1
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 387] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
2
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Harris-Shultz KR, Davis RF, Wallace J, Knoll JE, Wang H. A Novel QTL for Root-Knot Nematode Resistance is Identified from a South African Sweet Sorghum Line. PHYTOPATHOLOGY 2019; 109:1011-1017. [PMID: 31050603 DOI: 10.1094/phyto-11-18-0433-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Southern root-knot nematodes, Meloidogyne incognita, feed on the underground portions of hundreds of plant species and affect nutrient partitioning and water uptake of the host plants. Sorghum (Sorghum bicolor) is often not significantly damaged by southern root-knot nematodes (RKN) but some sorghum genotypes support greater population densities of RKN than other genotypes. These higher nematode populations increase the risk of damage to subsequently planted susceptible crops. A previous study identified a major quantitative trait locus (QTL) for RKN resistance on sorghum chromosome (chr.) 3. To maintain long-term resistance, multiple resistance genes should be pyramided in a cultivar. In this study, we identified a new source of RKN resistance, created a mapping population, and identified single-nucleotide polymorphism markers using genotyping-by-sequencing of the segregating population. Use of single-marker analysis and composite interval mapping identified a single QTL on chr. 5 that was associated with egg number and egg number per gram of root from the resistant sweet sorghum line PI 144134. This region on chr. 5 and the prior QTL on chr. 3 can be potentially moved from PI 144134 and Honey Drip, respectively, into elite sorghum germplasm via marker-assisted selection for more durable resistance.
Collapse
Affiliation(s)
- Karen R Harris-Shultz
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793
| | - Richard F Davis
- 2 USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, BLDG 1, Tifton, GA 31794
| | - Jason Wallace
- 3 Department of Crop & Soil Sciences, University of Georgia, 111 Riverbend Road, Athens 30602
| | - Joseph E Knoll
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793
| | - Hongliang Wang
- 4 USDA-ARS, Hard Winter Wheat Genetics Research, 4007 Throckmorton Hall, Manhattan, KS 66506
| |
Collapse
|
4
|
Van Gansbeke B, Khoo KHP, Lewis JG, Chalmers KJ, Mather DE. Fine mapping of Rha2 in barley reveals candidate genes for resistance against cereal cyst nematode. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1309-1320. [PMID: 30656354 PMCID: PMC6476833 DOI: 10.1007/s00122-019-03279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 05/29/2023]
Abstract
The cereal cyst nematode resistance locus Rha2 was mapped to a 978 kbp region on the long arm of barley chromosome 2H. Three candidate genes are discussed. The cereal cyst nematode (CCN) Heterodera avenae is a soil-borne obligate parasite that can cause severe damage to cereals. This research involved fine mapping of Rha2, a CCN resistance locus on chromosome 2H of barley. Rha2 was previously mapped relative to restriction fragment length polymorphisms (RFLPs) in two mapping populations. Anchoring of flanking RFLP clone sequences to the barley genome assembly defined an interval of 5077 kbp. Genotyping-by-sequencing of resistant and susceptible materials led to the discovery of potentially useful single nucleotide polymorphisms (SNPs). Assays were designed for these SNPs and applied to mapping populations. This narrowed the region of interest to 3966 kbp. Further fine mapping was pursued by crossing and backcrossing the resistant cultivar Sloop SA to its susceptible ancestor Sloop. Evaluation of F2 progeny confirmed that the resistance segregates as a single dominant gene. Genotyping of 9003 BC2F2 progeny identified recombinants. Evaluation of recombinant BC2F3 progeny narrowed the region of interest to 978 kbp. Two of the SNPs within this region proved to be diagnostic of CCN resistance across a wide range of barley germplasm. Fluorescence-based and gel-based assays were developed for these SNPs for use in marker-assisted selection. Within the candidate region of the reference genome, there are nine high-confidence predicted genes. Three of these, one that encodes RAR1 (a cysteine- and histidine-rich domain-containing protein), one that is predicted to encode an acetylglutamate kinase and one that is predicted to encode a tonoplast intrinsic protein, are discussed as candidate genes for CCN resistance.
Collapse
Affiliation(s)
- Bart Van Gansbeke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Kelvin H P Khoo
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - John G Lewis
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
5
|
Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9040188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Realizing the yield potential of crop plants in the presence of shifting pathogen populations, soil quality, rainfall, and other agro-environmental variables remains a challenge for growers and breeders worldwide. In this review, we discuss current approaches for combatting the soilborne phytopathogenic nematodes, Pratylenchus and Heterodera of wheat and barley, and Meloidogyne graminicola Golden and Birchfield, 1965 of rice. The necrotrophic fungal pathogens, Rhizoctonia solani Kühn 1858 AG-8 and Fusarium spp. of wheat and barley, also are discussed. These pathogens constitute major causes of yield loss in small-grain cereals of the Pacific Northwest, USA and throughout the world. Current topics include new sources of genetic resistance, molecular leads from whole genome sequencing and genome-wide patterns of hosts, nematode or fungal gene expression during root-pathogen interactions, host-induced gene silencing, and building a molecular toolbox of genes and regulatory sequences for deployment of resistance genes. In conclusion, improvement of wheat, barley, and rice will require multiple approaches.
Collapse
|
6
|
Zhong X, Zhou Q, Cui N, Cai D, Tang G. BvcZR3 and BvHs1pro-1 Genes Pyramiding Enhanced Beet Cyst Nematode ( Heterodera schachtii Schm.) Resistance in Oilseed Rape ( Brassica napus L.). Int J Mol Sci 2019; 20:ijms20071740. [PMID: 30965683 PMCID: PMC6479909 DOI: 10.3390/ijms20071740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/16/2022] Open
Abstract
Beet cyst nematode (Heterodera schachtii Schm.) is one of the most damaging pests in sugar beet growing areas around the world. The Hs1pro-1 and cZR3 genes confer resistance to the beet cyst nematode, and both were cloned from sugar beet translocation line (A906001). The translocation line carried the locus from B. procumbens chromosome 1 including Hs1pro-1 gene and resistance gene analogs (RGA), which confer resistance to Heterodera schachtii. In this research, BvHs1pro-1 and BvcZR3 genes were transferred into oilseed rape to obtain different transgenic lines by A. tumefaciens mediated transformation method. The cZR3Hs1pro-1 gene was pyramided into the same plants by crossing homozygous cZR3 and Hs1pro-1 plants to identify the function and interaction of cZR3 and Hs1pro-1 genes. In vitro and in vivo cyst nematode resistance tests showed that cZR3 and Hs1pro-1 plants could be infested by beet cyst nematode (BCN) juveniles, however a large fraction of penetrated nematode juveniles was not able to develop normally and stagnated in roots of transgenic plants, consequently resulting in a significant reduction in the number of developed nematode females. A higher efficiency in inhibition of nematode females was observed in plants expressing pyramiding genes than in those only expressing a single gene. Molecular analysis demonstrated that BvHs1pro-1 and BvcZR3 gene expressions in oilseed rape constitutively activated transcription of plant-defense related genes such as NPR1 (non-expresser of PR1), SGT1b (enhanced disease resistance 1) and RAR1 (suppressor of the G2 allele of skp1). Transcript of NPR1 gene in transgenic cZR3 and Hs1pro-1 plants were slightly up-regulated, while its expression was considerably enhanced in cZR3Hs1pro-1 gene pyramiding plants. The expression of EDS1 gene did not change significantly among transgenic cZR3, Hs1pro-1 and cZR3Hs1pro-1 gene pyramiding plants and wild type. The expression of SGT1b gene was slightly up-regulated in transgenic cZR3 and Hs1pro-1 plants compared with the wild type, however, its expression was not changed in cZR3Hs1pro-1 gene pyramiding plant and had no interaction effect. RAR1 gene expression was significantly up-regulated in transgenic cZR3 and cZR3Hs1pro-1 genes pyramiding plants, but almost no expression was found in Hs1pro-1 transgenic plants. These results show that nematode resistance genes from sugar beet were functional in oilseed rape and conferred BCN resistance by activation of a CC-NBS-LRR R gene mediated resistance response. The gene pyramiding had enhanced resistance, thus offering a novel approach for the BCN control by preventing the propagation of BCN in oilseed rape. The transgenic oilseed rape could be used as a trap crop to offer an alternative method for beet cyst nematode control.
