1
|
Findik H, Kaim M, Uzun F, Kanat A, Keleş ON, Aydin MD. Exploring a Novel Hypothesis: Could the Eye Function as a Radar or Ultrasound Device in Depth and Distance Perception? Neurophysiological Insights. Life (Basel) 2025; 15:536. [PMID: 40283091 PMCID: PMC12028447 DOI: 10.3390/life15040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Recent advancements in ocular physiology suggest that the eyes may function similarly to radar antennae or ultrasound probes, with the occipital cortex acting as a detector, challenging the traditional view of binocular vision as the primary mechanism for depth and distance perception. METHODS We conducted a comprehensive analysis of the neuroanatomical and histological architecture of the neuro-optico-cortical systems in a male wild rabbit model. The objective was to identify potential structural and functional similarities between the retino-optical system and radar/ultrasound effector-detector systems. RESULTS Histological examination revealed significant similarities between retinal morphology and radar/ultrasound systems. The outermost retinal layer resembled an acoustic lens, with underlying layers functioning as acoustic matching layers. The ganglion cell layer exhibited characteristics akin to the piezoelectric elements of transducers. CONCLUSIONS Our findings support the hypothesis that the retinal apparatus functions similarly to radar antennae or ultrasound probes. Light-stimulated retinal-occipital cortex cells perceive objects and emit electromagnetic waves through the retina, which are reflected by objects and processed in the occipital cortex to provide information on their distance, shape, and depth. This mechanism may complement binocular vision and enhance depth and distance perception in the visual system. These results open new avenues for research in visual neuroscience and could have implications for understanding various visual phenomena and disorders.
Collapse
Affiliation(s)
- Hüseyin Findik
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.K.)
| | - Muhammet Kaim
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.K.)
| | - Feyzahan Uzun
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.K.)
| | - Ayhan Kanat
- Department of Neurosurgery, School of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Osman Nuri Keleş
- Department of Histology, School of Medicine, Ataturk University, 25030 Erzurum, Turkey
| | - Mehmet Dumlu Aydin
- Department of Neurosurgery, School of Medicine, Ataturk University, 25030 Erzurum, Turkey;
| |
Collapse
|
2
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
3
|
Bahmanpour A, Ghoreishian SM, Sepahvandi A. Electromagnetic Modulation of Cell Behavior: Unraveling the Positive Impacts in a Comprehensive Review. Ann Biomed Eng 2024; 52:1941-1954. [PMID: 38652384 DOI: 10.1007/s10439-024-03519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
There are numerous effective procedures for cell signaling, in which humans directly transmit detectable signals to cells to govern their essential behaviors. From a biomedical perspective, the cellular response to the combined influence of electrical and magnetic fields holds significant promise in various domains, such as cancer treatment, targeted drug delivery, gene therapy, and wound healing. Among these modern cell signaling methods, electromagnetic fields (EMFs) play a pivotal role; however, there remains a paucity of knowledge concerning the effects of EMFs across all wavelengths. It's worth noting that most wavelengths are incompatible with human cells, and as such, this study excludes them from consideration. In this review, we aim to comprehensively explore the most effective and current EMFs, along with their therapeutic impacts on various cell types. Specifically, we delve into the influence of alternating electromagnetic fields (AEMFs) on diverse cell behaviors, encompassing proliferation, differentiation, biomineralization, cell death, and cell migration. Our findings underscore the substantial potential of these pivotal cellular behaviors in advancing the treatment of numerous diseases. Moreover, AEMFs wield a significant role in the realms of biomaterials and tissue engineering, given their capacity to decisively influence biomaterials, facilitate non-invasive procedures, ensure biocompatibility, and exhibit substantial efficacy. It is worth mentioning that AEMFs often serve as a last-resort treatment option for various diseases. Much about electromagnetic fields remains a mystery to the scientific community, and we have yet to unravel the precise mechanisms through which wavelengths control cellular fate. Consequently, our understanding and knowledge in this domain predominantly stem from repeated experiments yielding similar effects. In the ensuing sections of this article, we delve deeper into our extended experiments and research.
Collapse
|
4
|
Nishiyama A, Tanaka S, Tuszynski JA, Tsenkova R. Holographic Brain Theory: Super-Radiance, Memory Capacity and Control Theory. Int J Mol Sci 2024; 25:2399. [PMID: 38397075 PMCID: PMC10889214 DOI: 10.3390/ijms25042399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water's molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-0851, Japan
- Yunosato Aquaphotomics Lab, Hashimoto 648-0086, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
| | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-0851, Japan
| |
Collapse
|
5
|
Mould RR, Mackenzie AM, Kalampouka I, Nunn AVW, Thomas EL, Bell JD, Botchway SW. Ultra weak photon emission-a brief review. Front Physiol 2024; 15:1348915. [PMID: 38420619 PMCID: PMC10899412 DOI: 10.3389/fphys.2024.1348915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cells emit light at ultra-low intensities: photons which are produced as by-products of cellular metabolism, distinct from other light emission processes such as delayed luminescence, bioluminescence, and chemiluminescence. The phenomenon is known by a large range of names, including, but not limited to, biophotons, biological autoluminescence, metabolic photon emission and ultraweak photon emission (UPE), the latter of which shall be used for the purposes of this review. It is worth noting that the photons when produced are neither 'weak' nor specifically biological in characteristics. Research of UPE has a long yet tattered past, historically hamstrung by a lack of technology sensitive enough to detect it. Today, as technology progresses rapidly, it is becoming easier to detect and image these photons, as well as to describe their function. In this brief review we will examine the history of UPE research, their proposed mechanism, possible biological role, the detection of the phenomenon, and the potential medical applications.
