1
|
Perrone M, Patergnani S, Di Mambro T, Palumbo L, Wieckowski MR, Giorgi C, Pinton P. Calcium Homeostasis in the Control of Mitophagy. Antioxid Redox Signal 2023; 38:581-598. [PMID: 36112728 DOI: 10.1089/ars.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Maintenance of mitochondrial quality is essential for cellular homeostasis. Among processes responsible for preserving healthy mitochondria, mitophagy selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Alterations in mitophagy lead to the accumulation of damaged mitochondria, which plays an essential role in several diseases such as carcinogenesis and tumor progression, neurodegenerative disorders, and autoimmune and cardiovascular pathologies. Recent Advances: Calcium (Ca2+) plays a fundamental role in cell life, modulating several pathways, such as gene expression, proliferation, differentiation, metabolism, cell death, and survival. Indeed, because it is involved in all these events, Ca2+ is the most versatile intracellular second messenger. Being a process that limits cellular degeneration, mitophagy participates in cellular fate decisions. Several mitochondrial parameters, such as membrane potential, structure, and reactive oxygen species, can trigger the activation of mitophagic machinery. These parameters regulate not only mitophagy but also the mitochondrial Ca2+ uptake. Critical Issues: Ca2+ handling is fundamental in regulating ATP production by mitochondria and mitochondrial quality control processes. Despite the growing literature about the link between Ca2+ and mitophagy, the mechanism by which Ca2+ homeostasis regulates mitophagy is still debated. Future Directions: Several studies have revealed that excessive mitophagy together with altered mitochondrial Ca2+ uptake leads to different dysfunctions in numerous diseases. Thus, therapeutic modulation of these pathways is considered a promising treatment. Antioxid. Redox Signal. 38, 581-598.
Collapse
Affiliation(s)
- Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy
| |
Collapse
|
2
|
Glucose Uptake Is Increased by Estradiol Dipropionate in L6 Skeletal Muscle Cells. Pharmaceuticals (Basel) 2022; 16:ph16010025. [PMID: 36678522 PMCID: PMC9866800 DOI: 10.3390/ph16010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
GLUT4 is an important glucose transporter, which is closely related to insulin resistance and type 2 diabetes. In this study, we investigated the mechanism of Estradiol Dipropionate (EDP) on uptake of glucose in L6 skeletal muscle cells. In our study, we confirmed that EDP promoted uptake of glucose in L6 skeletal muscle cells in both normal and insulin resistant models. Western blot indicated that EDP accelerated GLUT4 expression and significantly activated AMPK and PKC phosphorylation; the expression of GLUT4 was significantly inhibited by AMPK inhibitor compound C and PKC inhibitor Gö6983, but not by Wortmannin (Akt inhibitor). Meanwhile, EDP boosted GLUT4 expression, and also increased intracellular Ca2+ levels. In the presence of 2 mM, 0 mM extracellular Ca2+ and 0 mM extracellular Ca2+ + BAPTA-AM, the involvement of intracellular Ca2+ levels contribute to EDP-induced GLUT4 expression and fusion with plasma membrane. Therefore, this study investigated whether EDP promoted GLUT4 expression through AMPK and PKC signaling pathways, thereby enhancing GLUT4 uptake of glucose and fusion into plasma membrane in L6 skeletal muscle cells. In addition, both EDP induced GLUT4 translocation and uptake of glucose were Ca2+ dependent. These findings suggested that EDP may be potential drug for the treatment of type 2 diabetes.
Collapse
|
3
|
Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022; 136:1851-1871. [PMID: 36545931 DOI: 10.1042/cs20220636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The skeletal muscle is one of the largest organs in the mammalian body. Its remarkable ability to swiftly shift its substrate selection allows other organs like the brain to choose their preferred substrate first. Healthy skeletal muscle has a high level of metabolic flexibility, which is reduced in several metabolic diseases, including obesity and Type 2 diabetes (T2D). Skeletal muscle health is highly dependent on optimally functioning mitochondria that exist in a highly integrated network with the sarcoplasmic reticulum and sarcolemma. The three major mitochondrial processes: biogenesis, dynamics, and mitophagy, taken together, determine the quality of the mitochondrial network in the muscle. Since muscle health is primarily dependent on mitochondrial status, the mitochondrial processes are very tightly regulated in the skeletal muscle via transcription factors like peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptors, estrogen-related receptors, nuclear respiratory factor, and Transcription factor A, mitochondrial. Physiological stimuli that enhance muscle energy expenditure, like cold and exercise, also promote a healthy mitochondrial phenotype and muscle health. In contrast, conditions like metabolic disorders, muscle dystrophies, and aging impair the mitochondrial phenotype, which is associated with poor muscle health. Further, exercise training is known to improve muscle health in aged individuals or during the early stages of metabolic disorders. This might suggest that conditions enhancing mitochondrial health can promote muscle health. Therefore, in this review, we take a critical overview of current knowledge about skeletal muscle mitochondria and the regulation of their quality. Also, we have discussed the molecular derailments that happen during various pathophysiological conditions and whether it is an effect or a cause.
Collapse
|
4
|
Kiyimba F, Hartson SD, Rogers J, VanOverbeke DL, Mafi GG, Ramanathan R. Dark-cutting beef mitochondrial proteomic signatures reveal increased biogenesis proteins and bioenergetics capabilities. J Proteomics 2022; 265:104637. [DOI: 10.1016/j.jprot.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
|
5
|
Sun J, She Y, Fang P, Gu X, Zhang Z. Time-restricted feeding prevents metabolic diseases through the regulation of galanin/GALR1 expression in the hypothalamus of mice. Eat Weight Disord 2022; 27:1415-1425. [PMID: 34370270 DOI: 10.1007/s40519-021-01280-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Time-restricted feeding (TRF) reverses obesity and insulin resistance, yet the central mechanisms underlying its beneficial effects are not fully understood. Recent studies suggest a critical role of hypothalamic galanin and its receptors in the regulation of energy balance. It is yet unclear whether TRF could regulate the expression of galanin and its receptors in the hypothalamus of mice fed a high-fat diet. METHODS To test this effect, we subjected mice to either ad lib or TRF of a high-fat diet for 8 h per day. After 4 weeks, galanin and many neuropeptides associated with the function of metabolism were examined. RESULTS The present findings showed that mice under TRF consume equivalent calories from a high-fat diet as those with ad lib access, yet are protected against obesity and have improved glucose metabolism. Plasma galanin, orexin A, irisin and adropin levels were significantly reversed by TRF regimen. Besides, TRF regimen reversed the progression of metabolic disorders in mice by increasing GLUT4 and PGC-1α expression in skeletal muscles. Moreover, the levels of galanin and GALR1 expression were severely diminished in the hypothalamus of the TRF mice, whereas GALR2 was highly expressed. CONCLUSIONS TRF diminished galanin and GALR1 expression, and increased GALR2 expression in the hypothalamus of mice fed a high-fat diet. The current studies provide additional evidence that TRF is effective in improving HFD-induced hyperglycemia and insulin resistance in mice, and this effect could be associated with TRF-induced changes of the galanin systems in the hypothalamus. LEVEL OF EVIDENCE No level of evidence, animal studies.
