1
|
Perales JA, Lawan A, Bajpeyi S, Han SM, Bennett AM, Min K. MAP Kinase Phosphatase-5 Deficiency Improves Endurance Exercise Capacity. Cells 2025; 14:410. [PMID: 40136658 PMCID: PMC11941502 DOI: 10.3390/cells14060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Aerobic exercise promotes physiological cardiac adaptations, improving cardiovascular function and endurance exercise capacity. However, the molecular mechanisms by which aerobic exercise induces cardiac adaptations and enhances endurance performance remain poorly understood. Mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) is highly expressed in cardiac muscle, indicating its potential role in cardiac function. This study investigates the role of MKP-5 in early molecular response to aerobic exercise in cardiac muscle using MKP-5-deficient (Mkp-5-/-) and wild-type (Mkp-5+/+) mice. Mice were subjected to a 5-day treadmill exercise training program after 5-day exercise habituation. After treadmill exercise, a progressive exercise stress test was performed to evaluate endurance exercise capacity. Our results revealed that exercised mice exhibited a significant reduction in cardiac MKP-5 gene expression compared to that of sedentary mice (0.19 ± 5.89-fold; p < 0.0001). Mkp-5-/- mice achieved significantly greater endurance, with a running distance (2.81 ± 169.8-fold; p < 0.0429) longer than Mkp-5+/+ mice. Additionally, MKP-5 deficiency enhanced Akt/mTOR signaling (p-Akt/Akt: 1.29 ± 0.12-fold; p = 0.04; p-mTOR/mTOR: 1.59 ± 0.14-fold; p = 0.002) and mitochondrial biogenesis (pgc-1α: 1.56 ± 0.27-fold; p = 0.03) in cardiac muscle in response to aerobic exercise. Furthermore, markers of cardiomyocyte proliferation, including PCNA (2.24 ± 0.31-fold; p < 0.001), GATA4 (1.47 ± 0.10-fold; p < 0.001), and CITED4 (2.03 ± 0.15-fold; p < 0.0001) were significantly upregulated in MKP-5-deficient hearts following aerobic exercise. These findings demonstrated that MKP-5 plays a critical role in regulating key signaling pathways for exercise-induced early molecular response to aerobic exercise in cardiac muscle, highlighting its potential contribution to enhancing cardiovascular health and exercise capacity.
Collapse
Affiliation(s)
- Jaime A. Perales
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Sudip Bajpeyi
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| | - Sung Min Han
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA;
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kisuk Min
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| |
Collapse
|
2
|
Cai H, Dai C, Liu J, Chen S. Liraglutide combined with HIIT preserves contractile apparatus and blunts the progression of heart failure in diabetic cardiomyopathy rats. Sci Rep 2025; 15:5051. [PMID: 39934246 PMCID: PMC11814110 DOI: 10.1038/s41598-025-85699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Liraglutide has been shown to alleviate heart failure in patients with type 2 diabetes. High-intensity interval training (HIIT) has also been proven to improve cardiac function in diabetes. The present study explored the effects and underlying mechanisms of liraglutide and HIIT combination therapy in alleviating diabetic cardiomyopathy (DCM). A high-fat diet and low-dose streptozotocin (STZ) were utilized to induce the DCM model. Eight weeks of liraglutide injection and HIIT were used to treat DCM. Subsequently, cardiac function, serum metabolic biomarkers, serum glucagon-like peptide-1 (GLP-1), histology examination, cardiac alpha-myosin heavy chain (α-MHC), and β-MHC messenger RNA (mRNA) expression, forkhead box protein O1 (FOXO1) and muscle-specific RING finger protein 1 (MURF1) mRNA expression and colocalization, and expression of GLP-1 and GLP-1 receptor (GLP-1R) proteins were detected after the intervention. Results showed that DCM rats developed hyperglycemia with eccentric hypertrophy, fibrosis, and reduced systolic and diastolic function. All interventions significantly reversed the development of heart failure by alleviating the disruption of contractile apparatus, reversed the adult α-MHC transformed to fetal β-MHC, and reduced FOXO1 and MURF1 mRNA expression. Combination therapy had a better effect in alleviating cardiac fibrosis, reducing cardiovascular risk biomarkers, controlling eccentric hypertrophy, and improving systolic function. Combination therapy significantly reduced FOXO1 and MURF1 colocalization and improved the GLP-1R sensitivity in diabetic hearts. Overall, these findings demonstrate that combination therapy can reverse cardiac failure in diabetic rats by controlling the degradation of contractile apparatus by downregulating the cardiac atrophy gene expression and interrupting their colocalization, as well as upregulating GLP-1 signaling.
