1
|
Muhsen M, Alzoubi KH, Khabour OF, Mhaidat N, Rababa'h A, Ali S, Jarab A, Salim S. Pentoxifylline protects memory performance in streptozotocin-induced diabetic rats. Brain Res 2025; 1847:149319. [PMID: 39528094 DOI: 10.1016/j.brainres.2024.149319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Diabetes, characterized by elevated blood glucose levels and associated organ damage, is reportedly correlated with adecline in cognitive functions with a potential involvement of oxidative stress mechanisms. Mitochondria-induced oxidative stress reported to cause hyperglycemia is believed to impair hippocampal neural plasticity, affecting long-term potentiation, and isconsidered crucial for maintaining memory functions. In this study, the neuroprotective effect of Pentoxifylline (PTX) for four weeks, an agent known for antioxidant and anti-inflammatory properties, was examined in an animal model of diabetes. In a streptozotocin (STZ) diabetic model, rats received intraperitoneal PTX (100 mg/kg), and learning and memory functions were tested using the radial arm water maze. STZ-treated diabetic rats exhibited impaired learning and memory functions (short/long-term, P < 0.05), whereas PTX treatment prevented these deficits. PTX treatment normalized diabetes-induced reduction in the protein expression levels of two enzymes of antioxidant defense superoxide dismutase and glutathione peroxidase (P < 0.05) in the hippocampal brain tissues. PTX treatment also mitigated STZ-induced increase in lipid peroxidation (TBARS, P < 0.05). Furthermore, reduced/oxidized glutathione (GSH/GSSG) ratios were enhanced in PTX-treated diabetic rats (P < 0.05), emphasizing the importance of redox balance restoration. However, PTX treatment did not significantly affect theantioxidant defense enzyme catalase activity. In conclusion, STZ-induced diabetes resulted in learning and memory impairment in rats, while PTX treatment prevented these effects, most likely via enhancement of antioxidant defense in the brain. This study highlights PTX's potential neuroprotective benefits, providing translational insights into the issue of diabetes-related cognitive complications.
Collapse
Affiliation(s)
- Maram Muhsen
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Shirin Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Anan Jarab
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates; Department of Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| |
Collapse
|
2
|
Wells C, Pogribna M, Sharmah A, Paredes A, Word B, Patri AK, Lyn-Cook B, Hammons G. Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2037. [PMID: 39728572 DOI: 10.3390/nano14242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The safety of titanium dioxide (TiO2), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO2 has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO2 product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, MBD2, and URHF1 was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (BNIP3, DNAJC15, GADD45G, GDF15, INSIG1, SCARA3, and TP53) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO2 exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.
Collapse
Affiliation(s)
- Carlos Wells
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Arjun Sharmah
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Angel Paredes
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Anil K Patri
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Damiano G, Rinaldi R, Raucci A, Molinari C, Sforza A, Pirola S, Paneni F, Genovese S, Pompilio G, Vinci MC. Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies. Mol Med 2024; 30:161. [PMID: 39333854 PMCID: PMC11428340 DOI: 10.1186/s10020-024-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Collapse
Affiliation(s)
- Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Angela Raucci
- Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Chiara Molinari
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Genovese
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
| |
Collapse
|
4
|
Ye S, Cheng Z, Zhuo D, Liu S. Different Types of Cell Death in Diabetic Neuropathy: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:8126. [PMID: 39125694 PMCID: PMC11311470 DOI: 10.3390/ijms25158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Shang Ye
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Zilin Cheng
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Dongye Zhuo
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Shuangmei Liu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Uzun L, Kutlu R, Ataseven A, Aydemir FHY. Total oxidant capacity, total antioxidant capacity, ischemic modified albumin, microRNA levels, and their relationship with psoriasis area and severity index. Indian J Dermatol Venereol Leprol 2023; 89:501-509. [PMID: 36461796 DOI: 10.25259/ijdvl_111_2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Aims To examine the differences in the levels of microRNA, ischemic modified albumin (IMA), total oxidant capacity (TOC), and total antioxidant capacity (TAC) of persons with and without psoriasis and, in the case group, the relationship between these parameters and psoriasis area and severity index (PASI). Methods Blood samples were collected from patients and healthy participants to examine levels of these parameters. Results The mean serum TOC level was higher in the case group. The mean serum TAC and IMA levels were significantly lower in the case group (P <0.001). It was observed that the mean serum miR-203 and miR-146a levels were increased in psoriasis patients. It was determined that there was only a significant positive weak correlation between miR-203 and PASI (r = 0.232, P = 0.027). Limitations The small sample size, not controlling serum albumin and not evaluating the effects of the treatment agents used by the patients on oxidative and inflammatory processes. Conclusion In the case group changes in the mean serum TOC and TAC levels provide evidence that oxidative stress may play a critical role in disease pathogenesis. The increase in the mean serum miR-203 and miR-146a levels suggest the possibility of therapies targeting these microRNAs as a new option.