Collapse
Affiliation(s)
- Xuanbo Zhong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Qizheng Zhou
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Nan Cui
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, D-24118 Kiel, Germany.
| | - Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Zhou X, Liu J, Bao S, Yang Y, Zhuang Y. Molecular Cloning and Characterization of a Wild Eggplant Solanum aculeatissimum NBS-LRR Gene, Involved in Plant Resistance to Meloidogyne incognita. Int J Mol Sci 2018; 19:E583. [PMID: 29462897 PMCID: PMC5855805 DOI: 10.3390/ijms19020583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Root-knot nematodes, Meloidogyne spp., cause considerable damage in eggplant production. Transferring of resistance genes from wild relatives would be valuable for the continued improvement of eggplant. Solanum aculeatissimum, a wild relative of eggplant possessing resistance to Meloidogyne incognita, is potentially useful for genetically enhancing eggplant. In the present study, we have isolated and characterized a nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance gene, designated as SacMi. The full-length cDNA of the SacMi gene was obtained using the technique of rapid-amplification of cDNA ends (RACE). The open reading frame of the SacMi gene was 4014 bp and encoded a protein of 1338 amino acids. Sequence analysis indicated that SacMi belong to the non- Toll/Interleukin-1 receptor (TIR)-NBS-LRR type disease-resistance genes. Interestingly, quantitative RT-PCR showed that SacMi is expressed at low levels in uninfected roots, but was up-regulated by infection with M. incognita. To investigate the role of SacMi in S. aculeatissimum resistance against M. incognica, the tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) system was used. Silencing of SacMi enhanced susceptibility of S. aculeatissimum plants to M. incognita, suggesting the possible involvement of SacMi in resistance against M. incognita infection.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Shengyou Bao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yan Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yong Zhuang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
9
|
Moatamedi M, Bazgir E, Esfahani MN, Darvishnia M. Genetic variation of bread wheat accessions in response to the cereal cyst nematode, Heterodera filipjevi. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Summary
Bread wheat, Triticum aestivum, produces large edible grains and is consumed by 75% of the world’s populations. Cereal cyst nematodes have a global distribution and cause significant economic yield losses in many countries. Therefore, there is an urgent need to identify new resistance sources. In this study, the genetic diversity of 43 wheat accessions in response to cereal cyst nematode, Heterodera filipjevi Isfahan pathotype, was assessed using a simple sequence repeat (SSR) marker. Seven primers were used, out of which five primers showed polymorphisms. Alleles per primer varied from one to three per locus (mean 2.85). The highest and lowest polymorphic information content of 0.81 and 0.44 (mean 0.66) were related to Xgwm 3012DL and Xgwm147, respectively. Genetic similarity was 29-88% between accessions. SSR analysis divided the accessions into five main groups. Resistant cultivars ‘Bam’ and ‘Behrang’ possessed both Cre1 and Cre8 resistant genes. The Cre3 and Cat genes were partially sequenced in five cultivars of different responses to H. filipjevi. The nucleotide sequences were compared to Cre3 and Cat homologues, indicating 93-100% and 86-92% homology, respectively. The MEGA program showed highest similarity of Cre3 and Cat genes amplified with the resistance gene analogues (RGA14) in the wheat and Cat3-A1 gene in ‘Carnamah’. This research showed that SRR markers could efficiently verify genetic diversity between wheat accessions, and the known resistance genes (Cre genes) against the cereal cyst nematodes could not control the H. filipjevi Isfahan pathotype populations, except the Cre1 gene.
Collapse
Affiliation(s)
- Marzieh Moatamedi
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Eidi Bazgir
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Mehdi Nasr Esfahani
- 2Plant Protection Research Department, Isfahan Agricultural and Natural Resources Research and Education Center (AREEO), Isfahan, Iran
| | - Mostafa Darvishnia
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| |
Collapse
|
10
|
Fosu-Nyarko J, Jones MGK. Advances in Understanding the Molecular Mechanisms of Root Lesion Nematode Host Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:253-78. [PMID: 27296144 DOI: 10.1146/annurev-phyto-080615-100257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| | - Michael G K Jones
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| |
Collapse
|
11
|
Habachi-Houimli Y, Khalfallah Y, Makni H, Makni M, Bouktila D. Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. C R Biol 2016; 339:347-56. [PMID: 27349470 DOI: 10.1016/j.crvi.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
Abstract
In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Yosra Khalfallah
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Hanem Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de l'animation pour la jeunesse et la culture (ISAJC), université de Tunis, 2055 Bir El Bey, Tunisia
| | - Mohamed Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Dhia Bouktila
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja (ISBB), université de Jendouba, 9000 Béja, Tunisia.
| |
Collapse
|
12
|
Harris-Shultz KR, Davis RF, Knoll JE, Anderson W, Wang H. Inheritance and Identification of a Major Quantitative Trait Locus (QTL) that Confers Resistance to Meloidogyne incognita and a Novel QTL for Plant Height in Sweet Sorghum. PHYTOPATHOLOGY 2015; 105:1522-8. [PMID: 26574655 DOI: 10.1094/phyto-06-15-0136-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Southern root-knot nematodes (Meloidogyne incognita) are a pest on many economically important row crop and vegetable species and management relies on chemicals, plant resistance, and cultural practices such as crop rotation. Little is known about the inheritance of resistance to M. incognita or the genomic regions associated with resistance in sorghum (Sorghum bicolor). In this study, an F2 population (n = 130) was developed between the resistant sweet sorghum cultivar 'Honey Drip' and the susceptible sweet cultivar 'Collier'. Each F2 plant was phenotyped for stalk weight, height, juice Brix, root weight, total eggs, and eggs per gram of root. Strong correlations were observed between eggs per gram of root and total eggs, height and stalk weight, and between two measurements of Brix. Genotyping-by-sequencing was used to generate single nucleotide polymorphism markers. The G-Model, single marker analysis, interval mapping, and composite interval mapping were used to identify a major quantitative trait locus (QTL) on chromosome 3 for total eggs and eggs per gram of root. Furthermore, a new QTL for plant height was also discovered on chromosome 3. Simple sequence repeat markers were developed in the total eggs and eggs per gram of root QTL region and the markers flanking the resistance gene are 4.7 and 2.4 cM away. These markers can be utilized to move the southern root-knot nematode resistance gene from Honey Drip to any sorghum line.
