1
|
Wu C, Deng K, Zhang Y, Qin Y, Wen J, Chen BT, Jiang M. Advanced neuroimaging in systemic lupus erythematosus: identifying biomarkers for cognitive dysfunction. Neuroradiology 2025:10.1007/s00234-025-03619-9. [PMID: 40293471 DOI: 10.1007/s00234-025-03619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Cognitive dysfunction (CD) is a common manifestation of central nervous system involvement in patients with systemic lupus erythematosus (SLE). Patients with SLE may develop CD insidiously at an early stage of the disease, and the lack of a standardized diagnostic test poses a major challenge in prompt diagnosis and management of these patients. This review summaries the current application of various magnetic resonance imaging (MRI) techniques for patients with SLE complicated with CD, aiming to identify potential quantitative neuroimaging biomarkers for patients with SLE and CD. METHODS We systematically searched several databases between January 2003 to December 2024. We screened retrospective and prospective studies based on search criteria keywords (including structural or functional MRI, cognitive function, lupus, and systemic lupus erythematosus) to identify peer-reviewed articles that reported advanced structural and functional MRI metrics and evaluated CD in human patients with SLE. RESULTS 123 studies (19 Bold-MRI studies, 9 DTI studies, 2 ASL studies, 4 MTI studies, 5 machine learning, and 84 other studies) were identified. Neuroimaging findings show that patients with CD have abnormal manifestations in the limbic system, hippocampus, corpus callosum, and frontal cortex, and these manifestations are closely related to cognitive functions. The most commonly affected cognitive domains are memory, attention, and executive ability. Multimodal MRI, integrating structural, functional, and perfusion parameters, combined with machine learning, can effectively predict cognitive function. CONCLUSION Advanced MRI analysis can identify the abnormalities in the whole brain and local brain regions associated with CD in patients with SLE. The integration of machine learning and multimodal MRI offers new perspectives for early identification and mechanistic studies of CD in SLE patients. More studies are needed to identify potential neuroimaging biomarkers to facilitate early diagnosis, timely treatment, and accurate prognosis for SLE patients with CD.
Collapse
Affiliation(s)
- Chengli Wu
- First Affiliated Hospital of GuangXi Medical University, Nanning, China
| | - Kemei Deng
- First Affiliated Hospital of GuangXi Medical University, Nanning, China
| | - Yu Zhang
- First Affiliated Hospital of GuangXi Medical University, Nanning, China
| | - Yuhong Qin
- First Affiliated Hospital of GuangXi Medical University, Nanning, China
| | - Jing Wen
- First Affiliated Hospital of GuangXi Medical University, Nanning, China
| | - Bihong T Chen
- City of Hope National Medical Center, Duarte, CA, USA
| | - Muliang Jiang
- First Affiliated Hospital of GuangXi Medical University, Nanning, China.
| |
Collapse
|
2
|
Arnold DL, Kolind S, Assemlal HE, Bar-Or A, Inglese M, Kappos L, Parmar K, Sprenger T, Traboulsee A, Vavasour IM, Wolinsky JS, Bernasconi C, Bonati U, Magon S, Tackenberg B, Gaetano L. Short- and long-term effects of early versus delayed treatment with ocrelizumab on cerebellar volume loss in patients with RMS and PPMS. Mult Scler 2025:13524585251325086. [PMID: 40237070 DOI: 10.1177/13524585251325086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND The cerebellum is a functionally and anatomically complex structure, which, in multiple sclerosis (MS), is affected by focal white/gray matter lesions and by secondary neurodegeneration of afferent/efferent connections to the supratentorial brain and the spinal cord. OBJECTIVES To assess the efficacy of ocrelizumab compared with interferon β-1a (IFN β-1a)/placebo on cerebellar volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II) and in primary progressive MS (PPMS, ORATORIO). METHODS Cerebellar volume change was computed using paired Jacobian integration and analyzed using a mixed-effect repeated measurement model. RESULTS In RMS, ocrelizumab reduced cerebellar volume loss in the double-blind period (DBP) and the difference (30% at DBP end) was maintained in the open-label extension (OLE) after control patients (IFN β-a) were switched to ocrelizumab. In PPMS, there was a small numerical difference in the DBP, but a larger (up to 22%) difference in favor of ocrelizumab in the OLE. CONCLUSIONS In both RMS and PPMS, early treatment with ocrelizumab helps to prevent additional cerebellar volume loss compared with delayed switching to ocrelizumab. Further analysis is needed to fully understand the clinical impact of cerebellar atrophy.
Collapse
Affiliation(s)
- Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Neurology and Neurosurgery, NeuroRx Research, Montreal, QC, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
- Reha Rheinfelden, Rheinfelden, Switzerland
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Anthony Traboulsee
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
3
|
van der Knaap MS, Min R. Multiple sclerosis: an immune attack on astrocyte-mediated ion and water homeostasis. Nat Rev Neurol 2025:10.1038/s41582-025-01081-y. [PMID: 40186039 DOI: 10.1038/s41582-025-01081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. The chain of events that results in demyelinating lesions is not understood, although most theories assume a primary immune attack on myelin. However, the glial cell adhesion molecule GlialCAM, which forms part of a protein complex in astrocytic endfeet that is crucial for brain ion and water homeostasis, was recently identified as a target for autoimmunity in patients with MS. This complex also includes the astrocytic transmembrane protein MLC1, the water channel aquaporin 4 (AQP4) and the potassium channel KIR4.1. Autoimmunity against AQP4 underlies another demyelinating disorder, neuromyelitis optica, and autoimmunity against KIR4.1 has been implicated in a subtype of MS. Genetic defects in any of these proteins cause leukodystrophies with disruption of brain ion and water homeostasis, which is regulated by astrocytes and secondarily affects myelin. In this Perspective, we argue that an immune attack on the ion and water homeostasis machinery in astrocytic endfeet, rather than directly on myelin, is the primary event in MS and that myelin damage is a consequence of astrocyte dysfunction. This hypothesis is supported by pathological studies on tissue from people with MS and has important implications for disease models and therapy targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Marrodan M, Yañez P, Calandri IL, Piedrabuena MA, Zárate MA, Ysrraelit MC, Fiol M, Correale J. Impact of oral Cladribine on paramagnetic rim lesions of Multiple Sclerosis patients. Mult Scler Relat Disord 2025; 96:106339. [PMID: 40020453 DOI: 10.1016/j.msard.2025.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs), marked by chronic inflammation and iron-loaded microglia, are linked to severe disease progression in multiple sclerosis (MS). The impact of cladribine, an immune reconstitution therapy, on PRLs remains underexplored. OBJECTIVE To evaluate the effect of cladribine tablets on PRLs in relapsing-remitting MS (RRMS) patients and explore the association between PRLs dynamics and brain atrophy. METHODS We conducted a retrospective analysis of 52 RRMS patients treated with cladribine in Buenos Aires between 2018 and 2021. Brain MRIs were analyzed at baseline, 12, and 24 months post-treatment, focusing on PRLs count and brain volume measurements. Statistical analyses included Wilcoxon tests, Poisson mixed models, and linear mixed models. RESULTS The cohort included 52 patients (32 women) with a median age of 36 years (range 21-66 years). PRLs were present in 61.5% of patients at baseline. Cladribine treatment significantly reduced PRLs count (IRR=0.68, 95% CI [0.49, 0.95], p=0.02), independent of prior treatment or disease activity. While no significant relationship was found between PRLs changes and overall brain atrophy, a significant interaction between PRLs dynamics and atrophy in the right thalamus was observed (p<0.05). CONCLUSION Cladribine tablets are associated with a reduction in PRLs in RRMS patients, potentially influencing regional brain atrophy over time.
Collapse
Affiliation(s)
| | - Paulina Yañez
- Department of Neuro-Radiology, Fleni. Buenos Aires, Argentina.
| | - Ismael L Calandri
- Department of Cognitive Neurology, Fleni. Buenos Aires, Argentina; Alzheimer center, VU University, Amsterdam, the Netherlands.
| | | | - María A Zárate
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | | | - Marcela Fiol
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | - Jorge Correale
- Departament of Neurology, Fleni. Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET/Universidad de Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
5
|
Salman F, Bergsland N, Dwyer MG, Reeves JA, Ramesh A, Jakimovski D, Weinstock-Guttman B, Zivadinov R, Schweser F. Thalamic iron in multiple sclerosis: Waning support for the early-rise late-decline hypothesis. Neuroimage Clin 2025; 46:103771. [PMID: 40187193 PMCID: PMC12002950 DOI: 10.1016/j.nicl.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Studies of thalamic iron levels in multiple sclerosis (MS) have yielded variable findings, potentially due to differences in study cohorts. For example, studies in relatively young cohorts (average ages below 40 years) have reported elevated susceptibility in people with MS (pwMS), whereas studies in older cohorts (above 40 years) found decreased susceptibility. OBJECTIVE To test the "early-rise late-decline" hypothesis, which posits that age differences in study cohorts are responsible for conflicting findings regarding thalamic susceptibility in MS. METHODS We chose to replicate one of the previous studies that showed evidence of elevated thalamic iron concentrations in younger pwMS (Rudko et al., 2014). We also replicated a study involving older pwMS (Pudlac et al., 2020) to serve as a control. We assessed thalamic susceptibility using the QSM processing and analysis methodology outlined by Rudko et al. RESULTS: Although cohort characteristics, QSM processing, and analytical methods were closely matched, we found significantly lower thalamic susceptibility in the younger pwMS compared to controls (-1.1 ± 7.8 vs. 5.4 ± 6.1 ppb; effect sizes: -0.35 to -0.91). Study outcomes were robust across a wide range of regularization parameters, with effect size differences influenced by background field removal regularization. A similar pattern was observed in the older cohort, where thalamic susceptibility was again lower in pwMS compared to controls (4.0 ± 9.5 vs. 9.6 ± 10.7 ppb; effect size: -0.55). CONCLUSIONS Our findings contradict the "early rise" hypothesis of thalamic iron levels in pwMS. The consistency of our results across multiple analyses suggests that QSM processing artifacts are unlikely to explain previous reports of increased thalamic iron. Instead, these variations may stem from demographic or clinical differences, such as geographical factors and treatment regimens.
