1
|
Welhaven HD, Welfley AH, Brahmachary PP, Smith DF, Bothner B, June RK. Tissue-specific and spatially dependent metabolic signatures perturbed by injury in skeletally mature male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615873. [PMID: 39975211 PMCID: PMC11838485 DOI: 10.1101/2024.09.30.615873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Joint injury is a risk factor for post-traumatic osteoarthritis. However, metabolic and microarchitectural changes within the joint post-injury in both sexes remain unexplored. This study identified tissue-specific and spatially-dependent metabolic signatures in male and female mice using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) and LC-MS metabolomics. Male and female C57Bl/6J mice were subjected to non-invasive joint injury. Eight days post-injury, serum, synovial fluid, and whole joints were collected for metabolomics. Analyses compared between injured, contralateral, and naïve mice, revealing local and systemic responses. Data indicate sex influences metabolic profiles across all tissues, particularly amino acid, purine, and pyrimidine metabolism. MALDI-MSI generated 2D ion images of bone, the joint interface, and bone marrow, highlighting increased lipid species in injured limbs, suggesting physiological changes across injured joints at metabolic and spatial levels. Together, these findings reveal significant metabolic changes after injury, with notable sex differences.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| | | | - Donald F. Smith
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
2
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O'Connell R, Bothner B, Vap AR, June RK. Metabolic phenotypes reflect patient sex and injury status: A cross-sectional analysis of human synovial fluid. Osteoarthritis Cartilage 2024; 32:1074-1083. [PMID: 37716406 PMCID: PMC10940192 DOI: 10.1016/j.joca.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis is a heterogeneous disease. The objective was to compare differences in underlying cellular mechanisms and endogenous repair pathways between synovial fluid (SF) from male and female participants with different injuries to improve the current understanding of the pathophysiology of downstream post-traumatic osteoarthritis (PTOA). DESIGN SF from n = 33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. SF was extracted and analyzed via liquid chromatography-mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies (ligament, meniscal, and combined ligament and meniscal) and patient sex. Samples were pooled and underwent secondary fragmentation to identify metabolites. RESULTS Different knee injuries uniquely altered SF metabolites and downstream pathways including amino acid, lipid, and inflammatory-associated metabolic pathways. Notably, sexual dimorphic metabolic phenotypes were examined between males and females and within injury pathology. Cervonyl carnitine and other identified metabolites differed in concentrations between sexes. CONCLUSIONS These results suggest that different injuries and patient sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries, sex, and PTOA development may yield data regarding how endogenous repair pathways differ between male and female injury types. Ongoing metabolomic analysis of SF in injured male and female patients can be performed to monitor PTOA development and progression.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Avery H Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert O'Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Alexander R Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
3
|
Roychaudhuri R, Atashi H, Snyder SH. Serine Racemase mediates subventricular zone neurogenesis via fatty acid metabolism. Stem Cell Reports 2023:S2213-6711(23)00194-7. [PMID: 37352848 PMCID: PMC10362503 DOI: 10.1016/j.stemcr.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023] Open
Abstract
The adult subventricular zone (SVZ) is a neurogenic niche that continuously produces newborn neurons. Here we show that serine racemase (SR), an enzyme that catalyzes the racemization of L-serine to D-serine and vice versa, affects neurogenesis in the adult SVZ by controlling de novo fatty acid synthesis. Germline and conditional deletion of SR (nestin precursor cells) leads to diminished neurogenesis in the SVZ. Nestin-cre+ mice showed reduced expression of fatty acid synthase and its substrate malonyl-CoA, which are involved in de novo fatty acid synthesis. Global lipidomic analyses revealed significant alterations in different lipid subclasses in nestin-cre+ mice. Decrease in fatty acid synthesis was mediated by phospho Acetyl-CoA Carboxylase that was AMP-activated protein kinase independent. Both L- and D-serine supplementation rescued defects in SVZ neurogenesis, proliferation, and levels of malonyl-CoA in vitro. Our work shows that SR affects adult neurogenesis in the SVZ via lipid metabolism.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hasti Atashi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O’Connell R, Bothner B, Vap AR, June RK. Metabolomic Phenotypes Reflect Patient Sex and Injury Status: A Cross-Sectional Analysis of Human Synovial Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527040. [PMID: 36846378 PMCID: PMC9959930 DOI: 10.1101/2023.02.03.527040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design A cross-sectional study. Methods Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman MT
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Robert O’Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alexander R. Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
5
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
6
|
Jobgen WS, Wu G. Dietary L-arginine supplementation increases the hepatic expression of AMP-activated protein kinase in rats. Amino Acids 2022; 54:1569-1584. [PMID: 35972553 DOI: 10.1007/s00726-022-03194-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/01/2022] [Indexed: 12/16/2022]
Abstract
The goal of this study was to elucidate the molecular mechanisms responsible for the anti-obesity effect of L-arginine supplementation in diet-induced obese rats. Male Sprague-Dawley rats were fed either a low-fat or high-fat diet for 15 weeks. Thereafter, lean or obese rats were pair-fed their same respective diets and received drinking water containing either 1.51% L-arginine-HCl or 2.55% L-alanine (isonitrogenous control) for 12 weeks. Gene and protein expression of key enzymes in the metabolism of energy substrates were determined using real-time polymerase-chain reaction and western blotting techniques. The mRNA levels of hepatic fatty acid synthase and stearoyl-CoA desaturase were reduced (P < 0.05) but those of hepatic AMP-activated protein kinase-α (AMPKα), peroxisome proliferator activator receptor γ coactivator-1α, and carnitine palmitoyltransferase I (CPT-I), as well as skeletal muscle CPT-I were increased (P < 0.05) by L-arginine treatment. The protein expression and activity of hepatic AMPKα markedly increased (P < 0.05) but the activity of hepatic acetyl-CoA carboxylase (ACC) decreased (P < 0.05) in response to dietary L-arginine supplementation. Collectively, our results indicate that liver is the major target for the action of dietary L-arginine supplementation on reducing white-fat mass in diet-induced obese rats by inhibiting fatty acid synthesis and increasing fatty acid oxidation via the AMPK-ACC signaling pathway. Additionally, increased CPT-I expression in skeletal muscle may also contribute to the enhanced oxidation of long-chain fatty acids in L-arginine-supplemented rats.
Collapse
Affiliation(s)
- Wenjuan S Jobgen
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Anti-adipogenic and Pro-lipolytic Effects on 3T3-L1 Preadipocytes by CX-4945, an Inhibitor of Casein Kinase 2. Int J Mol Sci 2022; 23:ijms23137274. [PMID: 35806278 PMCID: PMC9266649 DOI: 10.3390/ijms23137274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 μM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug’s anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug’s pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug’s ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.
Collapse
|
9
|
Lee C, Han J, Jung Y. Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. BIOLOGY 2022; 11:637. [PMID: 35625364 PMCID: PMC9137620 DOI: 10.3390/biology11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.