Collapse
Affiliation(s)
- Latife Uzun
- Department of Family Medicine, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ruhusen Kutlu
- Department of Family Medicine, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Arzu Ataseven
- Department of Dermatology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | | |
Collapse
|
6
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
7
|
Zarezadeh M, Faghfouri AH, Aghapour B, Rostamkhani H, Malekahmadi M, Naemi Kermanshahi M, Ostadrahimi A. Investigation of the clinical efficacy of Zn supplementation in improvement of oxidative stress parameters: A systematic review and dose-response meta-analysis of controlled clinical trials. Int J Clin Pract 2021; 75:e14777. [PMID: 34510667 DOI: 10.1111/ijcp.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/30/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND/OBJECTIVES Clinical efficacy of zinc (Zn) supplementation in the improvement of oxidative stress biomarkers has been investigated in some clinical trial studies. The purpose of the current dose-response meta-analysis is to systematically aggregate and evaluate all related studies to highlight the possible effect of Zn supplementation on oxidative stress. METHODS Systematic search was performed on Scopus, PubMed/Medline, Web of Science and Embase up to 31 December 2020. The random effect method was used to perform pooled analysis. Possible sources of heterogeneity were found using subgroup analysis and meta-regression. In the presence of publication bias, trim and fill analysis was performed to adjust the results. Non-linear relationship between effect size and variables was investigated by performing dose-response analysis. The quality of included studies was assessed using Cochrane Collaboration's tool. RESULTS Pooled-analysis of 18 studies showed that Zn supplementation improved MDA and Hcys levels (SMD = -1.53 μmol/L; 95% CI: -2.22, -0.85; P < .001 and SMD = -0.62 μmol/L; 95% CI: -1.08, -0.15; P < .001, respectively). There was no significant effect of Zn supplementation on TBARS (SMD = -0.59 μmol/l; 95% CI: -1.31, 0.13; P = .108). Zn had maximum reducing effect on MDA in <40 mg/day dosage. CONCLUSION Zn supplementation reduces MDA and Hcys levels, but not TBARS level. Supplementation with Zn <40 mg/day has an optimum effect on MDA level. Zn supplementation could be considered clinically as a beneficial approach in amending oxidative stress.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Baharak Aghapour
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helya Rostamkhani
- Nutrition Research Center, Department of Clinical Nutrition, Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naemi Kermanshahi
- Nutrition Research Center, Department of Clinical Nutrition, Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
9
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Anastasiou IA, Eleftheriadou I, Tentolouris A, Koliaki C, Kosta OA, Tentolouris N. CDATA[The Effect of Oxidative Stress and Antioxidant Therapies on Pancreatic β-cell Dysfunction: Results from in Vitro and in Vivo Studies. Curr Med Chem 2021; 28:1328-1346. [PMID: 32452321 DOI: 10.2174/0929867327666200526135642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxidative stress is a hallmark of many diseases. A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in pancreatic β-cells dysfunction and apoptosis, as well as in the development and progression of diabetic complications. Considering the vulnerability of pancreatic β-cells to oxidative damage, the induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed to protect pancreatic β-cells from damage. OBJECTIVES The present review aims to provide evidence of the effect of oxidative stress and antioxidant therapies on pancreatic β-cell function, based on in vitro and in vivo studies. METHODS The MEDLINE and EMBASE databases were searched to retrieve available data. RESULTS Due to poor endogenous antioxidant mechanisms, pancreatic β-cells are extremely sensitive to Reactive Oxygen Species (ROS). Many natural extracts have been tested in vitro in pancreatic β-cell lines in terms of their antioxidant and diabetes mellitus ameliorating effects, and the majority of them have shown a dose-dependent protective role. On the other hand, there is relatively limited evidence regarding the in vitro antioxidant effects of antidiabetic drugs on pancreatic β -cells. Concerning in vivo studies, several natural extracts have shown beneficial effects in the setting of diabetes by decreasing blood glucose and lipid levels, increasing insulin sensitivity, and by up-regulating intrinsic antioxidant enzyme activity. However, there is limited evidence obtained from in vivo studies regarding antidiabetic drugs. CONCLUSION Antioxidants hold promise for developing strategies aimed at the prevention or treatment of diabetes mellitus associated with pancreatic β-cells dysfunction, as supported by in vitro and in vivo studies. However, more in vitro studies are required for drugs.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Anastasios Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Chrysi Koliaki
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ourania A Kosta
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| |
Collapse
|
11
|
Rababa'h AM, Alzoubi KH, Baydoun S, Khabour OF. Levosimendan Prevents Memory Impairment Induced by Diabetes in Rats: Role of Oxidative Stress. Curr Alzheimer Res 2020; 16:1300-1308. [PMID: 31894746 DOI: 10.2174/1567205017666200102153239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/24/2019] [Accepted: 12/29/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Levosimendan is a calcium sensitizer and phosphodiesterase inhibitor that has potent antioxidant and anti-inflammatory activities. OBJECTIVES The aim of the current study is to investigate the potential protective effect of levosimendan on learning and memory impairment induced by diabetes. METHODS Adult Wister rats were randomly divided into four groups (n=15 rats/group): control, levosimendan, streptozotocin (STZ) induced diabetes, and levosimendan-STZ diabetes. Upon confirmation of the success of the STZ diabetic model, intraperitoneal levosimendan (100µg/kg/week) was administrated to the assigned groups for 4 weeks. Then, the radial arm water maze was used to evaluate spatial learning and memory. Oxidative stress biomarkers and brain-derived neurotrophic factor were evaluated in hippocampal tissues. RESULTS The results showed that Diabetes Mellitus (DM) impaired both short- and long- term memory (P<0.01), while levosimendan protected the animals from memory impairment. In addition, levosimendan prevented DM-induced reduction in the hippocampal levels of superoxide dismutase and glutathione peroxidase (P<0.05). Moreover, the administration of levosimendan prevented DM-induced increases in hippocampal thiobarbituric acid reactive substances level (P<0.05). Furthermore, levosimendan restored the ratio of reduced/oxidized glutathione (GSH/GSSG) in DM rats to that observed in the control group (P<0.05). CONCLUSIONS In summary, DM induced learning and memory impairment, and treatment with levosimendan impeded this impairment probably through preventing alterations in the antioxidant system in the hippocampus.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sandy Baydoun
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
12
|
Pogribna M, Koonce NA, Mathew A, Word B, Patri AK, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology 2020; 14:534-553. [PMID: 32031460 DOI: 10.1080/17435390.2020.1723730] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Nanoscale titanium dioxide (TiO2) is manufactured in wide scale, with a range of applications in consumer products. Significant toxicity of TiO2 nanoparticles has, however, been recognized, suggesting considerable risk to human health. To evaluate fully their toxicity, assessment of the epigenetic action of these nanoparticles is critical. However, only few studies are available examining capability of nanoparticles to alter epigenetic integrity. In the present study, the effect of TiO2 nanoparticles exposure on DNA methylation, a major epigenetic mechanism, was investigated in in vitro cellular model systems. A panel of cells relevant to portals of human exposure (Caco-2 (colorectal), HepG2 (liver), NL20 (lung), and A-431 (skin)) was exposed to TiO2 nanoparticles to assess effects on global methylation, gene-specific methylation, and expression levels of DNA methyltransferases, MBD2, and UHRF1. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Degree of promoter methylation across a defined panel of genes was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNMT1, DNMT3a, DNMT3b, MBD2, and URHF1 was quantified by qRT-PCR. Decrease in global DNA methylation in cell lines Caco-2, HepG2, and A-431 exposed to TiO2 nanoparticles was shown. Across four cell lines, eight genes (CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, and BNIP3) were identified in which promotors were methylated after exposure. Altered expression of these genes is associated with disease etiology. The results also revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a, DNMT3b, MBD2, and UHRF1) in TiO2 exposed cells, which was cell type dependent. Findings from this study clearly demonstrate the impact of TiO2 nanoparticles exposure on DNA methylation in multiple cell types, supporting potential involvement of this epigenetic mechanism in the toxicity of TiO2 nanoparticles. Hence for complete assessment of potential risk from nanoparticle exposure, epigenetic studies are critical.
