1
|
Yang R, Zhang K, He H, Liu X, Ge H, Ding W, Zhang W, Ma S, Fan Y, Huang Z. Molecular mechanisms of nitric oxide regulating high photosynthetic performance of wheat plants in waterlogging at flowering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109545. [PMID: 39874667 DOI: 10.1016/j.plaphy.2025.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Nitric oxide (NO) positively contributes to maintaining a high photosynthetic rate in waterlogged-wheat plants by maintaining high stomatal conductance (gs), mesophyll conductance (gm), and electron transport rates in PSII (J). However, the molecular mechanisms underlying the synergistic regulation of photosynthetic characteristics during wheat waterlogging remain unclear. Pot experiments were conducted with two cultivars: Yangmai15 (YM15: high waterlogging-tolerance capacity) and Yangmai24 (YM24: conventional waterlogging-tolerance capacity). The 2 cm waterlogging depth treatment (WL), exogenous spraying of NO every two days in the WL treatment (WLsnp), and suitable soil water content treatment (CK) were established during the flowering stage for eight consecutive days. RNA-seq, weighted gene co-expression network analysis (WGCAN), and protein interaction analysis were performed on the 8th day to screen key genes that maintain high photosynthetic performance in waterlogged-wheat plants. The results indicated that cultivar YM24 and YM15 contained 10411 and 10582 differentially expressed genes (DEGs), respectively. The WL treatment had obviously higher DEGs than the WLsnp treatment compared to the CK treatment. Based on the WGCAN method, the DEGs were clustered into eight modules and correlated significantly with the four photosynthetic parameters mentioned above (P < 0.05). Only the DEGs in the ivory module (571) enriched the photosynthetic pathways among the eight modules. In the ivory module, 10 hub genes, including TaB1274F11.29-1, TaT6H20.190, TaOSNPB_100100300, TaLHCB, TaPSAG, TaCAP10B, TaFAD7A-1, TaCAB3C, TaT27G7, and TaF24G24.140, were screened using the co-expression network method because the genes exhibited similar variation trends with gs, gm, or J across the three water treatments and both cultivars. TaLHCB and TaCAP10B exhibited significant linear relationships with the three parameters of gs, gm, and J (P < 0.05). Consequently, TaLHCB and TaCAP10B genes are defined as waterlogging-resistance genes due to the synergistic regulation of photosynthetic characteristics in waterlogging. Both genes were significantly down-regulated in the WL treatment compared to CK treatment in both cultivars. However, there was no significant difference between WLsnp and CK treatments for the genes in the cultivar YM15. These results suggest that the positive effects of spraying NO with high waterlogging resistance capacities are linked to maintaining high expression levels of key genes and obtaining high photosynthetic characteristics during waterlogging, particularly for cultivars with high waterlogging resistance.
Collapse
Affiliation(s)
- Ru Yang
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China.
| | - Kou Zhang
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Haibing He
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China; Germplasm Creation and Application Laboratory of Grain and Oil Crops in Wanjiang Plain, Enterprise Key Laboratory of Ministry of Agriculture and Rural Affairs, 244002, Tongling, China
| | - Xiang Liu
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Hong Ge
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Wenjin Ding
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Wenjing Zhang
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Shangyu Ma
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Yonghui Fan
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China
| | - Zhenglai Huang
- Agricultural College, Anhui Agricultural University, 230036, Hefei, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), 210095, Nanjing, China.
| |
Collapse
|
2
|
Guo L, Wang X, Ayhan DH, Rhaman MS, Yan M, Jiang J, Wang D, Zheng W, Mei J, Ji W, Jiao J, Chen S, Sun J, Yi S, Meng D, Wang J, Bhuiyan MN, Qin G, Guo L, Yang Q, Zhang X, Sun H, Liu C, Deng XW, Ye W. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. Nat Genet 2025; 57:741-753. [PMID: 40011682 DOI: 10.1038/s41588-025-02111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Grapevine (Vitis) is one of the oldest domesticated fruit crops with great cultural and economic importance. Here we assembled and annotated haplotype-resolved genomes of 72 global Vitis accessions including 25 wild and 47 cultivated grapevines, among which genomes for 60 grapevines are newly released. Haplotype-aware phylogenomics disentangled the mysterious hybridization history of grapevines, revealing the enormous genetic diversity of the Vitis genus. Pangenomic analysis reveals that European cultivars, more susceptible to the destructive disease downy mildew (DM), have a smaller repertoire of resistance genes in the NLR family encoding the TIR-NBARC-LRR domain. Through extensive structural variation (SV) characterization, phenotyping, DM-infection transcriptome profiling of 113 Vitis accessions, and SV-expression quantitative trait loci analysis, we have identified over 63 SVs and their relevant genes significantly associated with DM resistance, exemplified by a lysine histidine transporter, VvLHT8. This haplotype-resolved super pangenome of the Vitis genus will accelerate breeding and enrich our understanding of the evolution and biology of grapevines.