Collapse
Affiliation(s)
- Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Korea;
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea;
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
10
|
Yadav AK, Jang BC. Inhibition of Lipid Accumulation and Cyclooxygenase-2 Expression in Differentiating 3T3-L1 Preadipocytes by Pazopanib, a Multikinase Inhibitor. Int J Mol Sci 2021; 22:ijms22094884. [PMID: 34063048 PMCID: PMC8125232 DOI: 10.3390/ijms22094884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pazopanib is a multikinase inhibitor with anti-tumor activity. As of now, the anti-obesity effect and mode of action of pazopanib are unknown. In this study, we investigated the effects of pazopanib on lipid accumulation, lipolysis, and expression of inflammatory cyclooxygenase (COX)-2 in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte. Of note, pazopanib at 10 µM markedly decreased lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, pazopanib inhibited not only expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and perilipin A but also phosphorylation of signal transducer and activator of transcription (STAT)-3 during 3T3-L1 preadipocyte differentiation. In addition, pazopanib treatment increased phosphorylation of cAMP-activated protein kinase (AMPK) and its downstream effector ACC during 3T3-L1 preadipocyte differentiation. However, in differentiated 3T3-L1 adipocytes, pazopanib treatment did not stimulate glycerol release and hormone-sensitive lipase (HSL) phosphorylation, hallmarks of lipolysis. Moreover, pazopanib could inhibit tumor necrosis factor (TNF)-α-induced expression of COX-2 in both 3T3-L1 preadipocytes and differentiated cells. In summary, this is the first report that pazopanib has strong anti-adipogenic and anti-inflammatory effects in 3T3-L1 cells, which are mediated through regulation of the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, ACC, perilipin A, AMPK, and COX-2.
Collapse
|
11
|
Bacillus licheniformis Zhengchangsheng® Inhibits Obesity by Regulating the AMP-Activated Protein Kinase Signaling Pathway. Probiotics Antimicrob Proteins 2021; 13:1658-1667. [PMID: 33954883 DOI: 10.1007/s12602-021-09792-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
As a metabolic syndrome, obesity has become a global public health problem. Bacillus licheniformis has been shown to inhibit obesity by regulating the gut microbiota, but the underlying mechanism of its therapeutic effect is still unknown. In this study, the anti-obesity mechanism of Bacillus licheniformis Zhengchangsheng® was investigated by examining a high-fat diet-induced obesity mouse model. Our results showed that Bacillus licheniformis Zhengchangsheng® significantly decreased body weight gain and fat accumulation, serum lipid profiles, and proinflammatory cytokine levels and improved glucose and lipid metabolism in obese mice. Furthermore, compared with those of high-fat diet-fed mice, Bacillus licheniformis Zhengchangsheng® treatment also inhibited nuclear factor-κB activation, increased phosphorylated AMP-activated protein kinase activation in the liver, and regulated the expression of genes associated with lipid metabolism. These results indicated that Bacillus licheniformis Zhengchangsheng®-induced obesity inhibition could occur by activating the AMP-activated protein kinase signaling pathway. Thus, our results suggested that Bacillus licheniformis Zhengchangsheng® has the potential to treat obesity and related metabolic diseases in the clinic.
Collapse
|
12
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
13
|
Yang SM, Park YK, Kim JI, Lee YH, Lee TY, Jang BC. LY3009120, a pan-Raf kinase inhibitor, inhibits adipogenesis of 3T3-L1 cells by controlling the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT‑3, FAS, ACC, perilipin A, and AMPK. Int J Mol Med 2018; 42:3477-3484. [PMID: 30272260 DOI: 10.3892/ijmm.2018.3890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Excessive preadipocyte differentiation/adipogenesis is closely linked to the development of obesity. LY3009120 is a pan‑Raf kinase inhibitor and is known for its anticancer activities. In the present study, the effect of LY3009120 on 3T3‑L1 cell adipogenesis was investigated. The differentiation of 3T3‑L1 preadipocytes into adipocytes was measured by Oil Red O staining and AdipoRed assay. Changes of cellular protein expression and phosphorylation levels in differentiating 3T3‑L1 preadipocytes in the absence or presence of LY3009120 were determined by western blotting analysis. Cell count assay was used to assess the cytotoxicity of LY3009120 on 3T3‑L1 cells. At 0.3 µM, LY3009120 markedly inhibited lipid accumulation and decreased triglyceride content in differentiating 3T3‑L1 cells. However, it had minimal effect on the elevated expression and phosphorylation of three Raf kinase isoforms (C‑Raf, A‑Raf, and B‑Raf) observed in the cells. LY3009120 reduced not only the expression of CCAAT/enhancer‑binding protein‑α (C/EBP‑α), peroxisome proliferator‑activated receptor‑γ (PPAR‑γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A, but also reduced the phosphorylation of signal transducer and activator of transcription‑3 (STAT‑3) in differentiating 3T3‑L1 cells. LY3009120 also increased the phosphorylation of adenosine 3',5'‑cyclic monophosphate (cAMP)‑activated protein kinase (AMPK), but did not affect the phosphorylation or expression of liver kinase B1 in these cells. In summary, this is the first report, to the best of our knowledge, demonstrating that LY3009120 has an anti‑adipogenic effect on 3T3‑L1 cells, which may be mediated through control of the expression and phosphorylation of C/EBP‑α, PPAR‑γ, STAT‑3, FAS, ACC, perilipin A, and AMPK.
Collapse
Affiliation(s)
- Su-Min Yang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae-Yun Lee
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
14
|
Naowaboot J, Wannasiri S, Pannangpetch P. Vernonia cinerea water extract improves insulin resistance in high-fat diet-induced obese mice. Nutr Res 2018; 56:51-60. [PMID: 30055774 DOI: 10.1016/j.nutres.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand.