Collapse
Affiliation(s)
- Karen R Harris-Shultz
- First, third, fourth, and fifth authors: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793; and second author: USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, Tifton, GA 31793
| | - Richard F Davis
- First, third, fourth, and fifth authors: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793; and second author: USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, Tifton, GA 31793
| | - Joseph E Knoll
- First, third, fourth, and fifth authors: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793; and second author: USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, Tifton, GA 31793
| | - William Anderson
- First, third, fourth, and fifth authors: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793; and second author: USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, Tifton, GA 31793
| | - Hongliang Wang
- First, third, fourth, and fifth authors: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793; and second author: USDA-ARS, Crop Protection and Management Research Unit, 2747 Davis Road, Tifton, GA 31793
| |
Collapse
|
13
|
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease Resistance Gene Analogs (RGAs) in Plants. Int J Mol Sci 2015; 16:19248-90. [PMID: 26287177 PMCID: PMC4581296 DOI: 10.3390/ijms160819248] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.
Collapse
Affiliation(s)
- Manoj Kumar Sekhwal
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Irene Lam
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sylvie Cloutier
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Plant Science Department, University of Manitoba, Winnipeg, MB R3T 2N6, Canada.
| |
Collapse
|
14
|
Koramutla MK, Kaur A, Negi M, Venkatachalam P, Bhattacharya R. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). PLANTA 2014; 240:177-94. [PMID: 24771023 DOI: 10.1007/s00425-014-2073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/28/2014] [Indexed: 05/04/2023]
Abstract
The productivity of Brassica oilseeds is severely affected by its major pest: aphids. Unavailability of resistance source within the crossable germplasms has stalled the breeding efforts to derive aphid resistant cultivars. In this study, jasmonate-mediated host defense in Indian mustard Brassica juncea (L.) Czern. was evaluated and compared with regard to its elicitation in response to mustard aphid Lipaphis erysimi (Kalt.) and the defense elicitor methyl jasmonate (MeJ). Identification of jasmonate-induced unigenes in B. juncea revealed that most are orthologous to aphid-responsive genes, identified in taxonomically diverse plant-aphid interactions. The unigenes largely represented genes related to signal transduction, response to biotic and abiotic stimuli and homeostasis of reactive oxygen species (ROS), in addition to genes related to cellular and metabolic processes involved in cell organization, biogenesis, and development. Gene expression studies revealed induction of the key jasmonate biosynthetic genes (LOX, AOC, 12-OPDR), redox genes (CAT3 and GST6), and other downstream defense genes (PAL, ELI3, MYR, and TPI) by several folds, both in response to MeJ and plant-wounding. However, interestingly aphid infestation even after 24 h did not elicit any activation of these genes. In contrast, when the jasmonate-mediated host defense was elicited by exogenous application of MeJ the treated B. juncea plants showed a strong antibiosis effect on the infesting aphids and reduced the growth of aphid populations. The level of redox enzymes CAT, APX, and SOD, involved in ROS homeostasis in defense signaling, and several defense enzymes viz. POD, PPO, and PAL, remained high in treated plants. We conclude that in B. juncea, the jasmonate activated endogenous-defense, which is not effectively activated in response to mustard aphids, has the potential to reduce population growth of mustard aphids.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110 012, India
| | | | | | | | | |
Collapse
|
15
|
Characterization of novel wheat NBS domain-containing sequences and their utilization, in silico, for genome-scale R-gene mining. Mol Genet Genomics 2014; 289:599-613. [PMID: 24638930 DOI: 10.1007/s00438-014-0834-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/21/2014] [Indexed: 01/22/2023]
Abstract
In crop improvement, the isolation, cloning and transfer of disease resistance genes (R-genes) is an ultimate goal usually starting from tentative R-gene analogs (RGAs) that are identified on the basis of their structure. For bread wheat, recent advances in genome sequencing are supporting the efforts of wheat geneticists worldwide. Among wheat R-genes, nucleotide-binding site (NBS)-encoding ones represent a major class. In this study, we have used a polymerase chain reaction-based approach to amplify and clone NBS-type RGAs from a bread wheat cultivar, 'Salambo 80.' Four novel complete ORF sequences showing similarities to previously reported R-genes/RGAs were used for in silico analyses. In a first step, where analyses were focused on the NBS domain, these sequences were phylogenetically assigned to two distinct groups: a first group close to leaf rust Lr21 resistance proteins; and a second one similar to cyst nematode resistance proteins. In a second step, sequences were used as initial seeds to walk up and downstream the NBS domain. This procedure enabled identifying 8 loci ranging in size between 2,115 and 7,653 bp. Ab initio gene prediction identified 8 gene models, among which two had complete ORFs. While GenBank survey confirmed the belonging of sequences to two groups, subsequent characterization using IWGSC genomic and proteomic data showed that the 8 gene models, reported in this study, were unique and their loci matched scaffolds on chromosome arms 1AS, 1BS, 4BS and 1DS. The gene model located on 1DS is a pseudo-Lr21 that was shown to have an NBS-LRR domain structure, while the potential association of the RGAs, here reported, is discussed. This study has produced novel R-gene-like loci and models in the wheat genome and provides the first steps toward further elucidation of their role in wheat disease resistance.
Collapse
|
16
|
Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu QH, Fan L. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC PLANT BIOLOGY 2012; 12:28. [PMID: 22353177 PMCID: PMC3306195 DOI: 10.1186/1471-2229-12-28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 02/22/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are two major classes of small RNAs. They play important regulatory roles in plants and animals by regulating transcription, stability and/or translation of target genes in a sequence-complementary dependent manner. Over 4,000 miRNAs and several classes of siRNAs have been identified in plants, but in tobacco only computational prediction has been performed and no tobacco-specific miRNA has been experimentally identified. Wounding is believed to induce defensive response in tobacco, but the mechanism responsible for this response is yet to be uncovered. RESULTS To get insight into the role of small RNAs in damage-induced responses, we sequenced and analysed small RNA populations in roots and leaves from wounding or topping treated tobacco plants. In addition to confirmation of expression of 27 known miRNA families, we identified 59 novel tobacco-specific miRNA members of 38 families and a large number of loci generating phased 21- or 24-nt small RNAs (including ta-siRNAs). A number of miRNAs and phased small RNAs were found to be responsive to wounding or topping treatment. Targets of small RNAs were further surveyed by degradome sequencing. CONCLUSIONS The expression changes of miRNAs and phased small RNAs responsive to wounding or topping and identification of defense related targets for these small RNAs suggest that the inducible defense response in tobacco might be controlled by pathways involving small RNAs.