Collapse
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Nathan A Koonce
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Ammu Mathew
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Anil K Patri
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
13
|
Liu J, Chen S, Biswas S, Nagrani N, Chu Y, Chakrabarti S, Feng B. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs. Physiol Rep 2020; 8:e14331. [PMID: 32026628 PMCID: PMC7002531 DOI: 10.14814/phy2.14331] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic complications cause significant morbidity and mortality. Dysfunction of vascular endothelial cells (ECs), caused by oxidative stress, is a main mechanism of cellular damage. Oxidative stress accelerates EC senescence and DNA damage. In this study, we examined the role of mitochondrial sirtuins (SIRTs) in glucose-induced oxidative stress, EC senescence, and their regulation by miRNAs. Human retinal microvascular endothelial cells (HRECs) were exposed to 5 mmol/L (normoglycemia; NG) or 25 mmol/L glucose (hyperglycemia; HG) with or without transfection of miRNA antagomirs (miRNA-1, miRNA-19b, and miRNA-320; specific SIRT-targeting miRNAs). Expressions of SIRT3, 4 and 5 and their targeting miRNAs were examined using qRT-PCR and ELISAs were used to study SIRT proteins. Cellular senescence was investigated using senescence-associated β-gal stain; while, oxidative stress and mitochondrial alterations were examined using 8-OHdG staining and cytochrome B expressions, respectively. A streptozotocin-induced diabetic mouse model was also used and animal retinas and hearts were collected at 2 months of diabetes. In HRECs, HG downregulated the mRNAs of SIRTs, while SIRT-targeting miRNAs were upregulated. ELISA analyses confirmed such downregulation of SIRTs at the protein level. HG additionally caused early senescence, endothelial-to-mesenchymal transition and oxidative DNA damage in ECs. These changes were prevented by the transfection of specific miRNA antagomirs and by resveratrol. Retinal and cardiac tissues from diabetic mice also showed similar reductions of mitochondrial SIRTs. Collectively, these findings demonstrate a novel mechanism in which mitochondrial SIRTs regulate glucose-induced cellular aging through oxidative stress and how these SIRTs are regulated by specific miRNAs. Identifying such mechanisms may lead to the discovery of novel treatments for diabetic complications.
Collapse
Affiliation(s)
- Jieting Liu
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Mudanjiang Medical UniversityHeilongjiangPR China
| | - Shali Chen
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Saumik Biswas
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Niharika Nagrani
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Yanhui Chu
- Mudanjiang Medical UniversityHeilongjiangPR China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Biao Feng
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
14
|
Novoselova EG, Glushkova OV, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Sharapov MG, Novoselov VI, Fesenko EE. Peroxiredoxin 6 Attenuates Alloxan-Induced Type 1 Diabetes Mellitus in Mice and Cytokine-Induced Cytotoxicity in RIN-m5F Beta Cells. J Diabetes Res 2020; 2020:7523892. [PMID: 32908936 PMCID: PMC7474389 DOI: 10.1155/2020/7523892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes is associated with the destruction of pancreatic beta cells, which is mediated via an autoimmune mechanism and consequent inflammatory processes. In this article, we describe a beneficial effect of peroxiredoxin 6 (PRDX6) in a type 1 diabetes mouse model. The main idea of this study was based on the well-known data that oxidative stress plays an important role in pathogenesis of diabetes and its associated complications. We hypothesised that PRDX6, which is well known for its various biological functions, including antioxidant activity, may provide an antidiabetic effect. It was shown that PRDX6 prevented hyperglycemia, lowered the mortality rate, restored the plasma cytokine profile, reversed the splenic cell apoptosis, and reduced the β cell destruction in Langerhans islets in mice with a severe form of alloxan-induced diabetes. In addition, PRDX6 protected rat insulinoma RIN-m5F β cells, cultured with TNF-α and IL-1β, against the cytokine-induced cytotoxicity and reduced the apoptotic cell death and production of ROS. Signal transduction studies showed that PRDX6 prevented the activation of NF-κB and c-Jun N-terminal kinase signaling cascades in RIN-m5F β cells cultured with cytokines. In conclusion, there is a prospect for therapeutic application of PRDX6 to delay or even prevent β cell apoptosis in type 1 diabetes.
Collapse
Affiliation(s)
- Elena G. Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Olga V. Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Sergey M. Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Maxim O. Khrenov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Svetlana B. Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Tatyana V. Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Mars G. Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Vladimir I. Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Evgeny E. Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
15
|
Sun Q, Zhang BY, Zhang PA, Hu J, Zhang HH, Xu GY. Downregulation of glucose-6-phosphate dehydrogenase contributes to diabetic neuropathic pain through upregulation of toll-like receptor 4 in rats. Mol Pain 2019; 15:1744806919838659. [PMID: 30838902 PMCID: PMC6487759 DOI: 10.1177/1744806919838659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background and aim Diabetic neuropathic pain is a refractory and disabling complication of diabetes mellitus. The pathogenesis of the diabetic neuropathic pain is still unclear, and treatment is insufficient. The aim of this study is to investigate the roles of glucose-6-phosphate dehydrogenase (G6PD) and toll-like receptor 4 (TLR4) in neuropathic pain in rats with diabetes. Methods Type 1 diabetes model was induced by intraperitoneal injection of streptozotocin (STZ, 75 mg/kg) in adult female Sprague-Dawley rats. Paw withdrawal threshold and paw withdrawal latency of rats were measured by von Frey filaments and thermal radiation, respectively. The expressions of G6PD and TLR4 in L4-L6 dorsal root ganglions (DRGs) were measured by western blotting and quantitative real-time polymerase chain reaction analysis. Fluorescent immunohistochemistry was employed to detect expressions of G6PD and TLR4 and co-location of G6PD with TLR4. Results The mRNA and protein expression levels of G6PD in DRGs were significantly decreased in diabetic rats when compared with age-matched control rats. Upregulation of G6PD by intrathecal injection of G6PD overexpression adenovirus markedly attenuated hindpaw pain hypersensitivity of diabetic rats. The mRNA and protein expression levels of TLR4 in DRGs of diabetic rats were significantly increased when compared with control rats. Intrathecal injection of TLR4-selective inhibitor CLI-095 attenuated diabetic pain in dose- and time-dependent manners. Furthermore, G6PD and TLR4 were co-localized in DRG neurons. Intrathecal injection of G6PD overexpression adenovirus greatly reduced TLR4 expression, while intrathecal injection of CLI-095 had no significant effect on G6PD expression in diabetic rats. Conclusions Our results suggest that decrease in G6PD expression was involved in diabetic peripheral neuropathic pain, which was most likely through upregulation of TLR4 expression in the DRGs of rats.
