1
|
Wen J, Zhang Q, Zhou L. Fluorescent probes for sensing and visualizing methylglyoxal: progress, challenges, and perspectives. RSC Adv 2024; 14:38757-38777. [PMID: 39659598 PMCID: PMC11629108 DOI: 10.1039/d4ra07512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Methylglyoxal (MGO) plays an important role not only in physiological processes but also in pathological conditions, including diabetes, hypertension, and Alzheimer's disease. Therefore, developing accurate quantitative tools for MGO is of great significance for studying pathogenesis. Among the various methods available, the fluorescent probe method has garnered considerable attention due to its noninvasive detection capability, exceptional optical properties, good biocompatibility, and high sensitivity. In this review, we provide a brief overview of recent research on fluorescent probes used for MGO biosensing and bioimaging in living cells, tissues, and animals. Additionally, we summarize the advantages and existing challenges and also discuss future directions for development in this field.
Collapse
Affiliation(s)
- Jing Wen
- School of Food Science and Technology, Hunan Agricultural University Changsha Hunan 410125 China
| | - Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| |
Collapse
|
2
|
Heger V, Benesova B, Majekova M, Rezbarikova P, Hunyadi A, Horakova L, Viskupicova J. Polyphenolic Compounds Activate SERCA1a and Attenuate Methylglyoxal- and Palmitate-Induced Impairment in Pancreatic INS-1E Beta Cells. Cells 2024; 13:1860. [PMID: 39594609 PMCID: PMC11593225 DOI: 10.3390/cells13221860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA. To date, only a limited number of polyphenolic compounds or their derivatives have been described either to increase SERCA activity/expression directly or to affect Ca2+ signaling pathways. In this study, we tested polyphenols for their ability to activate SERCA1a in the absence or presence of methylglyoxal or palmitate and to impact insulin release in pancreatic beta cells. The protective effects of these compounds against methylglyoxal- or palmitate-induced injury were evaluated. Results indicate that 6-gingerol, resveratrol, and ellagic acid activate SERCA1a and protect against activity decrease induced by methylglyoxal and palmitate. Molecular docking analysis revealed the binding of these polyphenols to Glu439 in the SERCA1a P-domain, suggesting a critical role in the stimulation of enzyme activity. Ellagic acid was found to directly stimulate the activity of SERCA1a, marking the first instance of such an observation.
Collapse
Affiliation(s)
- Vladimir Heger
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Barbora Benesova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Petronela Rezbarikova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary;
| | - Lubica Horakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Jana Viskupicova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| |
Collapse
|
3
|
Vangrieken P, Al-Nasiry S, Remels AH, Schiffers PM, Janssen E, Nass S, Scheijen JL, Spaanderman ME, Schalkwijk CG. Placental Methylglyoxal in Preeclampsia: Vascular and Biomarker Implications. Hypertension 2024; 81:1537-1549. [PMID: 38752345 PMCID: PMC11208051 DOI: 10.1161/hypertensionaha.123.22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Preeclampsia is a multifaceted syndrome that includes maternal vascular dysfunction. We hypothesize that increased placental glycolysis and hypoxia in preeclampsia lead to increased levels of methylglyoxal (MGO), consequently causing vascular dysfunction. METHODS Plasma samples and placentas were collected from uncomplicated and preeclampsia pregnancies. Uncomplicated placentas and trophoblast cells (BeWo) were exposed to hypoxia. The reactive dicarbonyl MGO and advanced glycation end products (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL], and MGO-derived hydroimidazolone [MG-H]) were quantified using liquid chromatography-tandem mass spectrometry. The activity of GLO1 (glyoxalase-1), that is, the enzyme detoxifying MGO, was measured. The impact of MGO on vascular function was evaluated using wire/pressure myography. The therapeutic potential of the MGO-quencher quercetin and mitochondrial-specific antioxidant mitoquinone mesylate (MitoQ) was explored. RESULTS MGO, CML, CEL, and MG-H2 levels were elevated in preeclampsia-placentas (+36%, +36%, +25%, and +22%, respectively). Reduced GLO1 activity was observed in preeclampsia-placentas (-12%) and hypoxia-exposed placentas (-16%). Hypoxia-induced MGO accumulation in placentas was mitigated by the MGO-quencher quercetin. Trophoblast cells were identified as the primary source of MGO. Reduced GLO1 activity was also observed in hypoxia-exposed BeWo cells (-26%). Maternal plasma concentrations of CML and the MGO-derived MG-H1 increased as early as 12 weeks of gestation (+16% and +17%, respectively). MGO impaired endothelial barrier function, an effect mitigated by MitoQ, and heightened vascular responsiveness to thromboxane A2. CONCLUSIONS This study reveals the accumulation of placental MGO in preeclampsia and upon exposure to hypoxia, demonstrates how MGO can contribute to vascular impairment, and highlights plasma CML and MG-H1 levels as promising early biomarkers for preeclampsia.
Collapse
Affiliation(s)
- Philippe Vangrieken
- School for Cardiovascular Diseases, Department of Internal Medicine (P.V., S.N., J.L.J.M.S., C.G.S.), Maastricht University Medical Center+, the Netherlands
| | - Salwan Al-Nasiry
- School for Oncology and Developmental Biology, Department of Obstetrics and Gynaecology (S.A.-N., E.J., M.E.A.S.), Maastricht University Medical Center+, the Netherlands
| | - Alex H.V. Remels
- School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology (A.H.V.R.), Maastricht University Medical Center+, the Netherlands
| | - Paul M.H. Schiffers
- School for Cardiovascular Diseases, Department of Pharmacology and Toxicology (P.M.H.S.), Maastricht University Medical Center+, the Netherlands
| | - Emma Janssen
- School for Oncology and Developmental Biology, Department of Obstetrics and Gynaecology (S.A.-N., E.J., M.E.A.S.), Maastricht University Medical Center+, the Netherlands
| | - Stefanie Nass
- School for Cardiovascular Diseases, Department of Internal Medicine (P.V., S.N., J.L.J.M.S., C.G.S.), Maastricht University Medical Center+, the Netherlands
| | - Jean L.J.M. Scheijen
- School for Cardiovascular Diseases, Department of Internal Medicine (P.V., S.N., J.L.J.M.S., C.G.S.), Maastricht University Medical Center+, the Netherlands
| | - Marc E.A. Spaanderman
- School for Oncology and Developmental Biology, Department of Obstetrics and Gynaecology (S.A.-N., E.J., M.E.A.S.), Maastricht University Medical Center+, the Netherlands
| | - Casper G. Schalkwijk
- School for Cardiovascular Diseases, Department of Internal Medicine (P.V., S.N., J.L.J.M.S., C.G.S.), Maastricht University Medical Center+, the Netherlands
| |
Collapse
|
4
|
Mariño L, Belén Uceda A, Leal F, Adrover M. Insight into the Effect of Methylglyoxal on the Conformation, Function, and Aggregation Propensity of α-Synuclein. Chemistry 2024; 30:e202400890. [PMID: 38687053 DOI: 10.1002/chem.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.