Collapse
Affiliation(s)
- She Tang
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Wang
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zefeng Li
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yijie Gui
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at Yunnan, Yuxi 653100, Yunnan, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Qian-Hao Zhu
- CSIRO Plant Industry, Canberra ACT 2601, Australia
| | - Longjiang Fan
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
17
|
Satheeskumar S, Sharp PJ, Lagudah ES, McIntosh RA, Molnar SJ. Genetic association of crown rust resistance gene Pc68, storage protein loci, and resistance gene analogues in oats. Genome 2011; 54:484-97. [PMID: 21615301 DOI: 10.1139/g11-014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Segregating F(3) families, derived from a cross between oat cultivar Swan and the putative single gene line PC68, were used to determine the association of seed storage protein loci and resistance gene analogues (RGAs) with the crown rust resistance gene Pc68. SDS-PAGE analysis detected three avenin loci, AveX, AveY, and AveZ, closely linked to Pc68. Their diagnostic alleles are linked in coupling to Pc68 and were also detected in three additional lines carrying Pc68. Another protein locus was linked in repulsion to Pc68. In complementary studies, three wheat RGA clones (W2, W4, and W10) detected restriction fragment length polymorphisms (RFLPs) between homozygous resistant and homozygous susceptible F(3) DNA bulks. Four oat homologues of W2 were cloned and sequenced. RFLPs detected with two of them were mapped using F(3) and F(4) populations. Clone 18 detected a locus, Orga2, linked in repulsion to Pc68. Clone 22 detected several RFLPs including Orga1 (the closest locus to Pc68) and three RGA loci (Orga22-2, Orga22-3, and Orga22-4) loosely linked to Pc68. The diagnostic RFLPs linked in coupling to Pc68 were detected by clone 22 in three additional oat lines carrying Pc68 and have potential utility in investigating and improving crown rust resistance of oat.
Collapse
Affiliation(s)
- Sivakala Satheeskumar
- The University of Sydney, Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
18
|
Uehara T, Sugiyama S, Matsuura H, Arie T, Masuta C. Resistant and Susceptible Responses in Tomato to Cyst Nematode are Differentially Regulated by Salicylic Acid. ACTA ACUST UNITED AC 2010; 51:1524-36. [DOI: 10.1093/pcp/pcq109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Yu GT, Cai X, Harris MO, Gu YQ, Luo MC, Xu SS. Saturation and comparative mapping of the genomic region harboring Hessian fly resistance gene H26 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1589-1599. [PMID: 19322558 DOI: 10.1007/s00122-009-1006-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 03/08/2009] [Indexed: 05/27/2023]
Abstract
Resistance gene H26, derived from Aegilops tauschii Coss., is one of the most effective R genes against the Hessian fly [Mayetiola destructor (Say)], an important pest of wheat (Triticum aestivum L.). Using a limited number of PCR-based molecular markers a previous study mapped H26 to the wheat chromosomal deletion bin 3DL3-0.81-1.00. The objectives of this study were to saturate the chromosomal region harboring H26 with newly developed PCR-based markers and to investigate the collinearity of this wheat chromosomal region with rice (Oryza sativa L.) and Brachypodium distachyon genome. A population of 96 F(2) individuals segregating at the H26 gene locus was used for saturation mapping. All wheat ESTs assigned to the deletion bin 3DL3-0.81-1.00 were used to design STS (sequence tagged site) primers. The wheat ESTs mapped near H26 were further used to BLAST rice and B. distachyon genomic sequences for comparative mapping. To date, 26 newly developed STS markers have been mapped to the chromosomal region spanning the H26 locus. Two of them were mapped 1.0 cM away from the H26 locus. Comparative analysis identified genomic regions on rice chromosome 1 and Brachypodium Super contig 13 which are collinear with the genomic region spanning the H26 locus within the distal region of 3DL. The newly developed STS markers closely linked to H26 will be useful for mapped-based cloning of H26 and marker-assisted selection of this gene in wheat breeding. The results will also enhance understanding of this chromosomal region which contains several other Hessian fly resistance genes.
Collapse
Affiliation(s)
- Guo Tai Yu
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | |
Collapse
|
20
|
Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 2009; 9:363-76. [PMID: 19330366 DOI: 10.1007/s10142-009-0121-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/09/2009] [Accepted: 03/08/2009] [Indexed: 11/30/2022]
Abstract
Endosperm carotenoid content in wheat is a primary determinant of flour colour and this affects both the nutritional value of the grain and its utility for different applications. Utilising wheat rice synteny two genes, epsilon-cyclase (epsilon-LCY) and phytoene synthase (Psy-A1), were identified as candidate genes for two of the QTL affecting lutein content in wheat endosperm. Analysis of the sequence changes in epsilon-LCY and Psy-A1 revealed possible causal mechanisms for both QTL. A point mutation in epsilon-LCY results in the substitution of a conserved amino acid in the high lutein allele. This substitution has been observed in high lutein-accumulating species from the Gentiales order. In Psy-A1, a sequence duplication at the end of exon 2 creates a new splice site and causes alternative splicing of the transcript and activation of a cryptic exon, resulting in four different transcripts: a wild-type transcript, two transcripts with early terminations and a transcript that would produce an in-frame, albeit longer protein. Only the wild-type splice variant produced an enzymatically active protein and its mRNA abundance was reduced by titration with the other splice variants. This reduction in wild-type mRNA is argued to result in a reduction in PSY protein and thus carotenoid content in wheat.
Collapse
Affiliation(s)
- Crispin A Howitt
- CSIRO Food Futures National Research Flagship, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhai XG, Zhao T, Liu YH, Long H, Deng GB, Pan ZF, Yu MQ. Characterization and expression profiling of a novel cereal cyst nematode resistance gene analog in wheat. Mol Biol 2008. [DOI: 10.1134/s0026893308060186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Naji AM, Moghaddam M, Ghaffari MR, Irandoost HP, Farsad LK, Pirseyedi SM, Mohammadi SA, Ghareyazie B, Mardi M. Validation of EST-derived STS markers localized on Qfhs.ndsu-3BS for Fusarium head blight resistance in wheat using a ‘Wangshuibai’ derived population. J Genet Genomics 2008; 35:625-9. [DOI: 10.1016/s1673-8527(08)60083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
|
23
|
|
24
|
Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z. CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. PLANT CELL REPORTS 2007; 26:895-905. [PMID: 17310335 DOI: 10.1007/s00299-007-0304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 12/04/2006] [Accepted: 01/02/2007] [Indexed: 05/08/2023]
Abstract
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes.
Collapse
Affiliation(s)
- Rugang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
25
|
Budak H, Kasap Z, Shearman RC, Dweikat I, Sezerman U, Mahmood A. Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides. Mol Biotechnol 2007; 34:293-301. [PMID: 17284777 DOI: 10.1385/mb:34:3:293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Current knowledge of resistance (R) genes and their use for genetic improvement in buffalograss (Buchloe dactyloides [Nutt.] Engelm.) lag behind most crop plants. This study was conducted to clone and characterize cDNA encoding R gene-like (RGL) sequences in buffalograss. This report is the first to clone and characterize of buffalograss RGLs. Degenerate primers designed from the conserved motifs of known R genes were used to amplify RGLs and fragments of expected size were isolated and cloned. Sequence analysis of cDNA clones and analysis of putative translation products revealed that most encoded amino acid sequences shared the similar conserved motifs found in the cloned plant disease resistance genes RPS2, MLA6, L6, RPM1, and Xa1. These results indicated diversity of the R gene candidate sequences in buffalograss. Analysis of 5' rapid amplification of cDNA ends (RACE), applied to investigate upstream of RGLs, indicated that regulatory sequences such as TATA box were conserved among the RGLs identified. The cloned RGL in this study will further enhance our knowledge on organization, function, and evolution of R gene family in buffalograss. With the sequences of the primers and sizes of the markers provided, these RGL markers are readily available for use in a genomics-assisted selection in buffalograss.