Collapse
Affiliation(s)
- Jingjing Sun
- Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Xuewen Gu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
6
|
Melo BP, Zacarias AC, Oliveira JCC, De Souza Cordeiro LM, Wanner SP, Dos Santos ML, Avelar GF, Meeusen R, Heyman E, Soares DD. Combination of Aerobic Training and Cocoa Flavanols as Effective Therapies to Reduce Metabolic and Inflammatory Disruptions in Insulin-Resistant Rats: The Exercise, Cocoa, and Diabetes Study. Int J Sport Nutr Exerc Metab 2022; 32:89-101. [PMID: 34808598 DOI: 10.1123/ijsnem.2021-0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
We aimed to investigate the combined effects of aerobic exercise (EXE) and cocoa flavanol (COCOA) supplementation on performance, metabolic parameters, and inflammatory and lipid profiles in obese insulin-resistant rats. Therefore, 32 male Wistar rats (230-250 g) were fed a high-fat diet and a fructose-rich beverage for 30 days to induce insulin resistance. Next, the rats were randomized into four groups, orally administered placebo solution or COCOA supplementation (45 mg·kg-1), and either remained sedentary or were subjected to EXE on a treadmill at 60% peak velocity for 30 min, for 8 weeks. Blood samples and peripheral tissues were collected and processed to analyze metabolic and inflammatory parameters, lipid profiles, and morphological parameters. Supplementation with COCOA and EXE improved physical performance and attenuated body mass gain, adipose index, and adipocyte area. When analyzed as individual interventions, supplementation with COCOA and EXE improved glucose intolerance and the lipid profile reduced the concentrations of leptin, glucose, and insulin, and reduced homeostasis assessment index (all effects were p < .001 for both interventions), while ameliorated some inflammatory mediators in examined tissues. In skeletal muscles, both COCOA supplementation and EXE increased the expression of glucose transporter (p < .001 and p < .001), and combined intervention showed additive effects (p < .001 vs. COCOA alone or EXE alone). Thus, combining COCOA with EXE represents an effective nonpharmacological strategy to treat insulin resistance; it could prevent Type 2 diabetes mellitus by improving physical performance, glucose metabolism, neuroendocrine control, and lipid and inflammatory mediators in the liver, pancreas, adipose tissue, and skeletal muscle in obese male insulin-resistant rats.
Collapse
Affiliation(s)
- Bruno P Melo
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | - Aline C Zacarias
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | - Joyce C C Oliveira
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | | | - Samuel P Wanner
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | - Mara L Dos Santos
- Departament of Morphology, Cellular Biology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | - Gleide F Avelar
- Departament of Morphology, Cellular Biology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels,Belgium
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Institut Universitaire de France (IUF), Lille,France
| | - Danusa D Soares
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,Brazil
| |
Collapse
|
7
|
Yu M, Wang M, Han S, Han L, Kan Y, Zhao J, Yu X, Yan J, Jin Y, Zhang Z, Shang W, Fang P. Spexin ameliorates skeletal muscle insulin resistance through activation of GAL2 receptor. Eur J Pharmacol 2022; 917:174731. [PMID: 34973950 DOI: 10.1016/j.ejphar.2021.174731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/12/2023]
Abstract
Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms. The high fat diet-fed mice were treated with 50 μg/kg/d spexin for 21 consecutive days, and the differentiated myotubes of L6 were treated with spexin (200, 400, 800 nM) in the absence or presence of M871 (800 nM) for 12 h respectively. Besides, the galanin type 2 (GAL2) receptor knockdown myotubes were treated with 800 nM spexin for 12 h in this study. The present findings showed that spexin reversed hyperglycemia and glucose intolerance as well as insulin intolerance and insulin resistance in the mice fed with high fat diet. Furthermore, spexin markedly augmented the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression and deacetylation, and further triggered glucose transporter 4 (GLUT4) expression and trafficking in myotubes through p38 mitogen-activated protein kinase (P38MAPK) and protein kinase B (AKT) activation. More importantly, the elevation of glucose consumption related genes by spexin were abolished by GAL2 receptor antagonist or silencing of GAL2 receptor in myotubes. In conclusion, our findings provide a novel insight that spexin can protect against insulin resistance and increase glucose consumption in skeletal muscles mainly through activation of GAL2/GLUT4 signal pathway. Spexin might therefore be a novel therapeutic target for hyperglycemia and insulin resistance in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbing Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
8
|
Yu M, Han S, Wang M, Han L, Huang Y, Bo P, Fang P, Zhang Z. Baicalin protects against insulin resistance and metabolic dysfunction through activation of GALR2/GLUT4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153869. [PMID: 34923235 DOI: 10.1016/j.phymed.2021.153869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex metabolic disorder associated with obesity, glucose intolerance and insulin resistance. Activation of GALR2 has been proposed as a therapeutic target for the treatment of insulin resistance. The previous studies showed that baicalin could mitigate insulin resistance, but the detailed mechanism of baicalin on insulin resistance has not been fully explored yet. PURPOSE In the present study, we evaluated whether baicalin mitigated insulin resistance via activation of GALR2 signaling pathway. STUDY DESIGN/METHODS Baicalin (25 mg/kg/d and 50 mg/kg/d) and/or GALR2 antagonist M871 (10 mg/kg/d) were injected individually or in combinations into obese mice once a day for three weeks, and normal and GALR2 knockdown myotubes were treated with baicalin (100 μM and 400 μM) or metformin (4 mM) in the absence or presence of M871 (800 nM) for 12 h, respectively. The molecular mechanism was explored in skeletal muscle and L6 myotubes. RESULTS The present findings showed that baicalin mitigated hyperglycemia and insulin resistance and elevated the levels of PGC-1α, GLUT4, p-p38MAPK, p-AKT and p-AS160 in skeletal muscle of obese mice. Strikingly, the baicalin-induced beneficial effects were abolished by GALR2 antagonist M871 in obese mice. In vitro, baicalin dramatically augmented glucose consumption and the activity of PGC1α-GLUT4 axis in myotubes through activation of p38MAPK and AKT pathways. Moreover, baicalin-induced elevations in glucose consumption related genes were abolished by GALR2 antagonist M871 or silencing of GALR2 in myotubes. CONCLUSIONS The present study for the first time demonstrated that baicalin protected against insulin resistance and metabolic dysfunction mainly through activation of GALR2-GLUT4 signal pathway. Our findings identified that activation of GALR2-GLUT4 signal pathway by baicalin could be a new therapeutic approach to treat insulin resistance and T2DM in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
9
|
Chung MY, Choi HK, Hwang JT. AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals. Nutrients 2021; 13:nu13114050. [PMID: 34836306 PMCID: PMC8621568 DOI: 10.3390/nu13114050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a metabolic syndrome characterized by inadequate blood glucose control and is associated with reduced quality of life and various complications, significantly shortening life expectancy. Natural phytochemicals found in plants have been traditionally used as medicines for the prevention of chronic diseases including diabetes in East Asia since ancient times. Many of these phytochemicals have been characterized as having few side effects, and scientific research into the mechanisms of action responsible has accumulated mounting evidence for their efficacy. These compounds, which may help to prevent metabolic syndrome disorders including diabetes, act through relevant intracellular signaling pathways. In this review, we examine the anti-diabetic efficacy of several compounds and extracts derived from medicinal plants, with a focus on AMP-activated protein kinase (AMPK) activity.
