1
|
Merold V, Bekere I, Kretschmer S, Schnell AF, Kmiec D, Sivarajan R, Lammens K, Liu R, Mergner J, Teppert J, Hirschenberger M, Henrici A, Hammes S, Buder K, Weitz M, Hackmann K, Koenig LM, Pichlmair A, Schwierz N, Sparrer KMJ, Lee-Kirsch MA, de Oliveira Mann CC. Structural basis for OAS2 regulation and its antiviral function. Mol Cell 2025:S1097-2765(25)00406-X. [PMID: 40412389 DOI: 10.1016/j.molcel.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/01/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Oligoadenylate synthetase (OAS) proteins are immune sensors for double-stranded RNA and are critical for restricting viruses. OAS2 comprises two OAS domains, only one of which can synthesize 2'-5'-oligoadenylates for RNase L activation. Existing structures of OAS1 provide a model for enzyme activation, but they do not explain how multiple OAS domains discriminate RNA length. Here, we discover that human OAS2 exists in an auto-inhibited state as a zinc-mediated dimer and present a mechanism for RNA length discrimination: the catalytically deficient domain acts as a molecular ruler that prevents autoreactivity to short RNAs. We demonstrate that dimerization and myristoylation localize OAS2 to Golgi membranes and that this is required for OAS2 activation and the restriction of viruses that exploit the endomembrane system for replication, e.g., coronaviruses. Finally, our results highlight the non-redundant role of OAS proteins and emphasize the clinical relevance of OAS2 by identifying a patient with a loss-of-function mutation associated with autoimmune disease.
Collapse
Affiliation(s)
- Veronika Merold
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Indra Bekere
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Adrian F Schnell
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Rou Liu
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Julia Teppert
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | | | - Alexander Henrici
- School of Medicine, Institute of Virology, Technical University of Munich, Munich 81675, Germany
| | - Sarah Hammes
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Kathrin Buder
- University Hospital Tuebingen, University Children's Hospital, Department of General Pediatrics and Hematology/Oncology, Tuebingen 72076, Germany
| | - Marcus Weitz
- University Hospital Tuebingen, University Children's Hospital, Department of General Pediatrics and Hematology/Oncology, Tuebingen 72076, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden 01307, Germany
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, Munich 81675, Germany; Helmholtz Center Munich, Systems Virology, Neuherberg 85764, Germany; German Center for Infection Research, Partner site Munich, Munich 81675, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; German Center for Child and Adolescent Health, partner site Leipzig/Dresden, Dresden 01307, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany.
| |
Collapse
|
2
|
Fritsch H, Giovanetti M, Clemente LG, da Rocha Fernandes G, Fonseca V, de Lima MM, Falcão M, de Jesus N, de Cerqueira EM, Venâncio da Cunha R, de Oliveira Francisco MVL, de Siqueira IC, de Oliveira C, Xavier J, Ferreira JGG, Queiroz FR, Smith E, Tisoncik-Go J, Van Voorhis WC, Rabinowitz PM, Wasserheit JN, Gale M, de Filippis AMB, Alcantara LCJ. Unraveling the Complexity of Chikungunya Virus Infection Immunological and Genetic Insights in Acute and Chronic Patients. Genes (Basel) 2024; 15:1365. [PMID: 39596565 PMCID: PMC11593632 DOI: 10.3390/genes15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The chikungunya virus (CHIKV), transmitted by infected Aedes mosquitoes, has caused a significant number of infections worldwide. In Brazil, the emergence of the CHIKV-ECSA genotype in 2014 posed a major public health challenge due to its association with more severe symptoms. Objectives/Methods: This study aimed to shed new light on the host immune response by examining the whole-blood transcriptomic profile of both CHIKV-acute and chronically infected individuals from Feira de Santana, Bahia, Brazil, a region heavily affected by CHIKV, Dengue, and Zika virus epidemics. Results: Our data reveal complex symptomatology characterized by arthralgia and post-chikungunya neuropathy in individuals with chronic sequelae, particularly affecting women living in socially vulnerable situations. Analysis of gene modules suggests heightened metabolic processes, represented by an increase in NADH, COX5A, COA3, CYC1, and cap methylation in patients with acute disease. In contrast, individuals with chronic manifestations exhibit a distinct pattern of histone methylation, probably mediated by NCOA3 in the coactivation of different nuclear receptors, KMT2 genes, KDM3B and TET2, and with alterations in the immunological response, majorly led by IL-17RA, IL-6R, and STAT3 Th17 genes. Conclusion: Our results emphasize the complexity of CHIKV disease progression, demonstrating the heterogeneous gene expression and symptomatologic scenario across both acute and chronic phases. Moreover, the identification of specific gene modules associated with viral pathogenesis provides critical insights into the molecular mechanisms underlying these distinct clinical manifestations.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