Collapse
Affiliation(s)
- Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Xiangfeng Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dilay Hazal Ayhan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongyue Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Wei Zheng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Junjie Mei
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Wei Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Jian Jiao
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shu Yi
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jing Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Nasim Bhuiyan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Guochen Qin
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Linling Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Qingxian Yang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xuenan Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Haisheng Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Wenxiu Ye
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
3
|
Yin H, Nakamura T, Nakamura Y, Munemasa S, Murata Y. Dual role of cytosolic GSH in the ABA signaling pathway and plasma membrane ion channel regulation in guard cells of Vicia faba. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154447. [PMID: 39923261 DOI: 10.1016/j.jplph.2025.154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Abscisic acid (ABA) induces stomatal closure in higher plants under drought stress. Glutathione (GSH) negatively regulates ABA-induced stomatal closure and reactive carbonyl species (RCS) play a role as signal mediators downstream of reactive oxygen species production in ABA signaling pathway in Arabidopsis thaliana. Activation of slow (S-type) anion channels and inhibition of inward-rectifying potassium ion (Kin+) channels in the plasma membrane are essential for ABA-induced stomatal closure. However, there is limited evidence regarding role of GSH in the activation of S-type anion channels and the inhibition of Kin+ channels. We used Vicia faba to clarify the regulation of these ion channels by GSH and RCS. Pretreatment of guard-cell protoplasts with the GSH-supplementing agent, glutathione monoethyl ester (GSHmee), suppressed the activation of S-type anion channels and the inactivation of Kin+ channels induced by ABA. The pretreatment with the RCS scavenger carnosine suppressed the activation of S-type anion channels and the inactivation of Kin+ channels by ABA. On patch clamping guard-cell protoplasts, the addition of GSH to the pipette (cytosolic) buffer decreased the S-type anion currents and increased the Kin+ currents. These results suggest that cytosolic GSH is involved in ABA-induced stomatal closure via negative regulation of ABA signaling and via direct regulation of ion channel activities in V. faba.
Collapse
Affiliation(s)
- Huifei Yin
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Oumaima K, Hossain MS, Ye W, Okuma E, Issak M, Islam MM, Uraji M, Nakamura Y, Mori IC, Munemasa S, Murata Y. TGG1 and TGG2 mutations impair allyl isothiocyanate-mediated stomatal closure in Arabidopsis thaliana. PROTOPLASMA 2025:10.1007/s00709-025-02039-z. [PMID: 39894892 DOI: 10.1007/s00709-025-02039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Myrosinase, referred to as thioglucoside glucohydrolase (TGG), plays a crucial role in plant physiology through catalyzing the hydrolysis of glucosinolates into bioactive isothiocyanates. In Arabidopsis thaliana, the myrosinases TGG1 and TGG2 are essential for abscisic acid- and methyl jasmonate-induced stomata closure. Allyl isothiocyanate (AITC), one of myrosinase products, triggers stomatal closure in A. thaliana. We investigated stomatal responses to AITC to clarify the role of TGG1 and TGG2 in Arabidopsis guard-cell signaling. Allyl isothiocyanate at 50 μM and 100 μM induced stomatal closure in the tgg1 and tgg2 single mutants but not in the tgg1 tgg2 double mutant. Furthermore, AITC at 50 μM induced the production of reactive oxygen species and nitric oxide, cytosolic alkalization, and oscillations in cytosolic free calcium concentration in guard cells of both wild-type and mutant plants. These findings suggest that TGG1 and TGG2 are involved in AITC signaling pathway through interaction with signal component(s) downstream of these signaling events, which is not accompanied by hydrolysis of glucosinolates because of the difference in subcellular localization between enzymes (myrosinases) and substrates (glucosinolates).