Collapse
Affiliation(s)
- Laura Mariño
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Francisco Leal
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
5
|
Liccardo M, Sapio L, Perrella S, Sirangelo I, Iannuzzi C. Genistein Prevents Apoptosis and Oxidative Stress Induced by Methylglyoxal in Endothelial Cells. Molecules 2024; 29:1712. [PMID: 38675531 PMCID: PMC11052514 DOI: 10.3390/molecules29081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Glycolytic overload promotes accumulation of the highly reactive dicarbonyl compounds, resulting in harmful conditions called dicarbonyl stress. Methylglyoxal (MG) is a highly reactive dicarbonyl species and its accumulation plays a crucial pathophysiological role in diabetes and its vascular complications. MG cytotoxicity is mediated by reactive oxygen species (ROS) generation, a key event underlying the intracellular signaling pathways leading to inflammation and apoptosis. The identification of compounds able to inhibit ROS signaling pathways and counteract the MG-induced toxicity is a crucial step for developing new therapeutic strategies in the treatment of diabetic vascular complications. In this study, the effect of genistein, a natural soybean isoflavone, has been evaluated on MG-induced cytotoxicity in human endothelial cells. Our results show that genistein is able to counteract the MG-induced apoptosis by restraining ROS production, thus inhibiting the MAPK signaling pathways and caspase-3 activation. These findings identify a beneficial role for genistein, providing new insights for its potential clinical applications in preserving endothelial function in diabetic vascular complications.
Collapse
Affiliation(s)
| | | | | | - Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.L.); (L.S.); (S.P.); (C.I.)
| | | |
Collapse
|
6
|
Fu ZW, Feng YR, Gao X, Ding F, Li JH, Yuan TT, Lu YT. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. THE PLANT CELL 2023; 35:1593-1616. [PMID: 36695476 PMCID: PMC10118271 DOI: 10.1093/plcell/koad019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Role of Nitric Oxide-Derived Metabolites in Reactions of Methylglyoxal with Lysine and Lysine-Rich Protein Leghemoglobin. Int J Mol Sci 2022; 24:ijms24010168. [PMID: 36613614 PMCID: PMC9820652 DOI: 10.3390/ijms24010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Carbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction. One of the most active RCCs is α-dicarbonyl methylglyoxal (MG) that modifies biomolecules forming non-enzymatic glycation products. Organic free radicals are formed in the reaction between MG and lysine or Nα-acetyllysine. S-nitrosothiols and nitric oxide (•NO) donor PAPA NONOate increased the yield of organic free radical intermediates, while other •NO-derived metabolites, namely, nitroxyl anion and dinitrosyl iron complexes (DNICs) decreased it. At the late stages of the Maillard reaction, S-nitrosoglutathione (GSNO) also inhibited the formation of glycation end products (AGEs). The formation of a new type of DNICs, bound with Maillard reaction products, was found. The results obtained were used to explain the glycation features of legume hemoglobin-leghemoglobin (Lb), which is a lysine-rich protein. In Lb, lysine residues can form fluorescent cross-linked AGEs, and •NO-derived metabolites slow down their formation. The knowledge of these processes can be used to increase the stability of Lb. It can help in better understanding the impact of stress factors on legume plants and contribute to the production of recombinant Lb for biotechnology.
Collapse
|
8
|
Alhujaily M, Mir MM, Mir R, Alghamdi MAA, Wani JI, Sabah ZU, Elfaki I, Alnour TMS, Jeelani M, Abomughaid MM, Alharbi SA. Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. J Pers Med 2022; 12:jpm12040639. [PMID: 35455754 PMCID: PMC9030104 DOI: 10.3390/jpm12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus constitutes a big challenge to the global health care system due to its socioeconomic impacts and very serious complications. The incidence and the prevalence rate are increased in the Gulf region including the KSA. Type 2 diabetes mellitus (T2DM) is caused by diverse risk factors including obesity, unhealthy dietary habits, physical inactivity, smoking and genetic factors. The molecular genetic studies have helped in the detection of many single nucleotide polymorphisms (SNP) with different diseases including cancers, cardiovascular diseases and T2DM. The glyoxalase 1 (GLO1) is a detoxifying enzyme and catalyzes the elimination of the cytotoxic product methylglyoxal (MG) by converting it to D-lactate, which is not toxic to tissues. MG accumulation is associated with the pathogenesis of different diseases including T2DM. In this study, we have investigated the association of the glyoxalase 1 SNPs (rs2736654) rs4746 C>A and rs1130534 T>A with T2DM using the amplification refractory mutation system PCR. We also measured the concentration of MG by ELISA in T2DM patients and matched heathy controls. Results show that the CA genotype of the GLO rs4647 A>C was associated with T2DM with OR = 2.57, p-value 0.0008 and the C allele was also associated with increased risk to T2DM with OR = 2.24, p-value = 0.0001. It was also observed that AT genotype of the rs1130534 was associated with decreased susceptibility to T2DM with OR = 0.3, p-value = 0.02. The A allele of rs1130534 was also associated with reduced risk to T2DM with PR = 0.27 = 0.006. In addition, our ELISA results demonstrate significantly increased MG concentrations in serum of the T2DM patients. We conclude that the GLO1 SNP may be associated with decreased enzyme activity and a resultant susceptibility to T2DM. Further well-designed studies in different and large patient populations are recommended to verify these findings.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Correspondence:
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | | | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Zia ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tarig Mohammad Saad Alnour
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | - Mohammed Jeelani
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Mosleh Mohammad Abomughaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Samir Abdulkarim Alharbi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| |
Collapse
|
9
|
Audat SA, Al-Balas QA, Al-Oudat BA, Athamneh MJ, Bryant-Friedrich A. Design, Synthesis and Biological Evaluation of 1,4-Benzenesulfonamide Derivatives as Glyoxalase I Inhibitors. Drug Des Devel Ther 2022; 16:873-885. [PMID: 35378924 PMCID: PMC8976160 DOI: 10.2147/dddt.s356621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glyoxalase system is one of the defense cellular mechanisms that protect cells against endogenous harmful metabolites, mainly methylglyoxal (MG), through conversion of cytotoxic methylglyoxal into the non-toxic lactic acid. Glyoxalase system comprises of two enzymes glyoxalase I, glyoxalase II, and a catalytic amount of reduced glutathione. Cancerous cells overexpress glyoxalase I, making it a target for cancer therapy. Many studies have been conducted to identify potent Glx-I inhibitors. Methods Aiming to discover and develop novel Glx-I inhibitors, a series of 1,4-benzenesulfonamide derivatives were designed, synthesized, and biologically evaluated in vitro against human Glx-I enzyme. Seventeen compounds were designed based on the hit compound that was obtained from searching the National Cancer Institute (NCI) database. The synthesis of the target compounds (13-29) was accomplished utilizing an azo coupling reaction of aniline derivatives and activated substituted aromatic compounds. To understand the binding mode of the active compounds at the active site of Glx-I, docking studies were performed. Results Structure activity relationship (SAR) studies were accomplished which led to the identification of several compounds that showed potent inhibitory activity with IC50 values below 10 μM. Among the compounds tested, compounds (E)-2-hydroxy-5-((4-sulfamoylphenyl)diazenyl)benzoic acid (26) and (E)-4-((8-hydroxyquinolin-5-yl)diazenyl) benzenesulfonamide (28) displayed potent Glx-I inhibitory activity with IC50 values of 0.39 μM and 1.36 µM, respectively. Docking studies of compounds 26 and 28 were carried out to illustrate the binding mode of the molecules into the Glx-I active site. Conclusion Our results show that compounds 26 and 28 displayed potent Glx-I inhibitory activity and can bind the Glx-I well. These findings should lead us to discover new classes of compounds with better Glx-I inhibition.