Collapse
Affiliation(s)
- Hikmet Budak
- Sabanci University, Biological Science and Bioengineering Program, Orhanli, 34956, Tuzla/Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Bozkurt O, Hakki EE, Akkaya MS. Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 2007; 45:469-86. [PMID: 17453333 DOI: 10.1007/s10528-007-9089-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 12/23/2006] [Indexed: 10/23/2022]
Abstract
Isolation of disease resistance gene analogs (RGAs) using the conserved motifs of the resistance genes has attracted considerable attention since it was first reported more than a decade ago. In this study, RGAs are isolated using homology-based PCR to target the nucleotide binding site (NBS) conserved regions from hexaploid wheat varieties and a few accessions of wild types. Based on sequence similarity analysis, 83 of the sequenced clones were clustered as groups. Of these RGAs, 40 were in the NBS-LLR class, containing kinase-1a (GGVGKTT or GGVGKTA), kinase-2 (KRFLIVLDDXW), kinase-3a (GSXIVVITTR or GCXVLATTR), and the GLPL motif of the NBS-spanning region. Among these, 15 contained possible intron regions, similar to Avena sativa O2 NBS-LLR type disease resistance gene (AF078874), and one to Rpm1 of rice and Yr10 and Lr10 of wheat. To our knowledge, this is the first observation of an intronic site within the P-loop domain of wheat RGAs. We detected an unspecified motif (VMVCVS) between the kinase-1a and kinase-2 domains within our clones. Additionally, one of the clones showed replacement with the kinase-3a motif with an undefined sequence.
Collapse
Affiliation(s)
- O Bozkurt
- Department of Chemistry, Middle East Technical University, Ankara, 06531, Turkey
| | | | | |
Collapse
|
27
|
Poch HLC, López RHM, Kanyuka K. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato. PLANT, CELL & ENVIRONMENT 2006; 29:1372-8. [PMID: 17080958 DOI: 10.1111/j.1365-3040.2006.01517.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.
Collapse
Affiliation(s)
- H L Cabrera Poch
- Plant-Pathogen Interactions Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | |
Collapse
|
28
|
Bresolin NS, Li Z, Kosar-Hashemi B, Tetlow IJ, Chatterjee M, Rahman S, Morell MK, Howitt CA. Characterisation of disproportionating enzyme from wheat endosperm. PLANTA 2006; 224:20-31. [PMID: 16333636 DOI: 10.1007/s00425-005-0187-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
Disproportionating enzyme or D-enzyme (EC 2.4.1.25) is an alpha-1,4 glucanotransferase which catalyses cleavage and transfer reactions involving alpha-1,4 linked glucans altering (disproportionating) the chain length distribution of pools of oligosaccharides. While D-enzyme has been well characterised in some plants, e.g. potato and Arabidopsis, very little is known about its abundance and function in cereals which constitute the major source of starch worldwide. To address this we have investigated D-enzyme in wheat (Triticum aestivum). Two putative D-enzyme cDNA clones have been isolated from tissue-specific cDNA libraries. TaDPE1-e, from an endosperm cDNA library, encodes a putative polypeptide of 575 amino acid residues including a predicted transit peptide of 41 amino acids. The second cDNA clone, TaDPE1-l, from an Aegilops taushii leaf cDNA library, encodes a putative polypeptide of 579 amino acids including a predicted transit peptide of 45 amino acids. The mature polypeptides TaDPE1-e and TaDPE1-l were calculated to be 59 and 60 kDa, respectively, and had 96% identity. The putative polypeptides had significant identity with deduced D-enzyme sequences from corn and rice, and all the expected conserved residues were present. Protein analysis revealed that D-enzyme is present in the amyloplast of developing endosperm and in the germinating seeds. D-enzyme was partially purified from wheat endosperm and shown to exhibit disproportionating activity in vitro by cleaving maltotriose to produce glucose as well as being able to use maltoheptaose as the donor for the addition of glucans to the outer chains of glycogen and amylopectin.
Collapse
|
29
|
Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES. Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:500-8. [PMID: 16331478 DOI: 10.1007/s00122-005-0153-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/13/2005] [Indexed: 05/05/2023]
Abstract
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA x Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding beta-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.
Collapse
Affiliation(s)
- G M Rosewarne
- International Maize and Wheat Improvement Center (CIMMYT), Apartado Postal 6-641, 06600, Km. 45 Carretera Mexico-Veracruz, 56130 El Batan, Texcoco, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hori K, Kobayashi T, Sato K, Takeda K. QTL analysis of Fusarium head blight resistance using a high-density linkage map in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1661-72. [PMID: 16208506 DOI: 10.1007/s00122-005-0102-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 09/01/2005] [Indexed: 05/04/2023]
Abstract
Fusarium head blight (FHB) resistance was evaluated in a set of recombinant inbred (RI) lines from a cross between Russia 6 (resistant) and H.E.S. 4 (susceptible), which had one of the widest differences of FHB resistance reactions among ca. 5,000 barley germplasm accessions in Okayama University. Field-grown spikes were sampled and inoculated by the 'cut-spike test'. Resistance reactions on the parents and RI lines were scored by eleven grades, from resistant (0) to susceptible (10). Quantitative trait loci (QTL) analysis detected three QTL: two located on the long arm of chromosome 2H, and another on the short arm of chromosome 5H. A QTL located on chromosome 2H was coincident with the vrs1 locus, which governs inflorescence row type. The other QTL on chromosome 2H was positioned in the vicinity of cleistogamy locus (cly1 or Cly2) that determines inflorescence opening/closing. Resistant gene analog (RGA) and expressed sequence tag (EST) markers with homology for disease resistance genes were integrated into the high-density linkage map. Most of these markers were not localized near the identified resistance QTL, except for one RGA marker (FXLRRfor_XLRRrev170) localized in the vicinity of the cly1/Cly2 locus. Five AFLP markers localized in the vicinity of the identified QTL were sequenced to convert them into sequence tagged site (STS) markers. Genotyping of each RI line using two AFLP-STS markers and the vrs1 locus indicated that the RI lines with three Russia 6 QTL alleles exhibited the same level of high FHB resistance reactions as Russia 6. In contrast, RI lines with three susceptible alleles showed reactions close to H.E.S. 4. Therefore, the markers closely linked to the QTL can be efficiently used for the selection of resistance.
Collapse
Affiliation(s)
- K Hori
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | | | | | | |
Collapse
|
31
|
Gupta PK, Kulwal PL, Rustgi S. Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 2005; 109:315-27. [PMID: 15753592 DOI: 10.1159/000082415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/11/2004] [Indexed: 01/26/2023] Open
Abstract
Hexaploid wheat is a species that has been subjected to most extensive cytogenetic studies. This has contributed to understanding the mechanism of the evolution of polyploids involving diploidization through genetic restriction of chromosome pairing to only homologous chromosomes. The availability of a variety of aneuploids and the ph mutants (Ph1 and Ph2) in bread wheat also allowed chromosome manipulations leading to the development of alien addition/substitution lines and the introgression of alien chromosome segments into the wheat genome. More recently in the genomics era, molecular tools have been used extensively not only for the construction of molecular maps, but also for identification/isolation of genes/QTLs (including epistatic QTLs, eQTLs and PQLs) for several agronomic traits. It has also been possible to identify gene-rich regions and recombination hot spots in the wheat genome, which are now being subjected to sequencing at the genome level, through development of BAC libraries. In the EST database also, among all plants wheat ESTs are the highest in number, and are only next to those for human, mouse, Ciona intestinalis (a chordate), rat and zebrafish genomes. These ESTs and sequences of several genomic regions have been subjected to a variety of applications including development of perfect markers and establishment of microcollinearity. The technique of in situ hybridization (including FISH, GISH and McFISH) and the development of deletion stocks also facilitated the preparation of physical maps. Molecular markers are also used for marker-assisted selection in wheat breeding programs in several countries. Construction of a wheat DNA chip, which will also become available soon, may further facilitate wheat genomics research. These enormous resources, knowledge base and the fast development of additional molecular tools and high throughput approaches for genotyping will prove extremely useful in future wheat research and will lead to development of improved wheat cultivars.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics & Plant Breeding, Ch. Charan Singh University, Meerut, India.