| | - Supaporn Wannasiri
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | | |
Collapse
|
15
|
Park YK, Obiang-Obounou BW, Lee KB, Choi JS, Jang BC. AZD1208, a pan-Pim kinase inhibitor, inhibits adipogenesis and induces lipolysis in 3T3-L1 adipocytes. J Cell Mol Med 2018; 22:2488-2497. [PMID: 29441719 PMCID: PMC5867077 DOI: 10.1111/jcmm.13559] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
The proviral integration moloney murine leukaemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, are involved in the control of cell growth, metabolism and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. AZD1208 is a pan-Pim kinase inhibitor and is known for its anti-cancer activity. In this study, we investigated the effect of AZD1208 on adipogenesis and lipolysis in 3T3-L1 cells, a murine preadipocyte cell line. AZD1208 markedly suppressed lipid accumulation and reduced triglyceride contents in differentiating 3T3-L1 cells, suggesting the drug's anti-adipogenic effect. On mechanistic levels, AZD1208 reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Remarkably, AZD1208 increased cAMP-activated protein kinase (AMPK) and LKB-1 phosphorylation while decreased intracellular ATP contents in differentiating 3T3-L1 cells. Furthermore, in differentiated 3T3-L1 adipocytes, AZD1208 also partially promoted lipolysis and enhanced the phosphorylation of hormone-sensitive lipase (HSL), a key lipolytic enzyme, indicating the drug's HSL-dependent lipolysis. In summary, the findings show that AZD1208 has anti-adipogenic and lipolytic effects on 3T3-L1 adipocytes. These effects are mediated by the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3, AMPK and HSL.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| | | | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
16
|
Morales-Alamo D, Guerra B, Ponce-González JG, Guadalupe-Grau A, Santana A, Martin-Rincon M, Gelabert-Rebato M, Cadefau JA, Cusso R, Dorado C, Calbet JAL. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants. J Appl Physiol (1985) 2017; 123:1235-1245. [PMID: 28819003 DOI: 10.1152/japplphysiol.00384.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 08/06/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine if reactive oxygen species (ROS) could play a role in blunting Thr172-AMP-activated protein kinase (AMPK)-α phosphorylation in human skeletal muscle after sprint exercise in hypoxia and to elucidate the potential signaling mechanisms responsible for this response. Nine volunteers performed a single 30-s sprint (Wingate test) in two occasions while breathing hypoxic gas ([Formula: see text] = 75 mmHg): one after the ingestion of placebo and another following the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E), with a randomized double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately after, and 30- and 120-min postsprint. Compared with the control condition, the ingestion of antioxidants resulted in lower plasma carbonylated proteins, attenuated elevation of the AMP-to-ATP molar ratio, and reduced glycolytic rate (P < 0.05) without significant effects on performance or V̇o2 The ingestion of antioxidants did not alter the basal muscle signaling. Thr172-AMPKα and Thr184/187-transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation were not increased after the sprint regardless of the ingestion of antioxidants. Thr286-CaMKII phosphorylation was increased after the sprint, but this response was blunted by the antioxidants. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation increased immediately after the sprints coincident with increased Akt phosphorylation. In summary, antioxidants attenuate the glycolytic response to sprint exercise in severe acute hypoxia and modify the muscle signaling response to exercise. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation, a known mechanism of Thr172-AMPKα phosphorylation inhibition, is increased immediately after sprint exercise in hypoxia, probably by a mechanism independent of ROS.NEW & NOTEWORTHY The glycolytic rate is increased during sprint exercise in severe acute hypoxia. This study showed that the ingestion of antioxidants before sprint exercise in severe acute hypoxia reduced the glycolytic rate and attenuated the increases of the AMP-to-ATP and the reduction of the NAD+-to-NADH.H+ ratios. This resulted in a modified muscle signaling response with a blunted Thr286-CaMKII but similar AMP-activated protein kinase phosphorylation responses in the sprints preceded by the ingestion of antioxidants.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Amelia Guadalupe-Grau
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Genetic Unit, Chilhood Hospital-Materno Infantil de Las Palmas, Las Palmas de Gran Canaria, Spain; and
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Joan A Cadefau
- Department of Biomedicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Roser Cusso
- Department of Biomedicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; .,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
17
|
Cheon SY, Chung KS, Lee KJ, Choi HY, Ham IH, Jung DH, Cha YY, An HJ. HVC1 ameliorates hyperlipidemia and inflammation in LDLR -/- mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:222. [PMID: 28427397 PMCID: PMC5397752 DOI: 10.1186/s12906-017-1734-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
Abstract
Background HVC1 consists of Coptidis Rhizoma (dried rhizome of Coptischinensis), Scutellariae Radix (root of Scutellariabaicalensis), Rhei Rhizoma (rhizome of Rheum officinale), and Pruni Cortex (cortex of Prunusyedoensis Matsum). Although the components are known to be effective in various conditions such as inflammation, hypertension, and hypercholesterolemia, there are no reports of the molecular mechanism of its hypolipidemic effects. Methods We investigated the hypolipidemic effect of HVC1 in low-density lipoprotein receptor-deficient (LDLR−/−) mice fed a high-cholesterol diet for 13 weeks. Mice were randomized in to 6 groups: ND (normal diet) group, HCD (high-cholesterol diet) group, and treatment groups fed HCD and treated with simvastatin (10 mg/kg, p.o.) or HVC1 (10, 50, or 250 mg/kg, p.o.). Results HVC1 regulated the levels of total cholesterol, triglyceride (TG), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol in mouse serum. In addition, it regulated the transcription level of the peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding proteins (SREBP)-2, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, lipoprotein lipase (LPL), apolipoprotein B (apo B), liver X receptor (LXR), and inflammatory cytokines (IL-1β, IL-6, and TNF-α). Furthermore, HVC1 activated 5′ adenosine monophosphate-activated protein kinase (AMPK). Conclusion Our results suggest that HVC1 might be effective in preventing high-cholesterol diet-induced hyperlipidemia by regulating the genes involved in cholesterol and lipid metabolism, and inflammatory responses.
Collapse
|
18
|
Veratri Nigri Rhizoma et Radix (Veratrum nigrum L.) and Its Constituent Jervine Prevent Adipogenesis via Activation of the LKB1-AMPKα-ACC Axis In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8674397. [PMID: 27143989 PMCID: PMC4837256 DOI: 10.1155/2016/8674397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022]
Abstract
This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity.
Collapse
|
19
|
Sofer S, Eliraz A, Madar Z, Froy O. Concentrating carbohydrates before sleep improves feeding regulation and metabolic and inflammatory parameters in mice. Mol Cell Endocrinol 2015. [PMID: 26206716 DOI: 10.1016/j.mce.2015.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
New evidance highlights the importance of food timing. Recently, we showed that a low-calorie diet with carbohydrates eaten mostly at dinner changed diurnal hormone secretion and led to greater weight loss and improved metabolic status in obese people. Herein, we set out to test whether concentrated-carbohydrates diet (CCD), in which carbohydrates are fed only before sleep, leads to an improved metabolic status in mouse hypothalamus and peripheral tissues. Diet-induced obese mice were given concentrated or distributed carbohydrate diet for 6 weeks. Obese mice fed CCD ate 8.3% less, were 9.3% leaner and had 39.7% less fat mass. Leptin, ghrelin and adiponectin displayed altered secretion. In addition, these mice exhibited an improved biochemical and inflammatory status. In the hypothalamus, anorexigenic signals were up-regulated and orexigenic signals were down-regulated. In peripheral tissues, CCD promoted adiponectin signaling, repressed gluconeogenesis, enhanced lipid oxidation and lowered inflammation, thus ameliorating the major risk factors of obesity.