Collapse
Affiliation(s)
- Min-Yu Chung
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Hyo-Kyoung Choi
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9315; Fax: +82-63-219-9876
| |
Collapse
|
10
|
Fang P, Han L, Yu M, Han S, Wang M, Huang Y, Guo W, Wei Q, Shang W, Min W. Development of metabolic dysfunction in mice lacking chemerin. Mol Cell Endocrinol 2021; 535:111369. [PMID: 34171420 DOI: 10.1016/j.mce.2021.111369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023]
Abstract
Chemerin, an adipocyte-secreted adipokine, is hypothesized to participate in energy homeostasis and glucoregulation. However, the physiologic effect of endogenous chemerin on glucose metabolism is unclear. The present studies tested the hypotheses that chemerin deficiency alters whole-body glucose homeostasis following switches to high-fat diet. Adult, male chemerin knockout and C57BL/6J control wild type mice were studied. During the following 4 weeks, chow- or high-fat diet maintained chemerin knockout mice showed elevated fasting glucose levels and glucose intolerance as well as insulin intolerance. Chemerin deficiency impaired adaptation to glucose and insulin challenge, leading to increased glucose levels. Moreover, the mRNA and protein levels of GLUT4 and PGC-1α expression in both skeletal muscle and adipose tissue were significantly decreased in chemerin knockout mice relative to the wild type, respectively. Taken together, the results support the hypotheses that chemerin helps adapt glucose metabolism to changes in dietary fat and modulates glucose consumption in mice by activation of PGC-1α/GLUT4 axis. Chemerin may play a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujie Huang
- Department of Endocrinology, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Wancheng Guo
- Department of Endocrinology, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Qingbo Wei
- Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenbing Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
11
|
PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6683033. [PMID: 34211632 PMCID: PMC8205587 DOI: 10.1155/2021/6683033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation.
Collapse
|
12
|
Patra S, Mahapatra KK, Praharaj PP, Panigrahi DP, Bhol CS, Mishra SR, Behera BP, Singh A, Jena M, Bhutia SK. Intricate role of mitochondrial calcium signalling in mitochondrial quality control for regulation of cancer cell fate. Mitochondrion 2021; 57:230-240. [PMID: 33476771 DOI: 10.1016/j.mito.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial quality control is crucial for sustaining cellular maintenance. Mitochondrial Ca2+ plays an important role in the maintenance of mitochondrial quality control through regulation of mitochondrial dynamics, mitophagy and mitochondrial biogenesis for preserving cellular homeostasis. The regulation of this dynamic interlink between these mitochondrial networks and mitochondrial Ca2+ appears indispensable for the adaptation of cells under external stimuli. Moreover, dysregulation of mitochondrial Ca2+ divulges impaired mitochondrial control that results in several pathological conditions such as cancer. Hence this review untangles the interplay between mitochondrial Ca2+ and quality control that govern mitochondrial health and mitochondrial coordinates in the development of cancer.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mrutyunjay Jena
- PG Department of Botany, Berhampur University, Berhampur 760007, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
13
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
14
|
Lasa-Elgarresta J, Mosqueira-Martín L, Naldaiz-Gastesi N, Sáenz A, López de Munain A, Vallejo-Illarramendi A. Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations. Int J Mol Sci 2019; 20:E4548. [PMID: 31540302 PMCID: PMC6770289 DOI: 10.3390/ijms20184548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Laura Mosqueira-Martín
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Neia Naldaiz-Gastesi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Amets Sáenz
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain.
- Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain.
| | - Ainara Vallejo-Illarramendi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain.
| |
Collapse
|
15
|
Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, Liu QH, Yang X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front Pharmacol 2019; 10:999. [PMID: 31551792 PMCID: PMC6737894 DOI: 10.3389/fphar.2019.00999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is involved in regulating glucose uptake in striated muscle, liver, and adipose tissue. Neferine is a dibenzyl isoquinoline alkaloid derived from dietary lotus seeds and has multiple pharmacological effects. Therefore, this study investigated neferine’s role in glucose translocation to cell surface, glucose uptake, and GLUT4 expression. In our study, neferine upregulated GLUT4 expression, induced GLUT4 plasma membrane fusion, increased intracellular Ca2+, promoted glucose uptake, and alleviated insulin resistance in L6 cells. Furthermore, neferine significantly activated phosphorylation of AMP-activated protein kinase (AMPK) and protein kinase C (PKC). AMPK and PKC inhibitors blocked neferine-induced GLUT4 expression and increased intracellular Ca2+. While neferine-induced GLUT4 expression and intracellular Ca2+ were inhibited by G protein and PLC inhibitors, only intracellular Ca2+ was inhibited by inositol trisphosphate receptor (IP3R) inhibitors. Thus, neferine promoted GLUT4 expression via the G protein-PLC-PKC and AMPK pathways, inducing GLUT4 plasma membrane fusion and subsequent glucose uptake and increasing intracellular Ca2+ through the G protein-PLC-IP3-IP3R pathway. Treatment with 0 mM extracellular Ca2+ + Ca2+ chelator did not inhibit neferine-induced GLUT4 expression but blocked neferine-induced GLUT4 plasma membrane fusion and glucose uptake, suggesting the latter two are Ca2+-dependent. Therefore, we conclude that neferine is a potential treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guanjun Song
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
16
|
Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients 2019; 11:nu11071664. [PMID: 31330812 PMCID: PMC6682887 DOI: 10.3390/nu11071664] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Dyslipidemia is a common nutritional and metabolic disorder in patients with chronic kidney disease. Accumulating evidence supports the hypothesis that prolonged metabolic imbalance of lipids leads to ectopic fat distribution in the peripheral organs (lipotoxicity), including the kidney, heart, and skeletal muscle, which accelerates peripheral inflammation and afflictions. Thus, lipotoxicity may partly explain progression of renal dysfunction and even extrarenal complications, including renal anemia, heart failure, and sarcopenia. Additionally, endoplasmic reticulum stress activated by the unfolded protein response pathway plays a pivotal role in lipotoxicity by modulating the expression of key enzymes in lipid synthesis and oxidation. Here, we review the molecular mechanisms underlying lipid deposition and resultant tissue damage in the kidney, heart, and skeletal muscle, with the goal of illuminating the nutritional aspects of these pathologies.
Collapse
|
17
|
Zhao P, Ming Q, Qiu J, Tian D, Liu J, Shen J, Liu QH, Yang X. Ethanolic Extract of Folium Sennae Mediates the Glucose Uptake of L6 Cells by GLUT4 and Ca 2. Molecules 2018; 23:molecules23112934. [PMID: 30424024 PMCID: PMC6278344 DOI: 10.3390/molecules23112934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
In today’s world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G protein–PLC–PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Junying Qiu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan 430074, China.