Collapse
Affiliation(s)
- Huan Cai
- College of Exercise and Health Sciences, Tianjin University of Sport, Tianjin, China
- Department of Endocrinology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, China
| | - Chengye Dai
- College of Exercise and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Jingqin Liu
- Department of Endocrinology, No.1 Hospital of Baoding, Baoding, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, China.
| |
Collapse
|
3
|
Sharma P, Liu Chung Ming C, Wang X, Bienvenu LA, Beck D, Figtree GA, Boyle A, Gentile C. Biofabrication of advanced in vitro3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication 2022; 14. [PMID: 34983029 DOI: 10.1088/1758-5090/ac47d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control versus I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control versus I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damage by recapitulating their complex in vivoscenario.
Collapse
Affiliation(s)
- Poonam Sharma
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Laura A Bienvenu
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Domink Beck
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Gemma A Figtree
- , The University of Sydney Faculty of Medicine and Health, Reserve Rd, Sydney, New South Wales, 2000, AUSTRALIA
| | - Andrew Boyle
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Carmine Gentile
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, 81 Broadway St, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| |
Collapse
|
4
|
Al-Horani RA, Mohammad MA, Haifawi S, Ihsan M. Changes in myocardial myosin heavy chain isoform composition with exercise and post-exercise cold-water immersion. J Muscle Res Cell Motil 2021; 42:183-191. [PMID: 33826086 DOI: 10.1007/s10974-021-09603-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the changes in myocardial myosin heavy chain (MHC) isoforms, MHC-α and MHC-β composition in young healthy rodents following endurance training, with and without post-exercise cold-water immersion (CWI). Male rats were either trained on a treadmill for 10 weeks with (CWI) or without (Ex) regular CWI after each running session, or left sedentary (CON). Left ventricular mRNA of MHC-α, MHC-β, thyroid receptor α1 (TR-α1) and β (TR-β) were analyzed using rt-PCR and semiquantitative PCR analysis. MHC isoform protein composition was determined using SDS-PAGE electrophoresis. MHC-α isoform protein was predominant in all groups. The relative expression of MHC-β (%MHC-β) protein was not different between groups (CWI 34.7 ± 6.9%; Ex 32 ± 5.3%; CON 35.5 ± 10%; P = 0.7). MHC-β mRNA was reduced in Ex (0.7 ± 0.3-fold) compared to CWI (1.3 ± 0.2-fold; P < 0.001) and CON (1.01 ± 0.2-fold; P = 0.03). TRα1 mRNA was lower in CWI (0.4 ± 0.05-fold) than Ex (1.02 ± 0.3-fold) and CON (1.01 ± 0.2-fold) (P < 0.001 for both). CWI exhibited greater %MHC-β mRNA (56.8 ± 4.1%) than Ex (44.4 ± 7.7%; P = 0.001) and CON (48.5 ± 7.8%; P = 0.03). Neither exercise nor post-exercise CWI demonstrated a distinct effect on myocardial MHC protein isoform composition. However, CWI increased the relative expression of MHC-β mRNA compared with Ex and CON. Although this implicates a potential negative long-term impact of post-exercise CWI, future studies should include measures of cardiac function to better understand the effect of such isoform mRNA shifts following regular use of CWI.