- Institut National de la Santé et de la Recherche Médicale, U1259—MAVIVHe, Université de Tours, 37032 Tours, France
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Luan Gaspar Clemente
- Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | | | - Vagner Fonseca
- Departamento de Ciências Exatas e da Terra, Universidade Estadual da Bahia, Salvador 41150-000, Brazil;
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Maricelia Maia de Lima
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Melissa Falcão
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Neuza de Jesus
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Erenilde Marques de Cerqueira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
| | | | | | | | - Carla de Oliveira
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
| | - Jorge Gomes Goulart Ferreira
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Fábio Ribeiro Queiroz
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | | | - Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
3
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
4
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
5
|
Wang Y, Zhang J, Li M, Jia M, Yang L, Wang T, Wang Y, Kang L, Li M, Kong L. Transcriptome and proteomic analysis of mpox virus F3L-expressing cells. Front Cell Infect Microbiol 2024; 14:1354410. [PMID: 38415010 PMCID: PMC10896956 DOI: 10.3389/fcimb.2024.1354410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Background Monkeypox or mpox virus (mpox) is a double-stranded DNA virus that poses a significant threat to global public health security. The F3 protein, encoded by mpox, is an apoenzyme believed to possess a double-stranded RNA-binding domain (dsRBD). However, limited research has been conducted on its function. In this study, we present data on the transcriptomics and proteomics of F3L-transfected HEK293T cells, aiming to enhance our comprehension of F3L. Methods The gene expression profiles of pCAGGS-HA-F3L transfected HEK293T cells were analyzed using RNA-seq. Proteomics was used to identify and study proteins that interact with F3L. Real-time PCR was used to detect mRNA levels of several differentially expressed genes (DEGs) in HEK293T cells (or Vero cells) after the expression of F3 protein. Results A total of 14,822 genes were obtained in cells by RNA-Seq and 1,672 DEGs were identified, including 1,156 up-regulated genes and 516 down-regulated genes. A total of 27 cellular proteins interacting with F3 proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and 19 cellular proteins with large differences in abundance ratios were considered to be candidate cellular proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were significantly enriched in immune-related pathways, including type I interferon signaling pathway, response to virus, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, etc. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the transcriptome data. Proteomics data show that cellular proteins interacting with F3 proteins are mainly related to RNA splicing and protein translation. Conclusions Our analysis of transcriptomic and proteomic data showed that (1) F3L up-regulates the transcript levels of key genes in the innate immune signaling pathway, such as RIGI, MDA5, IRF5, IRF7, IRF9, ISG15, IFNA14, and elicits a broad spectrum of antiviral immune responses in the host. F3L also increases the expression of the FOS and JNK genes while decreasing the expression of TNFR2, these factors may ultimately induce apoptosis. (2) F3 protein interacts with host proteins involved in RNA splicing and protein translation, such as SNRNP70, POLR2H, HNRNPA1, DDX17, etc. The findings of this study shed light on the function of the F3 protein.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junzhe Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Wu J, You Q, Lyu R, Qian Y, Tao H, Zhang F, Cai Y, Jiang N, Zheng N, Chen D, Wu Z. Folate metabolism negatively regulates OAS-mediated antiviral innate immunity via ADAR3/endogenous dsRNA pathway. Metabolism 2023; 143:155526. [PMID: 36822494 DOI: 10.1016/j.metabol.2023.155526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vivo. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Yurong Cai
- School of life science, Ningxia University, Yinchuan, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China; School of life science, Ningxia University, Yinchuan, People's Republic of China.