| |
Collapse
|
18
|
Min W, Fang P, Huang G, Shi M, Zhang Z. The decline of whole-body glucose metabolism in ovariectomized rats. Exp Gerontol 2018; 113:106-112. [PMID: 30292771 DOI: 10.1016/j.exger.2018.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for developing chronic diseases, including type 2 diabetes and osteoporosis. Emerging evidences suggest that the disorder of bone metabolism in osteoporosis is involved in the pathogenesis of glucose intolerance, insulin resistance and type 2 diabetes. However, their etiology and relative regulatory factors still remain elusive to clinicians and researchers. In this study, rats were divided into two groups: normal sham surgery control and ovariectomized (OVX) groups. We evaluated the global bone parameters, glucose metabolism, protein and gene expressions in both skeletal muscle and adipocytes. The present findings showed that the bone mineral density (BMD) and compression load of bone were markedly reduced in OVX rats as revealed by micro-CT, dual energy X-ray absorptiometry and bone biomechanics analysis. Besides, plasma estrogen, total alkaline phosphatase (TALP) and osteocalcin levels were significantly decreased in the OVX rats, but body weight, fat mass and plasma tartrate-resistant acid phosphatase (TRAP) and chemerin levels were significantly increased in the OVX rats. More interestingly, we found that p-AKT, p-P38MAPK, glucose transporter 4 (GLUT4) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) contents as well as GLUT4 and PGC-1α mRNA expression were significantly decreased in skeletal muscle and adipocytes of OVX rats. In conclusion, our results indicated that whole-body glucose metabolism and glucose intolerance in OVX rats was degressive, suggesting there was a novel link between osteoporosis and whole body glucose homeostasis, which are controlled by the P38MAPK/PGC-1α/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Wen Min
- Institute of Bone injury of Traditional Chinese Medicine, Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Penghua Fang
- Institute of Bone injury of Traditional Chinese Medicine, Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guicheng Huang
- Institute of Bone injury of Traditional Chinese Medicine, Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mingyi Shi
- Institute of Bone injury of Traditional Chinese Medicine, Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
19
|
Perry CGR, Hawley JA. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029686. [PMID: 28507194 DOI: 10.1101/cshperspect.a029686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We provide an overview of groundbreaking studies that laid the foundation for our current understanding of exercise-induced mitochondrial biogenesis and its contribution to human skeletal muscle fitness. We highlight the mechanisms by which skeletal muscle responds to the acute perturbations in cellular energy homeostasis evoked by a single bout of endurance-based exercise and the adaptations resulting from the repeated demands of exercise training that ultimately promote mitochondrial biogenesis through hormetic feedback loops. Despite intense research efforts to elucidate the cellular mechanisms underpinning mitochondrial biogenesis in skeletal muscle, translating this basic knowledge into improved metabolic health at the population level remains a future challenge.
Collapse
Affiliation(s)
- Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside L3 5UA, United Kingdom
| |
Collapse
|
20
|
Gao M, Du Y, Xie JW, Xue J, Wang YT, Qin L, Ma MM, Tang YB, Li XY. Redox signal-mediated TRPM2 promotes Ang II-induced adipocyte insulin resistance via Ca 2+-dependent CaMKII/JNK cascade. Metabolism 2018; 85:313-324. [PMID: 29775644 DOI: 10.1016/j.metabol.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/21/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Redox-sensitive transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable, nonselective cation channel which plays a crucial role in various physiological processes. However, little is known whether TRPM2 is involved in adipocyte dysfunction during hypertension. In the present study, we determined the role of TRPM2 in angiotensin II (Ang II)-induced insulin resistance in adipocytes and the underlying mechanisms. METHODS Ang II-induced adipocyte insulin resistant model was conducted. Data from Ang II-induced hypertensive mice were used to measure the effects of TRPM2 inhibitor on insulin resistance in vivo. Whole-cell patch clamp technique, intracellular Ca2+ concentration measurement, glucose uptake assay, western blot, cDNA and siRNA transfection were employed to investigate the TRPM2/Ca2+/CaMKII/JNK signaling. RESULTS Ang II rose a cation current similar to that activated by hydrogen peroxide (H2O2) or ADP-ribose (ADPR), which was blocked by TRPM2 inhibitor or TRPM2 siRNA in adipocytes. Knockdown of TRPM2 significantly improved the lowered insulin sensitivity induced by Ang II, including insulin stimulated glucose uptake, phosphorylation of IRS1 and Akt, interaction between IR and IRS1 and the membrane translocation of GLUT4, whereas overexpression of TRPM2 resulted in the opposite effects. These results were related to the potentiated effects of TRPM2 on Ca2+ influx and CaMKII/JNK cascade activation upon Ang II-induced challenge. Notably, the pharmacological TRPM2 inhibitor, N-(p-amylcinnamoyl)anthranilic acid (ACA), was proved to improve insulin sensitivity in adipose tissue during Ang II-induced hypertension progress. CONCLUSIONS These data suggested that TRPM2 is a positive regulator of Ang II-induced adipocyte insulin resistance via Ca2+/CaMKII/JNK-dependent signaling pathway. Targeting TRPM2 may be a novel therapeutic strategy to treat hypertension-associated insulin resistance.
Collapse
Affiliation(s)
- Min Gao
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China.
| | - Yu Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing-Wen Xie
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Jing Xue
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yi-Ting Wang
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Li Qin
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Bo Tang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Yan Li
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China.
| |
Collapse
|
21
|
Fang P, Yu M, Min W, Han S, Shi M, Zhang Z, Bo P. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. Diabetes Res Clin Pract 2018; 139:262-271. [PMID: 29526684 DOI: 10.1016/j.diabres.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/19/2018] [Accepted: 03/02/2018] [Indexed: 01/31/2023]
Abstract
AIMS Although baicalin has been shown to increase glucose uptake and insulin sensitivity in skeletal muscle of mice, there is no literature available about the effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. METHODS In the present study, diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and 3T3-L1 cells were treated with 100, 200, 400 μM baicalin for 3 h. Then insulin resistance indexes and insulin signal protein levels were examined to elucidate whether baicalin increased glucose uptake and GLUT4 translocation in adipocytes of diet-induced obese mice. RESULTS The present findings showed that administration of baicalin decreased food intake, body weight, HOMA-IR and p-p38 MAPK and pERK levels, but enhanced pAKT and PGC-1α contents, as well as GLUT4 mRNA, PGC-1α mRNA expression in adipocytes, and reversed high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Moreover, baicalin treatment increased GLUT4 concentration in plasma membranes of adipocytes. CONCLUSIONS These data demonstrated that baicalin accelerated GLUT4 translocation from intracellular membrane compartments to plasma membranes in adipocytes. Baicalin plays a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
22
|
Fang P, Yu M, Min W, Wan D, Han S, Shan Y, Wang R, Shi M, Zhang Z, Bo P. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci 2018; 196:156-161. [PMID: 29459024 DOI: 10.1016/j.lfs.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
AIMS Although baicalin could attenuate obesity-induced insulin resistance, the detailed mechanism of baicalin on glucose uptake has not been sufficiently explored as yet. The aim of this study was to survey if baicalin might facilitate glucose uptake and to explore its signal mechanisms in L6 myotubes. MATERIALS AND METHODS L6 myotubes were treated with 100, 200, 400 μM baicalin for 6 h, 12 h and 24 h in this study. Then 2-NBDG and insulin signal protein levels in myotubes of L6 cells were examined. KEY FINDINGS We discovered that administration of baicalin enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA and PGC-1α mRNA levels in L6 myotubes. The beneficial metabolic changes elicited by baicalin were abrogated in myotubes of L6 by P38MAPK or AKT inhibitors. SIGNIFICANCE These results suggest that baicalin promoted glucose uptake in myotubes by differential regulation on P38MAPK and AKT activity. In conclusion, these data provide insight that baicalin is a powerful and promising agent for the treament of hyperglycemia via AKT/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Yizhi Shan
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Rui Wang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
23
|
Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep 2018; 8:1531. [PMID: 29367754 PMCID: PMC5784148 DOI: 10.1038/s41598-018-19930-w] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023] Open
Abstract
Metabolic viability based high throughput assays like MTT and MTS are widely used in assessing the cell viability. However, alteration in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if MTT assay is a true measure of radiation induced cell death in widely used cell lines. Radiation induced cellular growth inhibition was performed by enumerating cell numbers and metabolic viability using MTT assay at 24 and 48 hours (hrs) after exposure. The extent of radiation induced reduction in cell number was found to be larger than the decrease in MTT reduction in all the cell lines tested. We demonstrated that radiation induces PGC-1α and TFAM to stimulate mitochondrial biogenesis leading to increased levels of SDH-A and enhanced metabolic viability. Radiation induced disturbance in calcium (Ca2+) homeostasis also plays a crucial role by making the mitochondria hyperactive. These findings suggest that radiation induces mitochondrial biogenesis and hyperactivation leading to increased metabolic viability and MTT reduction. Therefore, conclusions drawn on radiation induced growth inhibition based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival.