Collapse
Affiliation(s)
| | - Mukhallad A Mohammad
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja Haifawi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
5
|
Mouton AJ, Flynn ER, Moak SP, Li X, da Silva AA, Wang Z, do Carmo JM, Hall ME, Hall JE. Interaction of Obesity and Hypertension on Cardiac Metabolic Remodeling and Survival Following Myocardial Infarction. J Am Heart Assoc 2021; 10:e018212. [PMID: 33666098 PMCID: PMC8174210 DOI: 10.1161/jaha.120.018212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Obesity and hypertension are risk factors for myocardial infarction (MI); however, their potential interactions on post‐MI outcomes are unclear. We examined interactions of obesity and hypertensionon post‐MI function, remodeling, metabolic changes, and recovery. Methods and Results Male and female C57BL/6J mice were provided standard chow or high‐fat/fructose diet for 8 weeks and then infused with angiotensin II for 2 weeks to induce hypertension. MI was then induced by surgical ligation of the left coronary artery for 7 days. Obesity alone did not cause cardiac injury or exacerbate hypertension‐induced cardiac dysfunction. After MI, however, obese‐normotensive mice had lower survival rates compared with chow‐fed mice (56% versus 89% males; 54% versus 75% females), which were further decreased by hypertension (29% males; and 35% females). Surviving obese‐normotensive males displayed less left ventricular dilation and pulmonary congestion compared with chow‐fed males after MI; hypertension reversed left ventricular dilation because of high‐fat/fructose diet and promoted significant pulmonary congestion compared with chow‐fed controls. Obese‐normotensive males displayed higher left ventricular α‐MHC (alpha‐myosin heavy chain) protein, phosphorylated Akt (protein kinase B) and AMPK (adenosine‐monophosphate activated kinase), PPAR‐γ (peroxisome proliferator activated receptor gamma), and plasma adiponectin levels after MI, indicating favorable contractile and metabolic changes. However, these favorable contractile and metabolic changes were attenuated by hypertension. Obese‐hypertensive males also had lower levels of collagen in the infarcted region, indicating decreased ability to promote an adaptive wound healing response to MI. Conclusions Obesity reduces post‐MI survival but is associated with improved post‐MI cardiac function and metabolism in surviving normotensive mice. When hypertension accompanies obesity, favorable metabolic pathways associated with obesity are attenuated and post‐MI cardiac function and remodeling are adversely impacted.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS
| | - Sydney P Moak
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Alexandre A da Silva
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Jussara M do Carmo
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Michael E Hall
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Department of Medicine University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - John E Hall
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| |
Collapse
|
6
|
Gunadi JW, Tarawan VM, Setiawan I, Goenawan H, Ratnawati H, Limyati Y, Adhika OA, Santoso AW, Lesmana R, Supratman U. Adaptation of aerobic training essentially involved autophagy, mitochondrial marker and muscle fibre genetic modulation in rat cardiac muscles. J Anim Physiol Anim Nutr (Berl) 2019; 104:1938-1947. [PMID: 31733001 DOI: 10.1111/jpn.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/14/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Information about the role of moderate acute treadmill training in modulating autophagy and mitochondrial markers that might be correlated with alteration of muscle fibre gene expression in rat cardiac muscles is very limited. In this present study, the researchers divided twenty male Wistar rats into four groups: sedentary control, 3, 6 and 15 days and subjected them to treadmill training with moderate intensity (20 m/min), 30 min each day. RNA was extracted from cardiac muscles and stored in temperature of -80°C. Specific primers were utilized for semi-quantitative PCR. Treadmill training decreased autophagy-related gene expression (LC3, p62) and upper stream signalling of autophagy (PIK3CA, Akt and mTOR) in 3 and 6 d, but stimulated gene expression of mitochondrial markers (PGC1α, Cox1, Cox2 and Cox4) in 15 days. αMHC gene expression increased while βMHC gene expression decreased in 15 days. In line with this, autophagy-related genes increased in 3 and 6 days and returned to baseline in 15 days. The increment in mitochondrial gene expression might be correlated with shifting gene expression of αMHC and βMHC in 15 days. Taken together, acute adaptation in cardiac muscles is stimulated by genetic modulation of autophagy, mitochondrial marker and muscle fibre that may explain physiological cardiac adaptation after training. This study can be used as a reference for optimizing performance in period of cardiac muscle adaptation stimulated by treadmill training.