Collapse
Affiliation(s)
- Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alasdair M Mackenzie
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V W Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
- The Guy Foundation, Beaminster, United Kingdom
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W Botchway
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| |
Collapse
|
6
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Zandi A, Shojaeian F, Abbasvandi F, Faranoush M, Anbiaee R, Hoseinpour P, Gilani A, Saghafi M, Zandi A, Hoseinyazdi M, Davari Z, Miraghaie SH, Tayebi M, Taheri MS, Ardestani SMS, Sheikhi Mobarakeh Z, Nikshoar MR, Enjavi MH, Kordehlachin Y, Mousavi-kiasary SMS, Mamdouh A, Akbari ME, Yunesian M, Abdolahad M. A human pilot study on positive electrostatic charge effects in solid tumors of the late-stage metastatic patients. Front Med (Lausanne) 2023; 10:1195026. [PMID: 37915327 PMCID: PMC10616960 DOI: 10.3389/fmed.2023.1195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Correlative interactions between electrical charges and cancer cells involve important unknown factors in cancer diagnosis and treatment. We previously reported the intrinsic suppressive effects of pure positive electrostatic charges (PEC) on the proliferation and metabolism of invasive cancer cells without any effect on normal cells in cell lines and animal models. The proposed mechanism was the suppression of pro-caspases 3 and 9 with an increase in Bax/Bcl2 ratio in exposed malignant cells and perturbation induced in the KRAS pathway of malignant cells by electrostatic charges due to the phosphate molecule electrostatic charge as the trigger of the pathway. This study aimed to examine PECs as a complementary treatment for patients with different types of solid metastatic tumors, who showed resistance to chemotherapy and radiotherapy. Methods In this study, solid metastatic tumors of the end-stage patients (n = 41) with various types of cancers were locally exposed to PEC for at least one course of 12 days. The patient's signs and symptoms, the changes in their tumor size, and serum markers were followed up from 30 days before positive electrostatic charge treating (PECT) until 6 months after the study. Results Entirely, 36 patients completed the related follow-ups. Significant reduction in tumor sizes and cancer-associated enzymes as well as improvement in cancer-related signs and symptoms and patients' lifestyles, without any side effects on other tissues or metabolisms of the body, were observed in more than 80% of the candidates. Conclusion PECT induced significant cancer remission in combination with other therapies. Therefore, this non-ionizing radiation would be a beneficial complementary therapy, with no observable side effects of ionizing radiotherapy, such as post-radiation inflammation.
Collapse
Affiliation(s)
- Ashkan Zandi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Shojaeian
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Abbasvandi
- Department of ATMP, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Centre, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Cardio-Oncology Research Centre, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Robab Anbiaee
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- SEPAS Pathology Laboratory, Tehran, Iran
| | - Ali Gilani
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Saghafi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Afsoon Zandi
- Department of Otolaryngology, Head and Neck Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Hoseinyazdi
- Medical Imaging Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Davari
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Seyyed Hossein Miraghaie
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahtab Tayebi
- Department of ATMP, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Morteza Sanei Taheri
- Department of Radiology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S. Mehdi Samimi Ardestani
- Department of Psychiatry, Behavioural Sciences Research Centre, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sheikhi Mobarakeh
- Department of Quality of Life, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Nikshoar
- Department of Gastroenterology Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Enjavi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Yasin Kordehlachin
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - S. M. Sadegh Mousavi-kiasary
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amir Mamdouh
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Imam-Khomeini Hospital, Tehran University of Medical Sciences, Cancer Institute, Tehran, Iran
- UT&TUMS Cancer Electrotechnique Research Centre, YAS Hospital, Tehran, Iran
| |
Collapse
|
8
|
Vieira WF, Gersten M, Caldieraro MAK, Cassano P. Photobiomodulation for Major Depressive Disorder: Linking Transcranial Infrared Light, Biophotons and Oxidative Stress. Harv Rev Psychiatry 2023; 31:124-141. [PMID: 37171473 DOI: 10.1097/hrp.0000000000000363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Incompletely treated major depressive disorder (MDD) poses an enormous global health burden. Conventional treatment for MDD consists of pharmacotherapy and psychotherapy, though a significant number of patients do not achieve remission with such treatments. Transcranial photobiomodulation (t-PBM) is a promising novel therapy that uses extracranial light, especially in the near-infrared (NIR) and red spectra, for biological and therapeutic effects. The aims of this Review are to evaluate the current clinical and preclinical literature on t-PBM in MDD and to discuss candidate mechanisms for effects of t-PBM in MDD, with specific attention to biophotons and oxidative stress. A search on PubMed and ClinicalTrials.gov identified clinical and preclinical studies using t-PBM for the treatment of MDD as a primary focus. After a systematic screening, only 19 studies containing original data were included in this review (9 clinical and 10 preclinical trials). Study results demonstrate consensus that t-PBM is a safe and potentially effective treatment; however, varying treatment parameters among studies complicate definitive conclusions about efficacy. Among other mechanisms of action, t-PBM stimulates the complex IV of the mitochondrial respiratory chain and induces an increase in cellular energy metabolism. We suggest that future trials include biological measures to better understand the mechanisms of action of t-PBM and to optimize treatment efficiency. Of particular interest going forward will be studying potential effects of t-PBM-an external light source on the NIR spectra-on neural circuitry implicated in depression.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- From Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA (Drs. Vieira, Gersten, Cassano); Department of Psychiatry, Harvard Medical School, Boston, MA (Drs. Vieira, Cassano); Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Sao Paulo, SP, Brazil (Dr. Vieira); Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil (Dr. Caldieraro); Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil (Dr. Caldieraro)