Collapse
Affiliation(s)
- Kadri Oumaima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | | | - Wenxiu Ye
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Institute of Advanced Agriculture Science, Peking University, Beijing, 100-871, China
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Mohammad Issak
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Department of Agricultural Botany, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Mohammad Mahbub Islam
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Department of Agricultural Botany, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Misugi Uraji
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Mao C, Zheng J, Shen E, Sun B, Wu H, Xu Y, Huang W, Ding X, Lin Y, Chen T. Alternative transcriptional initiation of OsβCA1 produces three distinct subcellular localization isoforms involved in stomatal response regulation and photosynthesis in rice. THE NEW PHYTOLOGIST 2025. [PMID: 39888004 DOI: 10.1111/nph.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Plants adjust the size of their stomatal openings to balance CO2 intake and water loss. Carbonic anhydrases (CAs) facilitate the conversion between CO2 and HCO3 -, and the OsβCA1 mutant in rice (Oryza sativa) shows similar traits in carbon fixation and stomatal response to CO2 as the dual βCA mutants in Arabidopsis thaliana. However, the exact role of OsβCA1 in these processes was unclear. We used gene editing, molecular biology, and plant physiology to study how OsβCA1 contributes to carbon fixation, stomatal opening, and CO2 responses. OsβCA1 produces three isoforms (OsβCA1A, OsβCA1B, and OsβCA1C) through alternative transcriptional initiation, which localize to the chloroplast, cell membrane, and cytosol, respectively. Protein measurements revealed that OsβCA1A/C and OsβCA1B contribute 97 and 3% to OsβCA1, respectively. By creating specific mutants for each isoform, our results found that the chloroplast and cell membrane isoforms independently participate in carbon fixation and regulation of stomatal aperture. Furthermore, the complete knockout of OsβCA1 caused a delayed response to low CO2. Our findings provide new insights into the generation and function of different OsβCA1 isoforms, clarifying their roles in CO2 diffusion, CO2 fixation and stomatal regulation in rice.
Collapse
Affiliation(s)
- Cui Mao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Yi Xu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Weifeng Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Xinghua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taiyu Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| |
Collapse
|
6
|
Kou Y, Su B, Yang S, Gong W, Zhang X, Shan X. Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition. BMC PLANT BIOLOGY 2025; 25:95. [PMID: 39844057 PMCID: PMC11756150 DOI: 10.1186/s12870-024-06008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101). Previous studies have suggested that NRT1.1 is involved in stomatal opening and contributes to drought susceptibility. However, the precise mechanism of how the phosphorylation status of NRT1.1 affects stomatal movement and drought tolerance remains unclear. RESULTS In this study, we observed that seedlings expressing the phosphorylated form of NRT1.1 (NRT1.1T101D, T101D) exhibited increased drought tolerance compared to dephosphorylated NRT1.1 (NRT1.1T101A, T101A) mutants under low nitrate (LN) condition, characterized by decreased stomatal aperture and water loss. Moreover, we found that the drought-induced depolarization of membrane potential was diminished in T101D mutants in comparison to T101A seedlings. Furthermore, we revealed that the reduced stomatal opening in T101D seedlings was related with depressed nitrate and potassium influx, along with the down-regulation of NRT1.1, POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1, and ARABIDOPSISH + ATPase 1 in comparison with that of T101A. CONCLUSIONS Our study provides several lines of evidence to demonstrate that the phosphorylation of NRT1.1 at T101 contributes to the drought tolerance under LN condition by reducing the influx of nitrate and potassium into the cytoplasm, attenuating membrane depolarization and thereby inducing stomatal closure. This finding identified a novel drought resistance mechanism enabled by post-transcriptional regulation of plasma membrane transporter.
Collapse
Affiliation(s)
- Yuchen Kou
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bodan Su
- National State Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shunyao Yang
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wei Gong
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Jahan I, Islam MM, Nakamura T, Nakamura Y, Munemasa S, Mano J, Murata Y. Reactive carbonyl species function downstream of reactive oxygen species in chitosan-induced stomatal closure. PHYSIOLOGIA PLANTARUM 2025; 177:e70094. [PMID: 39887342 PMCID: PMC11783587 DOI: 10.1111/ppl.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
An elicitor, chitosan (CHT), induces stomatal closure in plants, which is accompanied by salicylhydroxamic acid (SHAM)-sensitive peroxidases-mediated reactive oxygen species (ROS) production in guard cells. Reactive carbonyl species (RCS) function downstream of ROS in abscisic acid (ABA) and methyl jasmonate (MeJA) signalling in guard cells. However, the involvement of RCS in CHT-induced stomatal closure is still unknown. In this study, we used transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis thaliana 2-alkenal reductase (AER-OE tobacco) and Arabidopsis wild-type (WT) plants to investigate whether RCS is involved in CHT-induced stomatal closure. Chitosan-induced stomatal closure was inhibited in the tobacco AER-OE plants. In the WT tobacco and Arabidopsis plants, CHT-induced stomatal closure was inhibited by RCS scavengers, carnosine and pyridoxamine. Chitosan significantly increased RCS production in the WT tobacco and Arabidopsis, but in the tobacco AER-OE plants, chitosan did not increase significantly RCS accumulation. Moreover, neither the application of RCS scavengers to both WT plants nor scavenging RCS by AER-OE affected the CHT-induced ROS accumulation. However, treatment with a peroxidase inhibitor, SHAM, significantly inhibited CHT-induced RCS accumulation in WT tobacco and Arabidopsis plants. Taken together, these results suggest that RCS acts downstream of ROS production in CHT signalling in guard cells of A. thaliana and N. tabacum.