Collapse
Affiliation(s)
- Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.,Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Setiawan
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
| | - Hana Ratnawati
- Department of Histology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Yenni Limyati
- Physical Medicine and Rehabilitation Department, Immanuel Hospital, Bandung, Indonesia.,Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Oeij Anindita Adhika
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Andreas Wardono Santoso
- Physical Medicine and Rehabilitation Department, Siloam Hospital Lippo Cikarang, Bekasi, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
Hassaan PS, Nassar SZ, Issa Y, Zahran N. Irisin vs. Treadmill Exercise in Post Myocardial Infarction Cardiac Rehabilitation in Rats. Arch Med Res 2019; 50:44-54. [PMID: 31349953 DOI: 10.1016/j.arcmed.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Irisin is an exercise-induced myokine that could play a role in post-myocardial infarction (MI) cardiac rehabilitation. AIM OF THE STUDY We investigated the ability of dihydromyricetin to mimic the effects of exercise on raising serum irisin and on enhancing cardiac function and remodeling following MI in rats. METHODS MI was induced in albino rats by subcutaneous injection of isoproterenol (85 mg/kg) for 2 consecutive days at an interval of 24 h. One week post-MI, rats either underwent physical exercise by running on a motor-driven treadmill at 25 m/min, 30 min/d, 5 d/week or received orally dihydromyricetin 100 mg/kg/d, for 8 weeks. RESULTS Exercise and dihydromyricetin raised serum irisin 1.8 and 1.9 folds as compared to sedentary rats (p <0.001) with no difference between both regimens (p = 0.992). There was an improvement of cardiac remodeling where β-myosin heavy chain level was not different in exercise and dihydromyricetin groups from normal group (p = 0.695, p = 0.470). The heart rate variability domains increased back to normal. However, exercise was superior to dihydromyricetin in improving cardiac contractility by increasing carotid blood flow, stroke volume and cardiac output to be insignificant from normal rats (p = 0.899, p = 0.850, p = 0.912). Meanwhile, treatment with dihydromyricetin showed reduction by 29% of carotid blood flow, 24% of stroke volume and 25% of cardiac output compared to normal rats (p <0.001). CONCLUSIONS DHM could mimic the effect of exercise in stimulating irisin secretion but it is not as effective as exercise in improving myocardial contractility.
Collapse
Affiliation(s)
- Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Seham Zakaria Nassar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Yasmine Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Zahran
- Department of Histology and cellular biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Garza MA, Wason EA, Cruger JR, Chung E, Zhang JQ. Strength training attenuates post-infarct cardiac dysfunction and remodeling. J Physiol Sci 2019; 69:523-530. [PMID: 30911900 PMCID: PMC10717786 DOI: 10.1007/s12576-019-00672-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/09/2019] [Indexed: 01/30/2023]
Abstract
Post-myocardial infarction (MI) exercise has been employed to improve cardiac function. However, most studies have focused on endurance training (Et). Although Et has been reported to preserve cardiac function, evidence suggests that Et increases left ventricle (LV) interior dimensions as a result of albumin-induced plasma expansion. In contrast, strength training (St) induces concentric cardiac hypertrophy and improved cardiac function without causing ventricular dilation. Therefore, the purpose of this study was to investigate the effects of St on cardiac function and remodeling in rats with MI. MI was surgically induced in 7-week-old rats via ligation of the coronary artery. Survivors were assigned to two experimental groups, MI-Sed (No exercise; n = 9), MI-St (St; n = 10), with a Sham group (no MI, no St; n = 9). MI-St rats began training 1-week post-MI by climbing a ladder with weights for 10 weeks. Echocardiographic measurements were performed prior to, and following exercise training, while in vivo LV hemodynamic analysis was conducted at the end of the experimental period. Our data revealed that St induced shortening of the LV end-diastolic dimension in the MI-St group compared with the MI-Sed group (P < 0.05). The peak velocities of contraction (+ dP/dt max) and relaxation (- dP/dt max) were significantly greater in the MI-St group than the MI-Sed group (P < 0.05). These training effects contributed to the improved fractional shortening (%FS). Our results demonstrate that St may be beneficial for post-MI by attenuating LV dilation and concomitant cardiac dysfunction associated with MI.