Collapse
Affiliation(s)
- Suaad Abdallah Audat
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Qosay Ali Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Buthina Abdallah Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mo’ad Jamil Athamneh
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amanda Bryant-Friedrich
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
10
|
Walker DI, Hart JE, Patel CJ, Rudel R, Chu JH, Garshick E, Pennell KD, Laden F, Jones DP. Integrated molecular response of exposure to traffic-related pollutants in the US trucking industry. ENVIRONMENT INTERNATIONAL 2022; 158:106957. [PMID: 34737152 PMCID: PMC9624233 DOI: 10.1016/j.envint.2021.106957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/29/2023]
Abstract
Exposure to traffic-related pollutants, including diesel exhaust, is associated with increased risk of cardiopulmonary disease and mortality; however, the precise biochemical pathways underlying these effects are not known. To investigate biological response mechanisms underlying exposure to traffic related pollutants, we used an integrated molecular response approach that included high-resolution metabolomic profiling and peripheral blood gene expression to identify biological responses to diesel exhaust exposure. Plasma samples were collected from 73 non-smoking males employed in the US trucking industry between February 2009 and October 2010, and analyzed using untargeted high-resolution metabolomics to characterize metabolite associations with shift- and week-averaged levels of elemental carbon (EC), organic carbon (OC) and particulate matter with diameter ≤ 2.5 μm (PM2.5). Metabolic associations with EC, OC and PM2.5 were evaluated for biochemical processes known to be associated with disease risk. Annotated metabolites associated with exposure were then tested for relationships with the peripheral blood transcriptome using multivariate selection and network correlation. Week-averaged EC and OC levels, which were averaged across multiple shifts during the workweek, resulted in the greatest exposure-associated metabolic alterations compared to shift-averaged exposure levels. Metabolic changes associated with EC exposure suggest increased lipid peroxidation products, biomarkers of oxidative stress, thrombotic signaling lipids, and metabolites associated with endothelial dysfunction from altered nitric oxide metabolism, while OC exposures were associated with antioxidants, oxidative stress biomarkers and critical intermediates in nitric oxide production. Correlation with whole blood RNA gene expression provided additional evidence of changes in processes related to endothelial function, immune response, inflammation, and oxidative stress. We did not detect metabolic associations with PM2.5. This study provides an integrated molecular assessment of human exposure to traffic-related air pollutants that includes diesel exhaust. Metabolite and transcriptomic changes associated with exposure to EC and OC are consistent with increased risk of cardiovascular diseases and the adverse health effects of traffic-related air pollution.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Jen-Hwa Chu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Pulmonary, Allergy, Sleep and Critical Care Medicine, VA Boston Healthcare System, Boston, MA, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Qi H, Schmöhl F, Li X, Qian X, Tabler CT, Bennewitz K, Sticht C, Morgenstern J, Fleming T, Volk N, Hausser I, Heidenreich E, Hell R, Nawroth PP, Kroll J. Reduced Acrolein Detoxification in akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101281. [PMID: 34278746 PMCID: PMC8456208 DOI: 10.1002/advs.202101281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Indexed: 05/03/2023]
Abstract
Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
- Department of Vascular SurgeryRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Felix Schmöhl
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xiaogang Li
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xin Qian
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Christoph T. Tabler
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT) HeidelbergHeidelberg UniversityHeidelberg69120Germany
| | - Ingrid Hausser
- Institute of Pathology IPHEM LabHeidelberg University HospitalHeidelberg69120Germany
| | - Elena Heidenreich
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Rüdiger Hell
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHelmholtz‐ZentrumNeuherberg85764Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| |
Collapse
|
12
|
Ahmad K, Shaikh S, Lee EJ, Lee YH, Choi I. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes. Curr Protein Pept Sci 2021; 21:878-889. [PMID: 31746292 DOI: 10.2174/1389203720666191119100759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Sciences, Daegu Catholic University, Gyeongsan, 38430, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
13
|
Effects of the age/rage axis in the platelet activation. Int J Biol Macromol 2020; 166:1149-1161. [PMID: 33161078 DOI: 10.1016/j.ijbiomac.2020.10.270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Platelet activity is essential in cardiovascular diseases. Therefore our objective was to evaluate the main effects of activating RAGE in platelets which are still unknown. A search for RAGE expression in different databases showed poor or a nonexistent presence in platelets. We confirmed the expression in platelets and secreted variable of RAGE (sRAGE). Platelets from elderly adults expressed in resting showed 3.2 fold more RAGE from young individuals (p < 0.01) and 3.3 fold with TRAP-6 (p < 0.001). These results could indicate that the expression of RAGE is more inducible in older adults. Then we found that activating RAGE with AGE-BSA-derived from methylglyoxal and subthreshold TRAP-6, showed a considerable increase with respect to the control in platelet aggregation and expression of P-selectin (respectively, p < 0.01). This effect was almost completely blocked by using a specific RAGE inhibitor (FSP-ZM1), confirming that RAGE is important for the function and activation platelet. Finally, we predict the region stimulated by AGE-BSA is located in region V of RAGE and 13 amino acids are critical for its binding. In conclusion, the activation of RAGE affects platelet activation and 13 amino acids are critical for its stimulation, this information is crucial for future possible treatments for CVD.
Collapse
|
14
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
15
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
16
|
Jin X, Wu Y, Cui N, Jiang C, Li SS. Methylglyoxal-induced miR-223 suppresses rat vascular K ATP channel activity by downregulating Kir6.1 mRNA in carbonyl stress. Vascul Pharmacol 2020; 128-129:106666. [PMID: 32151743 DOI: 10.1016/j.vph.2020.106666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022]
Abstract
The vascular ATP-sensitive K+ (KATP) channel composed of Kir6.1 and SUR2B subunits regulates cellular activity by coupling intermediary metabolism to membrane excitability. Our previous studies have shown that both Kir6.1 and SUB2B are post-transcriptionally downregulated by methylglyoxal (MGO) which is a reactive carbonyl specie and can cause disruption of vascular tone regulation under diabetic conditions. We have shown that the SUB2B downregulation is mediated by the microRNA (miR) miR-9a, while the mechanism underlying Kir6.1 inhibition is still unclear. Studying the microRNA databases, we found that miR-223 has sequence similarities to the 3' untranslated sequence (3'UTR) of Kir6.1 mRNA suggesting their potential interactions. Therefore, we explored the role of miR-233 in KATP channel regulation by up/down-regulation of miR-223 in smooth muscle cells (SMCs) and mesenteric arterials. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis showed augmentation of miR-223 expression in the cultured SMCs after 300 μM MGO exposure by 5-6 folds. miR-223 overexpression down-regulated Kir6.1 mRNA levels by ~2.6 times while miR-223 knockdown diminished the effect of 300 μM MGO by ~50% in the SMCs. Luciferase assay and mutagenesis studies showed that the effect of miR-223 was abolished when the potential interaction site in the 3' UTR was mutated. Studies with Western blot, patch clamp, and perfused mesenteric arterial rings showed that transfection of miR-223 downregulated KATP protein expression, inhibited KATP channel activity and enhanced vasoconstriction. These results therefore suggest that miR-223 is induced by MGO exposure, which subsequently downregulates the Kir6.1 mRNA, suppresses KATP channel function, and impairs functional regulation of vascular tones. BACKGROUND Methylglyoxal causes transcriptional inhibition of the vascular KATP channel. RESULTS Exogenous miR-223 down-regulated Kir6.1. miR-223 knockdown alleviated the effect of MGO. CONCLUSION Vascular KATP channel is important for miR-223 targeting. SIGNIFICANCE Regulation of the miR-223 level may be a novel strategy for clinical treatment of diabetes.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Cell Line
- Down-Regulation
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Membrane Potentials
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/pathology
- Mesenteric Arteries/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Protein Carbonylation/drug effects
- Pyruvaldehyde/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| | - Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China; Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| |
Collapse
|
17
|
de Bari L, Atlante A, Armeni T, Kalapos MP. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer's disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res Rev 2019; 53:100915. [PMID: 31173890 DOI: 10.1016/j.arr.2019.100915] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.