Collapse
Affiliation(s)
- Israt Jahan
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Md. Moshiul Islam
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
- Department of AgronomyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Jun'ichi Mano
- Science Research CenterYamaguchi UniversityYamaguchiJapan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
8
|
Xu X, Liu H, Praat M, Pizzio GA, Jiang Z, Driever SM, Wang R, Van De Cotte B, Villers SLY, Gevaert K, Leonhardt N, Nelissen H, Kinoshita T, Vanneste S, Rodriguez PL, van Zanten M, Vu LD, De Smet I. Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3-AHA1 module. NATURE PLANTS 2025; 11:105-117. [PMID: 39613896 DOI: 10.1038/s41477-024-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Plants continuously respond to changing environmental conditions to prevent damage and maintain optimal performance. To regulate gas exchange with the environment and to control abiotic stress relief, plants have pores in their leaf epidermis, called stomata. Multiple environmental signals affect the opening and closing of these stomata. High temperatures promote stomatal opening (to cool down), and drought induces stomatal closing (to prevent water loss). Coinciding stress conditions may evoke conflicting stomatal responses, but the cellular mechanisms to resolve these conflicts are unknown. Here we demonstrate that the high-temperature-associated kinase TARGET OF TEMPERATURE 3 directly controls the activity of plasma membrane H+-ATPases to induce stomatal opening. OPEN STOMATA 1, which regulates stomatal closure to prevent water loss during drought stress, directly inactivates TARGET OF TEMPERATURE 3 through phosphorylation. Taken together, this signalling axis harmonizes stomatal opening and closing under high temperatures and/or drought. In the context of global climate change, understanding how different stress signals converge on stomatal regulation allows the development of climate-change-ready crops.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hongyan Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, the Netherlands
| | - Gaston A Pizzio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Steven Michiel Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Selwyn L Y Villers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Nathalie Leonhardt
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa Nagoya, Japan
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Cryptobiotix SA, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
9
|
Liu J, Huang J, Peng S, Xiong D. Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5457-5469. [PMID: 39205650 DOI: 10.1111/pce.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Drought and subsequent rewatering are common in agriculture, where recovery from mild droughts is easier than from severe ones. The specific drought threshold and factors limiting recovery are under-researched. This study subjected maize plants to varying drought degrees before rewatering, and measuring plant water status, gas exchange, hydraulic conductance, hormone levels, and cellular damage throughout. We discovered that stomatal reopening in plants was inhibited with leaf water potentials below about -1.7 MPa, hindering postdrought photosynthetic recovery. Neither hydraulic loss nor abscisic acid (ABA) content was the factor inhibited stomatal reopening on the second day following moderate drought stress and rewatering. But stomatal reopening was significantly correlated to the interaction between hydraulic signals and ABA content under severe drought. Extended drought led to leaf death at about -2.8 MPa or 57% relative water content, influenced by reduced rehydration capacity, not hydraulic failure. The lethal threshold remained relatively constant across leaf stages, but the recoverable safety margin (RSM), that is, the water potential difference between stomatal closure and recovery capacity loss, significantly decreased with leaf aging due to delayed stomatal closure during drought. Our findings indicate hydraulic failure alone does not cause maize leaf death, highlighting the importance of RSM in future research.