| | | | | | | |
Collapse
|
9
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
10
|
Fulco G. Un approccio interdisciplinare allo studio della coscienza. RICERCA PSICOANALITICA 2022. [DOI: 10.4081/rp.2022.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
All’interno della cornice clinica di un caso di psicosi schizofrenica alle prese con il lockdown, si introducono alcune destabilizzanti scoperte della meccanica quantistica e i suoi risvolti nelle neuroscienze e nella psicoanalisi. Attraverso la logica frattale, si tenta di comprendere da un lato il rapporto tra fenomeni microscopici e processi macroscopici della psiche e dall’altro come cambia l’idea della realtà attraverso le leggi controintuitive della fisica moderna. In tal modo si arriva a parlare dell’inconscio come una funzione d’onda in grado di processare in parallelo e simultaneamente, innumerevoli variabili che si sovrappongono tra loro, di cui poi solo quella ritenuta più adattiva nel rapporto con l’ambiente viene eletta sul piano cosciente. La complessità del fenomeno della coscienza è qui studiata sia nell’interdipendenza tra processi immateriali (campi energetici) e materiali (biochimica cellulare), che nella sua indeterminatezza e non linearità quando il contesto di riferimento muta drasticamente.
Collapse
|
11
|
Sun G, Li J, Zhou W, Hoyle RG, Zhao Y. Electromagnetic interactions in regulations of cell behaviors and morphogenesis. Front Cell Dev Biol 2022; 10:1014030. [DOI: 10.3389/fcell.2022.1014030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that the cellular electromagnetic field regulates the fundamental physics of cell biology. The electromagnetic oscillations and synchronization of biomolecules triggered by the internal and external pulses serve as the physical basis of the cellular electromagnetic field. Recent studies have indicated that centrosomes, a small organelle in eukaryotic cells that organize spindle microtubules during mitosis, also function as a nano-electronic generator in cells. Additionally, cellular electromagnetic fields are defined by cell types and correlated to the epigenetic status of the cell. These interactions between tissue-specific electromagnetic fields and chromatin fibers of progenitor cells regulate cell differentiation and organ sizes. The same mechanism is implicated in the regulation of tissue homeostasis and morphological adaptation in evolution. Intercellular electromagnetic interactions also regulate the migratory behaviors of cells and the morphogenesis programs of neural circuits. The process is closely linked with centrosome function and intercellular communication of the electromagnetic fields of microtubule filaments. Clearly, more and more evidence has shown the importance of cellular electromagnetic fields in regulatory processes. Furthermore, a detailed understanding of the physical nature of the inter- and intracellular electromagnetic interactions will better our understanding of fundamental biological questions and a wide range of biological processes.
Collapse
|
12
|
Rouleau N, Cimino N. A Transmissive Theory of Brain Function: Implications for Health, Disease, and Consciousness. NEUROSCI 2022; 3:440-456. [PMID: 39483436 PMCID: PMC11523760 DOI: 10.3390/neurosci3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2024] Open
Abstract
Identifying a complete, accurate model of brain function would allow neuroscientists and clinicians to make powerful neuropsychological predictions and diagnoses as well as develop more effective treatments to mitigate or reverse neuropathology. The productive model of brain function, which has been dominant in the field for centuries, cannot easily accommodate some higher-order neural processes associated with consciousness and other neuropsychological phenomena. However, in recent years, it has become increasingly evident that the brain is highly receptive to and readily emits electromagnetic (EM) fields and light. Indeed, brain tissues can generate endogenous, complex EM fields and ultraweak photon emissions (UPEs) within the visible and near-visible EM spectra. EM-based neural mechanisms, such as ephaptic coupling and non-visual optical brain signaling, expand canonical neural signaling modalities and are beginning to disrupt conventional models of brain function. Here, we present an evidence-based argument for the existence of brain processes that are caused by the transmission of extracerebral, EM signals and recommend experimental strategies with which to test the hypothesis. We argue for a synthesis of productive and transmissive models of brain function and discuss implications for the study of consciousness, brain health, and disease.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicholas Cimino
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| |
Collapse
|
13
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Dutta A, Biber J, Bae Y, Augustyniak J, Liput M, Stachowiak E, Stachowiak MK. Model-based investigation of elasticity and spectral exponent from atomic force microscopy and electrophysiology in normal versus Schizophrenia human cerebral organoids. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1585-1589. [PMID: 36085803 DOI: 10.1109/embc48229.2022.9871376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The physiological origin of the aperiodic signal present in the electrophysiological recordings, called l/f neural noise, is unknown; nevertheless, it has been associated with health and disease. The power spectrum slope, -α in 1/fα, has been postulated to be related to the dynamic balance between excitation (E) and inhibition (I). Our study found that human cerebral organoids grown from induced pluripotent stem cells (iPSCs) from Schizophrenia patients (SCZ) showed structural changes associated with altered elasticity compared to that of the normal cerebral organoids. Furthermore, mitochondrial drugs modulated the elasticity in SCZ that was found related to the changes in the spectral exponent. Therefore, we developed an electro-mechanical model that related the microtubular-actin tensegrity structure to the elasticity and the 1/fα noise. Model-based analysis showed that a decrease in the number and length of the constitutive elements in the tensegrity structure decreased its elasticity and made the spectral exponent more negative while thermal white noise will make α = 0.. Based on the microtubularactin model and the cross-talk in structural (elasticity) and functional (electrophysiology) response, aberrant mitochondrial dynamics in SCZ are postulated to be related to the deficits in mitochondrial-cytoskeletal interactions for long-range transport of mitochondria to support synaptic activity for E/I balance. Clinical Relevance-Our experimental data and modeling present a structure-function relationship between mechanical elasticity and electrophysiology of human cerebral organoids that differentiated SCZ patients from normal controls.