Collapse
|
18
|
Kold-Christensen R, Jensen KK, Smedegård-Holmquist E, Sørensen LK, Hansen J, Jørgensen KA, Kristensen P, Johannsen M. ReactELISA method for quantifying methylglyoxal levels in plasma and cell cultures. Redox Biol 2019; 26:101252. [PMID: 31254735 PMCID: PMC6604041 DOI: 10.1016/j.redox.2019.101252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 01/14/2023] Open
Abstract
Methylglyoxal (MG) is a toxic glycolytic by-product associated with increased levels of inflammation and oxidative stress and has been linked to ageing-related diseases, such as diabetes and Alzheimer's disease. As MG is a highly reactive dicarbonyl compound, forming both reversible and irreversible adducts with a range of endogenous nucleophiles, measuring endogenous levels of MG are quite troublesome. Furthermore, as MG is a small metabolite it is not very immunogenic, excluding conventional ELISA for detection purposes, thus only more instrumentally demanding LC-MS/MS-based methods have demonstrated convincing quantitative data. In the present work we develop a novel bifunctional MG capture probe as well as a high specificity monoclonal antibody to finally setup a robust reaction-based ELISA (ReactELISA) method for detecting the highly reactive and low-level (nM) metabolite MG in human biological specimens. The assay is tested and validated against the current golden standard LC-MS/MS method in human blood plasma and cell-culture media. Furthermore, we demonstrate the assays ability to measure small perturbations of MG levels in growth media caused by a small molecule drug buthionine sulfoximine (BSO) of current clinical relevance. Finally, the assay is converted into a homogenous (no-wash) AlphaLISA version (ReactAlphaLISA), which offers the potential for operationally simple screening of further small molecules capable of perturbing cellular MG. Such compounds could be of relevance as probes to gain insight into MG metabolism as well as drug-leads to alleviate ageing-related diseases. MG is challenging to quantify, here we present a simple and specific ReactELISA based approach and validate against LC-MS/MS. Sensitivity at low (nM) endogenous concentration in both human blood plasma and cell culture media. Impact of BSO treatment of HEK293 cells can be profiled in culture media. Potential use in cell-based phenotypic screen for small molecules modulating MG metabolism.
Collapse
Affiliation(s)
- Rasmus Kold-Christensen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Karina Kragh Jensen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Emil Smedegård-Holmquist
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
19
|
Methylglyoxal – An emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens Bioelectron 2019; 133:107-124. [DOI: 10.1016/j.bios.2019.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
|
20
|
Memon MA, Khan RN, Riaz S, Ain QU, Ahmed M, Kumar N. Methylglyoxal and insulin resistance in berberine-treated type 2 diabetic patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:110. [PMID: 30693045 PMCID: PMC6327683 DOI: 10.4103/jrms.jrms_1078_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
Abstract
Background: Diabetes mellitus is a chronic metabolic disorder of hyperglycemia. Chronic hyperglycemia produces advanced glycation end products such as the methylglyoxal (MGO) which interferes with cell functions, insulin signaling, and β-cell functions. The present study was conducted to determine the effects of berberine (BBR) therapy on serum MGO and insulin resistance in newly diagnosed type 2 diabetic patients. Materials and Methods: The present case–control study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro/Hyderabad, from March 2016 to January 2017. A sample of 200 newly diagnosed type 2 diabetic patients was divided into two groups. Group 1 received metformin 500 mg (×3 daily) and Group 2 received BBR 500 mg (×3 daily) for 3 months. Blood samples were collected at baseline and after 3 months to analyze biochemical parameters on Roche biochemical analyzer. MGO was assayed by ELISA kit and homeostasis model assessment of insulin resistance (HOMA-IR) model. SPSS version 23.0 (IBM, Incorporation, USA) analyzed the data at 95% confidence interval (P ≤ 0.05). Results: Baseline HOMA-IR (% IR) and MGO were found elevated in metformin and BBR groups. After 3 months of metformin and BBR therapy, the HOMA-IR (% IR) and MGO were decreased to 3.69 ± 1.13 and 2.64 ± 0.76 and 35.84 ± 12.56 and 26.64 ± 10.73 ng/dl, respectively (P = 0.0001). HOMA-IR (% IR) was improved by 40% and 73% (P = 0.0001) and MGO by 43% and 56% in metformin and BBR groups, respectively (P = 0.0001). Conclusion: BBR is more effective in decreasing the serum MGO levels and insulin resistance through improved glycemic control in newly diagnosed type 2 diabetic patients.
Collapse
Affiliation(s)
| | - Raisa Noor Khan
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Saman Riaz
- Department of Medicine, Mayo Hospital, Lahore, Pakistan
| | - Qurat Ul Ain
- Jinnah Post Graduate Medical Centre, Karachi, Sindh, Pakistan
| | - Masood Ahmed
- Department of Medicine, Government Civil Hospital, Dadu, Pakistan
| | - Naresh Kumar
- Department of Medicine, Civil Hospital, Karachi, Sindh, Pakistan
| |
Collapse
|
21
|
Dysfunction of SERCA pumps as novel mechanism of methylglyoxal cytotoxicity. Cell Calcium 2018; 74:112-122. [DOI: 10.1016/j.ceca.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
|
22
|
Donato L, Scimone C, Nicocia G, Denaro L, Robledo R, Sidoti A, D'Angelo R. GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case-control study in a Sicilian population. Mol Biol Rep 2018; 45:1349-1355. [PMID: 30099685 DOI: 10.1007/s11033-018-4295-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, whose excess can cause oxidative stress. In retinitis pigmentosa (RP), the prevalent cause of blindness just during working life in the industrialized countries, oxidative stress represents one of the possible mechanisms leading to death of cones following that of rods in the retina. To date, the causes of secondary death of cones remain unclear and among proposed mechanisms are: the deprivation of trophic factors normally produced by healthy rods, a compromised uptake of nutrients to cones due to irreversible destruction of RPE-cone outer segment, microglial activation and following release of pro-inflammatory cytokines and rod-derived toxins. In present paper, role of oxidative stress due to an excess of MGO was evaluated. In particular, we wanted to determine whether single nucleotide polymorphisms (SNPs) in GLO1 influence enzyme activity, contributing to cone death in advanced RP. 120 healthy controls and 80 RP patients from Sicilian population were genotyped for three GLO1 common SNPs, rs1130534 (c.372A>T, p.G124G), rs2736654 (c.A332C, p.E111A) and rs1049346 (c.-7C>T, 5'-UTR). While c.A332C polymorphism was not associated with RP, c.372A>T showed an allelic association (T372 allele frequency = 70% vs 60% in controls, p = 0.0071). Conversely, c.-7C>T showed both genotypic (χ2 = 68.0952; p = 1.634e-15) and allelic associations (χ2 = 51.7094; p = 6.435e-13): mutated allele frequency was higher in controls than in patients, suggesting its possible protective role. RP susceptibility may be associated with two of the analyzed GLO1 polymorphisms (rs1130534 and rs1049346).