Collapse
Affiliation(s)
- Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Abhisri Ramesh
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Wynn Hospital, Mohawk Valley Health System, Utica, NY, United States
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
6
|
Seke M, Stankovic A, Zivkovic M. Capacity of fullerenols to modulate neurodegeneration induced by ferroptosis: Focus on multiple sclerosis. Mult Scler Relat Disord 2025; 97:106378. [PMID: 40088719 DOI: 10.1016/j.msard.2025.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system (CNS), characterized by oligodendrocyte loss and demyelination of axons leading to neurodegeneration and severe neurological disability. Despite the existing drugs that have immunomodulatory effects an adequate therapy that slow down or stop neuronal death has not yet been found. Oxidative stress accompanied by excessive release of iron into the extracellular space, mitochondrial damage and lipid peroxidation are important factors in the controlled cell death named ferroptosis, latterly recognized in MS. As the fullerenols exhibit potent antioxidant activity, recent results imply that they could have protective effects by suppressing ferroptosis. Based on the current knowledge we addressed the main mechanisms of the protective effects of fullerenols in the CNS in relation to ferroptosis. Inhibition of inflammation, iron overload and lipid peroxidation through the signal transduction mechanism of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2), chelation of heavy metals and free radical scavenging using fullerenols are proposed as benefitial strategy preventing MS progression. Current review connects ferroptosis molecular targets and important factors of MS progression, with biomedical properties and mechanisms of fullerenols' actions, to propose new treatment strategies that could be addaptobale in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia.
| |
Collapse
|
7
|
Zhang H, Guo R, Han Y, Yao Z, Quan M, Li B, Guo L. Alterations in neutrophil mRNA profiles in multiple sclerosis and identification of candidate genes for further investigation. Front Neurol 2025; 16:1548196. [PMID: 40035034 PMCID: PMC11873095 DOI: 10.3389/fneur.2025.1548196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic and debilitating inflammatory disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Emerging evidence implicates neutrophils in MS pathogenesis, particularly through processes like neutrophil extracellular traps (NETs) formation and degranulation, which may exacerbate inflammation and autoimmunity. Methods RNA sequencing of peripheral blood neutrophils from MS patients and healthy controls identified differentially expressed genes (DEGs). Pathway enrichment and protein-protein interaction (PPI) analyses highlighted potential biomarkers, validated using reverse transcription quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results Our analysis identified 1,968 DEGs in neutrophils from MS patients, comprising 1,068 upregulated and 900 downregulated genes. Pathway enrichment analysis revealed significant involvement of immune processes, including antigen presentation, B and T cell receptor signaling, intracellular signaling cascades, and neutrophil degranulation. Notably, KEGG analysis highlighted a pivotal role for upregulated genes in neutrophil extracellular traps (NETs) formation, a process increasingly associated with autoimmunity. PPI network analysis pinpointed five key hub genes-LCN2, LTF, ELANE, CAMP, and CTSG-as central players in neutrophil-mediated immune modulation. Protein-level validation using ELISA confirmed elevated levels of LCN2, ELANE, CAMP, and CTSG, consistent with transcriptomic findings, further supporting their role as biomarkers. Subsequent RT-qPCR validation demonstrated robust diagnostic potential for these genes, with area under the curve (AUC) values of 0.952 (LCN2), 0.827 (LTF), 0.968 (ELANE), 0.950 (CAMP), and 0.862 (CTSG). Discussion These findings uncover a previously underappreciated role for neutrophils in MS pathogenesis, driven by alterations in gene expression linked to immune modulation and NET formation. The identified biomarkers, particularly ELANE and LCN2, demonstrate strong diagnostic potential, offering a new avenue for non-invasive MS diagnostics. Beyond clinical utility, this study highlights the importance of neutrophil-driven immune responses in MS, providing mechanistic insights into the complex interplay between innate and adaptive immunity in demyelinating diseases. Furthermore, these findings suggest that targeting neutrophil-specific processes, such as NETs formation and degranulation, could mitigate inflammatory damage and provide novel therapeutic approaches for MS treatment. These results lay the groundwork for future studies exploring therapeutic strategies targeting neutrophil functions in MS.
Collapse
Affiliation(s)
- Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yusen Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Zhichao Yao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
8
|
Xie Y, Zhang Y, Wu S, Zhang S, Zhu H, Zhu W, Wang Y. Atrophy-Independent and Dependent Iron and Myelin Changes in Deep Gray Matter of Multiple Sclerosis: A Longitudinal Study Using χ-Separation Imaging. Acad Radiol 2025; 32:988-999. [PMID: 39084936 DOI: 10.1016/j.acra.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate iron and myelin changes in deep gray matter (DGM) of relapsing-remitting multiple sclerosis (RRMS) patients and their relationship to atrophy by χ-separation imaging. MATERIALS AND METHODS 33 RRMS patients and 34 healthy controls (HC) were included in this study. The χ-separation map reconstructed from a 3D multi-echo gradient echo scan was used to measure the positive susceptibility (χpos) and negative susceptibility (χneg) of DGM. To take into account the effect of atrophy, susceptibility mass of DGM was calculated by multiplying volume by the mean bulk susceptibility. Differences in MRI metrics between baseline patients, follow-up patients, and HC were compared respectively. RESULTS Compared to HC, χpos of basal ganglia were significantly increased in follow-up patients (P < 0.05). The χpos of pallidum was significantly higher in follow-up patients than that in baseline patients (P = 0.006). The χneg of caudate, pallidum and hippocampus in baseline and follow-up patients was significantly higher than that in HC (P < 0.05). When taking into account the effect of atrophy, there was a significant decrease in χpos mass and a significant increase in χneg mass of thalamus, accumbens and amygdala in follow-up patients compared to HC (P < 0.05). The χpos mass of the thalamus was further decreased in follow-up patients compared to baseline patients (P = 0.006). CONCLUSION χ-separation imaging could generate independent information on iron and myelin changes in RRMS patients, showing atrophy-dependent iron increase in basal ganglia and atrophy-independent iron and myelin decrease in thalamus.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolong Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA; Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
10
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Latypov TH, Wolfensohn A, Yakubov R, Li J, Srisaikaew P, Jörgens D, Jones A, Colak E, Mikulis D, Rudzicz F, Oh J, Hodaie M. Signatures of chronic pain in multiple sclerosis: a machine learning approach to investigate trigeminal neuralgia. Pain 2024:00006396-990000000-00789. [PMID: 39680491 DOI: 10.1097/j.pain.0000000000003497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/01/2024] [Indexed: 12/18/2024]
Abstract
ABSTRACT Chronic pain is a pervasive, disabling, and understudied feature of multiple sclerosis (MS), a progressive demyelinating and neurodegenerative disease. Current focus on motor components of MS disability combined with difficulties assessing pain symptoms present a challenge for the evaluation and management of pain in MS, highlighting the need for novel methods of assessment of neural signatures of chronic pain in MS. We investigate chronic pain in MS using MS-related trigeminal neuralgia (MS-TN) as a model condition focusing on gray matter structures as predictors of chronic pain. T1 imaging data from people with MS (n = 75) and MS-TN (n = 77) using machine learning (ML) was analyzed to derive imaging predictors at the level of cortex and subcortical gray matter. The ML classifier compared imaging metrics of patients with MS and MS-TN and distinguished between these conditions with 93.4% individual average testing accuracy. Structures within default-mode, somatomotor, salience, and visual networks (including hippocampus, primary somatosensory cortex, occipital cortex, and thalamic subnuclei) were identified as significant imaging predictors of trigeminal neuralgia pain. Our results emphasize the multifaceted nature of chronic pain and demonstrate the utility of imaging and ML in assessing and understanding MS-TN with greater objectivity.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Abigail Wolfensohn
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Faculty of Science, McGill University, Montreal, QC, Canada
| | - Rose Yakubov
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jerry Li
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Patcharaporn Srisaikaew
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
| | - Daniel Jörgens
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
| | - Ashley Jones
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Errol Colak
- Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - David Mikulis
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Frank Rudzicz
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Jiwon Oh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Khormi I, Fazlollahi A, Al-iedani O, Vidyasagar R, Ayton S, Alshehri A, Paton B, Ramadan S, Lechner-Scott J. Quantitative susceptibility mapping of the fear circuit: Associations with silent symptoms in relapsing-remitting multiple sclerosis. Neuroradiol J 2024:19714009241303123. [PMID: 39631056 PMCID: PMC11618841 DOI: 10.1177/19714009241303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Background: Multiple sclerosis (MS) is a long-term autoimmune inflammatory disorder that affects the central nervous system leading to neurodegeneration, and can involve a variety of symptoms. These symptoms can include fatigue, anxiety, depression, and cognitive decline, which may be silent. The objective of this study was to explore changes in brain iron deposition in people with relapsing-remitting MS (pw-RRMS) compared to healthy controls (HCs), with a particular focus on regions of fear circuit. Additionally, the study aimed to evaluate relationship between iron deposition in these areas and clinical measurements. Methods: Pw-RRMS and HCs participants underwent brain MRI scans using quantitative susceptibility mapping (QSM) to assess iron deposition in the fear circuit between the two groups. The study analyzed correlations between brain susceptibility changes and clinical measurements. Results: We recruited 35 pw-RRMS (mean age = 46.7 ± 11 years; median EDSS = 2.5) and 18 HCs (mean age = 40.6 ± 17.8 years). Our research revealed significant increases in QSM signals relating to iron deposition in pw-RRMS compared to HCs, whole fear circuit (β = 5.82, p < 0.001), caudate (β = 21.48, p < 0.001), and putamen (β = 17.53, p = 0.03), showing the greatest difference. The whole fear circuit and particularly the caudate are strongly associated with fatigue in pw-RRMS. QSM values in the anterior cingulate cortex significantly differed between pw-RRMS with normal and abnormal depression scores (p = 0.007). Conclusions: These results strengthen the relationship between increased iron deposition in fear circuit regions and specific silent symptoms in pw-RRMS. However, further studies are required to confirm these findings and clarify the implications of iron accumulation in MS pathophysiology.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Amir Fazlollahi