| | | | | |
Collapse
|
32
|
Jiang SM, Hu J, Yin WB, Chen YH, Wang RRC, Hu ZM. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:923-31. [PMID: 16044269 DOI: 10.1007/s00122-005-0022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 06/16/2005] [Indexed: 05/03/2023]
Abstract
Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR 3 was amplified from the dissected alien chromosome of TAi-27, TcDR 2 and TcDR 3 were from cDNA of Th. intermedium, AcDR 3 was from cDNA of TAi-27, FcDR 2 was from cDNA of 3B-2, AR 2 was from genomic DNA of TAi-27 and TR 2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR 3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR 3 as the probe showed that there is only one copy of ACR 3 in the genome of Th. intermedium and TAi-27, but it is absent in 3B-2. The ACR 3 could be used as a specific probe of the R gene on the alien chromosome of TAi-27. Results of Northern hybridization suggested that ACR 3 was constitutively expressed in Th. intermedium and TAi-27, but not 3B-2, and expressed higher in leaves than in roots. This research demonstrated a new way to clone RGAs located on a specific chromosome. The information reported here should be useful to understand the resistance mechanism of, and to clone resistant genes from, the alien chromosome in TAi-27.
Collapse
Affiliation(s)
- Shu-Mei Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
33
|
He L, Du C, Covaleda L, Xu Z, Robinson AF, Yu JZ, Kohel RJ, Zhang HB. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1234-1241. [PMID: 15553248 DOI: 10.1094/mpmi.2004.17.11.1234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nucleotide-binding site-leucine-rich repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. We cloned the NBS-LRR-encoding genes from polyploid cotton by a polymerase chain reaction-based approach. A sample of 150 clones was selected from the NBS-LRR gene sequence library and was sequenced, and 61 resistance gene analogs (RGA) were identified. Sequence analysis revealed that RGA are abundant and highly diverged in the cotton genome and could be categorized into 10 distinct subfamilies based on the similarities of their nucleotide sequences. The numbers of members vary many fold among different subfamilies, and gene index analysis showed that each of the subfamilies is at a different stage of RGA family evolution. Genetic mapping of a selection of RGA indicates that the RGA reside on a limited number of the cotton chromosomes, with those from a single subfamily tending to cluster and two of the RGA loci being colocalized with the cotton bacterial blight resistance genes. The distribution of RGA between the two subgenomes A and D of cotton is uneven, with RGA being more abundant in the A subgenome than in the D subgenome. The data provide new insights into the organization and evolution of the NBS-LRR-encoding RGA family in polyploid plants.
Collapse
Affiliation(s)
- Limei He
- Department of Soil and Crop Sciences and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 2004; 166:461-81. [PMID: 15020436 PMCID: PMC1470719 DOI: 10.1534/genetics.166.1.461] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped.
Collapse
Affiliation(s)
- Muharrem Dilbirligi
- Department of Crop and Soil Science, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
35
|
Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA. Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:409-18. [PMID: 15045176 DOI: 10.1007/s00122-004-1646-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Accepted: 03/01/2004] [Indexed: 05/22/2023]
Abstract
The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.
Collapse
Affiliation(s)
- M N Hemming
- Plant Cell Biology, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
36
|
Martin EM, Eastwood RF, Ogbonnaya FC. Identification of microsatellite markers associated with the cereal cyst nematode resistance gene Cre3 in wheat. ACTA ACUST UNITED AC 2004. [DOI: 10.1071/ar04085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cereal cyst nematode (CCN) is a root disease caused by the pathogen Heterodera avenae Woll. that significantly reduces wheat (Triticum aestivum L.) grain yields in temperate countries. The Cre3 gene, located on chromosome 2DL, provides high levels of resistance to the Australian pathotype and isolates from Syria and Algeria, and has become available to wheat breeders. Selection for lines carrying the Cre3 gene in Australian wheat breeding programs is currently based on a dominant PCR marker (Cre3spf/r) diagnostic for the Cre3 gene. However, this marker has limitations that increase the cost and reduce selection efficiency in screening early-generation breeding lines. Such limitations would be minimised by the identification of a microsatellite marker linked to the Cre3 gene. We have constructed 2 genetic linkage maps of wheat chromosome 2DL and identified microsatellite markers mapping closely to the diagnostic Cre3spf/r marker. These closely linked markers were validated in a diverse range of germplasm, and one microsatellite marker, Xgwm301, which mapped 4 cM from Cre3spf/r, was shown to be highly associated with the presence of the Cre3 gene. Amplification conditions for the Xgwm301 locus were optimised, and its use in marker-assisted selection to identify Cre3 CCN-resistant wheat in the Australian Grain Technologies breeding program is demonstrated.
Collapse
|
37
|
de Majnik J, Ogbonnaya FC, Moullet O, Lagudah ES. The cre1 and cre3 nematode resistance genes are located at homeologous loci in the wheat genome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1129-1134. [PMID: 14651346 DOI: 10.1094/mpmi.2003.16.12.1129] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Differential responses in host-nematode pathotype interactions occur in wheat lines carrying different cereal cyst nematode resistance (Cre) genes. Cre1, located on chromosome 2B, confers resistance to most European nematodes and the sole Australian pathotype, while Cre3, present on chromosome 2D, is highly resistant to the Australian pathotype and susceptible to a number of European pathotypes. Genes encoding nucleotide binding site-leucine rich repeat (NBS-LRR) proteins that cosegregate with the Cre3 locus cross hybridize to homologues whose restriction fragment length polymorphism (RFLP) patterns distinguish near-isogenic Cre1 nematode-resistant wheat lines. Genetic mapping showed that the NBS-LRR gene members that distinguished the Cre1 near-isogenic lines were located on chromosome 2BL at a locus, designated Xcsl107, that cosegregates with the Cre1 locus. A haplotype of NBS-LRR genes from the Xcsl107 locus provides a diagnostic marker for the presence of Cre1 nematode resistance in a wide collection of wheat lines and segregating families. Genetic analysis of NBS-LRR haplotypes that cosegregate with Cre1 and Cre3 resistance, together with flanking cDNA markers and other markers from homoeologous group 2 chromosomes, revealed a conserved gene order that suggests Cre1 and Cre3 are homeoloci.
Collapse
Affiliation(s)
- John de Majnik
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
38
|
Yuan Y, SanMiguel PJ, Bennetzen JL. High-Cot sequence analysis of the maize genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:249-55. [PMID: 12694599 DOI: 10.1046/j.1365-313x.2003.01716.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher eukaryotic genomes, including those from plants, contain large amounts of repetitive DNA that complicate genome analysis. We have developed a technique based on DNA renaturation which normalizes repetitive DNA, and thereby allows a more efficient outcome for full genome shotgun sequencing. The data indicate that sequencing the unrenatured outcome of a Cot experiment, otherwise known as High-Cot DNA, enriches genic sequences by more than fourfold in maize, from 5% for a random library to more than 20% for a High-Cot library. Using this approach, we predict that gene discovery would be greater than 95% and that the number of sequencing runs required to sequence the full gene space in maize would be at least fourfold lower than that required for full-genome shotgun sequencing.