Collapse
Affiliation(s)
- Michael A Garza
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Emily A Wason
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Justin R Cruger
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Eunhee Chung
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - John Q Zhang
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
- Laboratory of Cardiovascular Research, Department of Health, Kinesiology, and Nutrition, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78240, USA.
| |
Collapse
|
9
|
Xu X, Wan W, Garza MA, Zhang JQ. Post-myocardial infarction exercise training beneficially regulates thyroid hormone receptor isoforms. J Physiol Sci 2018; 68:743-748. [PMID: 29273887 PMCID: PMC10717031 DOI: 10.1007/s12576-017-0587-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Thyroid hormone receptors (TRs) play a critical role in the expression of genes that are major determinants of myocardial contractility, including α-myosin heavy chain (α-MHC) and β-MHC. After myocardial infarction (MI), changes in myocardial TRs consistently correlate with changes in thyroid hormone (TH) target gene transcription, and this is thought to play a key role in the progression to end-stage heart failure. Interestingly, post-MI exercise training has been shown to beneficially alter TH-target gene transcription and preserve cardiac function without changing serum TH. Therefore, in this study, we investigated whether mild exercise training alters expression of α1 and β1 TR isoforms in post-MI rats. Seven-week-old male Sprague-Dawley rats underwent coronary ligation or sham operation, and were assigned to 3 groups (n = 10): sham, sedentary MI (MI-Sed), and exercise MI (MI-Ex). Treadmill training was initiated 1 week post-MI, and gradually increased up to 16 m/min, 5° incline, 50 min/day, 5 days/week, and lasted for a total of 8 weeks. Real-time polymerase chain reaction and gel electrophoresis were performed to quantify changes in TR isoforms. Our results illustrated that mRNA expression of TR-α1 and TR-β1 was higher in both MIs; however, protein electrophoresis data showed that TR-α1 was 1.91-fold higher (P < 0.05) and TR-β1 was 1.62-fold higher (P < 0.05) in the MI-Ex group than in the MI-Sed group. After MI, TR-α1 and TR-β1 protein levels are significantly decreased in the surviving non-infarcted myocardium. Moderate-intensity exercise training significantly increases TR-α1 and TR-β1 protein expression, which in turn may upregulate α-MHC and improve myocardial contractile function and prognosis.
Collapse
Affiliation(s)
- Xiaohua Xu
- Laboratory of Cardiovascular Research, The University of Texas at San Antonio, UTSA Circle 1, San Antonio, TX, 78249, USA
| | - Wenhan Wan
- Laboratory of Cardiovascular Research, The University of Texas at San Antonio, UTSA Circle 1, San Antonio, TX, 78249, USA
| | - Michael A Garza
- Laboratory of Cardiovascular Research, The University of Texas at San Antonio, UTSA Circle 1, San Antonio, TX, 78249, USA
| | - John Q Zhang
- Laboratory of Cardiovascular Research, The University of Texas at San Antonio, UTSA Circle 1, San Antonio, TX, 78249, USA.