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oun Al-iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Rishma Vidyasagar
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bryan Paton
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
13
|
Al-Shargie F, Glassen M, DeLuca J, Saleh S. Obstacle Avoidance in Healthy Adults and People With Multiple Sclerosis: Preliminary fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3966-3976. [PMID: 39466870 DOI: 10.1109/tnsre.2024.3487526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This study examined how gait adaptation during predictable and non-predictable obstacle avoidance affects the sensorimotor network in both healthy controls (HC) and persons with multiple sclerosis (pwMS). We utilized fNIRS measurements of HbO2 and HHb to estimate cortical activations and connectivity networks, which were then analyzed using power spectral density (PSD) and partial directed coherence (PDC). The findings revealed distinct patterns of cortical activation and connectivity for each task condition in both groups. Healthy individuals displayed lower cortical activations in the bilateral motor cortex (MC) during non-predictable obstacle avoidance, indicating efficient neural processing. On the other hand, pwMS exhibited lower cortical activations across most brain areas during non-predictable tasks, suggesting potential limitations in neural resource allocation. When tasks were combined, pwMS demonstrated higher cortical activation across all recorded brain areas compared to HC, indicating a compensatory mechanism to maintain gait stability. Functional connectivity analysis revealed that pwMS recruited higher bilateral somatosensory association cortex (SAC) than HC, whereas healthy individuals engaged more bilateral premotor cortices (PMC). These findings suggest alterations in sensorimotor integration and motor planning in pwMS. Four machine learning models (KNN, SVM, DT, and DA) achieved high classification accuracies (92-99%) in differentiating between task conditions within each group. These results highlight the potential of integrating fNIRS-based cortical activation and connectivity measures with machine learning as biomarkers for MS-related impairments in cognitive-motor interaction. Such biomarkers could aid in predicting future mobility decline, fall risk, and disease progression.
Collapse
|
14
|
Cagol A, Ocampo-Pineda M, Lu PJ, Weigel M, Barakovic M, Melie-Garcia L, Chen X, Lutti A, Calabrese P, Kuhle J, Kappos L, Sormani MP, Granziera C. Advanced Quantitative MRI Unveils Microstructural Thalamic Changes Reflecting Disease Progression in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200299. [PMID: 39270143 PMCID: PMC11409727 DOI: 10.1212/nxi.0000000000200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVES In patients with multiple sclerosis (PwMS), thalamic atrophy occurs during the disease course. However, there is little understanding of the mechanisms leading to volume loss and of the relationship between microstructural thalamic pathology and disease progression. This cross-sectional and longitudinal study aimed to comprehensively characterize in vivo pathologic changes within thalamic microstructure in PwMS using advanced multiparametric quantitative MRI (qMRI). METHODS Thalamic microstructural integrity was evaluated using quantitative T1, magnetization transfer saturation, multishell diffusion, and quantitative susceptibility mapping (QSM) in 183 PwMS and 105 healthy controls (HCs). The same qMRI protocol was available for 127 PwMS and 73 HCs after a 2-year follow-up period. Inclusion criteria for PwMS encompassed either an active relapsing-remitting MS (RRMS) or inactive progressive MS (PMS) disease course. Thalamic alterations were compared between PwMS and HCs and among disease phenotypes. In addition, the study investigated the relationship between thalamic damage and clinical and conventional MRI measures of disease severity. RESULTS Compared with HCs, PwMS exhibited substantial thalamic alterations, indicative of microstructural and macrostructural damage, demyelination, and disruption in iron homeostasis. These alterations extended beyond focal thalamic lesions, affecting normal-appearing thalamic tissue diffusely. Over the follow-up period, PwMS displayed an accelerated decrease in myelin volume fraction [mean difference in annualized percentage change (MD-ApC) = -1.50; p = 0.041] and increase in quantitative T1 (MD-ApC = 0.92; p < 0.0001) values, indicating heightened demyelinating and neurodegenerative processes. The observed differences between PwMS and HCs were substantially driven by the subgroup with PMS, wherein thalamic degeneration was significantly accelerated, even in comparison with patients with RRMS. Thalamic qMRI alterations showed extensive correlations with conventional MRI, clinical, and cognitive disease burden measures. Disability progression over follow-up was associated with accelerated thalamic degeneration, as reflected by enhanced diffusion (β = -0.067; p = 0.039) and QSM (β = -0.077; p = 0.027) changes. Thalamic qMRI metrics emerged as significant predictors of neurologic and cognitive disability even when accounting for other established markers including white matter lesion load and brain and thalamic atrophy. DISCUSSION These findings offer deeper insights into thalamic pathology in PwMS, emphasizing the clinical relevance of thalamic damage and its link to disease progression. Advanced qMRI biomarkers show promising potential in guiding interventions aimed at mitigating thalamic neurodegenerative processes.
Collapse
Affiliation(s)
- Alessandro Cagol
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Mario Ocampo-Pineda
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Po-Jui Lu
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Matthias Weigel
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Muhamed Barakovic
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Lester Melie-Garcia
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Xinjie Chen
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Antoine Lutti
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Pasquale Calabrese
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Jens Kuhle
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ludwig Kappos
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria Pia Sormani
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Cristina Granziera
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| |
Collapse
|
15
|
Stojkovic L, Djordjevic A, Stefanovic M, Stankovic A, Dincic E, Djuric T, Zivkovic M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing-Remitting and Progressive Multiple Sclerosis. Int J Mol Sci 2024; 25:11024. [PMID: 39456806 PMCID: PMC11507982 DOI: 10.3390/ijms252011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis, a lipid peroxidation- and iron-mediated type of regulated cell death, relates to both neuroinflammation, which is common in relapsing-remitting multiple sclerosis (RRMS), and neurodegeneration, which is prevalent in progressive (P)MS. Currently, findings related to the molecular markers proposed in this paper in patients are scarce. We analyzed circulatory molecular indicators of the main ferroptosis-related processes, comprising lipid peroxidation (malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and hexanoyl-lysine adduct (HEL)), glutathione-related antioxidant defense (total glutathione (reduced (GSH) and oxidized (GSSG)) and glutathione peroxidase 4 (GPX4)), and iron metabolism (iron, transferrin and ferritin) to estimate their contributions to the clinical manifestation of MS and differences between RRMS and PMS disease course. In 153 patients with RRMS and 69 with PMS, plasma/serum lipid peroxidation indicators and glutathione were quantified using ELISA and colorimetric reactions, respectively. Iron serum concentrations were determined using spectrophotometry, and transferrin and ferritin were determined using immunoturbidimetry. Compared to those with RRMS, patients with PMS had decreased 4-HNE (median, 1368.42 vs. 1580.17 pg/mL; p = 0.03). Interactive effects of MS course (RRMS/PMS) and disease-modifying therapy status on MDA (p = 0.009) and HEL (p = 0.02) levels were detected. In addition, the interaction of disease course and self-reported fatigue revealed significant impacts on 4-HNE levels (p = 0.01) and the GSH/GSSG ratio (p = 0.04). The results also show an association of MS course (p = 0.03) and EDSS (p = 0.04) with GSH levels. No significant changes were observed in the serum concentrations of iron metabolism indicators between the two patient groups (p > 0.05). We suggest circulatory 4-HNE as an important parameter related to differences between RRMS and PMS. Significant interactions of MS course and other clinically relevant parameters with changes in redox processes associated with ferroptosis support the further investigation of MS with a larger sample while taking into account both circulatory and central nervous system estimation.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Milan Stefanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| |
Collapse
|
16
|
Callen AM, Zurawski J, Chu R, Tie Y, Tauhid S, Quattrucci M, Healy BC, Bakshi R. The role of 7 T MRI to assess atrophy of the subcortical deep gray matter in relapsing-remitting multiple sclerosis. J Neurol 2024; 271:6935-6943. [PMID: 39240345 DOI: 10.1007/s00415-024-12656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Deep gray matter (DGM) atrophy and lesions are found in multiple sclerosis (MS). OBJECTIVE To optimize automated segmentation for 7 T DGM volumetrics and assess sensitivity to atrophy and relationship to DGM lesions and disability in relapsing-remitting (RR) MS. METHODS 30 RRMS subjects [mean age 44.0 years, median Expanded Disability Status Scale (EDSS) score 2] and 14 healthy controls underwent 7 T MRI with 3D magnetization-prepared 2 rapid gradient-echoes (MP2RAGE) and fluid-attenuated inversion recovery. Customizing an automated pipeline to assess DGM structure volumes required pre-processing combining two MP2RAGE inversion times and uniform T1 images, and noise-suppressed reconstruction. DGM volumes were normalized. Brain DGM lesions and white matter T2 lesion volume (T2LV) were expert-quantified. Spearman correlations and Wilcoxon rank-sum tests were assessed. RESULTS DGM lesions were found in 77% (n = 23) of MS subjects and no controls, with thalamic lesions most prevalent (73%). An average of 3.6 DGM lesions was found per person with MS. Total DGM volumes were lower in MS vs. controls (p = 0.034), varying by region, most pronounced in the caudate (p = 0.008). DGM volumes inversely correlated with EDSS (total DGM: r = - 0.45, p = 0.014; globus pallidus: r = - 0.42, p = 0.023; putamen: r = - 0.44, p = 0.016; caudate: r = - 0.37, p = 0.047) and T2LV (total DGM: r = - 0.53, p = 0.003; putamen: r = - 0.40, p = 0.030; thalamus: r = - 0.63, p < 0.001). DGM atrophy was most closely linked to disability among all MRI measures. Thalamic lesion volume correlated inversely with thalamic volume (r = - 0.38, p = 0.045). CONCLUSION 7 T MRI shows a link between DGM atrophy and both white matter lesions and physical disability in RRMS. Thalamic lesions are associated with thalamic atrophy.