Collapse
Affiliation(s)
- Luigi Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Concetta Scimone
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Lucia Denaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Antonina Sidoti
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy. .,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Gallo G, Bruno R, Taranto A, Martino G. Are Polyunsaturated Fatty Acid Metabolites, the Protective Effect of 4-hydroxytyrosol on Human Red Blood Cell Membranes and Oxidative Damage (4-hydroxyalkenals) Compatible in Hypertriglyceridemic Patients? Pharmacogn Mag 2017; 13:S561-S566. [PMID: 29142415 PMCID: PMC5669098 DOI: 10.4103/pm.pm_483_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Increased levels of malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are demonstrated in plasma of uremic patients. A study showed that the comparison of erythrocytes of healthy and diseased patients (obese, hypertensive, and Type 2 diabetics) with age is associated to a disturbed oxidant/antioxidant balance when obesity is associated with hypertension. 4-hydroxytyrosol is shown to significantly protect red blood cells (RBCs) from oxidative damage (4-HNE). In literature, there are partial discussions on the role of lipids and their oxidation products. The products of degradation of membrane proteins are observed as self-consisting products without interrelations with membrane lipids. Objective: The aim of this study is to evaluate the role of polyunsaturated fatty acid (PUFA) metabolites on oxidative damage (4-hydroxy-alkenals) in RBCs of hypertriglyceridemic patients after membrane treatment with 4-hydroxytyrosol. Materials and Methods: The authors optimize the isolation of RBC ghosts and spectrophotometric method to measure free 4-hydroxyalkenals in human RBC membranes and investigated the effect on oxidative damage in human erythrocyte membranes and in vitro 4-hydroxytyrosol treatment to evaluate the membrane lipids reducible by this phenol. Results: Plasma triglyceride levels in patients are clearly higher than in controls. Moreover, total membrane proteins data are similar to previous described. The normalized alkenals levels are significantly enhanced in hyperlipemic patients in comparison to normoglyceridemic controls. After the 4-hydroxytyrosol action, lipid metabolites substantially decrease. The ratio of oxidized lipids (MDA + HNE) and membrane proteins data are similar to previously described ones. Conclusion: According to experimental data, the accumulation of the alkenals in RBC membrane could be produced either by partial PUFA oxidation contained in glycerides and plasma glycerides and by glycerides into plasma membrane recycled RBC. SUMMARY Hypertriglyceridemia induces oxidative stress in human red blood cell (RBC) membranes Oxidative stress causes increased plasma membrane total protein concentration and hydroxynonenal and malondialdehyde levels The authors optimize the isolation of RBC ghosts and spectrophotometric method to measure free 4-hydroxyalkenals in human RBC membranes After the reduction with 4-hydroxytyrosol, oxidized lipid concentration significantly decrease.
Abbreviations used: RBC: Red blood cell; MDA: Malondialdehyde; HNE\HAE: 4-hydroxyalkenals; LPO: Lipid peroxidation; ROS: Reactive oxygen species; ORAC: Oxygen Radical Absorbance Capacity.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende (CS), Italy
| | - Rosalinda Bruno
- Department of Pharmacy and Health Sciences and Nutrition, University of Calabria, Rende (CS), Italy
| | - Adele Taranto
- Regione Calabria ASP Cosenza, Hospital Giovanni Iannelli, Cetraro (CS), Italy
| | - Guglielmo Martino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
24
|
Ishida YI, Kayama T, Kibune Y, Nishimoto S, Koike S, Suzuki T, Horiuchi Y, Miyashita M, Itokawa M, Arai M, Ogasawara Y. Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: A possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun 2017; 493:573-577. [PMID: 28867194 DOI: 10.1016/j.bbrc.2017.08.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Argpyrimidine (ARP) is an advanced glycation end product thought to be generated from a reaction between methylglyoxal and arginine residues in proteins. In this study, we observed marked accumulation of an approximately 56 kD protein, reactive to anti-ARP antibodies, in the red blood cells (RBCs) of some patients with refractory schizophrenia. This ARP-modified protein was purified from the blood of schizophrenic patients and identified as selenium binding protein 1 (SBP1) by LC-MS/MS. This is the first report of ARP-modified proteins accumulating in RBCs of patients with diseases involving carbonyl stress. We also observed high accumulation of ARP-modified SBP1 in the RBCs of patients with chronic kidney disease. Therefore, this modified protein may be a novel marker of carbonyl stress.
Collapse
Affiliation(s)
- Y I Ishida
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Kayama
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Kibune
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Nishimoto
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Koike
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Suzuki
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Itokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Y Ogasawara
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan.
| |
Collapse
|
25
|
Jang JH, Kim EA, Park HJ, Sung EG, Song IH, Kim JY, Woo CH, Doh KO, Kim KH, Lee TJ. Methylglyoxal-induced apoptosis is dependent on the suppression of c-FLIP L expression via down-regulation of p65 in endothelial cells. J Cell Mol Med 2017; 21:2720-2731. [PMID: 28444875 PMCID: PMC5661116 DOI: 10.1111/jcmm.13188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl metabolite of glucose, and its plasma levels are elevated in patients with diabetes. Studies have shown that MGO combines with the amino and sulphhydryl groups of proteins to form stable advanced glycation end products (AGEs), which are associated with vascular endothelial cell (EC) injury and may contribute to the progression of atherosclerosis. In this study, MGO induced apoptosis in a dose-dependent manner in HUVECs, which was attenuated by pre-treatment with z-VAD, a pan caspase inhibitor. Treatment with MGO increased ROS levels, followed by dose-dependent down-regulation of c-FLIPL . In addition, pre-treatment with the ROS scavenger NAC prevented the MGO-induced down-regulation of p65 and c-FLIPL , and the forced expression of c-FLIPL attenuated MGO-mediated apoptosis. Furthermore, MGO-induced apoptotic cell death in endothelium isolated from mouse aortas. Finally, MGO was found to induce apoptosis by down-regulating p65 expression at both the transcriptional and posttranslational levels, and thus, to inhibit c-FLIPL mRNA expression by suppressing NF-κB transcriptional activity. Collectively, this study showed that MGO-induced apoptosis is dependent on c-FLIPL down-regulation via ROS-mediated down-regulation of p65 expression in endothelial cells.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hye-Jin Park
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Kook Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
26
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
27
|
Tsutsui A, Pradipta AR, Kitazume S, Taniguchi N, Tanaka K. Effect of spermine-derived AGEs on oxidative stress and polyamine metabolism. Org Biomol Chem 2017; 15:6720-6724. [DOI: 10.1039/c7ob01346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spermine-derived AGEs CES- and MOSD-induced oxidative stress proceeds through different pathways.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Department of Agricultural and Life Sciences
- Faculty of Agriculture
- Shinshu University
- Nagano 399-4598
- Japan
| | | | - Shinobu Kitazume
- Disease Glycomics Team
- Systems Glycobiology Research Group
- Global Research Cluster
- RIKEN
- Saitama 351-0198
| | - Naoyuki Taniguchi
- Disease Glycomics Team
- Systems Glycobiology Research Group
- Global Research Cluster
- RIKEN
- Saitama 351-0198
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
28
|
Abstract
While the socioeconomic and environmental factors associated with cancer disparity have been well documented, the contribution of biological factors is an emerging field of research. Established disparity factors such as low income, poor diet, drinking alcohol, smoking, and a sedentary lifestyle may have molecular effects on the inherent biological makeup of the tumor itself, possibly altering cell signaling events and gene expression profiles to profoundly alter tumor development and progression. Our understanding of the molecular and biological consequences of poor lifestyle is lacking, but such information may significantly change how we approach goals to reduce cancer incidence and mortality rates within minority populations. In this review, we will summarize the biological, socioeconomic, and environmental associations between a group of reactive metabolites known as advanced glycation end-products (AGEs) and cancer health disparity. Due to their links with lifestyle and the activation of disease-associated pathways, AGEs may represent both a biological consequence and a bio-behavioral indicator of poor lifestyle which may be targeted within specific populations to reduce disparities in cancer incidence and mortality.