Collapse
|
15
|
Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:461-480. [PMID: 34248420 PMCID: PMC8245073 DOI: 10.1080/14686996.2021.1927834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The growing prevalence of vascular diseases worldwide has emphasized the need for novel tissue-engineered options concerning the development of vascularized 3D constructs. This study reports, for the first time, the use of external magnetic fields to stimulate mesenchymal stromal cells (MSCs) to increase the production of vascular endothelial growth factor-A (VEGF-A). Polyvinylalcohol and gelatin-based scaffolds, containing iron oxide nanoparticles, were designed for optimal cell magnetic stimulation. While the application of static magnetic fields over 24 h did not impact on MSCs proliferation, viability and phenotypic identity, it significantly increased the production of VEGF-A and guided MSCs morphology and alignment. The ability to enhance MSCs angiogenic potential was demonstrated by the increase in the number of new vessels formed in the presence of MSCs conditioned media through in vitro and in vivo models. Ultimately, this study uncovers the potential to manipulate cellular processes through short-term magnetic stimulation.
Collapse
Affiliation(s)
- Ana C. Manjua
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carla A. M. Portugal
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Rastmanesh R, Pitkänen M. Can the Brain Be Relativistic? Front Neurosci 2021; 15:659860. [PMID: 34220421 PMCID: PMC8250859 DOI: 10.3389/fnins.2021.659860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Reza Rastmanesh
- Independent Researcher, Private Clinic, Tehran, Iran.,Independent Researcher, Washington, DC, United States
| | | |
Collapse
|
17
|
Cell cell death communication by signals passing through non-aqueous environments. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Murugan NJ, Persinger MA, Karbowski LM, Dotta BT. Ultraweak Photon Emissions as a Non-Invasive, Early-Malignancy Detection Tool: An In Vitro and In Vivo Study. Cancers (Basel) 2020; 12:E1001. [PMID: 32325697 PMCID: PMC7226102 DOI: 10.3390/cancers12041001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Early detection of cancer improves treatment options and increases survival. Building upon previous demonstrations that ultraweak photon emissions (UPE) could be measured to detect cancers, we designed an early detection protocol to test malignancy in both in vitro and in vivo systems. Photons were measured for 100 s from plates containing ~1 million malignant or non-malignant cells from 13 different types of human and mouse cell lines. Tumor cells displayed increased photon emissions compared to non-malignant cells. Examining the standardized Spectral Power Density (SPD) configurations for flux densities between 0.1 and 25 Hz (Δf = 0.01 Hz) yielded 90% discriminant accuracy. The emission profiles of mice that had been injected with melanoma cells could be differentiated from a non-malignant reference groups as early as 24 h post-injection. The peak SPD associated with photon emissions was ~20 Hz for both malignant cell cultures and mice with growing tumors. These results extend the original suggestion by Takeda and his colleagues (2004) published in this journal concerning the potential diagnostic value of UPEs for assessing proliferations of carcinoma cells. The specificity of the spectral profile in the 20 Hz range may be relevant to the consistent efficacy reported by several authors that weak magnetic field pulsations within this frequency range can diminish the growth of malignant cells in culture and tumor weights in mice.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael A. Persinger
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Lukasz M. Karbowski
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
| | - Blake T. Dotta
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
19
|
Nishiyama A, Tanaka S, Tuszynski JA. Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable Representation of Quantum Field Theory of the Brain. ENTROPY 2019; 22:e22010043. [PMID: 33285818 PMCID: PMC7516467 DOI: 10.3390/e22010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 11/16/2022]
Abstract
We derive time evolution equations, namely the Klein-Gordon equations for coherent fields and the Kadanoff-Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree-Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the N res reservoirs) with the presence of quantum tunneling.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (A.N.); (S.T.)