Collapse
Affiliation(s)
- Alexis M Callen
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Renxin Chu
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Molly Quattrucci
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Brian C Healy
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
18
|
Šilarová A, Hvid LG, Hradílek P, Dalgas U. Exercise-induced heat sensitivity in patients with multiple sclerosis: Definition, prevalence, etiology, and management-A scoping review. Mult Scler Relat Disord 2024; 90:105827. [PMID: 39213861 DOI: 10.1016/j.msard.2024.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND For persons with multiple sclerosis (pwMS), exercise is known to be safe and effective at treating several symptoms and it may even be disease-modifying. However, exercise can trigger heat intolerance, exercise-induced heat sensitivity (EIHS), which may cause some pwMS to refrain from exercise. No review has yet summarized the existing knowledge on EIHS in pwMS. Therefore, the purpose of the present review was to clarify the terminology, summarize both the prevalence of EIHS and the current knowledge of underlying mechanisms, and provide an overview of existing treatment options and clinical management of EIHS in pwMS. METHODS A scoping review was performed. RESULTS As no clear definition could be identified in the literature, we propose a definition of EIHS. Aspects related to EIHS are reported in 29-80 % of all pwMS. The mechanisms underlying EIHS are not well understood but seem to include axon demyelination, CNS lesions, abnormal sudomotor function and sweating, abnormal afferent thermosensory function, disease stability, and abnormal neuropsychological responses. The severity of EIHS depends on the applied exercise modality, intensity, and format, and can be further reduced when applying different cooling interventions or garments before and/or during exercise. CONCLUSION EIHS appears frequently in pwMS, but the underlying mechanisms are still only sparsely understood. EIHS severity depends on exercise-related factors and can be reduced by cooling interventions.
Collapse
Affiliation(s)
- Anna Šilarová
- Department of Rehabilitation and Sports Medicine, University Hospital Ostrava, Czechia; Faculty of Medicine, University of Ostrava, Czechia; Department of Clinical Neurosciences, University of Ostrava, Czechia.
| | - Lars G Hvid
- Exercise Biology, Dep. Public Health, Aarhus University, Denmark; The Danish MS Hospitals, Ry and Haslev, Denmark
| | - Pavel Hradílek
- Department of Clinical Neurosciences, University of Ostrava, Czechia; Department of Neurology, University Hospital Ostrava, Czechia
| | - Ulrik Dalgas
- Exercise Biology, Dep. Public Health, Aarhus University, Denmark
| |
Collapse
|
19
|
Samara A, Xiang B, Judge B, Ciotti JR, Yablonskiy DA, Cross AH, Brier MR. Increased periventricular thalamic damage gradient in multiple sclerosis detected by quantitative gradient echo MRI. Mult Scler Relat Disord 2024; 90:105834. [PMID: 39208571 PMCID: PMC11981711 DOI: 10.1016/j.msard.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Thalamic tissue damage in multiple sclerosis (MS) follows a 'surface-in' gradient from the ventricular surface. The clinical consequences of this gradient are not completely understood. Using quantitative gradient-recalled echo (qGRE) MRI, we evaluated a periventricular thalamic gradient of tissue integrity in MS and its relationship with clinical variables. METHODS Structural and qGRE MRI scans were acquired for a cohort of MS patients and healthy controls (HC). qGRE-derived R2t* values were used as a measure of tissue integrity. Thalamic segmentations were divided into 1-mm concentric bands radiating from the ventricular surface, excluding the CSF-adjacent band. Median R2t* values within these bands were used to calculate the periventricular thalamic gradient. RESULTS We included 44 MS patients and 17 HC. R2t* increased slightly with distance from the ventricular surface in HC. MS patients had a steeper periventricular thalamic gradient compared to HC (mean slope 0.55 vs. 0.36; p < 0.001), which correlated with longer disease duration (β = 0.001 /year; p = 0.027) and higher Expanded Disability Status Scale (EDSS) score (β = 0.07 /EDSS point; p = 0.019). Left and right thalamus were symmetrically affected. CONCLUSIONS We detected an increased thalamic gradient in MS in vivo using qGRE MRI, which correlated with disease duration and greater clinical disability. These findings further support the 'surface-in' pathology hypothesis in MS and suggest a CSF-mediated process given symmetric bi-thalamic involvement.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Neurology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Biao Xiang
- Department of Neurology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Bradley Judge
- Department of Radiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - John R Ciotti
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Dmitriy A Yablonskiy
- Department of Radiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Matthew R Brier
- Department of Neurology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024; 18:1239-1255. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
21
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
22
|
Williams T, John N, Calvi A, Bianchi A, De Angelis F, Doshi A, Wright S, Shatila M, Yiannakas MC, Chowdhury F, Stutters J, Ricciardi A, Prados F, MacManus D, Grussu F, Karsa A, Samson B, Battiston M, Gandini Wheeler-Kingshott CAM, Shmueli K, Ciccarelli O, Barkhof F, Chataway J. Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial. NEUROIMAGE. REPORTS 2024; 4:100216. [PMID: 39328985 PMCID: PMC11422291 DOI: 10.1016/j.ynirp.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Background Deep grey matter pathology is a key driver of disability worsening in people with multiple sclerosis. Quantitative susceptibility mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique which quantifies local magnetic susceptibility from variations in phase produced by changes in the local magnetic field. In the deep grey matter, susceptibility has previously been validated against tissue iron concentration. However, it currently remains unknown whether susceptibility is abnormal in older progressive MS cohorts, and whether it correlates with disability. Objectives To investigate differences in mean regional susceptibility in deep grey matter between people with secondary progressive multiple sclerosis (SPMS) and healthy controls; to examine in patients the relationships between deep grey matter susceptibility and clinical and imaging measures of disease severity. Methods Baseline data from a subgroup of the MS-STAT2 trial (simvastatin vs. placebo in SPMS, NCT03387670) were included. The subgroup underwent clinical assessments and an advanced MRI protocol at 3T. A cohort of age-matched healthy controls underwent the same MRI protocol. Susceptibility maps were reconstructed using a robust QSM pipeline from multi-echo 3D gradient-echo sequence. Regions of interest (ROIs) in the thalamus, globus pallidus and putamen were segmented from 3D T1-weighted images, and lesions segmented from 3D fluid-attenuated inversion recovery images. Linear regression was used to compare susceptibility from ROIs between patients and controls, adjusting for age and sex. Where significant differences were found, we further examined the associations between ROI susceptibility and clinical and imaging measures of MS severity. Results 149 SPMS (77% female; mean age: 53 yrs; median Expanded Disability Status Scale (EDSS): 6.0 [interquartile range 4.5-6.0]) and 33 controls (52% female, mean age: 57) were included.Thalamic susceptibility was significantly lower in SPMS compared to controls: mean (SD) 28.6 (12.8) parts per billion (ppb) in SPMS vs. 39.2 (12.7) ppb in controls; regression coefficient: -12.0 [95% confidence interval: -17.0 to -7.1], p < 0.001. In contrast, globus pallidus and putamen susceptibility were similar between both groups.In SPMS, a 10 ppb lower thalamic susceptibility was associated with a +0.13 [+0.01 to +0.24] point higher EDSS (p < 0.05), a -2.4 [-3.8 to -1.0] point lower symbol digit modality test (SDMT, p = 0.001), and a -2.4 [-3.7 to -1.1] point lower Sloan low contrast acuity, 2.5% (p < 0.01).Lower thalamic susceptibility was also strongly associated with a higher T2 lesion volume (T2LV, p < 0.001) and lower normalised whole brain, deep grey matter and thalamic volumes (all p < 0.001). Conclusions The reduced thalamic susceptibility found in SPMS compared to controls suggests that thalamic iron concentrations are lower at this advanced stage of the disease. The observed relationships between lower thalamic susceptibility and more severe physical, cognitive and visual disability suggests that reductions in thalamic iron may correlate with important mechanisms of clinical disease progression. Such mechanisms appear to intimately link reductions in thalamic iron with higher T2LV and the development of thalamic atrophy, encouraging further research into QSM-derived thalamic susceptibility as a biomarker of disease severity in SPMS.