Collapse
Affiliation(s)
- Yinan Yuan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
39
|
Brooks SA, Huang L, Gill BS, Fellers JP. Analysis of 106 kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome 2002; 45:963-72. [PMID: 12416630 DOI: 10.1139/g02-049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vast differences exist in genome sizes of higher plants; however, gene count remains relatively constant among species. Differences observed in DNA content can be attributed to retroelement amplification leading to genome expansion. Cytological and genetic studies have demonstrated that genes are clustered in islands rather than distributed at random in the genome. Analysis of gene islands within highly repetitive genomes of plants like wheat remains largely unstudied. The objective of our work was to sequence and characterize a contiguous DNA sequence from chromosome IDS of Aegilops tauschii. An RFLP probe that maps to the Lr21 region of IDS was used to isolate a single BAC. The BAC was sequenced and is 106 kb in length. The contiguous DNA sequence contains a 46-kb retroelement-free gene island containing seven coding sequences. Within the gene island is a complex arrangement of resistance and defense response genes. Overall gene density in this BAC is 1 gene per 8.9 kb. This report demonstrates that wheat and its relatives do contain regions with gene densities similar to that of Arabidopsis.
Collapse
Affiliation(s)
- Steven A Brooks
- Department of Plant Pathology, Kansas State University, Manhattan 66506, USA
| | | | | | | |
Collapse
|
40
|
Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O. Grasses and gall midges: plant defense and insect adaptation. ANNUAL REVIEW OF ENTOMOLOGY 2002; 48:549-577. [PMID: 12460937 DOI: 10.1146/annurev.ento.48.091801.112559] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interactions of two economically important gall midge species, the rice gall midge and the Hessian fly, with their host plants, rice and wheat, respectively, are characterized by plant defense via R genes and insect adaptation via avr genes. The interaction of a third gall midge species, the orange wheat blossom midge, with wheat defense R genes has not yet exhibited insect adaptation. Because of the simple genetics underlying important aspects of these gall midge-grass interactions, a unique opportunity exists for integrating plant and insect molecular genetics with coevolutionary ecology. We present an overview of some genetic, physiological, behavioral, and ecological studies that will contribute to this integration and point to areas in need of study.
Collapse
Affiliation(s)
- M O Harris
- Department of Entomology, North Dakota State University, Fargo, North Dakota 58105, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 2002; 19:76-84. [PMID: 11752192 DOI: 10.1093/oxfordjournals.molbev.a003984] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NBS-LRR (nucleotide-binding site plus leucine-rich repeat) genes represent the major class of disease resistance genes in flowering plants and comprise 166 genes in the ecotype Col-0 of Arabidopsis thaliana. NBS-LRR genes are organized in single-gene loci, clusters, and superclusters. Phylogenetic analysis reveals nine monophyletic clades and a few phylogenetic orphans. Most clusters contain only genes from the same phylogenetic lineage, reflecting their origin from the exchange of sequence blocks as a result of intralocus recombination. Multiple duplications increased the number of NBS-LRR genes in the progenitors of Arabidopsis, suggesting that the present complexity in Col-0 may derive from as few as 17 progenitors. The combination of physical and phylogenetic analyses of the NBS-LRR genes makes it possible to detect relatively recent gene rearrangements, which increased the number of NBS-LRR genes by about 50, but which are almost never associated with large segmental duplications. The identification of 10 heterogeneous clusters containing members from different clades demonstrates that sequence sampling between different resistance gene loci and clades has occurred. Such events may have taken place early during flowering plant evolution, but they generated modules that have been duplicated and remobilized also more recently.
Collapse
Affiliation(s)
- Erik Richly
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné Weg 10, 50829 Köln, Germany
| | | | | |
Collapse
|
42
|
Fourmann M, Chariot F, Froger N, Delourme R, Brunel D. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 2001; 44:1083-99. [PMID: 11768212 DOI: 10.1139/g01-098] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous sequences analogous to resistance (R) genes exist in plant genomes and could be involved in resistance traits. The aim of this study was to identify a large number of Brassica napus sequences related to R genes and also to test the adequacy of specific PCR-based tools for studying them. Different consensus primers were compared for their efficiency in amplifying resistance-gene analogues (RGAs) related to the nucleotide-binding-site subgroup of R genes. Specific primers were subsequently designed to fine-study the different RGAs and we tested their efficiency in three species related to B. napus: Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. Forty-four B. napus RGAs were identified. Among 29 examined, at least one-third were expressed. Eighteen RGAs were mapped on 10 of the 19 B. napus linkage groups. The high variability within these sequences permitted discrimination of each genotype within a B. napus collection. The RGA-specific primers amplified RGAs in the B. oleracea and B. rapa genomes, but the sequences appear to be poorly conserved in A. thaliana. Specific RGA primers are a precise tool for studying known-sequence RGAs. These sequences represent interesting markers that could be correlated with resistance traits in B. napus or related Brassica genomes.
Collapse
Affiliation(s)
- M Fourmann
- Station de Génétique et Amelioration des Plantes, Institut National de la Recherche Agronomique, Versailles, France.
| | | | | | | | | |
Collapse
|
43
|
Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes: evolution and utilization. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:285-312. [PMID: 11701867 DOI: 10.1146/annurev.phyto.39.1.285] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
More than 30 genes have been characterized from different plant species that provide resistance to a variety of different pathogen and pest species. The structures of most are consistent with a role in pathogen recognition and defense response signaling. Resistance genes are very abundant in plant genomes and most belong to tightly linked gene families. Evolution of R genes is driven by selection on allelic variation created by mutation and re-assorted by recombination between alleles and sometimes between different gene family members. Selection favors genes that can recognize pathogen avr gene products that are present in pathogen populations. Selection at linked gene families favors haplotypes with useful combinations of genes but a limited physiological cost to the plant. Future utilization of R genes will include transfer between related genera and identification or construction of genes that condition durable resistance to variable pathogens. Genes with durable resistance may interact with conserved pathogen elicitors or condition resistance responses that are independent of specific Avr gene interactions.