Collapse
|
24
|
Fang P, Zhang L, Yu M, Sheng Z, Shi M, Zhu Y, Zhang Z, Bo P. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice. Peptides 2018; 99:92-98. [PMID: 29183756 DOI: 10.1016/j.peptides.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/28/2023]
Abstract
The results of our and other's studies showed that activation of galanin receptor 1 could mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in the skeletal muscle of rats. But no literature are available regarding the effect of galanin receptor 2 (GALR2) on insulin resistance in skeletal muscle of type 2 diabetes. Herein, in this study we intended to survey the effect of GALR2 and its signal mechanisms in the mice with high fat diet-induced obese. The mice were intraperitoneally injected with vehicle, GALR2 agonist M1145 and antagonist M871 respectively once a day for continuous 21 days. The skeletal muscles were processed for determination of glucose uptake, and GLUT4 mRNA and protein expression levels. The PGC-1α, AKT, p38MAPK, AS160, pAKT, pP38MAPK and pAS160 expression levels were quantitatively assessed too. We found that pharmacological activation of GALR2 enhanced energy expenditure, and increased GLUT4 expression and translocation in skeletal muscle of mice during high-fat diet regimens. Activation of GALR2 alleviated insulin resistance through P38MAPK/PGC-1α/GLUT4 and AKT/AS160/GLUT4 pathway in the skeletal muscle of mice. Overall, these results identify that GALR2 is a regulator of insulin resistance and activation of GALR2 represents a promising strategy against obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Zhongqi Sheng
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
25
|
Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, Bo P, Zhang Z. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 2017; 448:77-86. [PMID: 28359800 DOI: 10.1016/j.mce.2017.03.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/04/2017] [Accepted: 03/26/2017] [Indexed: 01/24/2023]
Abstract
Obesity may cause several metabolic complications, including insulin resistance and type 2 diabetes mellitus. Despite great advances in medicine, people still keep exploring novel and effective drugs for treatment of obesity and insulin resistance. The aim of this study was to survey if baicalin might ameliorate obesity-induced insulin resistance and to explore its signal mechanisms in skeletal muscles of mice. Diet-induced obese (DIO) mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and C2C12 myotubes were treated with 100, 200, 400 μM baicalin for 12 h in this study. Then insulin resistance indexes and insulin signal protein levels in skeletal muscles were examined. We discovered that administration of baicalin decreased food intake, body weight, HOMA-IR and NT-PGC-1α levels, but enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA, PGC-1α mRNA, PPARγ mRNA, GLUT1 mRNA expression in skeletal muscles of obese mice and myotubes of C2C12 cells, and reversed high fat diet-induced glucose and insulin intolerance, hyperglycemia and insulin resistance in the mice. These results suggest that baicalin is a powerful and promising agent for treatment of obesity and insulin resistance via Akt/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| |
Collapse
|
26
|
García-Rúa V, Feijóo-Bandín S, García-Vence M, Aragón-Herrera A, Bravo SB, Rodríguez-Penas D, Mosquera-Leal A, Lear PV, Parrington J, Alonso J, Roselló-Lletí E, Portolés M, Rivera M, González-Juanatey JR, Lago F. Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level. J Biosci 2016; 41:643-658. [DOI: 10.1007/s12038-016-9647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
28
|
Mitochondrial Alterations in Peripheral Mononuclear Blood Cells from Alzheimer's Disease and Mild Cognitive Impairment Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5923938. [PMID: 26881032 PMCID: PMC4736772 DOI: 10.1155/2016/5923938] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/17/2022]
Abstract
It is well recognized that mitochondrial dysfunction contributes to neurodegeneration occurring in Alzheimer's disease (AD). However, evidences of mitochondrial defects in AD peripheral cells are still inconclusive. Here, some mitochondrial-encoded and nuclear-encoded proteins, involved in maintaining the correct mitochondria machine, were investigated in terms of protein expression and enzymatic activity in peripheral blood mononuclear cells (PBMCs) isolated from AD and Mild Cognitive Impairment (MCI) patients and healthy subjects. In addition mitochondrial DNA copy number was measured by real time PCR. We found some differences and some similarities between AD and MCI patients when compared with healthy subjects. For example, cytochrome C and cytochrome B were decreased in AD, while MCI showed only a statistical reduction of cytochrome C. On the other hand, both AD and MCI blood cells exhibited highly nitrated MnSOD, index of a prooxidant environment inside the mitochondria. TFAM, a regulator of mitochondrial genome replication and transcription, was decreased in both AD and MCI patients' blood cells. Moreover also the mitochondrial DNA amount was reduced in PBMCs from both patient groups. In conclusion these data confirmed peripheral mitochondria impairment in AD and demonstrated that TFAM and mtDNA amount reduction could be two features of early events occurring in AD pathogenesis.
Collapse
|
29
|
Craig DM, Ashcroft SP, Belew MY, Stocks B, Currell K, Baar K, Philp A. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Front Physiol 2015; 6:296. [PMID: 26578969 PMCID: PMC4621424 DOI: 10.3389/fphys.2015.00296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 01/09/2023] Open
Abstract
Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibers (Type I and IIA myosin heavy chain), an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity) is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans.