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (A.N.); (S.T.)
| | - Jack A. Tuszynski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
- DIMEAS, Corso Duca degli Abruzzi, 24, Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
20
|
Gomes LR, Leão P. Recent Approaches on Signal Transduction and Transmission in Acupuncture: A Biophysical Overview for Medical Sciences. J Acupunct Meridian Stud 2019; 13:1-11. [PMID: 31765838 DOI: 10.1016/j.jams.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
Acupuncture is one of the areas among the alternative therapies that arise high curiosity in the biomedical scientific community. It is particularly popular for treatment of chronic diseases and addictions. However, contrasting with its evidence-based effectiveness, the lack of reasonable explanations for its mode of action divides that scientific community. Difficulties also arise to those responsible for providing information for clinicians and professionals who wish to acquire competencies leading to the acupuncture practice and have a background based on biochemistry and physiology. The classic theories of nerve conduction do not fully explain how information is read and transmitted during the acupuncture treatment. Other theories have been proposed, but they are based on concepts such as biophotonic waves and quantum biochemistry that are difficult to read and understand by those who do not have knowledge in physics. It is the main objective of this review to provide a summary of the main theories and explanatory approaches to the signal transduction and conduction in acupuncture and to describe them in terms of their explanatory hypotheses, limitations, and weaknesses. The most of the literature found support theories for neural conduction, including gate control. They explain the effects of acupuncture in pain relief; few studies have been conducted concerning the conduction based on biophotons. The primo vascular system has been referred as a possible anatomic support for conduction of information during an acupuncture treatment, which could be connected to biophoton transmission.
Collapse
Affiliation(s)
- Lígia Rebelo Gomes
- LAQV, REQUIMTE, Universidade do Porto, 4051-401, Porto, Portugal; UFP Energy, Environment and Health Research Unit (FP-ENAS), Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150, Porto, Portugal.
| | - Pedro Leão
- Department of Anesthesiology and Pain Medicine, Centro Hospitalar de Entre o Douro e Vouga, 4520-211, Santa Maria da Feira, Portugal
| |
Collapse
|
21
|
Zhou B, Li T, Yang M, Pang J, Min L, Han J. Characterization of the hot and cold medicinal properties of traditional Chinese herbs by spontaneous photon emission ratio of mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112108. [PMID: 31349028 DOI: 10.1016/j.jep.2019.112108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE One important therapeutic characteristic of traditional Chinese medicine (TCM) for its properly-guided clinical prescription is considering the cold and hot medicinal properties of traditional Chinese herbs. According to the TCM theory, the hot and cold medicinal properties are defined by the general responses of a human body to a given herbal medicine. This definition is subjective and ambiguous which attenuates the modernization of TCM. Biological spontaneous photon emission (SE) is a normal phenomenon reflecting the transition of the quantum state of molecules inside an organism. The alteration of its level can indicate the changes of many aspects of the organism including metabolism. Thus, we can exploit this feature to develop a novel and scientific approach to quantitively and objectively characterize the hot and cold medicinal properties of traditional Chinese herbs. OBJECTIVE To determine whether SE can be used to characterize the hot and cold medicinal properties of traditional Chinese herbs, this study took advantage of the ultra-weak luminescence detection technology to examine the effects of traditional Chinese herbs with hot or cold medicinal property to the level of SE in mice. MATERIALS AND METHODS Mice were intragastrically administered with twenty traditional Chinese herbs harboring cold or hot property for ten consecutive days respectively. During the course of treatment, SE intensity of the abdomen and the back of each individual mouse were measured and recorded. At the end of the treatment, the total antioxidant capacity, superoxide dismutase activity, Na+-K+-ATPase activity and Ca2+-Mg2+-ATPase activity in the liver of all mice were examined. RESULTS Ratio between the SE intensity of the abdomen and back of mice (defined as SE ratio) was able to distinguish the cold and hot medicinal properties of traditional Chinese herbs. Mice treated with hot herbs and cold herbs have higher and lower SE ratios respectively compared with control mice. Furthermore, levels of selected biochemical indexes in the liver were correlated with most of the SE ratio changes induced by herbal treatment. CONCLUSIONS We have developed a novel and promising approach to quantitatively investigate herbal properties and we propose that SE ratio defined in this study can serve as a sensitive parameter to characterize the cold and hot medicinal properties of traditional Chinese herbs.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Taoyingnan Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Meina Yang
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jingxiang Pang
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Lingyuan Min
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinxiang Han
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
22
|
Schiffer F. The physical nature of subjective experience and its interaction with the brain. Med Hypotheses 2019; 125:57-69. [DOI: 10.1016/j.mehy.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 11/30/2022]
|
23
|
Ross CL. Energy Medicine: Current Status and Future Perspectives. Glob Adv Health Med 2019; 8:2164956119831221. [PMID: 30834177 PMCID: PMC6396053 DOI: 10.1177/2164956119831221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
Current practices in allopathic medicine measure different types of energy in the human body by using quantum field dynamics involved in nuclear medicine, radiology, and imaging diagnostics. Once diagnosed, current treatments revert to biochemistry instead of using biophysics therapies to treat the disturbances in subtle energies detected and used for diagnostics. Quantum physics teaches us there is no difference between energy and matter. All systems in the human being, from the atomic to the molecular level, are constantly in motion-creating resonance. This resonance is important to understanding how subtle energy directs and maintains health and wellness in the human being. Energy medicine (EM), whether human touch or device-based, is the use of known subtle energy fields to therapeutically assess and treat energetic imbalances, bringing the body's systems back to homeostasis (balance). The future of EM depends on the ability of allopathic medicine to merge physics with biochemistry. Biophoton emissions as well as signal transduction and cell signaling communication systems are widely accepted in today's medicine. This technology needs to be expanded to include the existence of the human biofield (or human energy field) to better understand that disturbances in the coherence of energy patterns are indications of disease and aging. Future perspectives include understanding cellular voltage potentials and how they relate to health and wellness, understanding the overlap between the endocrine and chakra systems, and understanding how EM therapeutically enhances psychoneuroimmunology (mind-body) medicine.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Center for Integrative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
25
|
Mamani S, Shi L, Ahmed T, Karnik R, Rodríguez-Contreras A, Nolan D, Alfano R. Transmission of classically entangled beams through mouse brain tissue. JOURNAL OF BIOPHOTONICS 2018; 11:e201800096. [PMID: 30027681 DOI: 10.1002/jbio.201800096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/11/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Light transmission of Laguerre-Gaussian vector vortex beams in different local regions in mouse brain tissue is investigated. Transmittance is measured in the ballistic and diffusive regions with various polarizations states and orbital angular momentums (OAM). The transmission change observed with structured light other than linear polarization is attributed to chiroptical phenomena from the chiral brain media and the handedness of the light. For instance, classically entangled beams showed higher transmittance and constant value dependency on OAM modes than linear modes did. Also, circular polarization beam transmittance showed strong increase with topical charge OAM ( ℓ), which could be attributed to chiroptical effect.