Collapse
Affiliation(s)
- Junzhou Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Ma M, Gu J, Wang ZY. An optimization method for measuring the stomata in cassava ( Manihot esculenta Crantz) under multiple abiotic stresses. Open Life Sci 2024; 19:20220993. [PMID: 39533984 PMCID: PMC11554558 DOI: 10.1515/biol-2022-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
As a gateway for gas exchange, pores regulate the transport of air and water in carbon assimilation, respiration, and transpiration to quickly adapt to environmental changes. Therefore, the study of stomatal movement characteristics of plants is helpful to strengthen the understanding of the mechanism of plant response to multi-environmental stress, and can improve the function of plant resistance to stresses. The stomatal movement of Arabidopsis leaves was observed by staining the stomata with rhodamine 6G, but this method has not been reported in other plant leaf stomata studies. Taking cassava as an example, the correlation between cassava stomatal movement and cassava response to stress was observed by using and improving the staining method. Rhodamine 6G is a biological stain widely used in cell biology and molecular biology. It was found that 1 μM rhodamine 6G could stain the stomata of cassava without affecting stomatal movement (n = 109, p < 0.05). In addition, we proposed that stomata fixed with 4% concentration of formaldehyde after staining were closest to the stomatal morphology of cassava epidermis, so as to observe stomatal movement under different environmental stresses more accurately. Previous methods of measuring stomatal pore size by autofluorescence of cell wall needs to fix the cells for 6 h, but Rhodamine staining can only be observed in 2 min, which greatly improves the experimental efficiency. Compared with the traditional exfoliation method (e.g., Arabidopsis), this method can reduce the damage of the leaves and observe the stomata of the whole leaves more completely, so that the experimental results are more complete. In addition, the method enables continuous leaf processing and observation. Using this method, we further compared four different cassava varieties (i.e., KU50, SC16, SC8, and SC205) and found that there are differences in stomatal density (SD) among cassava varieties, and the difference in the SD directly affects the stress resistance of cassava (n = 107, p < 0.001). This finding has important implications for studying the mechanism of plant response to environmental stress through stomata.
Collapse
Affiliation(s)
- Muqing Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| |
Collapse
|
11
|
Bharath P, Gahir S, Raghavendra AS. Cytosolic alkalinization in guard cells: an intriguing but interesting event during stomatal closure that merits further validation of its importance. FRONTIERS IN PLANT SCIENCE 2024; 15:1491428. [PMID: 39559765 PMCID: PMC11570284 DOI: 10.3389/fpls.2024.1491428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Stomatal closure is essential to conserve water and prevent microbial entry into leaves. Alkalinization of guard cells is common during closure by factors such as abscisic acid, methyl jasmonate, and even darkness. Despite reports pointing at the role of cytosolic pH, there have been doubts about whether the guard cell pH change is a cause for stomatal closure or an associated event, as changes in membrane potential or ion flux can modulate the pH. However, the importance of cytosolic alkalinization is strongly supported by the ability of externally added weak acids to restrict stomatal closure. Using genetically encoded pH sensors has confirmed the rise in pH to precede the elevation of Ca2+ levels. Yet some reports claim that the rise in pH follows the increase in ROS or Ca2+. We propose a feedback interaction among the rise in pH or ROS or Ca2+ to explain the contrasting opinions on the positioning of pH rise. Stomatal closure and guard cell pH changes are compromised in mutants deficient in vacuolar H+-ATPase (V-ATPase), indicating the importance of V-ATPase in promoting stomatal closure. Thus, cytosolic pH change in guard cells can be related to the rise in ROS and Ca2+, leading to stomatal closure. We emphasize that cytosolic pH in stomatal guard cells deserves further attention and evaluation.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Márquez DA, Busch FA. The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. PLANT, CELL & ENVIRONMENT 2024; 47:3393-3410. [PMID: 38488802 DOI: 10.1111/pce.14880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 08/16/2024]
Abstract
Understanding the short-term responses of mesophyll conductance (gm) and stomatal conductance (gsc) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO2 diffusion within leaves. Recent methodological advances in measuring gm using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term gm responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO2 concentration indirectly impact gm through gsc changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of gm are not, or at least not fully, mechanistically linked to changes in gsc, cautioning against using gsc as a reliable proxy for gm. The overarching challenge lies in unravelling the mechanistic basis of short-term gm responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of gm behaviour under changing environmental conditions.