Collapse
Affiliation(s)
- Daniel M Craig
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham Birmingham, UK
| | - Stephen P Ashcroft
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham Birmingham, UK
| | - Micah Y Belew
- Molecular, Cell and Cancer Biology, University of Massachusetts Medical School Worcester, MA, USA
| | - Ben Stocks
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham Birmingham, UK
| | - Kevin Currell
- EIS Performance Centre, English Institute of Sport, Loughborough University Loughborough, UK
| | - Keith Baar
- Neurobiology, Physiology and Behavior, University of California Davis Davis, CA, USA
| | - Andrew Philp
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham Birmingham, UK
| |
Collapse
|
30
|
Kim JS, Yoon CS, Park DR. NAMPT regulates mitochondria biogenesis via NAD metabolism and calcium binding proteins during skeletal muscle contraction. J Exerc Nutrition Biochem 2014; 18:259-66. [PMID: 25566462 PMCID: PMC4241898 DOI: 10.5717/jenb.2014.18.3.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the effect that muscle contraction induced NAD metabolism via NAMPT has on mitochondrial biogenesis. METHODS Primary skeletal muscle cells were isolated from the gastrocnemius in C57BL/6 mice. The muscle cells were stimulated by electrical current at 1Hz for 3 minutes in conditions of normal or NAD metabolism related inhibitor treatment. NAD/NADH level, Sirt1 and mitochondria biogenesis related signal factor's changes were examined in normal or NAD metabolism related inhibitor treated cells. RESULTS Electrical stimulation (ES) induced muscle contractions significantly increased NAD/NADH levels, NAMPT inhibitor FK-866 inhibited ES-induced NAD formation, which caused SIRT1 expression and PGC-1α deacetylation to decrease. Moreover, NAMPT inhibition decreased mitochondrial biogenesis related mRNA, COX-1 and Tfam levels. Along with AMPK inhibitor, compound C decreases SIRT1 expression, PGC-1α deacetylation and muscle contraction induced mitochondrial biogenesis related mRNA increment. These results indicated that the AMPK-NAMPT signal is a key player for muscle contraction induced SIRT1 expression and PGC-1α deacetylation, which influences mitochondrial biogenesis. Inhibition of the AMPK upregulator, Camkkβ, STO-609 decreased AMPK phosphorylation and SIRT1 expression but did not decrease PGC-1α deacetylation. However, CAMKII inhibition via AIP decreased PGC-1α deacetylation. CONCLUSION In conclusion, the results indicate that NAMPT plays an important role in NAD metabolism and mitochondrial biogenesis. However, mitochondrial biogenesis is also controlled by different calcium binding protein signals including Camkkβ and CAMKII. [Keyword] Muscle contraction, NAD metabolism, SIRT1, PGC-1 α, mitochondria biogenesis.
Collapse
Affiliation(s)
- Jeong Seok Kim
- Department of physical education, Chonbuk National University, Jeonju, Korea
| | - Chung-Su Yoon
- Department of physical education, Chonbuk National University, Jeonju, Korea
| | - Dae Ryoung Park
- Department of Biochemistry, Chonbuk National University Medical school, Jeonju, Korea
| |
Collapse
|
31
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
32
|
Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, Ding S, Hood DA. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep 2014; 2:2/5/e12008. [PMID: 24843073 PMCID: PMC4098736 DOI: 10.14814/phy2.12008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PGC‐1α is an important transcriptional coactivator that plays a key role in mediating mitochondrial biogenesis. Within seconds of the onset of contractile activity, a number of rapid cellular events occur that form part of the initial signaling processes involved in PGC‐1α gene regulation, such as elevations in cytoplasmic calcium, AMPK and p38 activation, and elevated ROS production. We observed that basal levels of PGC‐1α promoter activity were more sensitive to resting Ca2+ levels, compared to ROS, p38 or, AMPK signaling. Moreover, enhanced PGC‐1α transcription and post‐translational activity on DNA were a result of the activation of multiple signal transduction pathways during contractile activity of myotubes. AMPK, ROS, and Ca2+ appear to be necessary for the regulation of contractile activity‐induced PGC‐1α gene expression, governed partly through p38 MAPK and CaMKII activity. Whether these signaling pathways are arranged as a linear sequence of events, or as largely independent pathways during contractile activity, remains to be determined. When we exercise regularly, one of the most pronounced adaptations is the increase in mitochondrial content in skeletal muscle. This adaptation allows us to exercise longer with less fatigue, and it stimulates to breakdown of fat as an energy source. In this study, we sought to investigate some of the molecular signals which underlie this adaptation. Using a cell culture model of muscle contractile activity, we investigated the expression and regulation of one of the most important proteins that controls mitochondria: PGC‐1alpha. This protein is a transcription factor that regulates the expression of numerous genes which mediate the synthesis of mitochondria. Our results indicate that there are several redundant signaling pathways, activated by exercise, that control the transcription and activity of PGC‐1alpha. This is likely beneficial to insure that exercise adaptations in muscle can take place, even if one pathway is deficient.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada Department of Sport and Health Science, Nanjing Sport Institute, Nanjing, China Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, East China Normal University, Shanghai, China
| | - Giulia Uguccioni
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Vladimir Ljubicic
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Isabella Irrcher
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Sobia Iqbal
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Kaustabh Singh
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, East China Normal University, Shanghai, China
| | - David A Hood
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, Toronto, M3J 1P3, Ontario, Canada
| |
Collapse
|
33
|
Margolis LM, Pasiakos SM. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis. Adv Nutr 2013; 4:657-64. [PMID: 24228194 PMCID: PMC3823511 DOI: 10.3945/an.113.004572] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial biogenesis is a critical metabolic adaptation to aerobic exercise training that results in enhanced mitochondrial size, content, number, and activity. Recent evidence has shown that dietary manipulation can further enhance mitochondrial adaptations to aerobic exercise training, which may delay skeletal muscle fatigue and enhance exercise performance. Specifically, studies have demonstrated that combining carbohydrate restriction (endogenous and exogenous) with a single bout of aerobic exercise potentiates the beneficial effects of exercise on markers of mitochondrial biogenesis. Additionally, studies have demonstrated that high-quality protein supplementation enhances anabolic skeletal muscle intracellular signaling and mitochondrial protein synthesis following a single bout of aerobic exercise. Mitochondrial biogenesis is stimulated by complex intracellular signaling pathways that appear to be primarily regulated by 5'AMP-activated protein kinase and p38 mitogen-activated protein kinase mediated through proliferator-activated γ receptor co-activator 1 α activation, resulting in increased mitochondrial DNA expression and enhanced skeletal muscle oxidative capacity. However, the mechanisms by which concomitant carbohydrate restriction and dietary protein supplementation modulates mitochondrial adaptations to aerobic exercise training remains unclear. This review summarizes intracellular regulation of mitochondrial biogenesis and the effects of carbohydrate restriction and protein supplementation on mitochondrial adaptations to aerobic exercise.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | | |
Collapse
|
34
|
Shen Y, Zhao Y, Zheng D, Chang X, Ju S, Guo L. Effects of orexin A on GLUT4 expression and lipid content via MAPK signaling in 3T3-L1 adipocytes. J Steroid Biochem Mol Biol 2013; 138:376-83. [PMID: 23907013 DOI: 10.1016/j.jsbmb.2013.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Abstract
Orexin A regulates food intake, energy metabolism and gastrointestinal function; it also increases glucose uptake and inhibits lipolysis, suggesting a role for orexin A in glucose and lipid metabolism. In this study, the effects of orexin A on glucose transporter 4 (GLUT4) mRNA level and lipid content were explored in 3T3-L1 preadipocytes and adipocytes. Orexin receptor 1 (OX1R) protein expression was determined in the adipose tissue of normal and obese rats. In addition, 3T3-L1 preadipocytes and differentiated 3T3-L1 adipocytes were incubated with different concentrations of orexin A (10(-9) to 10(-7)M), without or with OX1R specific antagonist, then the peroxisome proliferator-activated receptor-γ2 (PPARγ2) mRNA expression was analyzed. Differentiated 3T3-L1 adipocytes were exposed to orexin A, without or with MAPK and OX1R antagonist, after which the GLUT4 and ERK1/2, JNK, and p38 MAPK activation, and triglyceride (TG) content were measured. We observed that OX1R protein expression was decreased in obese rats, and OX1R protein level was negatively correlated with body fat, Lee's index, TG, total cholesterol, and fasting insulin levels. Orexin A enhanced PPARγ2 mRNA expression in a dose-dependent manner in 3T3-L1 preadipocytes through OX1R. In differentiated 3T3-L1 adipocytes, orexin A significantly increased GLUT4 mRNA levels, which was blocked by the ERK1/2, JNK, and p38 MAPK inhibitors as well as OX1R antagonist. Furthermore, orexin A increased cellular TG content via ERK1/2, JNK, and p38 MAPK as well as OX1R. Thus, orexin A increases GLUT4 mRNA expression and lipid accumulation in differentiated 3T3-L1 adipocytes via ERK1/2, JNK, and p38 MAPK signaling. In addition, orexin A increases PPARγ2 mRNA expression in 3T3-L1 preadipocytes. Further studies are necessary to elucidate the impact of orexin A in metabolic disorders and adipocyte differentiation.