Collapse
Affiliation(s)
- Sigal Sofer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Meuhedet Medical Services, Diet and Nutrition Department, Tel Aviv, Israel
| | - Abraham Eliraz
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zecharia Madar
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Bosetti C, Franchi M, Nicotra F, Asciutto R, Merlino L, La Vecchia C, Corrao G. Insulin and other antidiabetic drugs and hepatocellular carcinoma risk: a nested case-control study based on Italian healthcare utilization databases. Pharmacoepidemiol Drug Saf 2015; 24:771-8. [PMID: 26013675 DOI: 10.1002/pds.3801] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Insulin and other antidiabetic drugs may modulate hepatocellular carcinoma (HCC) risk in diabetics. METHODS We have analyzed the role of various antidiabetic drugs on HCC in a nested case-control study using the healthcare utilization databases of the Lombardy Region in Italy. This included 190 diabetic subjects with a hospital discharge reporting a diagnosis of malignant HCC and 3772 diabetic control subjects matched to each case on sex, age, date at cohort entry, and duration of follow-up. RESULTS Increased risks of HCC were found for use of insulin (odds ratio [OR] = 3.73, 95% confidence interval [CI] 2.52-5.51), sulfonylureas (OR = 1.39, 95%CI 0.98-1.99), and repaglinide (OR = 2.12, 95%CI 1.38-3.26), while a reduced risk was found for use of metformin (OR = 0.57, 95%CI 0.41-0.79). The risk of HCC increased with increasing duration of insulin use (OR = 2.52 for <1 year, 5.41 for 1-2 years, and 6.01 for ≥2 years; p for trend < 0.001), while no clear pattern with duration was observed for sulfonylureas, repaglinide, and metformin. CONCLUSION Our study supports the evidence that patients with diabetes using metformin, and possibly other antidiabetic drugs that increase insulin sensibility, have a reduced risk of HCC, while those using insulin or drugs that increase circulating insulin, such as insulin secretagogues, have an increased risk. Whether these associations are causal, or influenced by different severity of diabetes and/or possible residual bias or misclassification, is still open to discussion.
Collapse
Affiliation(s)
- Cristina Bosetti
- Department of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Matteo Franchi
- Department of Statistics, Unit di Biostatistics and Epidemiology, Università Milano-Bicocca, Milan, Italy
| | - Federica Nicotra
- Department of Statistics, Unit di Biostatistics and Epidemiology, Università Milano-Bicocca, Milan, Italy
| | - Rosario Asciutto
- Department of Sciences for the Health Promotion and Mother and Child Care "G. D'Alessandro", Hygiene Section, University of Palermo, Palermo, Italy
| | - Luca Merlino
- Unità Organizzativa Governo dei Dati, delle Strategie e Piani del Sistema Sanitario, Regione Lombardia, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Corrao
- Department of Statistics, Unit di Biostatistics and Epidemiology, Università Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Zeng HL, Huang SL, Xie FC, Zeng LM, Hu YH, Leng Y. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice. Acta Pharmacol Sin 2015; 36:343-52. [PMID: 25732571 DOI: 10.1038/aps.2014.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 02/07/2023]
Abstract
AIM Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. METHODS The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg(-1)·d(-1) for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. RESULTS Yhhu981 (12.5-25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. CONCLUSION Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK.
Collapse
|
22
|
Chen T, Li Z, Zhang Y, Feng F, Wang X, Wang X, Shen QW. Muscle-selective knockout of AMPKα2 does not exacerbate diet-induced obesity probably related to altered myokines expression. Biochem Biophys Res Commun 2015; 458:449-455. [DOI: 10.1016/j.bbrc.2015.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/17/2015] [Indexed: 11/27/2022]
|
23
|
Joseph BK, Liu HY, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, Giordano C, Bata A, Nickels JT. Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d. J Biol Chem 2015; 290:10588-98. [PMID: 25694423 DOI: 10.1074/jbc.m114.626259] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
AMP kinase is a heterotrimeric serine/threonine protein kinase that regulates a number of metabolic processes, including lipid biosynthesis and metabolism. AMP kinase activity is regulated by phosphorylation, and the kinases involved have been uncovered. The particular phosphatases counteracting these kinases remain elusive. Here we discovered that the protein phosphatase 2A heterotrimer, PP2A(Ppp2r2d), regulates the phosphorylation state of AMP kinase by dephosphorylating Thr-172, a residue that activates kinase activity when phosphorylated. Co-immunoprecipitation and co-localization studies indicated that PP2A(Ppp2r2d) directly interacted with AMP kinase. PP2A(Ppp2r2d) dephosphorylated Thr-172 in rat aortic and human vascular smooth muscle cells. A positive correlation existed between decreased phosphorylation, decreased acetyl-CoA carboxylase Acc1 phosphorylation, and sterol response element-binding protein 1c-dependent gene expression. PP2A(Ppp2r2d) protein expression was up-regulated in the aortas of mice fed a high fat diet, and the increased expression correlated with increased blood lipid levels. Finally, we found that the aortas of mice fed a high fat diet had decreased AMP kinase Thr-172 phosphorylation, and contained an Ampk-PP2A(Ppp2r2d) complex. Thus, PP2A(Ppp2r2d) may antagonize the aortic AMP kinase activity necessary for maintaining normal aortic lipid metabolism. Inhibiting PP2A(Ppp2r2d) or activating AMP kinase represents a potential pharmacological treatment for many lipid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adam Bata
- Invivotek, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | | |
Collapse
|
24
|
Pauly M, Chabi B, Favier FB, Vanterpool F, Matecki S, Fouret G, Bonafos B, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, Ramonatxo C. Combined Strategies for Maintaining Skeletal Muscle Mass and Function in Aging: Myostatin Inactivation and AICAR-Associated Oxidative Metabolism Induction. J Gerontol A Biol Sci Med Sci 2014; 70:1077-87. [PMID: 25227129 DOI: 10.1093/gerona/glu147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle.
Collapse
Affiliation(s)
- Marion Pauly
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Béatrice Chabi
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - François Bertrand Favier
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Frankie Vanterpool
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Stefan Matecki
- INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Gilles Fouret
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Béatrice Bonafos
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Barbara Vernus
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christine Feillet-Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Charles Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Anne Bonnieu
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christelle Ramonatxo
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| |
Collapse
|
25
|
Filippov S, Pinkosky SL, Newton RS. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr Opin Lipidol 2014; 25:309-15. [PMID: 24978142 PMCID: PMC4162331 DOI: 10.1097/mol.0000000000000091] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. RECENT FINDINGS ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. SUMMARY Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.
Collapse
|
26
|
Mandal S, Mukhopadhyay S, Bandhopadhyay S, Sen G, Biswas T. 14-Deoxyandrographolide alleviates ethanol-induced hepatosteatosis through stimulation of AMP-activated protein kinase activity in rats. Alcohol 2014; 48:123-32. [PMID: 24507479 DOI: 10.1016/j.alcohol.2013.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
Abstract
Andrographis paniculata (AP) is a traditional medicinal plant of Ayurveda. It grows widely in Asia and is prescribed in the treatment of liver diseases. Here we have investigated the beneficial role of 14-deoxyandrographolide (14-DAG), a bioactive diterpenoid from AP, against alcoholic steatosis in rats. 14-DAG was extracted from aerial parts (leaves and stems) of AP. Rats were fed with ethanol for 8 weeks. Animals were treated with 14-DAG during the last 4 weeks of ethanol treatment. In vitro studies were undertaken in a human hepatocellular liver carcinoma cell line culture. Hepatosteatosis was assessed from histopathological studies of liver sections. Acetyl-CoA, malonyl-CoA, and triglyceride contents were determined using commercially available kits. Fatty acid synthesis was evaluated from incorporation of 1-(14)C acetate. Regulation of fatty acid oxidation and lipogenesis were monitored with immunoblotting and immunoprecipitation studies. Ethanol exposure led to hepatotoxicity, as evident from the marked enhancement in the levels of AST and ALT. The values decreased almost to control levels in response to 14-DAG treatment. Results showed that ethanol feeding induced deactivation of AMP-activated protein kinase (AMPK) that led to enhanced lipid synthesis and decreased fatty acid oxidation, culminating in hepatic fat accumulation. Treatment with 14-DAG activated AMPK through induction of cyclic AMP-protein kinase A pathway. Activation of AMPK was followed by down-regulation of sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase, leading to suppression of lipogenesis. This was associated with up-regulation of sirtuin 1 and depletion of malonyl-CoA, in favor of increased fatty acid oxidation. 14-DAG controlled ethanol-induced hepatosteatosis by interfering with dysregulation of lipid metabolism. In conclusion, our results indicated that 14-DAG was capable of preventing the development of fatty liver through AMPK-mediated regulation of lipid metabolism. This finding supported the hepatoprotective role of 14-DAG, which might serve as a therapeutic option to alleviate hepatosteatosis in chronic alcoholism.