Collapse
Affiliation(s)
- D P Turner
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
29
|
Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:102-105. [DOI: 10.1016/j.jchromb.2016.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022]
|
30
|
Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules 2015; 20:2786-801. [PMID: 25671364 PMCID: PMC6272799 DOI: 10.3390/molecules20022786] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, 59 Roosevelt Road Section 4, Taipei 10617, Taiwan.
| | - Kun-Di Xu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Bo-Chieh Liao
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Jia-Feng Wu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - An-Sheng Cheng
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| |
Collapse
|
31
|
Ogawa S, Nako K, Okamura M, Ito S. Lower urinary pH is useful for predicting renovascular disorder onset in patients with diabetes. BMJ Open Diabetes Res Care 2015; 3:e000097. [PMID: 26157584 PMCID: PMC4486685 DOI: 10.1136/bmjdrc-2015-000097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES A lower urinary pH (UpH) is closely linked to diabetes. However, its relation to diabetic renovascular damage is unclear. This study aimed to identify the relationship between UpH and the exacerbation of diabetic renovascular disorders. METHODS This is a 10-year observational study targeting 400 outpatients with diabetes who registered in 2003. We investigated the relationship between UpH in 2003 and renovascular damage from 2003 to 2013. RESULTS A total of 350 participants were eligible for the analysis. During their 10-year outpatient treatment, a decrease was seen in glycated hemoglobin levels, blood pressure, and estimated glomerular filtration rates (eGFRs), and an increase was seen in their urinary albumin-creatinine ratios (ACRs), uric acid (UA) levels, and intima-media thickness (IMT). UpH negatively correlated with urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), body mass index, UA, and ACR, and positively correlated with eGFR. The results of a multiple regression analysis showed that the independent risk factors for UpH were 8-OHdG, UA, eGFR, and ACR. UpH also negatively correlated with the percent change in IMT (%IMT), the percent change in pulse wave velocity (%PWV), and the change in log ACR (Δlog ACR), and positively correlated with the percent change in eGFR. A multiple regression analysis revealed that UpH was an independent risk factor for the %IMT, %PWV and Δlog ACR. Obese patients with low UpH values frequently suffered from sleep apnea syndrome. CONCLUSIONS These results suggest that UpH is a useful marker for predicting the onset of renovascular disorder in patients with diabetes.
Collapse
Affiliation(s)
- Susumu Ogawa
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Research in Student Support, Institute for Excellence in Higher Education, Section of Clinical Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuhiro Nako
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masashi Okamura
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
32
|
Ogawa S, Takiguchi J, Nako K, Okamura M, Sakamoto T, Kabayama S, Mori T, Kinouchi Y, Ito S. Elucidation of the etiology and characteristics of pink urine in young healthy subjects. Clin Exp Nephrol 2014; 19:822-9. [DOI: 10.1007/s10157-014-1066-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
|
33
|
Li SS, Wu Y, Jin X, Jiang C. The SUR2B subunit of rat vascular KATP channel is targeted by miR-9a-3p induced by prolonged exposure to methylglyoxal. Am J Physiol Cell Physiol 2014; 308:C139-45. [PMID: 25354529 DOI: 10.1152/ajpcell.00311.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ATP-sensitive K(+) (K(ATP)) channels regulate plasma membrane excitability. The Kir6.1/SUR2B isoform of K(ATP) channels is expressed in vascular smooth muscles and plays an important role in vascular tone regulation. This K(ATP) channel is targeted by several reactive species. One of them is methylglyoxal (MGO), which is overly produced with persistent hyperglycemia and contributes to diabetic vascular complications. We have previously found that MGO causes posttranscriptional inhibition of the K(ATP) channel, aggravating vascular tone regulation. Here we show evidence for the underlying molecular mechanisms. We screened microRNA databases and found several candidates. Of them, miR-9a-3p, increased its expression level by ∼240% when the cultured smooth muscle cell line was exposed to micromolar concentrations of MGO. Treatments with exogenous miR-9a-3p downregulated the SUR2B but not Kir6.1 mRNA. Antisense nucleotides of miR-9a-3p alleviated the effects of MGO. Quantitative PCR showed that the targeting sites of the miR-9a-3p were likely to be in the coding region of SUR2B. The effects of miR-9a-3p were mostly eliminated when the potential targeting site in SUR2B was site-specifically mutated. Our functional assays showed that K(ATP) currents were impaired by miR-9a-3p induced with MGO treatment. These results suggest that MGO exposure raises the expression of miR-9a-3p, which subsequently downregulates the SUR2B mRNA, compromising K(ATP) channel function in vascular smooth muscle.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Xin Jin
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
34
|
Tóth AE, Walter FR, Bocsik A, Sántha P, Veszelka S, Nagy L, Puskás LG, Couraud PO, Takata F, Dohgu S, Kataoka Y, Deli MA. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells. PLoS One 2014; 9:e100152. [PMID: 25033388 PMCID: PMC4102474 DOI: 10.1371/journal.pone.0100152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 02/03/2023] Open
Abstract
Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.
Collapse
Affiliation(s)
- Andrea E. Tóth
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Petra Sántha
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | - Pierre-Olivier Couraud
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Fukuoka University, Fukuoka, Japan
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
35
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
36
|
Turkseven S, Ertuna E, Yetik-Anacak G, Yasa M. Methylglyoxal causes endothelial dysfunction: the role of endothelial nitric oxide synthase and AMP-activated protein kinase α. J Basic Clin Physiol Pharmacol 2014; 25:109-115. [PMID: 24127540 DOI: 10.1515/jbcpp-2013-0095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Methylglyoxal is a major precursor in the formation of advanced glycation end products and is associated with the pathogenesis of diabetes-related vascular complications. The aim of this study was to evaluate whether methylglyoxal induces endothelial dysfunction and to determine the contributors involved in this process. METHODS Rat thoracic aortic rings were treated for 24 h with 100 μM methylglyoxal by using an organ culture method. A cumulative dose-response curve to acetylcholine was obtained to determine endothelium-dependent relaxation. The protein levels of endothelial nitric oxide synthase (eNOS) and its phosphorylated form at the serine 1177 site [p-eNOS (Ser1177)], heat shock protein 90 (Hsp90), AMP-activated protein kinase α (AMPKα) and its phosphorylated form at the threonine 172 site [p-AMPKα (Thr172)] were evaluated. Superoxide production was determined by lucigenin-chemiluminescence. RESULTS Treatment with 100 μM methylglyoxal for 24 h decreased acetylcholine-induced vascular relaxation. The levels of eNOS and p-eNOS (Ser1177) were reduced while no effect on Hsp90 was observed. Levels of p-AMPKα (Thr172) were significantly decreased without any change in total AMPKα protein levels. Superoxide level was not affected by methylglyoxal treatment. CONCLUSIONS In rat aortic rings, methylglyoxal determines a reduction in endothelium-dependent relaxation. This effect seems to be mediated via a reduction in p-eNOS (Ser1177) and p-AMPKα (Thr172).