Collapse
Affiliation(s)
- Diego A Márquez
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Hao DL, Zhou JY, Qu J, Lu HL, Li L, Yao X, Chen JB, Liu JX, Guo HL, Zong JQ. Screening of environmental stimuli for the positive regulation of stomatal aperture in centipedegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108838. [PMID: 38878388 DOI: 10.1016/j.plaphy.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Grasslands, the largest carbon pool in China, possess enormous potential for carbon sequestration. Increasing the stomatal aperture to increase the CO2 absorption capacity is a potential method to improve plant photosynthetic efficiency and ultimately enhance the carbon sequestration capacity of grass plants. Research on stomatal aperture regulation has focused mostly on Arabidopsis or crops, while research on grass plants in these areas is scarce, which seriously restricts the implementation of this grassland carbon sequestration strategy. Here, a widely used ecological grass, centipedegrass, was used as the experimental material. First, a convenient method for observing the stomatal aperture was developed. The leaves were floated in a potassium ion-containing open solution (67 mM KCl, pH 6.0) with the adaxial surface rather than the abaxial surface in contact with the solution and were cultivated under light for 1.5 h. Then, nail polish was applied on the adaxial surface, and a large number of open stomata were imprinted. Second, with the help of this improved method, the concentration‒response characteristics of the stomatal aperture to eleven environmental stimuli were tested. The stomatal aperture is dependent on these environmental stimuli in a concentration-dependent manner. The addition of 100 μM brassinolide led to the maximal stomatal aperture. This study provided a technical basis for manipulating stomatal opening to increase the carbon sequestration capacity of centipedegrass.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, 212400, China
| | - Jia Qu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Hai-Long Lu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Jun-Qin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
14
|
Qin L, Deng YN, Zhang XY, Tang LH, Zhang CR, Xu SM, Wang K, Wang MH, Zhang XH, Su M, Xie Q, Hendrickson WA, Chen YH. Mechanistic insights into phosphoactivation of SLAC1 in guard cell signaling. Proc Natl Acad Sci U S A 2024; 121:e2323040121. [PMID: 38985761 PMCID: PMC11260165 DOI: 10.1073/pnas.2323040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ya-nan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiang-yun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ling-hui Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Chun-rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shi-min Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ke Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Mei-hua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xian-hui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Xie
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- National Center of Technology Innovation for Maize, State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Syngenta Group China, Beijing102206, China
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY10032
| | - Yu-hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
15
|
Li X, Zhao S, Cao Q, Qiu C, Yang Y, Zhang G, Wu Y, Yang Z. Effect of Green Light Replacing Some Red and Blue Light on Cucumis melo under Drought Stress. Int J Mol Sci 2024; 25:7561. [PMID: 39062804 PMCID: PMC11276641 DOI: 10.3390/ijms25147561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.
Collapse
Affiliation(s)
- Xue Li
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Shiwen Zhao
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Qianqian Cao
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Chun Qiu
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Yuanyuan Yang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest A & F University, Xianyang 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| |
Collapse
|
16
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
17
|
Guo X, Zhang J, Sun S, Huang L, Niu Y, Zhao P, Zhang Y, Shi X, Ji W, Xu S. TaGSK3 regulates wheat development and stress adaptation through BR-dependent and BR-independent pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2443-2458. [PMID: 38557938 DOI: 10.1111/pce.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The GSK3/SHAGGY-like kinase plays critical roles in plant development and response to stress, but its specific function remains largely unknown in wheat (Triticum aestivum L.). In this study, we investigated the function of TaGSK3, a GSK3/SHAGGY-like kinase, in wheat development and response to stress. Our findings demonstrated that TaGSK3 mutants had significant effects on wheat seedling development and brassinosteroid (BR) signalling. Quadruple and quintuple mutants showed amplified BR signalling, promoting seedling development, while a sextuple mutant displayed severe developmental defects but still responded to exogenous BR signals, indicating redundancy and non-BR-related functions of TaGSK3. A gain-of-function mutation in TaGSK3-3D disrupted BR signalling, resulting in compact and dwarf plant architecture. Notably, this mutation conferred significant drought and heat stress resistance of wheat, and enhanced heat tolerance independent of BR signalling, unlike knock-down mutants. Further research revealed that this mutation maintains a higher relative water content by regulating stomatal-mediated water loss and maintains a lower ROS level to reduces cell damage, enabling better growth under stress. Our study provides comprehensive insights into the role of TaGSK3 in wheat development, stress response, and BR signal transduction, offering potential for modifying TaGSK3 to improve agronomic traits and enhance stress resistance in wheat.