Collapse
Affiliation(s)
- Sandra Mamani
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, New York
| | - Lingyan Shi
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, New York
- Department of Chemistry, Columbia University, New York, New York
| | - Tahmid Ahmed
- Brooklyn Technical High School, Brooklyn, New York
| | - Romir Karnik
- The Bronx High School of Science, Bronx, New York
| | | | - Daniel Nolan
- Corning Research and Development Corporation, Sullivan Park, Corning, NY, USA
| | - Robert Alfano
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, New York
| |
Collapse
|
26
|
Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA. Integration of intracellular signaling: Biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 2018; 173:191-206. [PMID: 30142359 DOI: 10.1016/j.biosystems.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AIM A theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. METHODS Theoretical analysis presented here refers to (i) the Penrose-Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg-Jackson model of the nerve pulse propagation along axons' lipid bilayer as soliton-like electro-mechanical waves. RESULTS AND CONCLUSION The ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OUTLOOK This paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Collapse
Affiliation(s)
| | - Alfons Lawen
- Monash University, School of Biomedical Sciences, Department of Biochemistry and Molecular Biology, VIC, 3800, Australia
| | - Muhammad Aslam
- Medical Clininc I, Cardiology/Angiology, University Hospital, Justus-Liebig-University, Giessen, Germany
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Carlota Saldanha
- Instituto de Medicina Molecular, Instituto de Bioquimica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Marco Regolini
- Department of Bioengineering and Mathematical Modeling, AudioLogic, Milan, Italy
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy.
| |
Collapse
|
27
|
Naveed M, Raees M, Liaqat I, Kashif M. Clastogenic ROS and biophotonics in precancerous diagnosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Tonello L, Gashi B, Scuotto A, Cappello G, Cocchi M, Gabrielli F, Tuszynski JA. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin. J Integr Neurosci 2018. [DOI: 10.3233/jin-170048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Bekim Gashi
- Department of Biology, University of Prishtina “Hasan Prishtina”, Prishtina, 10000, Kosovo
| | | | | | | | | | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada
| |
Collapse
|
29
|
Bókkon I, Scholkmann F, Salari V, Császár N, Kapócs G. Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth. Rev Neurosci 2018; 27:411-9. [PMID: 26656799 DOI: 10.1515/revneuro-2015-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/25/2015] [Indexed: 11/15/2022]
Abstract
In 1963, it was suggested [Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703-710.] that molecular cues can direct the development of orderly connections between the eye and the brain (the "chemoaffinity hypothesis"). In the same year, the amazing degree of functional accuracy of the visual pathway in the absence of any external light/photon perception prior to birth [Wiesel, T.N and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003-1017.] was discovered. These recognitions revealed that the wiring of the visual system relies on innate cues. However, how the eye-specific retinogeniculate pathway can be developed before birth without any visual experience is still an unresolved issue. In the present paper, we suggest that Müller cells (functioning as optical fibers), Müller cell cone (i.e. the inner half of the foveola that is created of an inverted cone-shaped zone of Müller cells), discrete retinal noise of rods, and intrinsically photosensitive retinal ganglion cells might have key functions by means of retinal spontaneous ultraweak photon emission in the development of eye-specific retinogeniculate pathways prior to birth.
Collapse
|
30
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
31
|
Tamrin SH, Majedi FS, Tondar M, Sanati-Nezhad A, Hasani-Sadrabadi MM. Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Rev Physiol Biochem Pharmacol 2017; 171:63-97. [PMID: 27515674 DOI: 10.1007/112_2016_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Center of Excellence in Biomaterials, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Amir Sanati-Nezhad
- BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada, T2N1N4.