Collapse
Affiliation(s)
- Yang Shen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Wenz T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 2013; 13:134-42. [DOI: 10.1016/j.mito.2013.01.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/09/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
|
36
|
Kappel VD, Zanatta L, Postal BG, Silva FRMB. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys 2013; 532:55-60. [PMID: 23395857 DOI: 10.1016/j.abb.2013.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
Rutin is a flavonoid with several pharmacological properties and it has been demonstrated that rutin can modulate glucose homeostasis. In skeletal muscle, an increase in intracellular calcium concentration may induce glucose transporter-4 (GLUT-4) translocation with consequent glucose uptake. The aim of this study was to investigate the effect of rutin and intracellular pathways on calcium uptake as well as the involvement of calcium in glucose uptake in skeletal muscle. The results show that rutin significantly stimulated calcium uptake through voltage-dependent calcium channels as well as mitogen-activated kinase (MEK) and protein kinase A (PKA) signaling pathways. Also, rutin stimulated glucose uptake in the soleus muscle and this effect was mediated by extracellular calcium and calcium-calmodulin-dependent protein kinase II (CaMKII) activation. In conclusion, rutin significantly stimulates calcium uptake in rat soleus muscles. Furthermore, the increase in intracellular calcium concentration is involved in DNA activation by rutin. Also, rutin-induced glucose uptake via CaMKII may result in GLUT-4 translocation to the plasma membrane, characterizing an insulin-independent pathway. These findings indicate that rutin is a potential drug candidate for diabetes therapy.
Collapse
Affiliation(s)
- Virginia Demarchi Kappel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis-Santa Catarina, Brazil
| | | | | | | |
Collapse
|
37
|
Gemfibrozil Pretreatment Resulted in a Sexually Dimorphic Outcome in the Rat Models of Global Cerebral Ischemia–Reperfusion via Modulation of Mitochondrial Pro-survival and Apoptotic Cell Death Factors as well as MAPKs. J Mol Neurosci 2013; 50:379-93. [DOI: 10.1007/s12031-012-9932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
|
38
|
Wang Y, Winters J, Subramaniam S. Functional classification of skeletal muscle networks. I. Normal physiology. J Appl Physiol (1985) 2012; 113:1884-901. [PMID: 23085959 DOI: 10.1152/japplphysiol.01514.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca(2+) fluxes to bind Ca(2+) to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling.
Collapse
Affiliation(s)
- Yu Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093-0412, USA
| | | | | |
Collapse
|
39
|
Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, Friedline RH, Lee E, Jun J, Ma Z, Kim F, Tsitsilianos N, Chapman K, Morrison A, Cooper MP, Miller BA, Kim JK. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 2012; 302:E807-16. [PMID: 22275755 PMCID: PMC3330711 DOI: 10.1152/ajpendo.00239.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TRPM2 Ca(2+)-permeable cation channel is widely expressed and activated by markers of cellular stress. Since inflammation and stress play a major role in insulin resistance, we examined the role of TRPM2 Ca(2+) channel in glucose metabolism. A 2-h hyperinsulinemic euglycemic clamp was performed in TRPM2-deficient (KO) and wild-type mice to assess insulin sensitivity. To examine the effects of diet-induced obesity, mice were fed a high-fat diet for 4-10 mo, and metabolic cage and clamp studies were conducted in conscious mice. TRPM2-KO mice were more insulin sensitive partly because of increased glucose metabolism in peripheral organs. After 4 mo of high-fat feeding, TRPM2-KO mice were resistant to diet-induced obesity, and this was associated with increased energy expenditure and elevated expressions of PGC-1α, PGC-1β, PPARα, ERRα, TFAM, and MCAD in white adipose tissue. Hyperinsulinemic euglycemic clamps showed that TRPM2-KO mice were more insulin sensitive, with increased Akt and GSK-3β phosphorylation in heart. Obesity-mediated inflammation in adipose tissue and liver was attenuated in TRPM2-KO mice. Overall, TRPM2 deletion protected mice from developing diet-induced obesity and insulin resistance. Our findings identify a novel role of TRPM2 Ca(2+) channel in the regulation of energy expenditure, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Zhiyou Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
da Costa Santos VB, Ruiz RJ, Vettorato ED, Nakamura FY, Juliani LC, Polito MD, Siqueira CPCM, de Paula Ramos S. Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol 2011; 96:1228-38. [DOI: 10.1113/expphysiol.2011.060483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Gurd BJ. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:589-97. [PMID: 21888529 DOI: 10.1139/h11-070] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated transcription is important for both the determination of mitochondrial content and the induction of mitochondrial biogenesis in skeletal muscle. SIRT1 (silent mating type information regulator 2 homolog 1) deactetylation is proposed as a potential activator of PGC-1α transcriptional activity. The current review examines the importance of SIRT1 deacetylation of PGC-1α in skeletal muscle. Models of SIRT1 overexpression and pharmacological activation are examined, but changes in SIRT1 expression and deacetylase activity following acute and chronic contractile activity will be emphasized. In addition, potential mechanisms of SIRT1 activation in skeletal muscle will be examined. The importance of the PGC-1α acetyltransferase GCN5 will also be briefly discussed. The current evidence supports the contribution of SIRT1 deacetylation of PGC-1α to exercise-induced mitochondrial biogenesis. Further research examining exercise-mediated activation of SIRT1 and the role of GCN5 in regulating PGC-1α transcriptional activity in skeletal muscle is required.