| |
Collapse
|
8
|
Straub S, Sampaio NG. Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. Front Immunol 2023; 14:1092790. [PMID: 37292201 PMCID: PMC10244536 DOI: 10.3389/fimmu.2023.1092790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Early detection of infection is a central and critical component of our innate immune system. Mammalian cells have developed specialized receptors that detect RNA with unusual structures or of foreign origin - a hallmark of many virus infections. Activation of these receptors induces inflammatory responses and an antiviral state. However, it is increasingly appreciated that these RNA sensors can also be activated in the absence of infection, and that this 'self-activation' can be pathogenic and promote disease. Here, we review recent discoveries in sterile activation of the cytosolic innate immune receptors that bind RNA. We focus on new aspects of endogenous ligand recognition uncovered in these studies, and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Straub
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natalia G. Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
IFN-Induced PARPs—Sensors of Foreign Nucleic Acids? Pathogens 2023; 12:pathogens12030457. [PMID: 36986379 PMCID: PMC10057411 DOI: 10.3390/pathogens12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9—PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.
Collapse
|
10
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Wang X, Hu J, Song L, Rong E, Yang C, Chen X, Pu J, Sun H, Gao C, Burt DW, Liu J, Li N, Huang Y. Functional divergence of oligoadenylate synthetase 1 (OAS1) proteins in Tetrapods. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1395-1412. [PMID: 34826092 DOI: 10.1007/s11427-021-2002-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
OASs play critical roles in immune response against virus infection by polymerizing ATP into 2-5As, which initiate the classical OAS/RNase L pathway and induce degradation of viral RNA. OAS members are functionally diverged in four known innate immune pathways (OAS/RNase L, OASL/IRF7, OASL/RIG-I, and OASL/cGAS), but how they functionally diverged is unclear. Here, we focus on evolutionary patterns and explore the link between evolutionary processes and functional divergence of Tetrapod OAS1. We show that Palaeognathae and Primate OAS1 genes are conserved in genomic and protein structures but differ in function. The former (i.e., ostrich) efficiently synthesized long 2-5A and activated RNase L, while the latter (i.e., human) synthesized short 2-5A and did not activate RNase L. We predicted and verified that two in-frame indels and one positively selected site in the active site pocket contributed to the functional divergence of Palaeognathae and Primate OAS1. Moreover, we discovered and validated that an in-frame indel in the C-terminus of Palaeognathae OAS1 affected the binding affinity of dsRNA and enzymatic activity, and contributed to the functional divergence of Palaeognathae OAS1 proteins. Our findings unravel the molecular mechanism for functional divergence and give insights into the emergence of novel functions in Tetrapod OAS1.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Chuze Gao
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - David W Burt
- University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Schwartz SL, Park EN, Vachon VK, Danzy S, Lowen AC, Conn GL. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res 2020; 48:7520-7531. [PMID: 32678884 PMCID: PMC7367156 DOI: 10.1093/nar/gkaa513] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
2′-5′-Oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) and play a critical role in limiting viral infection. dsRNA binding induces allosteric structural changes in OAS1 that reorganize its catalytic center to promote synthesis of 2′-5′-oligoadenylate and thus activation of endoribonuclease L. Specific RNA sequences and structural motifs can also enhance activation of OAS1 through currently undefined mechanisms. To better understand these drivers of OAS activation, we tested the impact of defined sequence changes within a short dsRNA that strongly activates OAS1. Both in vitro and in human A549 cells, appending a 3′-end single-stranded pyrimidine (3′-ssPy) can strongly enhance OAS1 activation or have no effect depending on its location, suggesting that other dsRNA features are necessary for correct presentation of the motif to OAS1. Consistent with this idea, we also find that the dsRNA binding position is dictated by an established consensus sequence (WWN9WG). Unexpectedly, however, not all sequences fitting this consensus activate OAS1 equivalently, with strong dependence on the identity of both partially conserved (W) and non-conserved (N9) residues. A picture thus emerges in which both specific RNA features and the context in which they are presented dictate the ability of short dsRNAs to activate OAS1.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| | - Esther N Park
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Anice C Lowen
- Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA.,Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, USA.,Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| |