Collapse
Affiliation(s)
- S H Hulbert
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
44
|
Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, Abad P. Nematode Parasitism Genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:365-396. [PMID: 11701847 DOI: 10.1146/annurev.phyto.38.1.365] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ability of nematodes to live on plant hosts involves multiple parasitism genes. The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three enlarged esophageal gland cells that express products that are secreted into plant tissues through the stylet. Reverse genetic and expressed sequence tag (EST) approaches are being used to discover the parasitism genes expressed in nematode esophageal gland cells. Some genes cloned from root-knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes have homologues reported in genomic analyses of Caenorhabditis elegans and animal-parasitic nematodes. To date, however, the candidate parasitism genes endogenous to the esophageal glands of plant nematodes (such as the ß-1,4-endoglucanases) have their greatest similarity to microbial genes, prompting speculation that genes for plant parasitism by nematodes may have been acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Eric L Davis
- Department of Plant Pathology, North Carolina State University, Campus Box 7616, Raleigh, North Carolina 27695; e-mail:
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, 2309 Miller Plant Science Building, Athens, Georgia 30602-7274; e-mail:
| | - Thomas J Baum
- Department of Plant Pathology, Iowa State University, 351 Bessey Hall, Ames, Iowa 50011; e-mail:
| | - Jaap Bakker
- Department of Nematology, Wageningen University and Research Centre, Binnenhaven 10, PD Wageningen, 6709 The Netherlands; e-mail: ;
| | - Arjen Schots
- Department of Nematology, Wageningen University and Research Centre, Binnenhaven 10, PD Wageningen, 6709 The Netherlands; e-mail: ;
| | - Marie-Noëlle Rosso
- Laboratoire de Biologie des Invertebres, Institut National de la Recherche Agronomique, 123 Boulevarde Francis Meilland, Cedex Antibes, 06600 France; e-mail: ;
| | - Pierre Abad
- Laboratoire de Biologie des Invertebres, Institut National de la Recherche Agronomique, 123 Boulevarde Francis Meilland, Cedex Antibes, 06600 France; e-mail: ;
| |
Collapse
|
45
|
Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics 2000; 155:309-22. [PMID: 10790405 PMCID: PMC1461067 DOI: 10.1093/genetics/155.1.309] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of a single resistance (R) gene allele can determine plant disease resistance. The protein products of such genes may act as receptors that specifically interact with pathogen-derived factors. Most functionally defined R-genes are of the nucleotide binding site-leucine rich repeat (NBS-LRR) supergene family and are present as large multigene families. The specificity of R-gene interactions together with the robustness of plant-pathogen interactions raises the question of their gene number and diversity in the genome. Genomic sequences from tomato showing significant homology to genes conferring race-specific resistance to pathogens were identified by systematically "scanning" the genome using a variety of primer pairs based on ubiquitous NBS motifs. Over 70 sequences were isolated and 10% are putative pseudogenes. Mapping of the amplified sequences on the tomato genetic map revealed their organization as mixed clusters of R-gene homologues that showed in many cases linkage to genetically characterized tomato resistance loci. Interspecific examination within Lycopersicon showed the existence of a null allele. Consideration of the tomato and potato comparative genetic maps unveiled conserved syntenic positions of R-gene homologues. Phylogenetic clustering of R-gene homologues within tomato and other Solanaceae family members was observed but not with R-gene homologues from Arabidopsis thaliana. Our data indicate remarkably rapid evolution of R-gene homologues during diversification of plant families.
Collapse
Affiliation(s)
- Q Pan
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah ES. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:334-341. [PMID: 10707359 DOI: 10.1094/mpmi.2000.13.3.334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A resistance (R) gene-rich 2S chromosomal segment from Triticum ventricosum contains a cereal cyst nematode (CCN; Heterodera avenae) R gene locus CreX and a closely linked group of genes (Sr38, Yr17, and Lr37) that confer resistance to stem rust (Puccinia graminis f. sp. tritici), stripe rust (P. striiformis f. sp. tritici), and leaf rust (P. recondita f. sp. tritici) when introgressed into wheat. The 2S chromosomal segment from T. ventricosum is further delineated in translocations onto chromosome 2A of bread wheat, where the rust genes are retained but not the CreX gene. Using these critical genetic stocks, we have isolated family members of R gene analogs that are associated with either the 2S segment from T. ventricosum carrying the CreX locus or the rust genes. Derivatives of the Cre3 candidate R gene sequence and a rice (Oryza sativa) R gene analog that mapped to the 2S homologous chromosome groups in wheat were used to isolate related gene sequences from T. ventricosum that contain a nucleotide binding site-leucine rich repeat domain. The potential of these gene sequences as entry points for isolating candidate genes or gene family members of the CreX or rust genes and their further applications to plant breeding are discussed.
Collapse
Affiliation(s)
- S Seah
- CSIRO Plant Industry, Canberra A.C.T., Australia
| | | | | | | | | |
Collapse
|
47
|
Biagetti M, Vitellozzi F, Ceoloni C. Physical mapping of wheat-Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome 1999. [DOI: 10.1139/g98-172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH) with multiple probes, consisting of highly repeated DNA sequences (pSc119.2 and pAs1) and of a low-copy, 3BS-specific RFLP sequence (PSR907), enabled determination of the physical position of the wheat-alien breakpoints (BPs) along the 3BS and 3DS arms of common wheat recombinant lines. These lines harbour 3SlS Aegilops longissima segments containing the powdery mildew resistance gene Pm13. In all 3B recombinants, the wheat-Aegilops longissima physical BPs lie within the interval separating the two most distal of the three pSc119.2 3BS sites. In all such recombinants a telomeric segment, containing the most distal of the pSc119.2 3BS sites, was in fact replaced by a homoeologous Ae. longissima segment, marked by characteristic pSc119.2 hybridization sites. Employment of the PSR907 RFLP probe as a FISH marker allowed to resolve further the critical region in the various 3B recombinant lines. Three of them, like the control common wheat, exhibited between the two most distal pSc119.2 sites a single PSR907 FISH site, which was missing in a fourth recombinant line. The amount of alien chromatin can thus be estimated to represent around 20% of the recombinant arm in the three former lines and a maximum of 27% in the latter. A similar physical length was calculated for the alien segment contained in three 3D recombinants, all characterized by the presence of the Ae. longissima pSc119.2 sites distal to the nearly telomeric pAs1 sites of normal 3DS. Comparison between the FISH-based maps and previously developed RFLP maps of the 3BS-3SlS and 3DS-3SlS arms revealed substantial differences between physical and genetic map positions of the wheat-alien BPs and of molecular markers associated with the critical chromosomal portions.Key words: wheat-alien recombinants, chromosome engineering, fluorescence in situ hybridization, highly repeated and low-copy DNA probes, physical versus genetic maps.
Collapse
|
48
|
Abstract
Root-knot and cyst nematodes cause severe damage to crops throughout the world. Genes conferring resistance against nematodes have been identified in many plant species and several of these have been, or soon will be, cloned. Nematode biotypes that can infect resistant plants have been identified. Investigation of cloned resistance genes and of virulent nematodes is likely to lead to improved host resistance.
Collapse
Affiliation(s)
- V M Williamson
- Department of Nematology, One Shields Avenue, University of California, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Abstract
Wide crosses in wheat have now been performed for over 100 years. In that time, approximately 100 genes have been transferred for numerous traits, including biotic and abiotic stresses and value-added traits. Resistance genes from alien sources do become defeated with time, so the search for additional variability must continue. Recent screening of alien species has identified accessions with multiple pest resistance plus combinations of pest resistance and value-added traits. The majority of existing induced recombinants are of a noncompensating type with considerable linkage drag, so sequential useage of Ph mutants is recommended to produce smaller interstitial recombinants. Molecular methods, including GISH, RAPD, RFLP, AFLP, and microsatellites, are being widely used to identify integrated alien chromosomes, chromosome segments, and genes.Key words: Triticum aestivium, molecular markers, disease resistance, gene introgression, interspecific hybrids.
Collapse
|
50
|
Van der Biezen EA, Jones JD. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 1998; 23:454-6. [PMID: 9868361 DOI: 10.1016/s0968-0004(98)01311-5] [Citation(s) in RCA: 501] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|