Collapse
Affiliation(s)
- Qian Sun
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China.,2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Bing-Yu Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Ji Hu
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Hong-Hong Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
16
|
Biswas S, Chakrabarti S. Increased Extracellular Matrix Protein Production in Chronic Diabetic Complications: Implications of Non-Coding RNAs. Noncoding RNA 2019; 5:E30. [PMID: 30909482 PMCID: PMC6468528 DOI: 10.3390/ncrna5010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Management of chronic diabetic complications remains a major medical challenge worldwide. One of the characteristic features of all chronic diabetic complications is augmented production of extracellular matrix (ECM) proteins. Such ECM proteins are deposited in all tissues affected by chronic complications, ultimately causing organ damage and dysfunction. A contributing factor to this pathogenetic process is glucose-induced endothelial damage, which involves phenotypic transformation of endothelial cells (ECs). This phenotypic transition of ECs, from a quiescent state to an activated dysfunctional state, can be mediated through alterations in the synthesis of cellular proteins. In this review, we discussed the roles of non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in such processes. We further outlined other epigenetic mechanisms regulating the biogenesis and/or function of non-coding RNAs. Overall, we believe that better understanding of such molecular processes may lead to the development of novel biomarkers and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| |
Collapse
|
17
|
Ji S, Zhou W, Li X, Liu S, Wang F, Li X, Zhao T, Ji G, Du J, Hao A. Maternal hyperglycemia disturbs neocortical neurogenesis via epigenetic regulation in C57BL/6J mice. Cell Death Dis 2019; 10:211. [PMID: 30824686 PMCID: PMC6397163 DOI: 10.1038/s41419-019-1438-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
Offspring of mothers with hyperglycemia during pregnancy have a higher incidence of long-term neuropsychiatric disorders than offspring from a normal pregnancy, indicating that neocortical neurogenesis might be affected by maternal hyperglycemia. A paucity of study evaluating the effects of hyperglycemia on neocortical neurogenetic differentiation of neural stem cells, and the mechanism remains unclear. We sought to investigate the the roles and possible molecular mechanism of maternal hyperglycemia on neocortical neurogenetic differentiation of neural stem cells. We established a mouse model of a hyperglycemic pregnancy to study effects of intrauterine exposure to maternal hyperglycemia on neocortical neurogenesis. We observed morphological changes in the neocortex and detected the neurogenetic differentiation of neural stem cells in offspring affected by high glucose levels. We investigated the regulatory network between epigenetic modification and transcription factors in differentiated neural stem cells under hyperglycemic conditions. Maternal hyperglycemia disturbs neocortical lamination in some non-malformed offspring. Our results suggested that hyperglycemia altered the early-born neuron fate and the distribution of newborn neurons in deep layers by promoting the earlier differentiation of neural stem cells. Altered histone acetylation and its regulation on the transcription of proneural genes might be correlated to the disrupted differentiation of neural stem cells and altered distribution of newborn projection neurons in the neocortex. Our data raised the possibility that maternal hyperglycemia in pregnancy disturbs the laminar distribution of neocortical projection neurons in some non-malformed offspring via epigenetic regulation on neural stem cell differentiation and the birthdate of neocortical neurons.
Collapse
Affiliation(s)
- Shufang Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xian Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Foot and Ankle Surgery Center of Shandong University and Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Tiantian Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Guangyu Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Pedroza A, Ferreira DS, Santana DF, da Silva PT, de Aguiar Júnior FCA, Sellitti DF, Lagranha CJ. A maternal low-protein diet and neonatal overnutrition result in similar changes to glomerular morphology and renal cortical oxidative stress measures in male Wistar rats. Appl Physiol Nutr Metab 2019; 44:164-171. [DOI: 10.1139/apnm-2018-0288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a strong correlation between inadequate gestational and postpartum nutrition and the occurrence of cardiovascular diseases. The present study investigated the effects of a maternal low-protein diet and neonatal overfeeding on the oxidative balance and morphology of the renal cortex of male Wistar rats. Two independent protocols were used. First, pregnant Wistar rats received diets containing either 17% (normal protein) or 8% (low protein) casein throughout pregnancy and lactation. Second, the litter size was reduced by one-third on the third postnatal day to induce overnourishment in offspring. At 30 days, the oxidative balance and morphology of the renal cortex were analyzed. There was a small but significant increase in renal corpuscle area in the low protein (LP, 5%) and overnutrition (ON, 8%) groups. Glomerular tuft area also increased in LP (6%) and ON (9%), as did glomerular cellularity (LP, +11%; ON, +12%). In the oxidative stress analyses, both nutritional insults significantly elevated lipid peroxidation (LP, +18%; ON, +135%) and protein oxidation (LP, +40%; ON, +65%) while significantly reducing nonenzymatic antioxidant defenses, measured as reduced glutathione (LP, –32%; ON, –45%) and total thiol content (LP, –28%; ON, –24%). We also observed a decrease in superoxide dismutase (LP, –78%; ON, –51%), catalase (LP, –18%; ON, –61%), and glutathione S-transferase (only in ON, –44%) activities. Our results demonstrate that nutritional insults, even those of a very different nature, during perinatal development can result in similar changes in oxidative parameters and glomerular morphology in the renal cortex.
Collapse
Affiliation(s)
- Anderson Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, 55608-680, Brazil
| | - Diorginis Soares Ferreira
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, 55608-680, Brazil
| | - David F. Santana
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, 55608-680, Brazil
| | - Pedro Thiago da Silva
- Department of Biology, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, 55608-680, Brazil
| | | | - Donald F. Sellitti
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD 20814-4799, USA
| | - Claudia J. Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, 55608-680, Brazil
| |
Collapse
|
19
|
Curcumin restores hepatic epigenetic changes in propylthiouracil(PTU) Induced hypothyroid male rats: A study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 2019; 123:169-180. [DOI: 10.1016/j.fct.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|
20
|
Wu L, Zhou X, Li T, He J, Huang L, Ouyang Z, He L, Wei T, He Q. Improved Sp1 and Betaine Homocysteine-S-Methyltransferase Expression and Homocysteine Clearance Are Involved in the Effects of Zinc on Oxidative Stress in High-Fat-Diet-Pretreated Mice. Biol Trace Elem Res 2018; 184:436-441. [PMID: 29204947 DOI: 10.1007/s12011-017-1214-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Zinc plays a role in alleviating oxidative stress. However, the related mechanisms remain to be further elucidated. The present study was conducted to investigate whether the recovery of oxidative stress in high-fat-diet (HFD)-pretreated mice was affected by zinc. Male mice received either an HFD or a low-fat-diet (LFD) for 8 weeks. Then, the mice fed with HFD and LFD were both assigned to either a control diet (30 mg zinc, ZD) or a no-added zinc diet (NZD) for an additional 4 weeks. The results showed that after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest plasma glucose and insulin concentrations, while had the lowest CuZn-SOD and glutathione concentrations. Moreover, after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest hepatic ROS and homocysteine concentrations, while had the lowest glutathione and methionine concentrations. Furthermore, the HFD-pretreated mice fed with NZD for 4 weeks had the lowest gene and protein expression of betaine homocysteine-S-methyltransferase (BHMT), cystathionine β-synthase, and Sp1. The results suggested that zinc was critical for oxidative stress alleviation and homocysteine clearance in HFD-pretreated mice. It was further elucidated that improved Sp1 and BHMT expression are involved in the effects of zinc on oxidative stress.