Collapse
Affiliation(s)
- Thomas Williams
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Nevin John
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Monash University, Department of Medicine, School of Clinical Sciences, Clayton, Australia
| | - Alberto Calvi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Alessia Bianchi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Floriana De Angelis
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Anisha Doshi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sarah Wright
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Madiha Shatila
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Fatima Chowdhury
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jon Stutters
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Antonio Ricciardi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Universitat Oberta de Catalunya, Barcelona, Spain
| | - David MacManus
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Becky Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Frederik Barkhof
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
- Vrije Universiteit Amsterdam, Department of Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherlands
| | - Jeremy Chataway
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| |
Collapse
|
23
|
Rudroff T. Frontal-striatal glucose metabolism and fatigue in patients with multiple sclerosis, long COVID, and COVID-19 recovered controls. Exp Brain Res 2024; 242:2125-2136. [PMID: 38970653 DOI: 10.1007/s00221-024-06882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
This study compared brain glucose metabolism using FDG-PET in the caudate nucleus, putamen, globus pallidus, thalamus, and dorsolateral prefrontal cortex (DLPFC) among patients with Long COVID, patients with fatigue, people with multiple sclerosis (PwMS) patients with fatigue, and COVID recovered controls. PwMS exhibited greater hypometabolism compared to long COVID patients with fatigue and the COVID recovered control group in all studied brain areas except the globus pallidus (effect size range 0.7-1.5). The results showed no significant differences in glucose metabolism between patients with Long COVID and the COVID recovered control group in these regions. These findings suggest that long COVID fatigue may involve non-CNS systems, neurotransmitter imbalances, or psychological factors not captured by FDG-PET, while MS-related fatigue is associated with more severe frontal-striatal circuit dysfunction due to demyelination and neurodegeneration. Symmetrical standardized uptake values (SUVs) between hemispheres in all groups imply that fatigue in these conditions may be related to global or network-level alterations rather than hemisphere-specific changes. Future studies should employ fine-grained analysis methods, explore other brain regions, and control for confounding factors to better understand the pathophysiology of fatigue in MS and long COVID. Longitudinal studies tracking brain glucose metabolism in patients with Long COVID could provide insights into the evolution of metabolic patterns as the condition progresses.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
24
|
Rodrigues-Amorim D, Bozzelli PL, Kim T, Liu L, Gibson O, Yang CY, Murdock MH, Galiana-Melendez F, Schatz B, Davison A, Islam MR, Shin Park D, Raju RM, Abdurrob F, Nelson AJ, Min Ren J, Yang V, Stokes MP, Tsai LH. Multisensory gamma stimulation mitigates the effects of demyelination induced by cuprizone in male mice. Nat Commun 2024; 15:6744. [PMID: 39112447 PMCID: PMC11306744 DOI: 10.1038/s41467-024-51003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.
Collapse
Grants
- R01 AG069232 NIA NIH HHS
- R01 AT011460 NCCIH NIH HHS
- R01 NS122742 NINDS NIH HHS
- R56 AG069232 NIA NIH HHS
- We would like to acknowledge the following individuals and organizations for their support: Fundacion Bancaria la Caixa, The JPB Foundation, Carol and Gene Ludwig Family Foundation, Lester A. Gimpelson, Eduardo Eurnekian, The Dolby Family, Kathy and Miguel Octavio, the Marc Haas Foundation, Ben Lenail and Laurie Yoler, and NIH RO1 grants AG069232, AT011460 and R01NS122742 to L.-H.T.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P Lorenzo Bozzelli
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - TaeHyun Kim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liwang Liu
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Cheng-Yi Yang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Murdock
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabiola Galiana-Melendez
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke Schatz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Davison
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dong Shin Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ravikiran M Raju
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Fatema Abdurrob
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jian Min Ren
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | - Vicky Yang
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | | | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
25
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
26
|
Rubin M, Pagani E, Preziosa P, Meani A, Storelli L, Margoni M, Filippi M, Rocca MA. Cerebrospinal Fluid-In Gradient of Cortical and Deep Gray Matter Damage in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200271. [PMID: 38896808 PMCID: PMC11197989 DOI: 10.1212/nxi.0000000000200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (β ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (β = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.
Collapse
Affiliation(s)
- Martina Rubin
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Molina Galindo LS, Gonzalez-Escamilla G, Fleischer V, Grotegerd D, Meinert S, Ciolac D, Person M, Stein F, Brosch K, Nenadić I, Alexander N, Kircher T, Hahn T, Winter Y, Othman AE, Bittner S, Zipp F, Dannlowski U, Groppa S. Concurrent inflammation-related brain reorganization in multiple sclerosis and depression. Brain Behav Immun 2024; 119:978-988. [PMID: 38761819 DOI: 10.1016/j.bbi.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.
Collapse
Affiliation(s)
- Lara S Molina Galindo
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frederike Stein
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Brosch
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Nina Alexander
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Yaroslav Winter
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
28
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
29
|
Sriwastava S, Elkhooly M, Amatya S, Shrestha K, Kagzi Y, Bhatia D, Gupta R, Jaiswal S, Lisak RP. Recent advances in the treatment of primary and secondary progressive Multiple Sclerosis. J Neuroimmunol 2024; 390:578315. [PMID: 38554666 DOI: 10.1016/j.jneuroim.2024.578315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The article highlights upcoming potential treatments, which target different phases of inflammation and offer remyelinating strategies as well as direct and indirect neuroprotective and oligodendrocyte protective effects, providing a hopeful outlook for patients with primary and secondary progressive multiple sclerosis (PPMS and SPMS). OBJECTIVES The review aims to identify potential treatments and ongoing clinical trials for PPMS and SPMS, and compare their mechanisms of action, efficacy, and side effects with current treatments. METHODS We reviewed ongoing clinical trials for PPMS and SPMS on the NIH website, as well as articles from PubMed, Embase, and clinicaltrails.gov since 2010. RESULTS BTKIs like, tolebrutinib, and fenebrutinib are being explored as potential PMS treatments. Vidofludimus calcium, an orally available treatment, has shown a reduction of active and new MRI lesions. Other treatments like simvastatin, N-acetylcysteine (NAC), and alpha-lipoic acid are being explored for their antioxidant properties. AHSCT and mesenchymal stem cell therapy are experimental options for younger patients with high inflammatory activity. CONCLUSIONS SPMS and PPMS are being studied for new treatments and future trials should consider combination therapies targeting inflammation, demyelination, and neuronal death, as the pathogenesis of PMS involves complex factors.
Collapse
Affiliation(s)
- Shitiz Sriwastava
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA.
| | - Mahmoud Elkhooly
- Department of Neurology, Southern Illinois university, Springfield, IL, USA; Department of Neuropsychiatry, Minia University, Egypt
| | - Suban Amatya
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Kriti Shrestha
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Yusuf Kagzi
- Mahatma Gandhi Memorial Medical College, Indore, India
| | - Dipika Bhatia
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Rajesh Gupta
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Shruti Jaiswal
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert P Lisak
- Department of Neurology, Wayne state University, Detroit, MI, USA
| |
Collapse
|
30
|
Barakovic M, Weigel M, Cagol A, Schaedelin S, Galbusera R, Lu PJ, Chen X, Melie-Garcia L, Ocampo-Pineda M, Bahn E, Stadelmann C, Palombo M, Kappos L, Kuhle J, Magon S, Granziera C. A novel imaging marker of cortical "cellularity" in multiple sclerosis patients. Sci Rep 2024; 14:9848. [PMID: 38684744 PMCID: PMC11059177 DOI: 10.1038/s41598-024-60497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Erik Bahn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
32
|
Chen Q, Hu X, Zhang T, Ruan Q, Wu H. Association between Parkinson disease and selenium levels in the body: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37919. [PMID: 38669409 PMCID: PMC11049729 DOI: 10.1097/md.0000000000037919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson disease (PD) is a common neurodegenerative disorder, but its pathogenesis is still not entirely understood. While some trace elements, such as selenium, iron, and copper, are considered pivotal in PD onset due to their role in oxidative stress, the association between selenium concentrations and PD susceptibility remains ambiguous. METHODS A systematic review and meta-analysis was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and framed by the Patient, Intervention, Comparison, Outcome paradigm. Data were sourced from 4 prominent electronic databases: PubMed, Embase, Web of Science, and Cochrane Library. Eligible studies must have had a PD case group and a control group, both of which presented data on selenium concentrations. The quality of the studies was assessed using the Newcastle-Ottawa Scale. RESULTS Of 1541 initially identified articles, 12 studies comprising a total of 597 PD cases and 733 controls were selected for the meta-analysis. Pronounced heterogeneity was observed among these studies. When assessing blood selenium levels, no significant difference was found between patients with PD and the controls. However, when examining the cerebrospinal fluid, selenium levels in PD patients were significantly elevated compared to controls (standard mean difference = 1.21, 95% CI 0.04-2.39, P < .05). Subgroup analyses, sensitivity analyses, and evaluation of publication bias were performed to ensure data robustness. CONCLUSIONS Elevated selenium levels in cerebrospinal fluid may be associated with a higher risk of Parkinson. Further prospective research is required to solidify this potential link and to offer avenues for novel therapeutic interventions or preventive measures.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ting Zhang
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qianying Ruan
- Department of Blood Transfusion Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongye Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
33
|
Lomer NB, Asalemi KA, Saberi A, Sarlak K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS One 2024; 19:e0300415. [PMID: 38626023 PMCID: PMC11020451 DOI: 10.1371/journal.pone.0300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central nervous system (CNS) and results in progressive clinical disability and cognitive decline. Currently, there are no specific imaging parameters available for the prediction of longitudinal disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness of MRI in predicting disability, clinical progression, and cognitive decline in MS. METHODS In this study, according to PRISMA guidelines, we comprehensively searched the Web of Science, PubMed, and Embase databases to identify pertinent articles that employed conventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following a rigorous screening process, studies that met the predefined inclusion criteria were selected for data extraction and evaluated for potential sources of bias. RESULTS A total of 3028 records were retrieved from database searching. After a rigorous screening, 53 records met the criteria and were included in this study. Lesions and alterations in CNS structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may be used to anticipate disability progression. Several prognostic factors associated with the progression of MS, including presence of cortical lesions, changes in gray matter volume, whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion characteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion volume, thalamic volume, and corpus callosum density. CONCLUSION This study indicates that MRI can be used to predict the cognitive decline, disability progression, and disease progression in MS patients over time.