Collapse
Affiliation(s)
- Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
42
|
Funai K, Semenkovich CF. Skeletal muscle lipid flux: running water carries no poison. Am J Physiol Endocrinol Metab 2011; 301:E245-51. [PMID: 21558546 PMCID: PMC3275151 DOI: 10.1152/ajpendo.00152.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Lipids are the most abundant organic constituents in many humans. The rise in obesity prevalence has prompted a need for a more refined understanding of the effects of lipid molecules on cell physiology. In skeletal muscle, deposition of lipids can be associated with insulin resistance that contributes to the development of diabetes. Here, we review the evidence that muscle cells are equipped with the molecular machinery to convert and sequester lipid molecules, thus rendering them harmless. Induction of mitochondrial and lipogenic flux in the setting of elevated lipid deposition can protect muscle from lipid-induced "poisoning" of the cellular machinery. Lipid flux may also be directed toward the synthesis of ligands for nuclear receptors, further enhancing the capacity of muscle for lipid metabolism to promote favorable physiology. Exploiting these mechanisms may have implications for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Div. of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
43
|
Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJF, Spriet L, Bonen A. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R67-75. [PMID: 21543634 DOI: 10.1152/ajpregu.00417.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1)-mediated peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) deacetylation is potentially key for activating mitochondrial biogenesis. Yet, at the whole muscle level, SIRT1 is not associated with mitochondrial biogenesis (Gurd, BJ, Yoshida Y, Lally J, Holloway GP, Bonen A. J Physiol 587: 1817-1828, 2009). Therefore, we examined nuclear SIRT1 protein and activity in muscle with varied mitochondrial content and in response to acute exercise. We also measured these parameters after stimulating mitochondrial biogenesis with chronic muscle contraction and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) administration in rodents and exercise training in humans. In skeletal and heart muscles, nuclear SIRT1 protein was negatively correlated with indices of mitochondrial density (citrate synthase activity, CS; cytochrome oxidase IV, COX IV), but SIRT1 activity was positively correlated with these parameters (r > 0.98). Acute exercise did not alter nuclear SIRT1 protein but did induce a time-dependent increase in nuclear SIRT1 activity. This increase in SIRT1 activity was temporally related to increases in mRNA expression of genes activated by PGC-1α. Both chronic muscle stimulation and AICAR increased mitochondrial biogenesis and muscle PGC-1α, but not nuclear PGC-1α. Concomitantly, muscle and nuclear SIRT1 protein contents were reduced, but nuclear SIRT1 activity was increased. In human muscle, training-induced mitochondrial biogenesis did not alter muscle or nuclear SIRT1 protein content, but it did increase muscle and nuclear PGC-1α and SIRT1 activity. Thus, nuclear SIRT1 activity, but not muscle or nuclear SIRT1 protein content, is associated with contraction-stimulated mitochondrial biogenesis in rat and human muscle, possibly via AMPK activation.
Collapse
Affiliation(s)
- Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Frier BC, Jacobs RL, Wright DC. Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 300:R212-21. [DOI: 10.1152/ajpregu.00367.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The consumption of high-fat diets (HFDs) and fasting are known to increase the expression of enzymes involved in fatty acid oxidation (FAO). However, it has been reported that the ability of physiological stressors to induce enzymes of FAO in skeletal muscle is blunted with obesity. In this regard, we sought to explore the effects and potential mechanisms of an HFD on the expression of FAO enzymes in the fed and fasted state. The consumption of an HFD increased the mRNA expression or protein content of medium-chain acyl-CoA dehydrogenase (MCAD), uncoupling protein-3 (UCP3), and pyruvate dehydrogenase kinase 4 (PDK4) in the fed state. Fasting increased the mRNA expression of PDK4, MCAD, and UCP-3, and the protein content of UCP-3 in chow but not HFD rats. HFDs did not increase carnitine palmitoyl transfer-1 (CPT-1) mRNA levels in the fed state and the effects of fasting were markedly reduced compared with chow-fed rats. The expression of peroxisome-proliferator-activated receptor-γ coactivator-1β (PGC-1β) was increased in muscle from HFD rats in the fed state, while PGC-1-related coactivator (PRC) was increased with fasting in chow-fed but not HFD rats. Plasma fatty acid levels were elevated in the fed state from HFD rats but not increased further with fasting, whereas fasting increased plasma fatty acids in chow-fed animals. Fasting-mediated increases in plasma epinephrine, and the activation of PKA and AMPK in skeletal muscle were similar between chow and HFD rats. p38 MAPK phosphorylation was increased with fasting in chow-fed but not HFD rats. Our findings suggest that a blunted effect of fasting on the induction of PDK4, MCAD, and UCP3 in skeletal muscle from HFD rats is likely a result of already elevated levels of these enzymes, the induction of which is associated with increases in plasma fatty acid and PGC-1β. On the other hand, a blunted induction of PRC and CPT-1 mRNA may be explained by decreases in p38 MAPK signaling.
Collapse
Affiliation(s)
- Bruce C. Frier
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - René L. Jacobs
- Group on the Molecular and Cellular Biology of Lipids and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; and
| | - David C. Wright
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
45
|
Marmolino D, Manto M. Pregabalin Antagonizes Copper-Induced Toxicity in the Brain: In vitro and in vivo Studies. Neurosignals 2010; 18:210-22. [DOI: 10.1159/000322544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/25/2010] [Indexed: 12/26/2022] Open
|
46
|
Van Proeyen K, De Bock K, Hespel P. Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise. Eur J Appl Physiol 2010; 111:1297-305. [DOI: 10.1007/s00421-010-1753-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
47
|
Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipilä S, Kovanen V. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2010; 32:347-363. [PMID: 20640546 PMCID: PMC2926854 DOI: 10.1007/s11357-010-9140-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50-57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in "response to contraction"-category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria.
Collapse
Affiliation(s)
- Eija Pöllänen
- Gerontology Research Centre, University Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kivelä R, Silvennoinen M, Lehti M, Rinnankoski-Tuikka R, Purhonen T, Ketola T, Pullinen K, Vuento M, Mutanen N, Sartor MA, Reunanen H, Koch LG, Britton SL, Kainulainen H. Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk. FASEB J 2010; 24:4565-74. [PMID: 20643908 PMCID: PMC2974413 DOI: 10.1096/fj.10-157313] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A strong link exists between low aerobic exercise capacity and complex metabolic diseases. To probe this linkage, we utilized rat models of low and high intrinsic aerobic endurance running capacity that differ also in the risk for metabolic syndrome. We investigated in skeletal muscle gene-phenotype relationships that connect aerobic endurance capacity with metabolic disease risk factors. The study compared 12 high capacity runners (HCRs) and 12 low capacity runners (LCRs) from generation 18 of selection that differed by 615% for maximal treadmill endurance running capacity. On average, LCRs were heavier and had increased blood glucose, insulin, and triglycerides compared with HCRs. HCRs were higher for resting metabolic rate, voluntary activity, serum high density lipoproteins, muscle capillarity, and mitochondrial area. Bioinformatic analysis of skeletal muscle gene expression data revealed that many genes up-regulated in HCRs were related to oxidative energy metabolism. Seven mean mRNA expression centroids, including oxidative phosphorylation and fatty acid metabolism, correlated significantly with several exercise capacity and disease risk phenotypes. These expression-phenotype correlations, together with diminished skeletal muscle capillarity and mitochondrial area in LCR rats, support the general hypothesis that an inherited intrinsic aerobic capacity can underlie disease risks.—Kivelä, R., Silvennoinen, M., Lehti, M., Rinnankoski-Tuikka, R., Purhonen, T., Ketola, T., Pullinen, K., Vuento, M., Mutanen, N., Sartor, M. A., Reunanen, H., Koch, L. G., Britton, S. L., Kainulainen, H. Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk.
Collapse
Affiliation(s)
- Riikka Kivelä
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biochem 2010; 344:151-62. [PMID: 20617369 DOI: 10.1007/s11010-010-0538-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/24/2010] [Indexed: 01/03/2023]
Abstract
Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.
Collapse
|
50
|
MacNeil LG, Melov S, Hubbard AE, Baker SK, Tarnopolsky MA. Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes. PLoS One 2010; 5:e10695. [PMID: 20502695 PMCID: PMC2872670 DOI: 10.1371/journal.pone.0010695] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/16/2010] [Indexed: 01/21/2023] Open
Abstract
Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17β-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2.
Collapse
Affiliation(s)
- Lauren G. MacNeil
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Simon Melov
- Buck Institute for Age Research, Novato, California, United States of America
| | - Alan E. Hubbard
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Steven K. Baker
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|