Collapse
Affiliation(s)
- Li Wu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China.
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China
| | - Juyun He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Linli Huang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zicheng Ouyang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China
| | - Tao Wei
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China.
| |
Collapse
|
21
|
Biswas S, Thomas AA, Chakrabarti S. LncRNAs: Proverbial Genomic "Junk" or Key Epigenetic Regulators During Cardiac Fibrosis in Diabetes? Front Cardiovasc Med 2018; 5:28. [PMID: 29670886 PMCID: PMC5893820 DOI: 10.3389/fcvm.2018.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in a multitude of biological processes. Recent evidences demonstrate potential pathogenetic implications of lncRNAs in diabetic cardiomyopathy (DCM); however, the majority of lncRNAs have not been comprehensively characterized. While the precise molecular mechanisms underlying the functions of lncRNAs remain to be deciphered in DCM, emerging data in other pathophysiological conditions suggests that lncRNAs can have versatile features such as genomic imprinting, acting as guides for certain histone-modifying complexes, serving as scaffolds for specific molecules, or acting as molecular sponges. In an effort to better understand these features of lncRNAs in the context of DCM, our review will first summarize some of the key molecular alterations that occur during fibrosis in the diabetic heart (extracellular proteins and endothelial-to-mesenchymal transitioning), followed by a review of the current knowledge on the crosstalk between lncRNAs and major epigenetic mechanisms (histone methylation, histone acetylation, DNA methylation, and microRNAs) within this fibrotic process.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Anu Alice Thomas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
22
|
Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018; 1:7-13. [PMID: 29863179 PMCID: PMC5975374 DOI: 10.1002/ame2.12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Collapse
Affiliation(s)
- Liang‐jun Yan
- Department of Pharmaceutical SciencesUNT System College of PharmacyUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
23
|
Kunkemoeller B, Kyriakides TR. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition. Antioxid Redox Signal 2017; 27:823-838. [PMID: 28699352 PMCID: PMC5647483 DOI: 10.1089/ars.2017.7263] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. CRITICAL ISSUES There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. FUTURE DIRECTIONS Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.
Collapse
Affiliation(s)
- Britta Kunkemoeller
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
| | - Themis R Kyriakides
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
- 3 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| |
Collapse
|
24
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
25
|
Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel) 2017; 6:antiox6020024. [PMID: 28353636 PMCID: PMC5488004 DOI: 10.3390/antiox6020024] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules, contributing to the oxidative damage of cells and tissues. This consequently contributes to the development of several chronic diseases. In particular, zinc is one of the most relevant minerals to human health, because of its antioxidant properties. This review aims to provide updated information about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system. In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the protection against oxidative stress in several diseases.
Collapse
|
26
|
Neelam K, Goenadi CJ, Lun K, Yip CC, Au Eong KG. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Br J Ophthalmol 2017; 101:551-558. [PMID: 28232380 DOI: 10.1136/bjophthalmol-2016-309814] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/21/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) is one of the most important microvascular complications of diabetes and remains the leading cause of blindness in the working-age individuals. The exact aetiopathogenesis of DR remains elusive despite major advances in basic science and clinical research. Oxidative damage as one of the underlying causes for DR is increasingly being recognised. In humans, three hydroxycarotenoids, lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ), accumulate at the central retina (to the exclusion of all other dietary carotenoids), where they are collectively known as macular pigment. These hydroxycarotenoids by nature of their biochemical structure and function help neutralise reactive oxygen species, and thereby, prevent oxidative damage to the retina (biological antioxidants). Apart from their key antioxidant function, evidence is emerging that these carotenoids may also exhibit neuroprotective and anti-inflammatory function in the retina. Since the preliminary identification of hydroxycarotenoid in the human macula by Wald in the 1940s, there has been astounding progress in our knowledge of the role of these carotenoids in promoting ocular health. While the Age-Related Eye Disease Study 2 has established a clinical benefit for L and Z supplements in patients with age-related macular degeneration, the role of these carotenoids in other retinal diseases potentially linked to oxidative damage remains unclear. In this article, we comprehensively review the literature germane to the putative protective role of two hydroxycarotenoids, L and Z, in the pathogenesis of DR.
Collapse
Affiliation(s)
- Kumari Neelam
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Catherina J Goenadi
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Katherine Lun
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Chee Chew Yip
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Kah-Guan Au Eong
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore International Eye Cataract Retina Centre, Mount Elizabeth Medical Centre, Singapore, Singapore.,International Eye Cataract Retina Centre, Farrer Park Medical Centre, Singapore, Singapore
| |
Collapse
|
27
|
Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 2016; 59:1021-9. [PMID: 26910463 PMCID: PMC4826795 DOI: 10.1007/s00125-016-3897-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is caused by the immunological destruction of pancreatic beta cells. Preclinical and clinical data indicate that there are changes in beta cell function at different stages of the disease, but the fate of beta cells has not been closely studied. We studied how immune factors affect the function and epigenetics of beta cells during disease progression and identified possible triggers of these changes. METHODS We studied FACS sorted beta cells and infiltrating lymphocytes from NOD mouse and human islets. Gene expression was measured by quantitative real-time RT-PCR (qRT-PCR) and methylation of the insulin genes was investigated by high-throughput and Sanger sequencing. To understand the role of DNA methyltransferases, Dnmt3a was knocked down with small interfering RNA (siRNA). The effects of cytokines on methylation and expression of the insulin gene were studied in humans and mice. RESULTS During disease progression in NOD mice, there was an inverse relationship between the proportion of infiltrating lymphocytes and the beta cell mass. In beta cells, methylation marks in the Ins1 and Ins2 genes changed over time. Insulin gene expression appears to be most closely regulated by the methylation of Ins1 exon 2 and Ins2 exon 1. Cytokine transcription increased with age in NOD mice, and these cytokines could induce methylation marks in the insulin DNA by inducing methyltransferases. Similar changes were induced by cytokines in human beta cells in vitro. CONCLUSIONS/INTERPRETATION Epigenetic modification of DNA by methylation in response to immunological stressors may be a mechanism that affects insulin gene expression during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Jinxiu Rui
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Songyan Deng
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Jasmin Lebastchi
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Pamela L Clark
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | | | - Kevan C Herold
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA.