Collapse
|
13
|
Koul A, Gemmill D, Lubna N, Meier M, Krahn N, Booy EP, Stetefeld J, Patel TR, McKenna SA. Structural and Hydrodynamic Characterization of Dimeric Human Oligoadenylate Synthetase 2. Biophys J 2020; 118:2726-2740. [PMID: 32413313 PMCID: PMC7264852 DOI: 10.1016/j.bpj.2020.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Oligoadenylate synthetases (OASs) are a family of interferon-inducible enzymes that require double-stranded RNA (dsRNA) as a cofactor. Upon binding dsRNA, OAS undergoes a conformational change and is activated to polymerize ATP into 2'-5'-oligoadenylate chains. The OAS family consists of several isozymes, with unique domain organizations to potentially interact with dsRNA of variable length, providing diversity in viral RNA recognition. In addition, oligomerization of OAS isozymes, potentially OAS1 and OAS2, is hypothesized to be important for 2'-5'-oligoadenylate chain building. In this study, we present the solution conformation of dimeric human OAS2 using an integrated approach involving small-angle x-ray scattering, analytical ultracentrifugation, and dynamic light scattering techniques. We also demonstrate OAS2 dimerization using immunoprecipitation approaches in human cells. Whereas mutation of a key active-site aspartic acid residue prevents OAS2 activity, a C-terminal mutation previously hypothesized to disrupt OAS self-association had only a minor effect on OAS2 activity. Finally, we also present the solution structure of OAS1 monomer and dimer, comparing their hydrodynamic properties with OAS2. In summary, our work presents the first, to our knowledge, dimeric structural models of OAS2 that enhance our understanding of the oligomerization and catalytic function of OAS enzymes.
Collapse
Affiliation(s)
- Amit Koul
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Danielle Gemmill
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natalie Krahn
- Department of Molecular Biology and Biochemistry, Yale University, New Haven, Connecticut
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Northwest Calgary, Alberta, Canada; Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, Alberta, Canada.
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Thakor N, Kothe U, Wieden HJ, Patel TR. Proceedings of the 14th annual RiboWest conference: perspectives and outcome. Biochem Cell Biol 2020; 98:vii-ix. [PMID: 31934779 DOI: 10.1139/bcb-2019-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RiboWest Conference brings together RNA researchers in Canada with the 2-fold goals of fostering internationally competitive RNA research and of training the next generation of scientists. The 14th Annual RiboWest conference (RiboWest 2018) was held at the University of Lethbridge (Lethbridge, Alberta) from June 10th to 13th, 2018. This meeting was focused on all major aspects of RNA research, ranging from understanding the cellular role of RNA, studying RNA interactions and structures, and employing them as a therapeutic tool. The invited keynote speakers (5) provided insights into the wide-range of RNA-based research. One of the unique features of this conference was that the majority of the oral presentations were given by the trainees (undergraduate/graduate students and postdoctoral researchers). Hosted by the Alberta RNA Research and Training Institute (ARRTI) at the University of Lethbridge as the leading center of RNA research in Western Canada, the RiboWest 2018 was well attended by researchers from across the country (>110 attendees in total). This conference proceedings editorial presents the overview of the conference, and briefly introduces articles published in this special issue of Biochemistry and Cell Biology.
Collapse
Affiliation(s)
- Nehal Thakor
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada.,Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada.,Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada.,Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada.,Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive West, T1K 3M4, Lethbridge, Alberta, Canada
| |
Collapse
|
15
|
Danilenko ED, Belkina AO, Sysoeva GM. Development of Drugs Based on High-Polymeric Double-Stranded RNA for Antiviral and Antitumor Therapy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2019; 13:308-323. [PMID: 32288939 PMCID: PMC7104317 DOI: 10.1134/s1990750819040036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022]
Abstract
Abstract-The review summarizes literature data on the development of drugs based on natural and synthetic high-polymeric double-stranded RNA (dsRNA), their antiviral, immunoadjuvant, and antitumor properties. Special attention is paid to cell receptors responding to exogenous dsRNA, pathways of dsRNA-dependent antiviral reaction, ability of dsRNA to inhibit growth and induce apoptosis of malignant cells. It has been shown that enhancing the innate immune response with dsRNA can be an effective component in improving methods for treating and preventing infectious and cancer diseases. The further use of dsRNA for the correction of pathological processes of different origin is discussed.