Collapse
Affiliation(s)
| | | | - Alia Saberi
- Department of Neurology, Poursina Hospital, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kasra Sarlak
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
Kiss C, Wurth S, Heschl B, Khalil M, Gattringer T, Enzinger C, Ropele S. Low-frequency MR elastography reveals altered deep gray matter viscoelasticity in multiple sclerosis. Neuroimage Clin 2024; 42:103606. [PMID: 38669859 PMCID: PMC11068637 DOI: 10.1016/j.nicl.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Brain viscoelasticity as assessed by magnetic resonance elastography (MRE) has been discussed as a promising surrogate of microstructural alterations due to neurodegenerative processes. Existing studies indicate that multiple sclerosis (MS) is associated with a global reduction in brain stiffness. However, no study to date systematically investigated the MS-related characteristics of brain viscoelasticity separately in normal-appearing white matter (NAWM), deep gray matter (DGM) and T2-hyperintense white matter (WM) lesions. METHODS 70 MS patients and 42 healthy volunteers underwent whole-cerebral MRE using a stimulated echo sequence (DENSE) with a low-frequency mechanical excitation at 20 Hertz. The magnitude |G∗| (Pa) and phase angle φ (rad) of the complex shear modulus G∗ were reconstructed by multifrequency dual elasto-visco (MDEV) inversion and related to structural imaging and clinical parameters. RESULTS We observed φ in the thalamus to be higher by 4.3 % in patients relative to healthy controls (1.11 ± 0.07 vs. 1.06 ± 0.07, p < 0.0001). Higher Expanded Disability Status Scale (EDSS) scores were negatively associated with φ in the basal ganglia (p = 0.01). We measured φ to be lower in MS lesions compared to surrounding NAWM (p = 0.001), which was most prominent for lesions in the temporal lobe (1.01 ± 0.22 vs. 1.06 ± 0.19, p = 0.003). Age was associated with lower values of |G∗| (p = 0.04) and φ (p = 0.004) in the thalamus of patients. No alteration in NAWM stiffness relative to WM in healthy controls was observed. CONCLUSION Low-frequency elastography in MS patients reveals age-independent alterations in the viscoelasticity of deep gray matter at early stages of disease.
Collapse
Affiliation(s)
- Christian Kiss
- Department of Neurology, Medical University of Graz, Austria.
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Austria.
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Austria.
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria.
| | | | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Austria.
| |
Collapse
|
35
|
Liu H, Zhong Y, Liu G, Su H, Liu Z, Wei J, Mo L, Tan C, Liu X, Chen L. Corpus callosum and cerebellum participate in semantic dysfunction of Parkinson's disease: a diffusion tensor imaging-based cross-sectional study. Neuroreport 2024; 35:366-373. [PMID: 38526949 DOI: 10.1097/wnr.0000000000002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.
Collapse
Affiliation(s)
- Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Romanò F, Valsasina P, Pagani E, De Simone A, Parolin E, Filippi M, Rocca MA. Structural and functional correlates of disability, motor and cognitive performances in multiple sclerosis: Focus on the globus pallidus. Mult Scler Relat Disord 2024; 86:105576. [PMID: 38579567 DOI: 10.1016/j.msard.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES To explore structural and functional alterations of external (GPe) and internal (GPi) globus pallidus in people with multiple sclerosis (pwMS) compared to healthy controls (HC) and analyze their relationship with measures of clinical disability, motor and cognitive impairment. METHODS Sixty pwMS and 30 HC comparable for age and sex underwent 3.0T MRI, including conventional, diffusion tensor MRI and resting state (RS) functional MRI. Expanded Disability Status Scale (EDSS) scores were rated and timed 25-foot walk (T25FW) test, nine-hole peg test (9HPT), and paced auditory serial addition test (PASAT) were administered. Two operators segmented the GP into GPe and GPi. Volumes, T1/T2 ratio, diffusivity indices and seed-based RS functional connectivity (FC) of the GP and its components were assessed. RESULTS PwMS had no atrophy or altered diffusivity measures of the GP. Compared to HC, pwMS had higher T1/T2 ratio in both GP regions, which correlated with EDSS score (r = 0.26-0.39, p = 0.01-0.05). RS FC analysis highlighted component-specific functional alterations in pwMS: the GPe had decreased RS FC with fronto-parietal cortices, whereas the GPi had decreased intra-GP RS FC and increased RS FC with the thalamus. Worse EDSS, 9HPT, T25FW and PASAT scores were associated with GP RS FC modifications (r=-0.51‒0.51, p < 0.001). CONCLUSIONS Structural GP involvement in MS was homogeneous across its portions. Increased T1/T2 ratio values, possibly representing iron accumulation, were related to more severe disability. RS FC alterations of the GPe and GPi were consistent with their roles within the basal ganglia network and correlated with worse functional status, suggesting less efficient communication between structures.
Collapse
Affiliation(s)
- Francesco Romanò
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice De Simone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Parolin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
37
|
Voon CC, Wiltgen T, Wiestler B, Schlaeger S, Mühlau M. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis. Neuroimage Clin 2024; 42:103598. [PMID: 38582068 PMCID: PMC11002889 DOI: 10.1016/j.nicl.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a quantitative measure based on magnetic resonance imaging sensitive to iron and myelin content. This makes QSM a promising non-invasive tool for multiple sclerosis (MS) in research and clinical practice. OBJECTIVE We performed a systematic review and meta-analysis on the use of QSM in MS. METHODS Our review was prospectively registered on PROSPERO (CRD42022309563). We searched five databases for studies published between inception and 30th April 2023. We identified 83 English peer-reviewed studies that applied QSM images on MS cohorts. Fifty-five included studies had at least one of the following outcome measures: deep grey matter QSM values in MS, either compared to healthy controls (HC) (k = 13) or correlated with the score on the Expanded Disability Status Scale (EDSS) (k = 7), QSM lesion characteristics (k = 22) and their clinical correlates (k = 17), longitudinal correlates (k = 11), histological correlates (k = 7), or correlates with other imaging techniques (k = 12). Two meta-analyses on deep grey matter (DGM) susceptibility data were performed, while the remaining findings could only be analyzed descriptively. RESULTS After outlier removal, meta-analyses demonstrated a significant increase in the basal ganglia susceptibility (QSM values) in MS compared to HC, caudate (k = 9, standardized mean difference (SDM) = 0.54, 95 % CI = 0.39-0.70, I2 = 46 %), putamen (k = 9, SDM = 0.38, 95 % CI = 0.19-0.57, I2 = 59 %), and globus pallidus (k = 9, SDM = 0.48, 95 % CI = 0.28-0.67, I2 = 60 %), whereas thalamic QSM values exhibited a significant reduction (k = 12, SDM = -0.39, 95 % CI = -0.66--0.12, I2 = 84 %); these susceptibility differences in MS were independent of age. Further, putamen QSM values positively correlated with EDSS (k = 4, r = 0.36, 95 % CI = 0.16-0.53, I2 = 0 %). Regarding rim lesions, four out of seven studies, representing 73 % of all patients, reported rim lesions to be associated with more severe disability. Moreover, lesion development from initial detection to the inactive stage is paralleled by increasing, plateauing (after about two years), and gradually decreasing QSM values, respectively. Only one longitudinal study provided clinical outcome measures and found no association. Histological data suggest iron content to be the primary source of QSM values in DGM and at the edges of rim lesions; further, when also considering data from myelin water imaging, the decrease of myelin is likely to drive the increase of QSM values within WM lesions. CONCLUSIONS We could provide meta-analytic evidence for DGM susceptibility changes in MS compared to HC; basal ganglia susceptibility is increased and, in the putamen, associated with disability, while thalamic susceptibility is decreased. Beyond these findings, further investigations are necessary to establish the role of QSM in MS for research or even clinical routine.
