983-3_3994delinsA is predicted to encode p.Ser1328Argfs*19 and the maternally inherited NM_032504.1:c.2431C>T is predicted to encode p.Arg811*. No UNC80 mRNA was detectable in patient cultured skin fibroblasts, suggesting UNC80 loss of function by nonsense mediated mRNA decay. Further supporting the UNC80 mutations as causative of these siblings' disorder, biallelic mutations in UNC80 have recently been described among individuals with an overlapping phenotype. This report expands the disease spectrum associated with UNC80 mutations. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elise Valkanas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - Katherine Schaffer
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - Christèle du Souich
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - Alireza Baradaran-Heravi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elise Flynn
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - May C Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland.,NHGRI, National Institutes of Health, Bethesda, Maryland
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, National Institutes of Health, Bethesda, Maryland.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Sivaraman I, Friedman NR, Prayson RA. Muscle biopsy findings in a child with NALCN gene mutation. J Clin Neurosci 2016; 34:222-223. [PMID: 27473021 DOI: 10.1016/j.jocn.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/18/2016] [Accepted: 06/04/2016] [Indexed: 01/01/2023]
Abstract
Mutation in NALCN (Sodium leak channel, non-selective) gene in humans has been shown to present with a wide spectrum of clinical manifestations including neurodevelopmental impairment, hypotonia and congenital contractures. Distinctive features including episodic ataxia and neuroaxonal dystrophy have also been reported. In this case report, we describe the muscle biopsy findings of a 3-year-old boy who presented with congenital arthrogryposis, hypotonia and developmental delay who has a heterozygous de novo C.965T>C (p.1332T) variant in the NALCN gene found by expanded whole exome sequencing (WES). Distal arthrogryposis and ulnar deviation of hands were prominent findings, which have been shown to be associated with de novo heterozygous mutations in this gene. He also presented with brief paroxysmal episodes of tremulousness; however, he has not clearly had episodes of episodic ataxia. Initial work-up including extensive genetic and metabolic tests was normal except for mildly elevated multiple metabolites in urine, suggestive of mild dysfunction of multiple mitochondrial enzymes. Muscle biopsy findings revealed ragged red fiber changes on trichrome staining and an increased number of mitochondria with non-specific crystalloid like inclusions ultrastructurally. The biochemical and muscle biopsy findings are suggestive of a possible mitochondrial bioenergetic dysfunction. The association of NALCN gene with secondary mitochondrial dysfunction remains unclear.
Collapse
Affiliation(s)
- Indu Sivaraman
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Neil R Friedman
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Prayson
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Anatomic Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
41
|
Abstract
Purpose of review To present emerging issues in neurometabolic disorders, with an emphasis on the diagnostic workup of patients with suspected neurometabolic disorders and some future challenges in the care for these patients. Recent findings Next-generation sequencing and next-generation metabolic screening increase the speed and yield of the diagnostic process in neurometabolic disorders. Furthermore, they deepen our insights into the underlying disease mechanisms. Care of adult patients with neurometabolic disorders is an expanding subspecialty, especially in internal medicine and neurology. Summary We briefly discuss some novel genetic and biochemical laboratory techniques and changing insights in the molecular basis of disease, and illustrate the importance of MRI pattern recognition in the diagnostic process. Furthermore, we discuss gene therapy that is cautiously entering the field, and pay attention to the new field of (transition of) care for adult patients with inborn errors of metabolism.
Collapse
Affiliation(s)
- Michèl A Willemsen
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| | - Inga Harting
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| | - Ron A Wevers
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| |
Collapse
|
42
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
43
|
Lutas A, Lahmann C, Soumillon M, Yellen G. The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. eLife 2016; 5. [PMID: 27177420 PMCID: PMC4902561 DOI: 10.7554/elife.15271] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Certain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A depolarizing 'leak' current supports this firing pattern, but its molecular basis remains poorly understood. To understand how SNr neurons maintain tonic activity, we used single-cell RNA sequencing to determine the transcriptome of individual mouse SNr neurons. We discovered that SNr neurons express the sodium leak channel, NALCN, and that SNr neurons lacking NALCN have impaired spontaneous firing. In addition, NALCN is involved in the modulation of excitability by changes in glycolysis and by activation of muscarinic acetylcholine receptors. Our findings suggest that disruption of NALCN could impair the basal ganglia circuit, which may underlie the severe motor deficits in humans carrying mutations in NALCN. DOI:http://dx.doi.org/10.7554/eLife.15271.001 Some neurons in the brain produce electrical signals (or “fire”) spontaneously, without receiving any other signals from the senses or from other neurons. This spontaneous activity has a number of important roles. For example, in a part of the brain known as the substantia