Collapse
Affiliation(s)
- E. D. Danilenko
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| | - A. O. Belkina
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| | - G. M. Sysoeva
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| |
Collapse
|
16
|
Length dependent activation of OAS proteins by dsRNA. Cytokine 2019; 126:154867. [PMID: 31629990 DOI: 10.1016/j.cyto.2019.154867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
The oligoadenylate synthetase (OAS) family of enzymes are interferon-inducible antiviral proteins, which synthesize the secondary messenger 2'-5'-linked oligoadenosine (2-5A) in response to viral infection. The production of 2-5As induces RNA decay within the infected cells, thereby effectively preventing further viral replication. OAS shares structural similarity as well as the enzymatic mechanism with a different antiviral protein, cyclic GMP-AMP synthase (cGAS), but OAS is activated by dsRNA whereas cGAS is activated by dsDNA. Here, we have studied the structural requirement for the dsRNA activating OAS1 and OAS3, and compared it to recent studies on cGAS. We find that both OAS1 and OAS3, like cGAS, achieve their maximum activity with dsRNA molecules that are substantial longer than what one monomer of the enzyme can interact with. One molecule of OAS1 can cover approximately 18-20 base pairs of dsRNA, which is just short of two turns of a helix. However, RNAs of this length gave a very limited activity and the length dependency was even more pronounced for OAS3. Our data suggest that the OAS enzymes evolved to recognize long dsRNA as virally derived PAMPs, and that the length of the dsRNA is an important factor in discriminating self from non-self. Several structures of OAS1 bound to short dsRNAs exist, but our data show that OAS can only achieve minimal activity with these short activators (approximately 7-8% of maximal activity) and it is thus possible that these structures do not reveal the fully activated state of the OAS enzymes.
Collapse
|
17
|
Danilenko ED, Belkina AO, Sysoeva GM. [Development of drugs on the basis of high-polymeric double-stranded RNA for antiviral and antitumor therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:277-293. [PMID: 31436169 DOI: 10.18097/pbmc20196504277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review summarizes literature data on the development of drugs based on natural and synthetic high-polymeric double-stranded RNA, and their antiviral, immunoadjuvant and antitumor properties. Special attention is paid to cell receptors responding to exogenous dsRNA, the paths of dsRNA-dependent antiviral reaction, ability of dsRNA to inhibit growth and induce apoptosis ofmalignant cells. It has been shown that enhancing the innate immune response with dsRNA can be an effective component in improving methods for treating and preventing infectious and cancer diseases. The further use of dsRNA for the correction of pathological processes of different origin is discussed.
Collapse
Affiliation(s)
- E D Danilenko
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| | - A O Belkina
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| | - G M Sysoeva
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| |
Collapse
|
18
|
Schwartz SL, Conn GL. RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1534. [PMID: 30989826 DOI: 10.1002/wrna.1534] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system is a broad collection of critical intra- and extra-cellular processes that limit the infectivity of diverse pathogens. The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes are important sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection by activating the latent ribonuclease (RNase L) to halt viral replication and establish an antiviral state. Attesting to the importance of the OAS/RNase L pathway, diverse viruses have developed numerous distinct strategies to evade the effects of OAS activation. How OAS proteins are regulated by viral or cellular RNAs is not fully understood but several recent studies have provided important new insights into the molecular mechanisms of OAS activation by dsRNA. Other studies have revealed unanticipated features of RNA sequence and structure that strongly enhance activation of at least one OAS family member. While these discoveries represent important advances, they also underscore the fact that much remains to be learned about RNA-mediated regulation of the OAS/RNase L pathway. In particular, defining the full complement of RNA molecular signatures that activate OAS is essential to our understanding of how these proteins maximize their protective role against pathogens while still accurately discriminating host molecules to avoid inadvertent activation by cellular RNAs. A more complete knowledge of OAS regulation may also serve as a foundation for the development of novel antiviral therapeutic strategies and lead the way to a deeper understanding of currently unappreciated cellular functions of the OAS/RNase L pathway in the absence of infection. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| |
Collapse
|