Collapse
Affiliation(s)
- Xiaolong Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jialiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuyang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liuying Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaxin Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanfei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Ali A, Zareen S, Park J, Khan HA, Lim CJ, Bader ZE, Hussain S, Chung WS, Gechev T, Pardo JM, Yun DJ. ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2481-2493. [PMID: 38280208 PMCID: PMC11016836 DOI: 10.1093/jxb/erae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024]
Abstract
The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Zein Eddin Bader
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Shah Hussain
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Woo Sik Chung
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Tsanko Gechev
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla-41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
19
|
Li J, Liu X, Chang S, Chu W, Lin J, Zhou H, Hu Z, Zhang M, Xin M, Yao Y, Guo W, Xie X, Peng H, Ni Z, Sun Q, Long Y, Hu Z. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. SCIENCE ADVANCES 2024; 10:eadk4027. [PMID: 38608020 PMCID: PMC11014451 DOI: 10.1126/sciadv.adk4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.
Collapse
Affiliation(s)
- Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Hui Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhuoran Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
20
|
Meng Y, Lv Q, Li L, Wang B, Chen L, Yang W, Lei Y, Xie Y, Li X. E3 ubiquitin ligase TaSDIR1-4A activates membrane-bound transcription factor TaWRKY29 to positively regulate drought resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:987-1000. [PMID: 38018512 PMCID: PMC10955488 DOI: 10.1111/pbi.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Collapse
Affiliation(s)
- Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
21
|
Lu Y, Chen X, Yu H, Zhang C, Xue Y, Zhang Q, Wang H. Haplotype-resolved genome assembly of Phanera championii reveals molecular mechanisms of flavonoid synthesis and adaptive evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:488-505. [PMID: 38173092 DOI: 10.1111/tpj.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Phanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.
Collapse
Affiliation(s)
- Yongbin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Yanshan, Guilin, 541006, China
| | - Xiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Chao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Yajie Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Yanshan, Guilin, 541006, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| |
Collapse
|
22
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
23
|
Zhang C, Tetteh C, Luo S, Jin P, Hao X, Sun M, Fang N, Liu Y, Zhang H. Exogenous application of pectin triggers stomatal closure and immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2024; 25:e13438. [PMID: 38393695 PMCID: PMC10887356 DOI: 10.1111/mpp.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Pectin has been extensively studied in animal immunity, and exogenous pectin as a food additive can provide protection against inflammatory bowel disease. However, the utility of pectin to improve immunity in plants is still unstudied. Here, we found exogenous application of pectin triggered stomatal closure in Arabidopsis in a dose- and time-dependent manner. Additionally, pectin activated peroxidase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to produce reactive oxygen species (ROS), which subsequently increased cytoplasmic Ca2+ concentration ([Ca2+ ]cyt ) and was followed by nitric oxide (NO) production, leading to stomatal closure in an abscisic acid (ABA) and salicylic acid (SA) signalling-dependent mechanism. Furthermore, pectin enhanced the disease resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) with mitogen-activated protein kinases (MPKs) MPK3/6 activated and upregulated expression of defence-responsive genes in Arabidopsis. These results suggested that exogenous pectin-induced stomatal closure was associated with ROS and NO production regulated by ABA and SA signalling, contributing to defence against Pst DC3000 in Arabidopsis.
Collapse
Affiliation(s)
- Cheng Zhang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Charles Tetteh
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Sheng Luo
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Pinyuan Jin
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Xingqian Hao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Min Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Nan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Yingjun Liu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Huajian Zhang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| |
Collapse
|
24
|
Wang H, Song S, Gao S, Yu Q, Zhang H, Cui X, Fan J, Xin X, Liu Y, Staskawicz B, Qi T. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis. THE PLANT CELL 2024; 36:427-446. [PMID: 37851863 PMCID: PMC10827572 DOI: 10.1093/plcell/koad270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.
Collapse
Affiliation(s)
- Hanling Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shang Gao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haibo Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiulin Cui
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Fan
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiufang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yule Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Cao Y, Chen Y, Cheng N, Zhang K, Duan Y, Fang S, Shen Q, Yang X, Fang W, Zhu X. CsCuAO1 Associated with CsAMADH1 Confers Drought Tolerance by Modulating GABA Levels in Tea Plants. Int J Mol Sci 2024; 25:992. [PMID: 38256065 PMCID: PMC10815580 DOI: 10.3390/ijms25020992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.
Collapse
Affiliation(s)
- Yu Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yiwen Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Nuo Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Shimao Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Qiang Shen
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Xiaowei Yang
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| |
Collapse
|
26
|
Sun Y, Li Q, Wu M, Wang Q, Zhang D, Gao Y. Rice PIFs: Critical regulators in rice development and stress response. PLANT MOLECULAR BIOLOGY 2024; 114:1. [PMID: 38177976 DOI: 10.1007/s11103-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.