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Chemistry & Biochemistry, and California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
32
|
Uthamacumaran A. A biophysical approach to cancer dynamics: Quantum chaos and energy turbulence. Biosystems 2017; 156-157:1-22. [PMID: 28377182 DOI: 10.1016/j.biosystems.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a term used to define a collective set of rapidly evolving cells with immortalized replication, altered epimetabolomes and patterns of longevity. Identifying a common signaling cascade to target all cancers has been a major obstacle in medicine. A quantum dynamic framework has been established to explain mutation theory, biological energy landscapes, cell communication patterns and the cancer interactome under the influence of quantum chaos. Quantum tunneling in mutagenesis, vacuum energy field dynamics, and cytoskeletal networks in tumor morphogenesis have revealed the applicability for description of cancer dynamics, which is discussed with a brief account of endogenous hallucinogens, bioelectromagnetism and water fluctuations. A holistic model of mathematical oncology has been provided to identify key signaling pathways required for the phenotypic reprogramming of cancer through an epigenetic landscape. The paper will also serve as a mathematical guide to understand the cancer interactome by interlinking theoretical and experimental oncology. A multi-dimensional model of quantum evolution by adaptive selection has been established for cancer biology.
Collapse
|
33
|
Salari V, Rahnama M, Tuszynski JA. Dissipationless Transfer of Visual Information From Retina to the Primary Visual Cortex in the Human Brain. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Recently, the experiments on photosynthetic systems via “femto-second laser spectroscopy” methods have indicated that a “quantum-coherence” in the system causes a highly efficient transfer of energy to the “reaction center” (efficiency is approximately equal to 100%). A recent experiment on a single neuron has indicated that it can conduct light. Also, a re-emission of light from both photosynthetic systems and single neurons has been observed, which is called “delayed luminescence”. This can be supposed as a possibility for dissipationless transfer of visual information to the human brain. In addition, a long-range Fröhlich coherence in microtubules can be a candidate for efficient transfer of light through “noisy” and complex structures of the human brain. From an informational point of view it is a legitimate question to ask how human brain can receive subtle external quantum information of photons intact when photons are in a quantum superposition and pass through very noisy and complex pathways from the eye to the brain? Here, we propose a coherent model in which quantum states of photons can be rebuilt in the human brain.
Collapse
|
34
|
Possible existence of optical communication channels in the brain. Sci Rep 2016; 6:36508. [PMID: 27819310 PMCID: PMC5098150 DOI: 10.1038/srep36508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
Given that many fundamental questions in neuroscience are still open, it seems pertinent to explore whether the brain might use other physical modalities than the ones that have been discovered so far. In particular it is well established that neurons can emit photons, which prompts the question whether these biophotons could serve as signals between neurons, in addition to the well-known electro-chemical signals. For such communication to be targeted, the photons would need to travel in waveguides. Here we show, based on detailed theoretical modeling, that myelinated axons could serve as photonic waveguides, taking into account realistic optical imperfections. We propose experiments, both in vivo and in vitro, to test our hypothesis. We discuss the implications of our results, including the question whether photons could mediate long-range quantum entanglement in the brain.
Collapse
|
35
|
Helgeson HL, Peyerl CK, Solheim-Witt M. Quantum Physics Principles and Communication in the Acute Healthcare Setting: A Pilot Study. Explore (NY) 2016; 12:408-415. [PMID: 27667741 DOI: 10.1016/j.explore.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This pilot study explores whether clinician awareness of quantum physics principles could facilitate open communication between patients and providers. DESIGN In the spirit of action research, this study was conceptualized with a holistic view of human health, using a mixed method design of grounded theory as an emergent method. SAMPLING Instrumentation includes surveys and a focus group discussion with twelve registered nurses working in an acute care hospital setting. RESULTS Findings document that the preliminary core phenomenon, energy as information, influences communication in the healthcare environment. Key emergent themes include awareness, language, validation, open communication, strategies, coherence, incoherence and power. CONCLUSION Research participants indicate that quantum physics principles provide a language and conceptual framework for improving their awareness of communication and interactions in the healthcare environment. Implications of this pilot study support the feasibility of future research and education on awareness of quantum physics principles in other clinical settings.
Collapse
|
36
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
37
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
38
|
Hammerschlag R, Levin M, McCraty R, Bat N, Ives JA, Lutgendorf SK, Oschman JL. Biofield Physiology: A Framework for an Emerging Discipline. Glob Adv Health Med 2015; 4:35-41. [PMID: 26665040 PMCID: PMC4654783 DOI: 10.7453/gahmj.2015.015.suppl] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Collapse
Affiliation(s)
- Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Consciousness and Healing Initiative, San Diego, California; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts (Dr Levin)
| | - Rollin McCraty
- Institute of HeartMath, Boulder Creek, California (Dr McCraty)
| | - Namuun Bat
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Ms Bat)
| | - John A Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Dr Ives)
| | - Susan K Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City (Dr Lutgendorf)
| | - James L Oschman
- Nature's Own Research Association, Dover, New Hampshire (Dr Oschman)
| |
Collapse
|
39
|
Salari V, Valian H, Bassereh H, Bókkon I, Barkhordari A. Ultraweak photon emission in the brain. J Integr Neurosci 2015; 14:419-29. [PMID: 26336891 DOI: 10.1142/s0219635215300012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.