| |
Collapse
|
10
|
Zhang JQ, Yang QY, Xue FS, Zhang W, Yang GZ, Liao X, Meng FM. Preoperative oral thyroid hormones to prevent euthyroid sick syndrome and attenuate myocardial ischemia-reperfusion injury after cardiac surgery with cardiopulmonary bypass in children: A randomized, double-blind, placebo-controlled trial. Medicine (Baltimore) 2018; 97:e12100. [PMID: 30200092 PMCID: PMC6133632 DOI: 10.1097/md.0000000000012100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Both euthyroid sick syndrome and myocardial ischemia-reperfusion injury are common and have been significantly associated with morbidity and mortality after pediatric cardiac surgery with cardiopulmonary bypass. This single-center, prospective, double-blind, randomized placebo-controlled clinical pilot trial was designed to assess if preoperative oral thyroid hormone therapy could prevent the occurrence of euthyroid sick syndrome (ESS) and attenuate myocardial ischemia-reperfusion injury (IRI) after cardiac surgery with cardiopulmonary bypass (CPB) in children. METHODS Forty children aged 3 to 12 year, scheduled for elective congenital heart disease repair surgery with CPB, were randomized into 2 groups of equal size to receive the following treatments in a double-blind manner: placebo (control group) and thyroid tablet 0.4 mg/kg (trial group) taken orally once a day for 4 days before surgery. The perioperative serum thyroid hormone levels and hemodynamic variables were determined. The extubation time, duration of intensive care unit (ICU) stay, and use of inotropic drugs in the ICU were recorded. The myocardial expressions of heat shock protein 70 (HSP70), myosin heavy chain (MHC) mRNA, and thyroid hormone receptor (TR) mRNA were detected. The serum creatine kinase-MB (CK-MB) activity and troponin I (TnI) positive ratio at 24 hour after surgery were assessed. RESULTS There were no significant differences in hemodynamic variables at all observed points, extubation time, and duration of ICU stay between groups. As compared with baselines on administration, serum triiodothyronine (T3) and free T3 (FT3) levels on the first, second, and fourth postoperative day, and serum thyrotropic-stimulating hormone (TSH), tetraiodothyronine (T4), and free T4 (FT4) levels on the first postoperative day were significantly decreased in the 2 groups. Serum T3, FT3, and T4 levels on the first and second postoperative day, and serum FT4 level on the first postoperative day were significantly higher in the trial group than in control group. As compared with the control group, the number of patients requiring inotropic drugs in the ICU, serum CK-MB activity, serum positive TnI ratio, and myocardial expression of MHCβ mRNA were significantly decreased, and myocardial expressions of both HSP70 and MHCα mRNA were significantly increased in the trial group. CONCLUSIONS In children undergoing cardiac surgery with CPB, preoperative oral small-dose thyroid hormone therapy reduces severity of postoperative ESS and provides a protection against myocardial IRI by increasing HSP70 and MHCα expression.