Collapse
Affiliation(s)
- Samir Mandal
- Cell Biology & Physiology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sibabrata Mukhopadhyay
- Chemistry Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sukdeb Bandhopadhyay
- Chemistry Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gargi Sen
- Tea Board of India, 14, B. T. M. Sarani, Kolkata 700001, India.
| | - Tuli Biswas
- Cell Biology & Physiology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
27
|
La Vecchia C, Bosetti C. Metformin: are potential benefits on cancer risk extended to cancer survival? Oncologist 2013; 18:1245-7. [PMID: 24258614 DOI: 10.1634/theoncologist.2013-0381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Carlo La Vecchia
- Department of Epidemiology, IRCCS-lstituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | |
Collapse
|
28
|
Lie S, Duffield JA, McMillen IC, Morrison JL, Ozanne SE, Pilgrim C, Muhlhausler BS. The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb. J Dev Orig Health Dis 2013; 4:421-9. [PMID: 24970733 DOI: 10.1017/s2040174413000202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction (IUGR) followed by accelerated growth after birth is associated with an increased risk of abdominal (visceral) obesity and insulin resistance in adult life. The aim of the present study was to determine the impact of IUGR on mRNA expression and protein abundance of insulin signaling molecules in one of the major visceral fat depots, the omental adipose depot. IUGR was induced by placental restriction, and samples of omental adipose tissue were collected from IUGR (n = 9, 5 males, 4 females) and Control (n = 14, 8 males, 6 females) neonatal lambs at 21 days of age. The mRNA expression of the insulin signaling molecules, AMP-kinase (AMPK) and adipogenic/lipogenic genes was determined by qRT-PCR, and protein abundance by Western Blotting. AMPKα2 mRNA expression was increased in male IUGR lambs (0.015 ± 0.002 v. 0.0075 ± 0.0009, P < 0.001). The proportion of the AMPK pool that was phosphorylated (%P-AMPK) was lower in IUGR lambs compared with Controls independent of sex (39 ± 9% v. 100 ± 18%, P < 0.001). The mRNA expression and protein abundance of insulin signaling proteins and adipogenic/lipogenic genes was not different between groups. Thus, IUGR is associated with sex-specific alterations in the mRNA expression of AMPKα2 and a reduction in the percentage of the total AMPK pool that is phosphorylated in the omental adipose tissue of neonatal lambs, before the onset of visceral obesity. These molecular changes would be expected to promote lipid accumulation in the omental adipose depot and may therefore contribute to the onset of visceral adiposity in IUGR animals later in life.
Collapse
Affiliation(s)
- S Lie
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - J A Duffield
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - I C McMillen
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - J L Morrison
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - S E Ozanne
- 2 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - C Pilgrim
- 2 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - B S Muhlhausler
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| |
Collapse
|
29
|
Insulin resistance and muscle metabolism in chronic kidney disease. ISRN ENDOCRINOLOGY 2013; 2013:329606. [PMID: 23431467 PMCID: PMC3575670 DOI: 10.1155/2013/329606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022]
Abstract
Insulin resistance is a common finding in chronic kidney disease (CKD) and is manifested by mild fasting hyperglycemia and abnormal glucose tolerance testing. Circulating levels of glucocorticoids are high. In muscle, changes in the insulin signaling pathway occur. An increase in the regulatory p85 subunit of Class I phosphatidylinositol 3-Kinase enzyme leads to decreased activation of the downstream effector protein kinase B (Akt). Mechanisms promoting muscle proteolysis and atrophy are unleashed. The link of Akt to the ubiquitin proteasome pathway, a major degradation pathway in muscle, is discussed. Another factor associated with insulin resistance in CKD is angiotensin II (Ang II) which appears to induce its intracellular effects through inflammatory cytokines or reactive oxygen species. Skeletal muscle ATP is depleted and the ability of AMP-activated protein kinase (AMPK) to replenish energy stores is blocked. How this can be reversed is discussed. Interleukin-6 (IL-6) levels are elevated in CKD and impair insulin signaling at the level of IRS-1. With exercise, IL-6 levels are reduced; glucose uptake and utilization are increased. For patients with CKD, exercise may improve insulin signaling and build up muscle. Treatment strategies for preventing muscle atrophy are discussed.
Collapse
|
30
|
Morales-Alamo D, Ponce-González JG, Guadalupe-Grau A, Rodríguez-García L, Santana A, Cusso R, Guerrero M, Dorado C, Guerra B, Calbet JAL. Critical role for free radicals on sprint exercise-induced CaMKII and AMPKα phosphorylation in human skeletal muscle. J Appl Physiol (1985) 2013; 114:566-77. [PMID: 23288553 DOI: 10.1152/japplphysiol.01246.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extremely high energy demand elicited by sprint exercise is satisfied by an increase in O2 consumption combined with a high glycolytic rate, leading to a marked lactate accumulation, increased AMP-to-ATP ratio, and reduced NAD(+)/NADH.H(+) and muscle pH, which are accompanied by marked Thr(172) AMP-activated protein kinase (AMPK)-α phosphorylation during the recovery period by a mechanism not fully understood. To determine the role played by reactive nitrogen and oxygen species (RNOS) on Thr(172)-AMPKα phosphorylation in response to cycling sprint exercise, nine voluntary participants performed a single 30-s sprint (Wingate test) on two occasions: one 2 h after the ingestion of placebo and another after the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E) in a double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately postsprint, and 30 and 120 min postsprint. Performance and muscle metabolism were similar during both sprints. The NAD(+)-to-NADH.H(+) ratio was similarly reduced (84%) and the AMP-to-ATP ratio was similarly increased (×21-fold) immediately after the sprints. Thr(286) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and Thr(172)-AMPKα phosphorylations were increased after the control sprint (with placebo) but not when the sprints were preceded by the ingestion of antioxidants. Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation, a known inhibitory mechanism of Thr(172)-AMPKα phosphorylation, was increased only with antioxidant ingestion. In conclusion, RNOS play a crucial role in AMPK-mediated signaling after sprint exercise in human skeletal muscle. Antioxidant ingestion 2 h before sprint exercise abrogates the Thr(172)-AMPKα phosphorylation response observed after the ingestion of placebo by reducing CaMKII and increasing Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation. Sprint performance, muscle metabolism, and AMP-to-ATP and NAD(+)-to-NADH.H(+) ratios are not affected by the acute ingestion of antioxidants.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria 35017, Canary Island, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012; 17:813-22. [PMID: 22643536 DOI: 10.1634/theoncologist.2011-0462] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oral antidiabetic drugs (including metformin and sulfonylurea) may play a role in the relationship between type 2 diabetes and cancer. To quantify the association between metformin and sulfonylurea and the risk of cancer, we performed a meta-analysis of available studies on the issue. MATERIALS AND METHODS We performed a MEDLINE search for observational studies that investigated the risk of all cancers and specific cancer sites in relation to use of metformin and/or sulfonylurea among patients with type 2 diabetes mellitus. Fixed- and random-effect models were fitted to estimate the summary relative risk (RR). Between-study heterogeneity was tested using χ(2) statistics and measured with the I(2) statistic. Publication bias was evaluated using funnel plot and Egger's regression asymmetry test. RESULTS Seventeen studies satisfying inclusion criteria and including 37,632 cancers were evaluated after reviewing 401 citations. Use of metformin was associated with significantly decreased RR of all cancers (summary RR 0.61, 95% confidence interval [CI] 0.54-0.70), colorectal cancer (0.64, 95% CI 0.54-0.76), and pancreatic cancer (0.38, 95% CI 0.14-0.91). With the exception of colorectal cancer, significant between-study heterogeneity was observed. Evidence of publication bias for metformin-cancer association was also observed. There was no evidence that metformin affects the risk of breast and prostate cancers, nor that sulfonylurea affects the risk of cancer at any site. CONCLUSIONS Metformin, but not sulfonylurea, appears to reduce subsequent cancer risk. This has relevant implications in light of the exploding global epidemic of diabetes.