nigra pars reticulata (SNr), spontaneously active neurons frequently produce electrical signals that reduce electrical activity in other brain areas. A current of positively charged ions constantly flows into the spontaneously active SNr neurons and enables them to fire constantly. Ions enter neurons through proteins called ion channels that are embedded in the surface of the neuron. Like all proteins, ion channels are made by “transcribing” genes to form molecules of RNA that are then “translated” to produce the basic sequence of the protein. Lutas et al. have now used single-cell RNA sequencing to study SNr neurons from mice and investigate which ion channel the positive ion current flows through. The RNA sequences revealed that the neurons have the gene for an ion channel known as NALCN. Recordings of the firing rate of neurons in slices of mouse brain showed that SNr neurons without this channel did not fire as often as SNr neurons with the channel. In addition, neurotransmitters (chemicals that alter the ability of neurons to fire) and changes in cell metabolism had less of an effect on the firing rate of SNr neurons that lacked the NALCN channel than they do on normal neurons. These findings may help explain why people with mutations in the NALCN gene have movement disorders, as the substantia nigra pars reticulata plays an important role in orchestrating complex movements. Future work is now needed to understand how a change in NALCN activity affects the other brain areas that SNr neurons connect to. DOI:http://dx.doi.org/10.7554/eLife.15271.002
Collapse
Affiliation(s)
- Andrew Lutas
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carolina Lahmann
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
44
|
Chong J, Caputo V, Phelps I, Stella L, Worgan L, Dempsey J, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin C, Ishak G, Ardern-Holmes S, Richmond Z, Bamshad M, Ortiz-Gonzalez X, Tartaglia M, Chopra M, Doherty D, Doherty D. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy. Am J Hum Genet 2016; 98:772-81. [PMID: 27040692 DOI: 10.1016/j.ajhg.2016.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 11/26/2022] Open
Abstract
Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
45
|
Gal M, Magen D, Zahran Y, Ravid S, Eran A, Khayat M, Gafni C, Levanon EY, Mandel H. A novel homozygous splice site mutation in NALCN identified in siblings with cachexia, strabismus, severe intellectual disability, epilepsy and abnormal respiratory rhythm. Eur J Med Genet 2016; 59:204-9. [PMID: 26923739 DOI: 10.1016/j.ejmg.2016.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
We studied three siblings, born to consanguineous parents who presented with severe intellectual disability, cachexia, strabismus, seizures and episodes of abnormal respiratory rhythm. Whole exome sequencing led to identification of a novel homozygous splice site mutation, IVS29-1G > A in the NALCN gene, that resulted in aberrant transcript in the patients. NALCN encodes a voltage-independent cation channel, involved in regulation of neuronal excitability. Three homozygous mutations in the NALCN gene were previously identified in only eight patients with severe hypotonia, speech impairment, cognitive delay, constipation and Infantile-Neuroaxonal-dystrophy- like symptoms. Our patients broaden the clinical spectrum associated with recessive mutations in NALCN, featuring also disrupted respiratory rhythm mimicking homozygous Nalcn knockout mice.
Collapse
Affiliation(s)
- Moran Gal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan Israel.
| | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, Haifa, Israel; Laboratory of Molecular Medicine, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Younan Zahran
- Department of Pediatric Medicine, Clalit Health Services, Ibillin, Israel
| | - Sarit Ravid
- Pediatric Neurology Unit and Epilepsy Service, Meyer Children's Hospital, Rambam Health Care Campus, Haifa, Israel.
| | - Ayelet Eran
- Department of Radiology, Health Care Campus, Haifa, Israel
| | - Morad Khayat
- The Genetic Institute, Emek Medical Center, Afula, Israel
| | - Chen Gafni
- The Genetic Institute, Emek Medical Center, Afula, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan Israel
| | - Hanna Mandel
- Metabolic Unit, Rambam Health Care Center, Haifa, Israel; Rappaport School of Medicine, Technion, Haifa, Israel
| |
Collapse
|
46
|
De novo missense mutations in NALCN cause developmental and intellectual impairment with hypotonia. J Hum Genet 2016; 61:451-5. [PMID: 26763878 DOI: 10.1038/jhg.2015.163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Abstract
Three recessive mutations in the sodium leak channel, nonselective (NALCN) have been reported to cause intellectual disability and hypotonia. In addition, 14 de novo heterozygous mutations have been identified in 15 patients with arthrogryposis and neurodevelopmental impairment. Here, we report three patients with neurodevelopmental disease and hypotonia, harboring one recurrent (p.R1181Q) and two novel mutations (p.L312V and p.V1020F) occurring de novo in NALCN. Mutation p.L312 is located in the pore forming S6 region of domain I and p.V1020F in the S5 region of domain III. Mutation p.R1181Q is in a linker region. Mapping these three mutations to a model of NALCN showed p.Leu312 and p.Val1020 positioned in the hydrophobic core of the pore modules, indicating these two mutations may affect the gating function of NALCN. Although p.R1181Q is unlikely to affect the ion channel structure, previous studies have shown that an analogous mutation in Caenorhabditis elegans produced a phenotype with a coiling locomotion, suggesting that p.R1181Q could also affect NALCN function. Our three patients showed profound intellectual disability and growth delay, facial dysmorphologies and hypotonia. The present data support previous work suggesting heterozygous NALCN mutations lead to syndromic neurodevelopmental impairment.