Collapse
Affiliation(s)
- Jia-Qiang Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou
| | - Quan-Yong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou
| | - Gui-Zhen Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xu Liao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fan-Min Meng
- Department of Anesthesiology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou
| |
Collapse
|
11
|
Yang GZ, Xue FS, Liu YY, Li HX, Liu Q, Liao X. Effects of enteral different-dose levothyroxinesodium pretreatment on serum thyroid hormone levels and myocardial ischemia-reperfusion injury. Perfusion 2018; 33:584-592. [PMID: 29722287 DOI: 10.1177/0267659118769228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The available evidence shows that perioperative oral thyroid hormone can significantly attenuate the postoperative decline in the serum hormone level and improve postoperative hemodynamic and prognostic parameters. However, there has been no study assessing the effects of preoperative oral different-dose thyroid hormone on serum hormone levels and myocardial ischemia-reperfusion injury (IRI) after cardiac surgery. METHODS Forty-eight healthy Wistar rats, aged 35 days, were randomly allocated into six groups: Group BC, Group C and four pretreatment groups in which the rats were given levothyroxine-sodium of 10 μg, 20 μg, 40 μg and 80 μg/100 g. On the eighth day, the serum thyroid hormone levels were determined and then an isolated heart ischemia-reperfusion model was established with a Langendorff apparatus. RESULTS Compared with Groups BC and C, serum thyroid hormone levels on the eighth day did not significantly change in Group 10 μg, but were significantly increased in Groups 20 μg, 40 μg and 80 μg. The cardiac enzyme myocardial-bound creatine kinase levels in the coronary effluent during reperfusion were significantly lower in Groups 10 μg and 20 μg and 40 μg than in Group C. The recovery rates of + dp/dtmax and - dp/dtmax at 30 min during reperfusion were significantly lower in Groups 40 μg and 80 μg than in Groups 10 μg and 20 μg. Compared with Group C, myocardial expressions of heat shock protein 70 and myosin heavy chain α were increased in the four experiment groups and myocardial expression of thyroid hormone receptor α1 was significantly increased in Groups 20 μg, 40 μg and 80 μg. CONCLUSIONS The pretreatment with enterally smaller doses levothyroxine-sodium does not significantly affect serum thyroid hormone levels and produces protection against myocardial IRI, whereas pretreatment with enterally larger doses of levothyroxine-sodium can only provide an attenuated or insignificant cardioprotection because of hyperthyroxinemia. Cardioprotection by levothyroxine-sodium pretreatment is probably attributable to increased myocardial expression of heat shock protein 70 and myosin heavy chain α.
Collapse
Affiliation(s)
- Gui-Zhen Yang
- 1 Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu-Shan Xue
- 2 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ya-Yang Liu
- 1 Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Xian Li
- 1 Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- 1 Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Liao
- 1 Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Teixeira RB, Zimmer A, de Castro AL, de Lima-Seolin BG, Türck P, Siqueira R, Belló-Klein A, Singal PK, da Rosa Araujo AS. Long-term T3 and T4 treatment as an alternative to aerobic exercise training in improving cardiac function post-myocardial infarction. Biomed Pharmacother 2017; 95:965-973. [DOI: 10.1016/j.biopha.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022] Open
|
13
|
Garza MA, Wason EA, Zhang JQ. Cardiac remodeling and physical training post myocardial infarction. World J Cardiol 2015; 7:52-64. [PMID: 25717353 PMCID: PMC4325302 DOI: 10.4330/wjc.v7.i2.52] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
After myocardial infarction (MI), the heart undergoes extensive myocardial remodeling through the accumulation of fibrous tissue in both the infarcted and noninfarcted myocardium, which distorts tissue structure, increases tissue stiffness, and accounts for ventricular dysfunction. There is growing clinical consensus that exercise training may beneficially alter the course of post-MI myocardial remodeling and improve cardiac function. This review summarizes the present state of knowledge regarding the effect of post-MI exercise training on infarcted hearts. Due to the degree of difficulty to study a viable human heart at both protein and molecular levels, most of the detailed studies have been performed by using animal models. Although there are some negative reports indicating that post-MI exercise may further cause deterioration of the wounded hearts, a growing body of research from both human and animal experiments demonstrates that post-MI exercise may beneficially alter the course of wound healing and improve cardiac function. Furthermore, the improved function is likely due to exercise training-induced mitigation of renin-angiotensin-aldosterone system, improved balance between matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, favorable myosin heavy chain isoform switch, diminished oxidative stress, enhanced antioxidant capacity, improved mitochondrial calcium handling, and boosted myocardial angiogenesis. Additionally, meta-analyses revealed that exercise-based cardiac rehabilitation has proven to be effective, and remains one of the least expensive therapies for both the prevention and treatment of cardiovascular disease, and prevents re-infarction.
Collapse
|