Collapse
Affiliation(s)
- Davide Soranna
- Dipartimento di Epidemiologia, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Prentki M, Madiraju SRM. Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012; 353:88-100. [PMID: 22108437 DOI: 10.1016/j.mce.2011.11.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
Abstract
Pancreatic β-cells secrete insulin in response to fluctuations in blood fuel concentrations, in particular glucose and fatty acids. However, chronic fuel surfeit can overwhelm the metabolic, signaling and secretory capacity of the β-cell leading to its dysfunction and death - often referred to as glucolipotoxicity. In β-cells and many other cells, glucose and lipid metabolic pathways converge into a glycerolipid/free fatty acid (GL/FFA) cycle, which is driven by the substrates, glycerol-3-phosphate and fatty acyl-CoA, derived from glucose and fatty acids, respectively. Although the overall operation of GL/FFA cycle, consisting of lipolysis and lipogenesis, is "futile" in terms of energy expenditure, this metabolic cycle likely plays an indispensable role for various β-cell functions, in particular insulin secretion and excess fuel detoxification. In this review, we discuss the significance of GL/FFA cycle in the β-cell, its regulation and role in generating essential metabolic signals that participate in the lipid amplification arm of glucose stimulated insulin secretion and in β-cell growth. We propose the novel concept that the lipolytic segment of GL/FFA cycle is instrumental in producing signals for insulin secretion, whereas, the lipogenic segment generates signals relevant for β-cell survival/death and growth/proliferation.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Technopôle Angus, 2901, Montreal, Canada QC H1W 4A4.
| | | |
Collapse
|
33
|
Yoshitomi H, Guo X, Liu T, Gao M. Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP.Z-Leprfa/Izm rats. Nutr Metab (Lond) 2012; 9:13. [PMID: 22348333 PMCID: PMC3298795 DOI: 10.1186/1743-7075-9-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/20/2012] [Indexed: 01/07/2023] Open
Abstract
Background In recent years, the number of people with metabolic syndrome has continued to rise because of changing eating habits, and accompanying hepatic steatosis patients have also increased. This study examined the effect of guava leaf extract on liver fat accumulation using SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a metabolic syndrome model animal. Method Seven-week-old male SHRSP/ZF rats were divided into two groups, a control group and a guava leaf extract (GLE) group. We gave 2 g/kg/day GLE or water by forced administration for 6 weeks. After the experimental period, the rats were sacrificed and organ weight, hepatic lipids, serum aminotransferase and liver pathology were examined. To search for a possible mechanism, we examined the changes of key enzyme and transcriptional factors involved in hepatic fatty acid beta-oxidation. Results The triglyceride content of the liver significantly decreased in the GLE group in comparison with the control group, and decreased fat-drop formation in the liver tissue graft in the GLE group was observed. In addition, the improvement of liver organization impairments with fat accumulation restriction was suggested because blood AST and ALT in the GLE group significantly decreased. Furthermore, it was supposed that the activity of AMPK and PPARα significantly increased in the GLE group via the increase of adiponectin receptors. These were thought to be associated with the decrease of the triglyceride content in the liver because AMPK and PPARα in liver tissue control energy metabolism or lipid composition. On the other hand, insulin resistance was suggested to have improved by the fatty liver improvement in GLE. Conclusion Our results indicate that administration of GLE may have preventive effects of hepatic accumulation and ameliorated hepatic insulin resistance by enhancing the adiponectin beta-oxidation system. Guava leaf may be potentially useful for hepatic steatosis without the side effects of long-term treatments.
Collapse
Affiliation(s)
- Hisae Yoshitomi
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
Adipose-tissue-derived signaling molecules, including the adipokines, are emerging as key candidate molecules that link obesity with cancer. Peritumoral, stromal, adipose tissue and secreted adipokines, particularly leptin, have important roles in breast cancer biology. For example, leptin signaling contributes to the metabolic features associated with breast cancer malignancy, such as switching the cells' energy balance from mitochondrial β-oxidation to the aerobic glycolytic pathway. Leptin also shapes the tumor microenvironment, mainly through its ability to potentiate both migration of endothelial cells and angiogenesis, and to sustain the recruitment of macrophages and monocytes, which in turn secrete vascular endothelial growth factor and proinflammatory cytokines. This article presents an overview of current knowledge on the involvement of leptin in the pathogenesis and progression of breast cancer, highlighted by human, in vitro and animal studies. Data are presented on the functional crosstalk between leptin and estrogen signaling, which further contributes to promotion of breast carcinogenesis. Finally, future perspectives and clinical applications in which leptin and the leptin receptor are considered as potential therapeutic targets for breast cancer are reviewed.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Cell Biology and Centro Sanitario, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy. sebastiano.ando@ unical.it
| | | |
Collapse
|
35
|
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
36
|
Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, Gluckman PD, Sharma M, Kambadur R. Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia 2011; 54:1491-501. [PMID: 21347623 DOI: 10.1007/s00125-011-2079-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/18/2011] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Myostatin-null mice (Mstn(-/-)) have reduced body fat and increased tolerance to glucose. To date the molecular mechanisms through which myostatin regulates body fat content and insulin sensitivity are not known. Therefore, the aim of the current study was to identify signalling pathways through which myostatin regulates insulin sensitivity. METHODS Wild-type (WT) mice and Mstn(-/-) mice were fed either a control chow diet or a high fat diet (HFD) for 12 weeks. Glucose tolerance testing and insulin stimulated glucose uptake by M. extensor digitorum longus (EDL) were used as variables to determine insulin sensitivity. Quantitative PCR, Western blotting and enzyme assays were used to monitor AMP-activated protein kinase (AMPK) levels and activity. RESULTS Mstn(-/-) mice exhibited reduced fat accumulation and peripheral insulin resistance when compared with WT mice, even when they were fed an HFD. Furthermore, treatment with a myostatin antagonist also increased insulin sensitivity during HFD. Consistent with increased insulin sensitivity, we also detected elevated levels of GLUT4, AKT, p-AKT and insulin receptor substrate-1 in Mstn(-/-) muscles. Molecular analysis showed that there is increased expression and activity of AMPK in Mstn(-/-) muscles. Furthermore, we also observed an increase in the AMPK downstream target genes, Sirt1 and Pgc-1α (also known as Ppargc1a), in skeletal muscle of Mstn(-/-) mice. CONCLUSIONS/INTERPRETATION We conclude that myostatin inactivation leads to increased AMPK levels and activity resulting in increased insulin sensitivity of skeletal muscle. We propose that, by regulating AMPK in skeletal muscle and adipose tissues, myostatin plays a major role in regulating insulin signalling.