Collapse
Affiliation(s)
- V Salari
- 1 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.,2 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - H Valian
- 3 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Bassereh
- 3 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - I Bókkon
- 4 Psychoszomatic OutPatient Department of the National Center for Spinal Disorders, Hungary.,5 Vision Research Institute, 25 Rita St, Lowell, MA 01854, USA
| | - A Barkhordari
- 6 Department of Physics, Graduate University of Advanced Technology, Mahan, Kerman, Iran
| |
Collapse
|
40
|
Scholkmann F. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci 2015; 14:135-53. [DOI: 10.1142/s0219635215300115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Farhadi A. Non-Chemical Distant Cellular Interactions as a potential confounder of cell biology experiments. Front Physiol 2014; 5:405. [PMID: 25368582 PMCID: PMC4201089 DOI: 10.3389/fphys.2014.00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022] Open
Abstract
Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Digestive Disease Center, Memorial Care Medical GroupCosta Mesa, CA, USA
| |
Collapse
|
42
|
Nunn AVW, Guy GW, Bell JD. The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth. Nutr Metab (Lond) 2014; 11:34. [PMID: 25089149 PMCID: PMC4118160 DOI: 10.1186/1743-7075-11-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022] Open
Abstract
Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of "hormesis", a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence - "the intelligence paradox". One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the "intelligence paradox" would be the inevitable side-effect of the evolution of intelligence. ET may not need to just "phone home" but may also need to "phone the local gym". This suggests another possible reason to explain Fermi's paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can't afford to explore the galaxy because it has to pay its healthcare costs.
Collapse
Affiliation(s)
- Alistair V W Nunn
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AP, UK
| | - Geoffrey W Guy
- GW pharmaceuticals, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
43
|
Cacha LA, Poznanski RR. Genomic instantiation of consciousness in neurons through a biophoton field theory. J Integr Neurosci 2014; 13:253-92. [PMID: 25012712 DOI: 10.1142/s0219635214400081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
Collapse
Affiliation(s)
- Lleuvelyn A Cacha
- Department of Psychology, Sunway University, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | | |
Collapse
|
44
|
Tang R, Dai J. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLoS One 2014; 9:e85643. [PMID: 24454909 PMCID: PMC3893221 DOI: 10.1371/journal.pone.0085643] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022] Open
Abstract
The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca(2+). We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural information.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, China
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, China
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, China
- * E-mail:
| |
Collapse
|
45
|
Tang R, Dai J. Biophoton signal transmission and processing in the brain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:71-5. [PMID: 24461927 DOI: 10.1016/j.jphotobiol.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
46
|
Bókkon I, Mallick BN, Tuszynski JA. Near death experiences: a multidisciplinary hypothesis. Front Hum Neurosci 2013; 7:533. [PMID: 24062655 PMCID: PMC3769617 DOI: 10.3389/fnhum.2013.00533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022] Open
Abstract
Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship.
Collapse
Affiliation(s)
- István Bókkon
- Neuroscience Department, Vision Research Institute Lowell, MA, USA
| | | | | |
Collapse
|
47
|
Moraes TA, Barlow PW, Klingelé E, Gallep CM. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide. Naturwissenschaften 2012; 99:465-72. [PMID: 22639076 DOI: 10.1007/s00114-012-0921-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Thiago A Moraes
- School of Technology, University of Campinas, Rua Paschoal Marmo 1888, 13484-332, Limeira, SP, Brazil
| | | | | | | |
Collapse
|
48
|
Bókkon I, Salari V. Hypothesis about brilliant lights by bioluminescent photons in near death experiences. Med Hypotheses 2012; 79:47-9. [PMID: 22543076 DOI: 10.1016/j.mehy.2012.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/22/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
In near death experiences (NDEs), seeing a brilliant light may arise in the recovery period following cardiac arrest, but the subjects can think that these experiences had happened during the actual period itself. Here we hypothesize a biophysical explanation about the encounter with a brilliant light in NDEs. Accordingly, meeting brilliant light in NDEs is due to the reperfusion that induces unregulated overproduction of free radicals and excited biomolecules among them in numerous parts in the visual system. Unregulated free radicals and excited species can produce a transient increase of bioluminescent photons in different areas of the visual system. If this excess of bioluminescent photon emission exceeds a threshold, they can appear as (phosphene) lights in our mind. In other words, seeing a brilliant light in NDEs may due to bioluminescent photons simultaneously generated in the recovery phase of numerous areas of the visual system and the brain interprets these intrinsic bioluminescent photons as if they were originated from the external visual world. Although our biophysical explanation about brilliant light phenomenon in NDEs can be promising, we do not reject further potential notions.
Collapse
Affiliation(s)
- István Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Hungary; Vision Research Institute, 25 Rita Street, Lowell, MA 01854, USA.
| | | |
Collapse
|
49
|
Salari V, Tuszynski J, Bokkon I, Rahnama M, Cifra M. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/329/1/012006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Kraus JL. Why as a Medicinal Chemist I Am Not Optimistic about the Possibility of Finding, in a Reasonable Timeframe, Small-Molecule Drugs Capable of Curing the Evolution of Alzheimer’s Disease. ChemMedChem 2011; 7:357-8. [DOI: 10.1002/cmdc.201100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 11/09/2022]
|