Collapse
Affiliation(s)
- Cui Ci Voon
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tun Wiltgen
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
38
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
39
|
Tekin A, Rende B, Efendi H, Bunul SD, Çakır Ö, Çolak T, Balcı S. Volumetric and Asymmetric Index Analysis of Subcortical Structures in Multiple Sclerosis Patients: A Retrospective Study Using volBrain Software. Cureus 2024; 16:e55799. [PMID: 38590495 PMCID: PMC10999780 DOI: 10.7759/cureus.55799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic and autoimmune disease that has a significant influence on the central nervous system, such as the brain and spinal cord, affecting millions of individuals globally. Understanding the connection between subcortical brain regions and MS is crucial for effective diagnostic and therapeutic approaches for treating this disabling disease. This study explores the relationship between volume and contours of asymmetry index of subcortical brain regions in individuals with MS using volBrain software (https://www.volbrain.net; developed by José V. Manjón (Valencia Polytechnic University, Valencia, Spain) and Pierrick Coupé (University of Bordeaux, Bordeaux, France)). Methods In our retrospective investigation, we admitted 100 Turkish individuals, comprising 50 patients diagnosed with relapsing-remitting MS (RRMS) (24 (48%) males and 26 (52%) females) and 50 healthy controls (23 (46%) males and 27 (54%) females), registered between October 2017 and February 2022 for five years and underwent assessment in the radiology department at the Teaching and Research Hospital of Kocaeli University; 1,150 Turkish patients were excluded from our study based on our exclusion criteria. We used magnetic resonance imaging with a 3-Tesla (3T) scanner and volBrain software to assess volumes (cm3) and asymmetry indexes due to asymmetry for different levels of atrophy of total intracranial, total brain, gray matter, white matter, and subcortical regions, the most affected regions in MS patients for both patient and control cohorts. Results Statistical analysis revealed a significant difference between patient and control groups (p < 0.001), with patient group mean age at 38.32 years and control group mean age at 32.88 years. Patient group exhibited lower values for total intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volume compared to control group (p < 0.05). The results indicated a statistically significant decrease (p < 0.05) in the values for total intracranial and total brain volume, whereas all other values remained unchanged. We compared volumes of subcortical structures on the right and left sides and found that the putamen, thalamus, and globus pallidus had statistically lower values in the patient group than in the control group (p < 0.001), apart from the lateral ventricle. Furthermore, our retrospective investigation demonstrated a statistically significant difference in the globus pallidus asymmetry index, indicating a preference for the patient group (p < 0.05). A lower asymmetry index value signifies a larger volume for the right side of the subcortical regions of the brain when compared to the left side. Conclusion Brain atrophy, although characterized by irreversible tissue damage, is targeted by therapeutic interventions to prevent progression. It is, therefore, imperative to develop a universally accepted measurement standard for subcortical structures that also considers the inherent variability present within each structure. Our findings serve as an important basis and indicator for the determination of subcortical atrophy and asymmetry in MS, the prognosis of the disease, and the etiology of clinical symptoms. Subsequent research may benefit by adopting the novel approach of considering brain atrophy as an outcome rather than a predictor, thereby facilitating the elucidation of the intricate biological mechanisms that give rise to volume loss.
Collapse
Affiliation(s)
- Ayla Tekin
- Anatomy, Kocaeli University, Kocaeli, TUR
| | - Buket Rende
- Anatomy, European Vocational School, Kocaeli Health and Technology University, Kocaeli, TUR
| | | | | | | | - Tuncay Çolak
- Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, TUR
| | - Sibel Balcı
- Biostatistics and Medical Informatics, Kocaeli University, Kocaeli, TUR
| |
Collapse
|
40
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
41
|
Coupé P, Planche V, Mansencal B, Kamroui RA, Koubiyr I, Manjòn JV, Tourdias T. Lifespan neurodegeneration of the human brain in multiple sclerosis. Hum Brain Mapp 2023; 44:5602-5611. [PMID: 37615064 PMCID: PMC10619394 DOI: 10.1002/hbm.26464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Atrophy related to multiple sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. We modeled the volumetric trajectories of brain structures across the entire lifespan using 40,944 subjects (38,295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (around 4 years later), followed by the ventral diencephalon (around 7 years after thalamus) and finally the brainstem (around 9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. Our experiments showed that lifespan models of most impacted structures could be an important tool for future preclinical/prodromal prognosis and monitoring of MS.
Collapse
Affiliation(s)
| | - Vincent Planche
- Univ. Bordeaux, CNRSBordeauxFrance
- Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de BordeauxBordeauxFrance
| | | | | | - Ismail Koubiyr
- Inserm U1215 ‐ Neurocentre MagendieBordeauxFrance
- Service de Neuroimagerie diagnostique et thérapeutique, CHU de BordeauxBordeauxFrance
| | - José V. Manjòn
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de ValènciaValenciaSpain
| | - Thomas Tourdias
- Inserm U1215 ‐ Neurocentre MagendieBordeauxFrance
- Service de Neuroimagerie diagnostique et thérapeutique, CHU de BordeauxBordeauxFrance
| |
Collapse
|
42
|
Lee SY, Paolillo EW, Saloner R, Cobigo Y, Diaz VE, Gontrum EQ, VandeBunte A, Chatterjee A, Tucker M, Kramer JH, Casaletto KB. Moderating role of physical activity on hippocampal iron deposition and memory outcomes in typically aging older adults. Neurobiol Aging 2023; 131:124-131. [PMID: 37633118 PMCID: PMC11424099 DOI: 10.1016/j.neurobiolaging.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Physical activity (PA) is linked to better cognitive and brain health, though its mechanisms are unknown. While brain iron is essential for normal function, levels increase with age and, when excessive, can cause detrimental neural effects. We examined how objectively measured PA relates to cerebral iron deposition and memory functioning in normal older adults. Sixty-eight cognitively unimpaired older adults from the UCSF Memory and Aging Center completed neuropsychological testing and brain magnetic resonance imaging, followed by 30-day Fitbit monitoring. Magnetic resonance imaging quantitative susceptibility mapping (QSM) quantified iron deposition. PA was operationalized as average daily steps. Linear regression models examined memory as a function of hippocampal QSM, PA, and their interaction. Higher bilateral hippocampal iron deposition correlated with worse memory but was not strongly related to PA. Covarying for demographics, PA moderated the relationship between bilateral hippocampal iron deposition and memory such that the negative effect of hippocampal QSM on memory performances was no longer significant above 9120 daily steps. PA may mitigate adverse iron-related pathways for memory health.
Collapse
Affiliation(s)
- Shannon Y Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Emily W Paolillo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Valentina E Diaz
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Eva Q Gontrum
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Anna VandeBunte
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ankita Chatterjee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Miwa Tucker
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
43
|
Bunul SD, Alagoz AN, Piri Cinar B, Bunul F, Erdogan S, Efendi H. A Preliminary Study on the Meaning of Inflammatory Indexes in MS: A Neda-Based Approach. J Pers Med 2023; 13:1537. [PMID: 38003852 PMCID: PMC10672718 DOI: 10.3390/jpm13111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a disease of the central nervous system characterized by inflammation, demyelination, and axonal degeneration. This study aimed to investigate the relationship between inflammatory indexes and MS disease activity and progression. METHODS A prospective cohort study was conducted at the Kocaeli University Neurology Clinic, involving 108 patients diagnosed with MS. Data related to patient demographics, clinical presentations, radiological findings, and laboratory results were recorded. Inflammatory markers such as NLR (neutrophil-to-lymphocyte ratio), PLR (platelet-to-lymphocyte ratio), MLR (monocyte-to-lymphocyte ratio), and indexes such as SII (systemic immune inflammation index), SIRI (systemic immune response index), and AISI (systemic total aggregation index) were examined to determine their correlation with MS disease activity and disability. When assessing the influence of SII, AISI, and SIRI in predicting NEDA, it was found that all three indexes significantly predict NEDA. All indexes demonstrated a significant relationship with the EDSS score. Notably, SII, SIRI, and AISI were significant predictors of NEDA, and all inflammatory indexes showed a strong intercorrelation. This study investigates the role of inflammation markers in MS patients. It suggests that one or more of these non-invasive, straightforward, and practical markers could complement clinical and radiological parameters in monitoring MS.