Collapse
Affiliation(s)
- C Zhang
- Development and Metabolism Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Trayhurn P, Drevon CA, Eckel J. Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem 2011; 117:47-56. [PMID: 21158485 DOI: 10.3109/13813455.2010.535835] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White adipose tissue and skeletal muscle are the largest organs in the body and both are composed of distinct cell types. The signature cell of adipose tissue is the adipocyte while myocytes are the defining cell of skeletal muscle. White adipocytes are major secretory cells and this is increasingly apparent also for myocytes. Both cells secrete a range of bioactive proteins, generally termed adipokines in the case of adipocytes and myokines for muscle cells. There has, however, been some confusion over nomenclature and we suggest that the name myokine is restricted to a protein that is secreted from myocytes, while the term adipokine should be used to describe all proteins secreted from any type of adipocyte (white, brown or brite). These definitions specifically exclude proteins secreted from other cells within adipose tissue and muscle, including macrophages. There is some commonality between the myokines and adipokines in that both groups include inflammation-related proteins - for example, IL-6, Il-8 and MCP-1. Adipokines and myokines appear to be involved in local autocrine/paracrine interactions within adipose tissue and muscle, respectively. They are also involved in an endocrine cross-talk with other tissues, including between adipose tissue and skeletal muscle, and this may be bi-directional. For example, IL-6, secreted from myocytes may stimulate lipolysis in adipose tissue, while adipocyte-derived IL-6 may induce insulin resistance in muscle.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, UK.
| | | | | |
Collapse
|
38
|
Abstract
After the menopausal transition, the ovaries cease to make estrogens, yet the incidence of breast cancer increases and the majority of these tumors are estrogen receptor positive. So, where is the estrogen driving this tumor development coming from? Several extragonadal sites, such as bone, brain and adipose tissue, synthesize estrogens from circulating C19 steroids. The largest of these depots is the adipose tissue, and increased BMI is associated with increased breast cancer risk as well as increased circulating estrogen levels. The mechanisms linking obesity to breast cancer risk are not yet completely understood, although it is widely assumed that estrogens produced in the fat play a role. This article aims to provide a comprehensive overview of the regulation of aromatase expression in the breast adipose tissue in response to fat and tumor-derived factors, as well as new evidence suggesting that breast-specific inhibition of aromatase may be possible.
Collapse
Affiliation(s)
- Evan R Simpson
- a Prince Henry's Institute of Medical Research, and the Departments of Biochemistry and Physiology, Monash University, Clayton, Victoria 3168, Australia
- b
| | - Kristy A Brown
- a Prince Henry's Institute of Medical Research, and the Departments of Biochemistry and Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
39
|
Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 2010; 3:1451-61. [PMID: 20947488 DOI: 10.1158/1940-6207.capr-10-0157] [Citation(s) in RCA: 682] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin, an insulin-lowering agent, has been associated with decreased cancer risk in epidemiologic studies in diabetic patients. We performed a comprehensive literature search and meta-analysis of epidemiologic studies to assess the effect of metformin on cancer incidence and mortality in diabetic patients, using Pubmed, ISI Web of Science, Embase, and the Cochrane library until May 2009, with no language or time restrictions. Independent reports with sufficient information to allow risk estimation of cancer risk/mortality and a measure of uncertainty were reviewed and cross-checked independently by three investigators. Eleven studies were selected for relevance in terms of intervention, population studied, independence, and reporting of cancer incidence or mortality data, reporting 4,042 cancer events and 529 cancer deaths. A 31% reduction in overall summary relative risk (0.69; 95% confidence interval, 0.61-0.79) was found in subjects taking metformin compared with other antidiabetic drugs. The inverse association was significant for pancreatic and hepatocellular cancer, and nonsignificant for colon, breast, and prostate cancer. A trend to a dose-response relationship was noted. Metformin is associated with a decreased risk of cancer incidence compared with other treatments among diabetic patients. Given the retrospective nature of most studies and the possibility that the control treatments increase risk, phase II trials are needed before large cancer prevention trials are launched.
Collapse
Affiliation(s)
- Andrea Decensi
- Division of Medical Oncology Unit, EO Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Proteomic analysis of liver proteins in rats fed with a high-fat diet in response to capsaicin treatments. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-010-0029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Anavi S, Ilan E, Tirosh O, Madar Z. Infusion of a lipid emulsion modulates AMPK and related proteins in rat liver, muscle, and adipose tissues. Obesity (Silver Spring) 2010; 18:1108-15. [PMID: 20057367 DOI: 10.1038/oby.2009.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate-buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCbeta, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARgamma-co-activator 1alpha (PGC1alpha) protein levels were also increased in LE-treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCalpha, PPARalpha, AdipoR1, AdipoR2, and sterol regulatory element-binding protein-1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.