Collapse
|
47
|
Stray-Pedersen A, Cobben JM, Prescott T, Lee S, Cang C, Aranda K, Ahmed S, Alders M, Gerstner T, Aslaksen K, Tétreault M, Qin W, Hartley T, Jhangiani S, Muzny D, Tarailo-Graovac M, van Karnebeek C, Lupski J, Ren D, Yoon G, Ren D, Yoon G. Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability. Am J Hum Genet 2016; 98:202-9. [PMID: 26708751 DOI: 10.1016/j.ajhg.2015.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/04/2015] [Indexed: 12/25/2022] Open
Abstract
Ion channel proteins are required for both the establishment of resting membrane potentials and the generation of action potentials. Hundreds of mutations in genes encoding voltage-gated ion channels responsible for action potential generation have been found to cause severe neurological diseases. In contrast, the roles of voltage-independent "leak" channels, important for the establishment and maintenance of resting membrane potentials upon which action potentials are generated, are not well established in human disease. UNC80 is a large component of the NALCN sodium-leak channel complex that regulates the basal excitability of the nervous system. Loss-of-function mutations of NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF). We report four individuals from three unrelated families who have homozygous missense or compound heterozygous truncating mutations in UNC80 and persistent hypotonia, encephalopathy, growth failure, and severe intellectual disability. Compared to control cells, HEK293T cells transfected with an expression plasmid containing the c.5098C>T (p.Pro1700Ser) UNC80 mutation found in one individual showed markedly decreased NALCN channel currents. Our findings demonstrate the fundamental significance of UNC80 and basal ionic conductance to human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
48
|
Shamseldin H, Faqeih E, Alasmari A, Zaki M, Gleeson J, Alkuraya F. Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause Autosomal-Recessive Severe Infantile Encephalopathy. Am J Hum Genet 2016; 98:210-5. [PMID: 26708753 DOI: 10.1016/j.ajhg.2015.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022] Open
Abstract
Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex.
Collapse
|
49
|
Perez Y, Kadir R, Volodarsky M, Noyman I, Flusser H, Shorer Z, Gradstein L, Birnbaum RY, Birk OS. UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN. J Med Genet 2015; 53:397-402. [PMID: 26545877 DOI: 10.1136/jmedgenet-2015-103352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/17/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND A syndrome of profound hypotonia, intellectual disability, intrauterine growth retardation with subsequent failure to thrive, dyskinesia and epilepsy was diagnosed in Bedouin Israeli families. Mild dysmorphism was evident: plagiocephaly, broad forehead with prominent nose, smooth philtrum and congenital esotropia. We set out to decipher the molecular basis of this syndrome. METHODS Genome-wide linkage analysis and fine mapping were done. Whole exome sequencing data were filtered for candidate variants within locus. Validation and segregation of the mutation was assayed via Sanger sequencing. UNC80 expression pattern was analysed through reverse transcription PCR. RESULTS Homozygosity mapping followed by fine mapping identified a 7.5 Mb disease-associated locus (logarithm of odds score 3.5) on chromosome 2. Whole exome and Sanger sequencing identified a single homozygous nonsense mutation within this locus, segregating within the families as expected for recessive heredity and not found in a homozygous state in 150 Bedouin controls: c.151C>T, p.(R51*) in UNC80. CONCLUSIONS The syndrome described is caused by a mutation in UNC80, truncating most of the 3258 amino acids highly conserved encoded protein, that has no known motifs. UNC80 bridges between UNC79 and the cation channel NALCN, enabling NALCN's role in basal Na(+) leak conductance in neurons, essential for neuronal function. The phenotype caused by the UNC80 mutation resembles that previously described for homozygous NALCN mutations.
Collapse
Affiliation(s)
- Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Volodarsky
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Iris Noyman
- Pediatric Neurology Unit, Division of Pediatrics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hagit Flusser
- Zussman Child Development Center, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zamir Shorer
- Pediatric Neurology Unit, Division of Pediatrics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Faculty of Health Sciences, Soroka Medical Center and Clalit Health Services, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel Genetics Institute, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
50
|
Aoyagi K, Rossignol E, Hamdan FF, Mulcahy B, Xie L, Nagamatsu S, Rouleau GA, Zhen M, Michaud JL. A Gain-of-Function Mutation inNALCNin a Child with Intellectual Disability, Ataxia, and Arthrogryposis. Hum Mutat 2015; 36:753-7. [DOI: 10.1002/humu.22797] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry; Kyorin University School of Medicine; Tokyo Japan
| | - Elsa Rossignol
- CHU Sainte-Justine Research Center; Montreal Canada
- Department of Neurosciences; University of Montreal; Montreal Canada
- Department of Pediatrics; University of Montreal; Montreal Canada
| | | | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Lin Xie
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Shinya Nagamatsu
- Department of Biochemistry; Kyorin University School of Medicine; Tokyo Japan
| | - Guy A. Rouleau
- Montreal Neurological Institute; McGill University; Montreal Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center; Montreal Canada
- Department of Neurosciences; University of Montreal; Montreal Canada
- Department of Pediatrics; University of Montreal; Montreal Canada
| |
Collapse
|