Collapse
Affiliation(s)
- Sena Destan Bunul
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli 4100, Turkey; (A.N.A.); (S.E.); (H.E.)
| | - Aybala Neslihan Alagoz
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli 4100, Turkey; (A.N.A.); (S.E.); (H.E.)
| | - Bilge Piri Cinar
- Department of Neurology, Faculty of Medicine, Samsun University, Samsun 5500, Turkey;
| | - Fatih Bunul
- Internal Medicine, Anadolu Medical Center, Kocaeli 4100, Turkey;
| | - Seyma Erdogan
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli 4100, Turkey; (A.N.A.); (S.E.); (H.E.)
| | - Husnu Efendi
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli 4100, Turkey; (A.N.A.); (S.E.); (H.E.)
| |
Collapse
|
44
|
Ahn JJ, Islam Y, Clarkson-Paredes C, Karl MT, Miller RH. B cell depletion modulates glial responses and enhances blood vessel integrity in a model of multiple sclerosis. Neurobiol Dis 2023; 187:106290. [PMID: 37709209 DOI: 10.1016/j.nbd.2023.106290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by a compromised blood-brain barrier (BBB) resulting in central nervous system (CNS) entry of peripheral lymphocytes, including T cells and B cells. While T cells have largely been considered the main contributors to neuroinflammation in MS, the success of B cell depletion therapies suggests an important role for B cells in MS pathology. Glial cells in the CNS are essential components in both disease progression and recovery, raising the possibility that they represent targets for B cell functions. Here, we examine astrocyte and microglia responses to B cell depleting treatments in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). B cell depleted EAE animals had markedly reduced disease severity and myelin damage accompanied by reduced microglia and astrocyte reactivity 20 days after symptom onset. To identify potential initial mechanisms mediating functional changes following B cell depletion, astrocyte and microglia transcriptomes were analyzed 3 days following B cell depletion. In control EAE animals, transcriptomic analysis revealed astrocytic inflammatory pathways were activated and microglial influence on neuronal function were inhibited. Following B cell depletion, initial functional recovery was associated with an activation of astrocytic pathways linked with restoration of neurovascular integrity and of microglial pathways associated with neuronal function. These studies reveal an important role for B cell depletion in influencing glial function and CNS vasculature in an animal model of MS.
Collapse
Affiliation(s)
- Julie J Ahn
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Yusra Islam
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Cheryl Clarkson-Paredes
- The George Washington University School of Medicine and Health Sciences, Nanofabrication and Imaging Center, Science and Engineering Hall, 800 22(nd) St NW, Washington, DC 20037, United States of America
| | - Molly T Karl
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Robert H Miller
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America.
| |
Collapse
|
45
|
Yin F, Yan Z, Li Y, Ding S, Wang X, Shi Z, Feng J, Du S, Tan Z, Zeng C. Multimodal Investigation of Deep Gray Matter Nucleus in Patients with Multiple Sclerosis and Their Clinical Correlations: A Multivariate Pattern Analysis Study. J Pers Med 2023; 13:1488. [PMID: 37888099 PMCID: PMC10608176 DOI: 10.3390/jpm13101488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Deep gray matter (DGM) nucleus are involved in patients with multiple sclerosis (MS) and are strongly associated with clinical symptoms. We used machine learning approach to further explore microstructural alterations in DGM of MS patients. One hundred and fifteen MS patients and seventy-one healthy controls (HC) underwent brain MRI. The fractional anisotropy (FA), mean diffusivity (MD), quantitative susceptibility value (QSV) and volumes of the caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were measured. Multivariate pattern analysis, based on a machine-learning algorithm, was applied to investigate the most damaged regions. Partial correlation analysis was used to investigate the correlation between MRI quantitative metrics and clinical neurological scores. The area under the curve of FA-based classification model was 0.83, while they were 0.93 for MD and 0.81 for QSV. The Montreal cognitive assessment scores were correlated with the volume of the DGM and the expanded disability status scale scores were correlated with the MD of the GP and PT. The study results indicated that MS patients had involvement of DGM with the CN being the most affected. The atrophy of DGM in MS patients mainly affected cognitive function and the microstructural damage of DGM was mainly correlated with clinical disability.
Collapse
Affiliation(s)
- Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Shuang Ding
- Department of Radiology, The Childrens’ Hospital of Chongqing Medical University, Chongqing 400015, China;
| | - Xiaohua Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zeyun Tan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| |
Collapse
|
46
|
Kundu P, Yasuhara K, Brandes MS, Zweig JA, Neff CJ, Holden S, Kessler K, Matsumoto S, Offner H, Waslo CS, Vandenbark A, Soumyanath A, Sherman LS, Raber J, Gray NE, Spain RI. Centella asiatica promotes antioxidant gene expression and mitochondrial oxidative respiration in experimental autoimmune encephalomyelitis. RESEARCH SQUARE 2023:rs.3.rs-3393042. [PMID: 37886497 PMCID: PMC10602085 DOI: 10.21203/rs.3.rs-3393042/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Centella asiatica (Centella) is a traditional botanical medicine that shows promise in treating dementia based on behavioral alterations seen in animal models of aging and cognitive dysfunction. In order to determine if Centella could similarly improve cognitive function and reduce disease burden in multiple sclerosis (MS), we tested its effects in the neuroinflammatory experimental autoimmune encephalomyelitis (EAE) model of MS. In two independent experiments, C57BL/6J mice were treated following induction of EAE with either a standardized water extract of Centella (CAW) or placebo for 2 weeks. At the dosing schedule and concentrations tested, CAW did not improve behavioral performance, EAE motor disability, or degrees of demyelination. However, CAW-treated mice demonstrated increases in nuclear factor (erythroid-derived 2)-like 2 and other antioxidant response element genes, and increases in mitochondrial respiratory activity. Caw also decreased spinal cord inflammation. Our findings indicate that CAW can increase antioxidant gene expression and mitochondrial respiratory activity in mice with EAE, supporting investigation of the clinical effects of CAW in people with MS.
Collapse
|
47
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
48
|
Bigotte M, Groh AMR, Marignier R, Stratton JA. Pathogenic role of autoantibodies at the ependyma in autoimmune disorders of the central nervous system. Front Cell Neurosci 2023; 17:1257000. [PMID: 37771929 PMCID: PMC10525373 DOI: 10.3389/fncel.2023.1257000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Ependymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more. A role for ependymal cells in a variety of neurological disorders has been proposed, including in neuromyelitis optica and multiple sclerosis, two autoimmune demyelinating diseases of the central nervous system, where periventricular damage is common. What is not known is the mechanisms behind how ependymal cells become dysregulated in these diseases. In neuromyelitis optica, it is well established that autoantibodies directed against Aquaporin-4 are drivers of disease, and it has been shown recently that these autoantibodies can drive ependymal cell dysregulation. We propose a similar mechanism is at play in multiple sclerosis, where autoantibodies targeting a glial cell protein called GlialCAM on ependymal cells are contributing to disease. GlialCAM shares high molecular similarities with the Epstein-Barr virus (EBV) protein EBNA1. EBV has recently been shown to be necessary for multiple sclerosis initiation, yet how EBV mediates pathogenesis, especially in the periventricular area, remains elusive. In this perspective article, we discuss how ependymal cells could be targeted by antibody-related autoimmune mechanisms in autoimmune demyelinating diseases and how this is implicated in ventricular/periventricular pathology.
Collapse
Affiliation(s)
- Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Adam M. R. Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Romain Marignier
- Forgetting Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, Bron, France
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
50
|
Wenger KJ, Hoelter MC, Yalachkov Y, Hendrik Schäfer J, Özkan D, Steffen F, Bittner S, Hattingen E, Foerch C, Schaller-Paule MA. Serum neurofilament light chain is more strongly associated with T2 lesion volume than with number of T2 lesions in patients with multiple sclerosis. Eur J Radiol 2023; 166:111019. [PMID: 37549559 DOI: 10.1016/j.ejrad.2023.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND PURPOSE MR imaging provides information on the number and extend of focal lesions in multiple sclerosis (MS) patients. This study explores whether total brain T2 lesion volume or lesion number shows a better correlation with serum and cerebrospinal fluid (CSF) biomarkers of disease activity. MATERIALS AND METHODS In total, 52 patients suffering from clinically isolated syndrome (CIS)/relapsing-remitting multiple sclerosis (RRMS) were assessed including MRI markers (total brain T2 lesion volume semi-automatically outlined on 3D DIR/FLAIR sequences, number of lesions), serum and CSF biomarkers at the time of neuroimaging (neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP)), and clinical parameters. After log-transformation and partial correlations adjusted for the covariates patients' age, BMI, EDSS-score and diagnosis, the Fisher's r-to-Z transformation was used to compare different correlation coefficients. RESULTS The correlation between lesion volume and serum NfL (r = 0.6, p < 0.001) was stronger compared to the association between the number of T2 lesions and serum NfL (r = 0.4, p < 0.01) (z = -2.0, p < 0.05). With regard to CSF NfL, there was a moderate, positive relationship for both number of T2 lesions and lesion volume (r = 0.5 respectively, p < 0.01). We found no significant association between MRI markers and GFAP levels. CONCLUSION Our findings suggest that there is a stronger association between serum NfL and T2 lesion volume, than there is between serum NfL and T2 lesion number. Improving robustness and accuracy of fully-automated lesion volume segmentation tools can expedite implementation into clinical routine and trials.
Collapse
Affiliation(s)
- Katharina J Wenger
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Germany.
| | - Maya C Hoelter
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Germany
| | - Yavor Yalachkov
- Goethe University Frankfurt, University Hospital, Department of Neurology, Germany
| | - Jan Hendrik Schäfer
- Goethe University Frankfurt, University Hospital, Department of Neurology, Germany
| | - Dilek Özkan
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Germany
| | - Falk Steffen
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elke Hattingen
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Germany
| | - Christian Foerch
- Goethe University Frankfurt, University Hospital, Department of Neurology, Germany
| | - Martin A Schaller-Paule
- Goethe University Frankfurt, University Hospital, Department of Neurology, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|