- Department Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Wang X, Li W, Kong D. Cyclocarya paliurus extract alleviates diabetic nephropathy by inhibiting oxidative stress and aldose reductase. Ren Fail 2016; 38:678-85. [PMID: 26956218 DOI: 10.3109/0886022x.2016.1155394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diabetes is the leading cause of end-stage renal disease because diabetic nephropathy (DN) develops in 30-40% of the patients. This study investigated the protective effect of the aqueous extract from leaves of Cyclocarya paliurus (Batal.) Iljinsk (ACP) on DN by inhibiting oxidative stress and aldose reductase (AR) activity. ACP was obtained by hot water extraction. The in vitro antioxidant capability and AR inhibition of ACP were investigated by employing various established systems. DN rats were used to assess the reno-protective effect of ACP. Results showed that the polysaccharide and total polyphenol contents of ACP were (479.3 ± 19.8) mg/g and (38.3 ± 2.3) mg/g, respectively. ACP exhibited strong antioxidant ability and AR inhibition in vitro and in vivo; furthermore, the inhibition mechanism of ACP in AR takes the form of uncompetitive inhibition. In addition, the animals treated with ACP showed significant amelioration of blood glucose, serum biomarkers related to renal function, urinary protein excretion, and histopathological changes in the kidney. The results suggest that ACP has a potential role in ameliorating renal damage involved in DN.
Collapse
Affiliation(s)
- XiaoHong Wang
- a College of Pharmacy , Weifang Medical University , Weifang , China
| | - WanZhong Li
- a College of Pharmacy , Weifang Medical University , Weifang , China
| | - Deng Kong
- b College of Clinical Medicine , Weifang Medical University , Weifang , China
| |
Collapse
|
29
|
Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. miR-200b Mediates Endothelial-to-Mesenchymal Transition in Diabetic Cardiomyopathy. Diabetes 2016; 65:768-79. [PMID: 26718496 DOI: 10.2337/db15-1033] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 11/13/2022]
Abstract
Hyperglycemia-induced endothelial injury is a key pathogenetic factor in diabetic cardiomyopathy. Endothelial injury may lead to a phenotypic change (i.e., endothelial-to-mesenchymal transition [EndMT]), causing cardiac fibrosis. Epigenetic mechanisms, through specific microRNA, may regulate such a process. We investigated the mechanisms for such changes in cardiac microvascular endothelial cells and in the heart of genetically engineered mice with chemically induced diabetes. Cardiac tissues and isolated mouse heart endothelial cells (MHECs) from animals with or without endothelial-specific overexpression of miR-200b, with or without streptozotocin-induced diabetes, were examined at the mRNA and protein levels for endothelial and mesenchymal markers. Expression of miR-200b and its targets was quantified. Cardiac functions and structures were analyzed. In the hearts of wild-type diabetic mice, EndMT was observed, which was prevented in the miR-200b transgenic diabetic mice. Expression of specific markers such as vascular endothelial growth factor, zinc finger E-box-binding homeobox, transforming growth factor-β1, and p300 were increased in the hearts of diabetic mice and were prevented following miR-200b overexpression. MHECs showed similar changes. miR-200b overexpression also prevented diabetes-induced cardiac functional and structural changes. These data indicate that glucose-induced EndMT in vivo and in vitro in the hearts of diabetic mice is possibly mediated by miR-200b and p300.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada Medical Research Center, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Yanan Cao
- Medical Research Center, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Xuran Chu
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Yanhui Chu
- Medical Research Center, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Zhang Y, Dong H, Wang M, Zhang J. Quercetin Isolated from Toona sinensis Leaves Attenuates Hyperglycemia and Protects Hepatocytes in High-Carbohydrate/High-Fat Diet and Alloxan Induced Experimental Diabetic Mice. J Diabetes Res 2016; 2016:8492780. [PMID: 27975068 PMCID: PMC5126429 DOI: 10.1155/2016/8492780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
The development of diabetes mellitus is related to oxidant stress induced by a high carbohydrate/high-fat diet (HFD). Quercetin, as a major bioactive component in Toona sinensis leaves (QTL), is a natural antioxidant. However, the exact mechanism by which QTL ameliorate diabetes mellitus is still unknown. In this study, we investigated the hypoglycemic effects and hepatocytes protection of QTL on HFD and alloxan induced diabetic mice. Intragastric administration of QTL significantly reduced body weight gain, serum glucose, insulin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase, and aspartate aminotransferase serum levels compared to those of diabetic mice. Furthermore, it significantly attenuated oxidative stress, as determined by lipid peroxidation, nitric oxide content, and inducible nitric oxide synthase activity and as a result attenuated liver injury. QTL also significantly suppressed the diabetes-induced activation of the p65/NF-κB and ERK1/2/MAPK pathways, as well as caspase-9 and caspase-3 levels in liver tissues of diabetic mice. Finally, micrograph analysis of liver samples showed decreased cellular organelle injury in hepatocytes of QTL treated mice. Taken together, QTL can be viewed as a promising dietary agent that can be used to reduce the risk of diabetes mellitus and its secondary complications by ameliorating oxidative stress in the liver.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- *Jingfang Zhang:
| |
Collapse
|
31
|
Abstract
Type 2 diabetes has become a major health issue worldwide. Chronic hyperglycemia induces a low-grade inflammation that, on top of other mechanisms, leads to endothelial dysfunction. Mounting evidence suggests that DNA methylation, post-translational modifications of histones, and long non-coding RNAs play an important role in the initiation, maintenance, and progression of both macro- and micro-vascular complications of diabetes. Long-term exposure to hyperglycemia induces epigenetic changes that could become irreversible, a phenomenon known as the 'metabolic memory.' Whether epigenetic-based therapies could be used to slow or limit the progression of cardiovascular disease remains unclear. While non-coding RNAs are currently investigated as potential biomarkers that predict diabetic cardiovascular disease incidence and progression, their therapeutic role is only hypothetical. In this review, we highlight the latest findings in experimental and clinical studies relevant to epigenetics and cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College, Doha, Qatar
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Jessica Hoarau-Véchot
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Khalid Fakhro
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- Sidra Medical and Research Center, Doha, Qatar
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charbel Abi Khalil
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, USA.