Collapse
|
37
|
Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal 2014; 2014:417842. [PMID: 24634611 PMCID: PMC3918703 DOI: 10.1155/2014/417842] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.
Collapse
|
38
|
Desai KM, Chang T, Untereiner A, Wu L. Hydrogen sulfide and the metabolic syndrome. Expert Rev Clin Pharmacol 2014; 4:63-73. [DOI: 10.1586/ecp.10.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Sex differences in the beneficial cardiac effects of chronic treatment with atrial natriuretic Peptide in spontaneously hypertensive rats. PLoS One 2013; 8:e71992. [PMID: 23951276 PMCID: PMC3741274 DOI: 10.1371/journal.pone.0071992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction The aim of this study was to investigate both the effects of chronic treatment with atrial natriuretic peptide (ANP) on systolic blood pressure (SBP), cardiac nitric oxide (NO) system, oxidative stress, hypertrophy, fibrosis and apoptosis in spontaneously hypertensive rats (SHR), and sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/hr/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). SBP was recorded and nitrites and nitrates excretion (NOx) were determined. After treatment, NO synthase (NOS) activity, eNOS expression, thiobarbituric acid-reactive substances (TBARS) and glutathione concentration were determined in left ventricle, as well as the activity of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Morphological studies in left ventricle were performed in slices stained with hematoxylin-eosin or Sirius red to identify collagen as a fibrosis indicator; immunohistochemistry was employed for identification of transforming growth factor beta; and apoptosis was evaluated by Tunel assay. Results Female SHR showed lower SBP, higher NO-system activity and less oxidative stress, fibrosis and hypertrophy in left ventricle, as well as higher cardiac NOS activity, eNOS protein content and NOx excretion than male SHR. Although ANP treatment lowered blood pressure and increased NOS activity and eNOS expression in both sexes, cardiac NOS response to ANP was more marked in females. In left ventricle, ANP reduced TBARS and increased glutathione concentration and activity of CAT and SOD enzymes in both sexes, as well as GPx activity in males. ANP decreased fibrosis and apoptosis in hearts from male and female SHR but females showed less end-organ damage in heart. Chronic ANP treatment would ameliorate hypertension and end-organ damage in heart by reducing oxidative stress, increasing NO-system activity, and diminishing fibrosis and hypertrophy.
Collapse
|
40
|
Abstract
Methylglyoxal (MG) is a highly reactive compound derived mainly from glucose and fructose metabolism. This metabolite has been implicated in diabetic complications as it is a strong AGE precursor. Furthermore, recent studies suggested a role for MG in insulin resistance and beta-cell dysfunction. Although several drugs have been developed in the recent years to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the mechanisms of MG formation, detoxification, and action. Furthermore, we review the current knowledge about its implication on the pathophysiology and complications of obesity and diabetes.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
41
|
Engelbrecht B, Stratmann B, Hess C, Tschoepe D, Gawlowski T. Impact of GLO1 knock down on GLUT4 trafficking and glucose uptake in L6 myoblasts. PLoS One 2013; 8:e65195. [PMID: 23717693 PMCID: PMC3662699 DOI: 10.1371/journal.pone.0065195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/26/2013] [Indexed: 11/23/2022] Open
Abstract
Methylglyoxal (MG), a highly reactive α-dicarbonyl metabolite of glucose degradation pathways, protein and fatty acid metabolism, plays an important role in the pathogenesis of diabetic complications. Hyperglycemia triggers enhanced production of MG and increased generation of advanced glycation endproducts (AGEs). In non-enzymatic reactions, MG reacts with arginine residues of proteins to form the AGEs argpyrimidine and hydroimidazolone. Glyoxalase 1 (GLO1), in combination with glyoxalase 2 and the co-factor glutathione constitute the glyoxalase system, which is responsible for the detoxification of MG. A GLO1 specific knock down results in accumulation of MG in targeted cells. The aim of this study was to investigate the effect of intracellularly accumulated MG on insulin signaling and on the translocation of the glucose transporter 4 (GLUT4). Therefore, L6 cells stably expressing a myc-tagged GLUT4 were examined. For the intracellular accumulation of MG, GLO1, the first enzyme of the glyoxalase pathway, was down regulated by siRNA knock down and cells were cultivated under hyperglycemic conditions (25 mM glucose) for 48 h. Here we show that GLO1 knock down augmented GLUT4 level on the cell surface of L6 myoblasts at least in part through reduction of GLUT4 internalization, resulting in increased glucose uptake. However, intracellular accumulation of MG had no effect on GLUT4 concentration or modification. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. Tiron, which is also a well-known antioxidant, had no impact on MG-induced GLUT4 translocation.
Collapse
Affiliation(s)
- Britta Engelbrecht
- Ruhr-University Bochum, Diabetes Center, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | | | | | | | | |
Collapse
|
42
|
Chromatographic determination of methyl glyoxal in blood plasma as the test for glycotoxicity and accumulation of glycation end-products. Bull Exp Biol Med 2012; 153:114-7. [PMID: 22808508 DOI: 10.1007/s10517-012-1656-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We developed a method of measuring methyl glyoxal concentration in blood serum using HPLC with UV detection. Methyl glyoxal concentration was determined in healthy subjects. The method was developed for indirect but reliable measurement of the levels of glycation end-products in patients with diabetes, hyperlipidemia, and cardiovascular pathologies.
Collapse
|
43
|
Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L, Wang Y, Zhu D, Jiang C. Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Physiol Cell Physiol 2012; 303:C1045-54. [PMID: 22972803 PMCID: PMC3492834 DOI: 10.1152/ajpcell.00020.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 09/06/2012] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia and excessive production of intermediary metabolites including methylglyoxal (MGO), a reactive carbonyl species that can lead to cell injuries. Interacting with proteins, lipids, and DNA, excessive MGO can cause dysfunction of various tissues, especially the vascular walls where diabetic complications often take place. However, the potential vascular targets of excessive MGO remain to be fully understood. Here we show that the vascular Kir6.1/SUR2B isoform of ATP-sensitive K(+) (K(ATP)) channels is likely to be disrupted with an exposure to submillimolar MGO. Up to 90% of the Kir6.1/SUR2B currents were suppressed by 1 mM MGO with a time constant of ∼2 h. Consistently, MGO treatment caused a vast reduction of both Kir6.1 and SUR2B mRNAs endogenously expressed in the A10 vascular smooth muscle cells. In the presence of the transcriptional inhibitor actinomycin-D, MGO remained to lower the Kir6.1 and SUR2B mRNAs to the same degree as MGO alone, suggesting that the MGO effect is likely to compromise the mRNA stability. Luciferase reporter assays indicated that the 3'-untranslated regions (UTRs) of the Kir6.1 but not SUR2 mRNA were targeted by MGO. In contrast, the SUR2B mRNAs obtained with in vitro transcription were disrupted by MGO directly, while the Kir6.1 transcripts were unaffected. Consistent with these results, the constriction of mesenteric arterial rings was markedly augmented with an exposure to 1 mM MGO for 2 h, and such an MGO effect was totally eliminated in the presence of glibenclamide. These results therefore suggest that acting on the 3'-UTR of Kir6.1 and the coding region of SUR2B, MGO causes instability of Kir6.1 and SUR2B mRNAs, disruption of vascular K(ATP) channels, and impairment of arterial function.