Collapse
Affiliation(s)
- Sarit Anavi
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot, Israel
| | | | | | | |
Collapse
|
42
|
Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat 2010; 123:591-6. [DOI: 10.1007/s10549-010-0834-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 11/30/2022]
|
43
|
|
44
|
Qiu BY, Turner N, Li YY, Gu M, Huang MW, Wu F, Pang T, Nan FJ, Ye JM, Li JY, Li J. High-throughput assay for modulators of mitochondrial membrane potential identifies a novel compound with beneficial effects on db/db mice. Diabetes 2010; 59:256-65. [PMID: 19833880 PMCID: PMC2797930 DOI: 10.2337/db09-0223] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Recently, several drugs have been shown to exert beneficial effects for metabolic syndrome through mild regulation of mitochondrial function. Hence, we explored a strategy of targeting mitochondrial function to improve glucose and lipid metabolism. RESEARCH DESIGN AND METHODS Mitochondrial membrane potential (Deltapsim) is a marker of mitochondrial function; therefore, we set up a high-throughput screening assay of Deltapsim in L6 myotubes. The effects of a selected lead compound were investigated in vitro and in vivo in relation to metabolic syndrome. RESULTS A novel small-molecule compound, C1, was identified through this high-throughput screening. C1 depolarized Deltapsim in L6 myotubes without cytotoxicity and led to increased cellular AMP-to-ATP ratio, activation of AMP-activated protein kinase (AMPK), and enhanced glucose uptake. It also stimulated the AMPK pathway in HepG2 cells, leading to decreased lipid content. Intriguingly, C1 inhibited respiration in L6 myotubes but did not affect respiration in isolated muscle mitochondria, suggesting that it may depolarize Deltapsim indirectly by affecting the supply of electron donors. Acute administration of C1 in C57BL/6J mice markedly increased fat oxidation and the phosphorylation of AMPK and acetyl-CoA carboxylase in the liver. In diabetic db/db mice, chronic administration of C1 significantly reduced hyperglycemia, plasma fatty acids, glucose intolerance, and the mRNA levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver. CONCLUSIONS Our results demonstrate a novel small molecule that mildly depolarizes Deltapsim and is able to improve glucose and lipid metabolism to exert beneficial effects for metabolic syndrome. These findings suggest that compounds regulating mitochondrial function may have therapeutic potential for type 2 diabetes.
Collapse
Affiliation(s)
- Bei-Ying Qiu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nigel Turner
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- St. Vincent's Hospital Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yuan-Yuan Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Gu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Fang Wu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Pang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fa-Jun Nan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jing-Ya Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Corresponding authors: Jia Li, , and Jing-Ya Li,
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Corresponding authors: Jia Li, , and Jing-Ya Li,
| |
Collapse
|
45
|
Abstract
Epidemiological evidence supports a correlation between obesity and breast cancer in women. AMP-activated protein kinase (AMPK) is recognized to be a master regulator of energy homeostasis. One of its actions is to phosphorylate and inhibit the actions of cAMP-responsive element binding protein (CREB)-regulated transcription coactivator 2 (CRTC2). In postmenopausal women, the CREB-dependent regulation of aromatase is a crucial determinant of breast tumor formation through local production of estrogens. We report here that the regulation of aromatase expression in the breast by AMPK and CRTC2, in response to the altered adipokine milieu associated with obesity, provides an important link between obesity and breast cancer risk.
Collapse
Affiliation(s)
- Kristy A Brown
- Prince Henry's Institute, Monash Medical Centre, Department of Physiology, Monash University, Clayton, Melbourne, Victoria, Australia
| | | |
Collapse
|
46
|
Ullner PM, Di Nardo A, Goldman JE, Schobel S, Yang H, Engelstad K, Wang D, Sahin M, De Vivo DC. Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Neurobiol Dis 2009; 36:60-9. [PMID: 19591936 PMCID: PMC2929707 DOI: 10.1016/j.nbd.2009.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/23/2009] [Accepted: 06/28/2009] [Indexed: 11/17/2022] Open
Abstract
Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.
Collapse
Affiliation(s)
- Paivi M Ullner
- Department of Neurology, Colleen Giblin Laboratories for Pediatric Neurology Research, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuentes T, Ara I, Guadalupe-Grau A, Larsen S, Stallknecht B, Olmedillas H, Santana A, Helge JW, Calbet JAL, Guerra B. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance. Exp Physiol 2009; 95:160-71. [PMID: 19717488 DOI: 10.1113/expphysiol.2009.049270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin signalling and signal transducer and activator of transcription 3 (STAT3) phosphorylation and reduce AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation. Deltoid and vastus lateralis muscle biopsies were obtained from 20 men: 10 non-obese control subjects (mean +/- s.d. age, 31 +/- 5 years; height, 184 +/- 9 cm; weight, 91 +/- 13 kg; and percentage body fat, 24.8 +/- 5.8%) and 10 obese (age, 30 +/- 7 years; height, 184 +/- 8 cm; weight, 115 +/- 8 kg; and percentage body fat, 34.9 +/- 5.1%). Skeletal muscle OB-R170 (OB-R long isoform) protein expression was 28 and 25% lower (both P < 0.05) in arm and leg muscles, respectively, of obese men compared with control subjects. In normal-weight subjects, SOCS3 protein expression, and STAT3, AMPKalpha and ACCbeta phosphorylation, were similar in the deltoid and vastus lateralis muscles. In obese subjects, the deltoid muscle had a greater amount of leptin receptors than the vastus lateralis, whilst SOCS3 protein expression was increased and basal STAT3, AMPKalpha and ACCbeta phosphorylation levels were reduced in the vastus lateralis compared with the deltoid muscle (all P < 0.05). In summary, skeletal muscle leptin receptors and leptin signalling are reduced in obesity, particularly in the leg muscles.
Collapse
Affiliation(s)
- T Fuentes
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Island, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou G, Sebhat IK, Zhang BB. AMPK activators--potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf) 2009; 196:175-90. [PMID: 19245659 DOI: 10.1111/j.1748-1716.2009.01967.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK)-mediated cellular metabolic responses to tissue-specific and whole-body stimuli play a vital role in the control of energy homeostasis. As a cellular energy-sensing mechanism, AMPK activation stimulates glucose uptake and fat oxidation, while it suppresses lipogenesis and gluconeogenesis. The cumulative effects of AMPK activation lead to beneficial metabolic states in liver, muscle and other peripheral tissues that are critical in the pathogenesis of obesity, type 2 diabetes and related metabolic disorders. Activators of AMPK that target selected tissues hold potential as novel therapeutics for diseases in which altered energy metabolism contributes to aetiology.
Collapse
Affiliation(s)
- G Zhou
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, NJ, USA
| | | | | |
Collapse
|
49
|
Abstract
The ability to adapt and respond to nutrients is an ancient cellular function, conserved from unicellular to the most complex multicellular organisms, including mammals. Mammals adapt to changes in nutritional status through the modulation of tissue-specific metabolic pathways so as to maintain energy homeostasis. At least two proteins are activated in response to reduced nutrient availability: AMP-activated protein kinase (AMPK) and NAD(+)-dependent deacetylase SIRT1. AMPK functions as a sensor of cellular energy status and as a master regulator of metabolism. When ATP levels decrease, AMPK is activated to boost ATP production and to inhibit ATP usage, thus restoring energy balance. Similarly, SIRT1 is activated in response to changes in the energy status to promote transcription of genes that mediate the metabolic response to stress, starvation or calorie restriction. Several observations support a model where, in response to stress and reduced nutrients, a metabolic pathway is activated within which AMPK and SIRT1 concordantly function to ensure an appropriate cellular response and adaptation to environmental modifications. In this perspective, we compare and contrast the roles of SIRT1 and AMPK in several metabolic tissues and propose a working model of how the AMPK-SIRT1 axis may be regulated to control functions relevant to organismal physiology and pathophysiology.
Collapse
Affiliation(s)
- Marcella Fulco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Bethesda MD, 20892 USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Bethesda MD, 20892 USA
| |
Collapse
|
50
|
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88:1379-406. [PMID: 18923185 DOI: 10.1152/physrev.90100.2007] [Citation(s) in RCA: 1489] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|