- Department of Medicine, Weill Cornell Medical College, Doha, Qatar.
| |
Collapse
|
32
|
Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015; 48:40-61. [PMID: 25975734 DOI: 10.1016/j.preteyeres.2015.05.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy. Due to increased production of cytosolic reactive oxygen species, mitochondrial membranes are damaged and their membrane potentials are impaired, and complex III of the electron transport system is compromised. Suboptimal enzymatic and nonenzymatic antioxidant defense system further aids in the accumulation of free radicals. As the duration of the disease progresses, mitochondrial DNA (mtDNA) is damaged and the DNA repair system is compromised, and due to impaired transcription of mtDNA-encoded proteins, the integrity of the electron transport system is encumbered. Due to decreased mtDNA biogenesis and impaired transcription, superoxide accumulation is further increased, and the vicious cycle of free radicals continues to self-propagate. Diabetic milieu also alters enzymes responsible for DNA and histone modifications, and various genes important for mitochondrial homeostasis, including mitochondrial biosynthesis, damage and antioxidant defense, undergo epigenetic modifications. Although antioxidant administration in animal models has yielded encouraging results in preventing diabetic retinopathy, controlled longitudinal human studies remain to be conducted. Furthermore, the role of epigenetic in mitochondrial homeostasis suggests that regulation of such modifications also has potential to inhibit/retard the development of diabetic retinopathy.
Collapse
|
33
|
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2015; 22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Wound healing is a complex and systematic tissue level response to mechanical and chemical injuries that may cause the release of growth factors, cytokines, and chemokines by damaged tissues. For the complex features of these restorative processes, it is a crucial challenge to identify the relevant cell types and biochemical pathways that are involved in wound healing. Epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding regulatory RNA editing, play important roles in many biological processes, including cell proliferation, migration and differentiation, signal pathway activation or inhibition, and cell senescence. Epigenetic regulations can coordinately control a considerable subset of known repair genes and thus serve as master regulators of wound healing. An abundance of evidence has also shown that epigenetic modifications participate in the short- and long-term control of crucial gene expression and cell signal transduction that are involved in the healing process. These data provide a foundation for probable epigenetic-based therapeutic strategies that are aimed at stimulating tissue regeneration. This review describes the epigenetic alterations in different cellular types at injury sites, induced signals, and resulting tissue repair. With the increased interest in the epigenetics of wound and repair processes, this field will soon begin to flourish.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
34
|
Type 2 diabetes mellitus and risk of oral cancer and precancerous lesions: a meta-analysis of observational studies. Oral Oncol 2015; 51:332-40. [PMID: 25650271 DOI: 10.1016/j.oraloncology.2015.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Associations between type 2 diabetes mellitus (type 2 DM) and risk of oral cancer and precancerous lesions have been reported with controversial findings. We performed a meta-analysis to explore these associations. METHODS We identified studies by a literature search of MEDLINE and EMBASE through May 31, 2014, and by searching the reference lists of pertinent articles. Summary relative risk (SRR) with 95% confidence interval (CI) was calculated with a random-effects model. Between- study heterogeneity was assessed using the Cochran's Q and I(2) statistics. RESULTS A total of 13 studies (4 case-control and 9 cohort studies) on the association between type 2 DM and oral cancer were included. Overall analysis found that compared with non-diabetic individuals, individuals with type 2 DM had a significantly elevated incidence of oral cancer (SRR=1.15, 95% CI: 1.02-1.29; Pheterogeneity=0.277, I(2)=15.4%; 10 studies). Subgroup analyses found that duration of follow-up (⩾11years) significantly altered this positive association. Type 2 DM was associated with increased oral cancer mortality (SRR=1.41, 95% CI: 1.16-1.72; 4 studies). Meta-analysis of the four case-control studies showed a positive association between type 2 DM and risk of oral precancerous lesions (SRR=1.85, 95%CI: 1.23-2.80; Pheterogeneity=0.038, I(2)=57.5%). No significant public bias was found across these studies. CONCLUSIONS These findings of this meta-analysis indicate that compared with non-diabetic individuals, individuals with type 2 DM have an elevated risk of oral cancer and precancerous lesions development.
Collapse
|
35
|
Stefani GP, Baldissera G, Nunes RB, Heck TG, Rhoden CR. Metabolic Syndrome and DNA Damage: The Interplay of Environmental and Lifestyle Factors in the Development of Metabolic Dysfunction. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojemd.2015.57009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014; 37:1929-40. [PMID: 25325492 DOI: 10.5665/sleep.4244] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI
| | | | - Aniko Szabo
- Department of Population Health, The Medical College of Wisconsin, Milwaukee, WI
| | - Neil Hogg
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
37
|
Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S. Reprint of: miRNA-1 regulates endothelin-1 in diabetes. Life Sci 2014; 118:275-80. [PMID: 25307117 DOI: 10.1016/j.lfs.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 12/23/2013] [Indexed: 01/15/2023]
Abstract
AIMS MicroRNAs (miRNAs) play important roles in several biological processes. In this study, we investigated the role of miR-1, an endothelin-1 (ET-1) targeting miRNA, in endothelial cells (ECs) and tissues of diabetic animals. ET-1 is known to be of pathogenetic significance in several chronic diabetic complications. MAIN METHODS PCR array was used to identify alterations of miRNA expression in ECs exposed to glucose. miR-1 expression was validated by TaqMan real-time PCR assay. Human retinal ECs (HRECs) and human umbilical vein ECs (HUVECs) exposed to various glucose levels with or without miR-1 mimic transfection, and tissues from streptozotocin-induced diabetic animals after two months of follow-up, were examined for miR-1 expression, as well as ET-1 and fibronectin (FN) mRNA and protein levels. KEY FINDINGS Array analyses showed glucose-induced alterations of 125 miRNAs (out of 381) in ECs exposed to 25 mM glucose compared to 5 mM glucose. Fifty-one miRNAs were upregulated and 74 were downregulated. 25 mM glucose decreased miR-1 expression and increased ET-1 mRNA and protein levels. miR-1 mimic transfection prevented HG-induced ET-1 upregulation. Furthermore, glucose induced upregulation of FN, which is mediated partly by ET-1, was also prevented by such transfection. Diabetic animals showed decreased miR-1 expression in the retina, heart and kidneys. In parallel, ET-1 mRNA expressions were increased in these tissues of diabetic animals, in association with upregulation of FN. SIGNIFICANCE These results indicate a novel glucose-induced mechanism of tissue damage, in which miR-1 regulates ET-1 expressions in diabetes. Identifying such mechanisms may lead to RNA based treatment for diabetic complications.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, Western University, London, ON, Canada
| | - Yanan Cao
- Department of Pathology, Western University, London, ON, Canada; Mudanjiang Medical University, China
| | - Shali Chen
- Department of Pathology, Western University, London, ON, Canada
| | - Michael Ruiz
- Department of Pathology, Western University, London, ON, Canada
| | | |
Collapse
|
38
|
Adeghate E, Fehér E, Kalász H. Evaluating the Phase II drugs currently under investigation for diabetic neuropathy. Expert Opin Investig Drugs 2014; 24:1-15. [PMID: 25171371 DOI: 10.1517/13543784.2014.954033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: The worldwide number of patients suffering from diabetes mellitus (DM) is projected to approach 552 million by the year 2030. As diabetic neuropathy (DN) is present in 8% of new diabetic patients at the time of diagnosis and occurs in ∼ 50% of all patients with established DM, the number of patients who will develop painful DN will also increase. The suboptimal efficacies of currently approved drugs have prompted investigators to develop new therapeutic agents for the management of painful DN. Areas covered: In this review, the authors present and elucidate the current status of drugs under investigation for the treatment of painful DN. A short synopsis of currently approved drugs is also given. Literature information and data analysis were retrieved from PubMed, the American Diabetes and Neurological Associations Websites and ClinicalTrials.gov. The keywords used in the search included: DM, DN, painful diabetic neuropathy. Expert opinion: In addition to treating the pain associated with DN, the actual causes of the disease should also be targeted for improved management. It is hoped that drugs which improve vascular blood flow, induce neural regeneration, reduce hyperglycemia, oxidative stress and inflammation can be more effective for the overall treatment of painful DN.