Collapse
Affiliation(s)
- Yang Yang
- Deptartment of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Su Y, Lei X, Wu L, Liu L. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal. Immunology 2012; 137:65-79. [PMID: 22681228 DOI: 10.1111/j.1365-2567.2012.03608.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4.0-5.5 hr, with 84-92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
45
|
Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y. Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:854-8. [PMID: 22676051 DOI: 10.1111/j.1438-8677.2012.00607.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methylglyoxal (MG) is a highly reactive metabolite derived from glycolysis. In this study, we examined the effect of MG on seed germination, root elongation, chlorosis and stress-responsive gene expression in Arabidopsis using an abscisic acid (ABA)-deficient mutant, aba2-2. In the wild type, 0.1 mm MG did not affect germination but delayed root elongation, whereas 1.0 mm MG inhibited germination and root elongation and induced chlorosis. MG increased transcription levels of RD29B and RAB18 in a dose-dependent manner but did not affect RD29A transcription level. In contrast, in the aba2-2 mutant, MG inhibition of seed germination at 1.0 mm and 10.0 mm and a delay of root elongation at 0.1 mm MG were mitigated, although there was no significant difference in chlorosis between the wild type and mutant. Moreover, the aba2-2 mutation impaired MG-induced RD29B and RAB18 gene expression. These observations suggest that MG not only directly inhibits germination and root elongation but also indirectly modulates these processes via endogenous ABA in Arabidopsis.
Collapse
Affiliation(s)
- T S Hoque
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - M Uraji
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - A Tuya
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Y Nakamura
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Y Murata
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
46
|
Oba T, Tatsunami R, Sato K, Takahashi K, Hao Z, Tampo Y. Methylglyoxal has deleterious effects on thioredoxin in human aortic endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:117-126. [PMID: 22516056 DOI: 10.1016/j.etap.2012.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG), a precursor of advanced glycation end products (AGEs), is elevated in diabetic patient's plasma. Some studies have demonstrated that MG induces oxidative stress and apoptosis. Thioredoxin (Trx) is a cytoprotective protein with anti-oxidative and anti-apoptosis functions. In this study, we examined the effects of MG on Trx in human aortic endothelial cells (HAECs). MG increased oxidized-hydroethidine fluorescence intensity, suggesting intracellular accumulation of reactive oxygen species. Flow cytometric analyses with annexin-V/propidium iodide double staining revealed that cells incubated with MG displayed features characteristic of apoptosis. The condensation of chromatin, the release of cytochrome c into cytosol, and the collapse of mitochondrial membrane potential by MG were observed. The exposure to MG decreased Trx protein levels through transcription regulation. MG induced the oxidative damage of peroxiredoxin, a Trx-dependent peroxidase. These results suggest that MG has deleterious effects on Trx in HAECs, which may be contribute to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Tatsuya Oba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Ryosuke Tatsunami
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Keisuke Sato
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Kyohei Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Zhihui Hao
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Yoshiko Tampo
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| |
Collapse
|
47
|
Prahalathan P, Kumar S, Raja B. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism 2012; 61:1087-99. [PMID: 22386933 DOI: 10.1016/j.metabol.2011.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/02/2011] [Accepted: 12/29/2011] [Indexed: 01/07/2023]
Abstract
The present study was designed to evaluate the antihypertensive and antioxidant effect of morin, a flavonoid against deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats (UNX) by weekly twice subcutaneous injection of DOCA (25mg/kg) and 1% NaCl in the drinking water for six consecutive weeks. The DOCA-salt hypertensive rats showed significant (P < .05) increase in the systolic and diastolic blood pressure, heart rate, water intake and organ weights (kidney, heart, aorta and liver). DOCA-salt hypertensive rats also showed significant (P < .05) increase in the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes in plasma and tissues (kidney, heart, aorta and liver), and significant (P < .05) decrease in the body weight, nitrite and nitrate levels in plasma and heart. Furthermore, the activities of enzymic antioxidants such as superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of non-enzymic antioxidants such as reduced glutathione, vitamin C and vitamin E in plasma and tissues were significantly (P < .05) decreased in DOCA-salt rats. Morin supplementation (50mg/kg) daily for six weeks brought back all the above parameters to near normal level. The above findings were confirmed by the histopathological examination. No significant (P < .05) effect was observed in UNX-rats treated with morin (50mg/kg). These results suggest that morin acts as an antihypertensive and antioxidant agent against DOCA-salt induced hypertension.
Collapse
Affiliation(s)
- Pichavaram Prahalathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | |
Collapse
|
48
|
Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:979-86. [PMID: 22437147 DOI: 10.1016/j.jplph.2012.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 05/20/2023]
Abstract
Methylglyoxal (MG) is an oxygenated short aldehyde and a glycolytic intermediate that accumulates in plants under environmental stresses. Being a reactive α-oxoaldehyde, MG may act as a signaling molecule in plants during stresses. We investigated whether MG induces stomatal closure, reactive oxygen species (ROS) production, and cytosolic free calcium concentration ([Ca²⁺](cyt)) to clarify roles of MG in Arabidopsis guard cells. MG induced production of ROS and [Ca²⁺](cyt) oscillations, leading to stomatal closure. The MG-induced stomatal closure and ROS production were completely inhibited by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), but were not affected by an NAD(P)H oxidase mutation, atrbohD atrbohF. Furthermore, the MG-elicited [Ca²⁺](cyt) oscillations were significantly suppressed by SHAM but not by the atrbohD atrbohF mutation. Neither endogenous abscisic acid nor endogenous methyl jasmonate was involved in MG-induced stomatal closure. These results suggest that intrinsic metabolite MG can induce stomatal closure in Arabidopsis accompanied by extracellular ROS production mediated by SHAM-sensitive peroxidases, intracellular ROS accumulation, and [Ca²⁺](cyt) oscillations.
Collapse
Affiliation(s)
- Tahsina Sharmin Hoque
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Bhagya D, Prema L, Rajamohan T. Therapeutic effects of tender coconut water on oxidative stress in fructose fed insulin resistant hypertensive rats. ASIAN PAC J TROP MED 2012; 5:270-6. [PMID: 22449517 DOI: 10.1016/s1995-7645(12)60038-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate whether tender coconut water (TCW) mitigates oxidative stress in fructose fed hypertensive rats. METHODS Male Sprague Dawley rats were fed with fructose rich diet and treated with TCW (4 mL/100 g of body weight) for 3 subsequent weeks. Systolic blood pressure was measured every three days using the indirect tail cuff method. At the end of the experimental period, plasma glucose and insulin, serum triglycerides and free fatty acids, lipid peroxidation markers (MDA, hydroperoxides and conjugated dienes) and the activities of antioxidant enzymes were analyzed in all the groups. RESULTS Treatment with TCW significantly lowered the systolic blood pressure and reduced serum triglycerides and free fatty acids. Plasma glucose and insulin levels and lipid peroxidation markers such as MDA, hydroperoxides and conjugated dienes were significantly reduced in fructose fed rats treated with TCW. Activities of antioxidant enzymes are up regulated significantly in TCW treated rats. Histopathological analysis of liver showed that TCW treatment reduced the lipid accumulation and inflammatory infiltration without any significant hepatocellular damage. CONCLUSIONS The overall results suggest that, TCW treatment could prevent and reverse high blood pressure induced by high fructose diet probably by inhibition of lipid peroxidation, upregulation of antioxidant status and improved insulin sensitivity.
Collapse
Affiliation(s)
- D Bhagya
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Kerala, Trivandrum, 695581, India
| | | | | |
Collapse
|
50
|
Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. J Neurol Sci 2012; 317:1-5. [DOI: 10.1016/j.jns.2012.02.018] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 12/12/2022]
|