Collapse
Affiliation(s)
- Ernest Adeghate
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Anatomy , P.O Box 17666, Al Ain , UAE +971 3 7672033 ;
| | | | | |
Collapse
|
39
|
Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105:164-75. [PMID: 24814876 DOI: 10.1016/j.diabres.2014.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 12/24/2022]
Abstract
There is growing evidence that epigenetic regulation of gene expression including post-translational histone modifications (PTHMs), DNA methylation and microRNA (miRNA)-regulation of mRNA translation could play a crucial role in the development of chronic, diabetic complications. Hyperglycemia can induce an abnormal action of PTHMs and DNA methyltransferases as well as alter the levels of numerous miRNAs in endothelial cells, vascular smooth muscle cells, cardiomyocytes, retina, and renal cells. These epigenetic abnormalities result in changes in the expression of numerous genes contributing to effects such as development of chronic inflammation, impaired clearance of reactive oxygen species (ROS), endothelial cell dysfunction and/or the accumulation of extracellular matrix in the kidney, which causing the development of retinopathy, nephropathy or cardiomyopathy. Some epigenetic modifications, for example PTHMs and DNA methylation, become irreversible over time. Therefore, these processes have gained much attention in explaining the long-lasting detrimental consequences of hyperglycaemia causing the development of chronic complications even after improved glycaemic control is achieved. Our review suggests that the treatment of chronic complications should focus on erasing metabolic memory by targeting chromatin modification enzymes and by restoring miRNA levels.
Collapse
Affiliation(s)
- Malgorzata Wegner
- Lipid Metabolism Laboratory, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland.
| | - Daniel Neddermann
- Novartis Pharma AG, Drug Metabolism and Pharmacokinetics, Postfach, 4002 Basel, Switzerland
| | - Maria Piorunska-Stolzmann
- Department of Clinical Biochemistry and Laboratory Medicine, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Pawel P Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
40
|
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014; 2014:137919. [PMID: 25019091 PMCID: PMC4082845 DOI: 10.1155/2014/137919] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, RES-314E, Fort Worth, TX 76107, USA
| |
Collapse
|
41
|
Bugyei-Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ, Connelly KA. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol 2014; 13:89. [PMID: 24886336 PMCID: PMC4108062 DOI: 10.1186/1475-2840-13-89] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite advances in the treatment of heart failure, mortality remains high, particularly in individuals with diabetes. Activated transforming growth factor beta (TGF-β) contributes to the pathogenesis of the fibrotic interstitium observed in diabetic cardiomyopathy. We hypothesized that high glucose enhances the activity of the transcriptional co-activator p300, leading to the activation of TGF-β via acetylation of Smad2; and that by inhibiting p300, TGF-β activity will be reduced and heart failure prevented in a clinically relevant animal model of diabetic cardiomyopathy. METHODS p300 activity was assessed in H9c2 cardiomyoblasts under normal glucose (5.6 mmol/L-NG) and high glucose (25 mmol/L-HG) conditions. 3H-proline incorporation in cardiac fibroblasts was also assessed as a marker of collagen synthesis. The role of p300 activity in modifying TGF-β activity was investigated with a known p300 inhibitor, curcumin or p300 siRNA in vitro, and the functional effects of p300 inhibition were assessed using curcumin in a hemodynamically validated model of diabetic cardiomyopathy - the diabetic TG m(Ren-2)27 rat. RESULTS In vitro, H9c2 cells exposed to HG demonstrated increased p300 activity, Smad2 acetylation and increased TGF-β activity as assessed by Smad7 induction (all p < 0.05 c/w NG). Furthermore, HG induced 3H-proline incorporation as a marker of collagen synthesis (p < 0.05 c/w NG). p300 inhibition, using either siRNA or curcumin reduced p300 activity, Smad acetylation and TGF-β activity (all p < 0.05 c/w vehicle or scrambled siRNA). Furthermore, curcumin therapy reduced 3H-proline incorporation in HG and TGF-β stimulated fibroblasts (p < 0.05 c/w NG). To determine the functional significance of p300 inhibition, diabetic Ren-2 rats were randomized to receive curcumin or vehicle for 6 weeks. Curcumin treatment reduced cardiac hypertrophy, improved diastolic function and reduced extracellular matrix production, without affecting glycemic control, along with a reduction in TGF-β activity as assessed by Smad7 activation (all p < 0.05 c/w vehicle treated diabetic animals). CONCLUSIONS These findings suggest that high glucose increases the activity of the transcriptional co-regulator p300, which increases TGF-β activity via Smad2 acetylation. Modulation of p300 may be a novel strategy to treat diabetes induced heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St, Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada.
| |
Collapse
|
42
|
Li J, Ohliger J, Pei M. Significance of epigenetic landscape in cartilage regeneration from the cartilage development and pathology perspective. Stem Cells Dev 2014; 23:1178-94. [PMID: 24555773 DOI: 10.1089/scd.2014.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct regulatory role on gene expression. However, a thorough understanding of the environmental factors that initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regeneration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition, especially from the environmental factors' point of view. Progress in understanding epigenetic regulatory mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising therapeutic applications.
Collapse
Affiliation(s)
- Jingting Li
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
43
|
Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S. miRNA-1 regulates endothelin-1 in diabetes. Life Sci 2014; 98:18-23. [DOI: 10.1016/j.lfs.2013.12.199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023]
|