Collapse
Affiliation(s)
- Yixuan Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Meidi Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qingwen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yong Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Falquetto-Gomes P, Silva WJ, Siqueira JA, Araújo WL, Nunes-Nesi A. From epidermal cells to functional pores: Understanding stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154163. [PMID: 38118303 DOI: 10.1016/j.jplph.2023.154163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.
Collapse
Affiliation(s)
- Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Welson Júnior Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Xu B, Feng X, Piechatzek A, Zhang S, Konrad KR, Kromdijk J, Hedrich R, Gilliham M. The GABA shunt contributes to ROS homeostasis in guard cells of Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:73-81. [PMID: 37936524 DOI: 10.1111/nph.19390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
γ-Aminobutyric acid (GABA) accumulates rapidly under stress via the GABA shunt pathway, which has been implicated in reducing the accumulation of stress-induced reactive oxygen species (ROS) in plants. γ-Aminobutyric acid has been demonstrated to act as a guard-cell signal in Arabidopsis thaliana, modulating stomatal opening. Knockout of the major GABA synthesis enzyme Glutamate Decarboxylase 2 (GAD2) increases the aperture of gad2 mutants, which results in greater stomatal conductance and reduces water-use efficiency compared with wild-type plants. Here, we found that the additional loss of GAD1, GAD4, and GAD5 in gad2 leaves increased GABA deficiency but abolished the more open stomatal pore phenotype of gad2, which we link to increased cytosolic calcium (Ca2+ ) and ROS accumulation in gad1/2/4/5 guard cells. Compared with wild-type and gad2 plants, glutamate was ineffective in closing gad1/2/4/5 stomatal pores, whereas lowering apoplastic calcium, applying ROS inhibitors or complementation with GAD2 reduced gad1/2/4/5 guard-cell ROS, restored the gad2-like greater stomatal apertures of gad1/2/4/5 beyond that of wild-type. We conclude that GADs are important contributors to ROS homeostasis in guard cells likely via a Ca2+ -mediated pathway. As such, this study reveals greater complexity in GABA's role as a guard-cell signal and the interactions it has with other established signals.
Collapse
Affiliation(s)
- Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, 5064, Australia
| | - Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, 5064, Australia
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
29
|
Haque MI, Shapira O, Attia Z, Cohen Y, Charuvi D, Azoulay-Shemer T. Induction of stomatal opening following a night-chilling event alleviates physiological damage in mango trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108221. [PMID: 38048702 DOI: 10.1016/j.plaphy.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Chilling events have become more frequent with climate change and are a significant abiotic factor causing physiological damage to plants and, consequently, reducing crop yield. Like other tropical and subtropical plants, mango (Mangifera indica L.) is particularly sensitive to chilling events, especially if they are followed by bright sunny days. It was previously shown that in mango leaves stomatal opening is restricted in the morning following a night-chilling event. This impairment results in restraint of carbon assimilation and subsequently, photoinhibition and reactive oxygen species production, which leads to chlorosis and in severe cases, cell death. Our detailed physiological analysis showed that foliar application of the guard cell H+-ATPase activator, fusicoccin, in the morning after a cold night, mitigates the physiological damage from 'cold night-bright day' abiotic stress. This application restored stomatal opening, thereby enabling gas exchange, releasing the photosynthetic machinery from harmful excess photon energy, and improving the plant's overall physiological state. The mechanisms by which plants react to this abiotic stress are examined in this work. The foliar application of compounds that cause stomatal opening as a potential method of minimizing physiological damage due to night chilling is discussed.
Collapse
Affiliation(s)
- Md Intesaful Haque
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Or Shapira
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Ziv Attia
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yuval Cohen
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamar Azoulay-Shemer
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel.
| |
Collapse
|
30
|
Xiang W, Guo Z, Han J, Gao Y, Ma F, Gong X. The apple autophagy-related gene MdATG10 improves drought tolerance and water use efficiency in transgenic apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108214. [PMID: 38016369 DOI: 10.1016/j.plaphy.2023.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
The Loess Plateau is the main apple production area in China; low precipitation is one of the most important factors limiting apple production here. Autophagy is a conserved process in eukaryotes that recycles cell contents or damaged macromolecules. Previously, we identified an autophagy-related gene MdATG10 from apple plants, which was involved in the responses to stressed conditions. In this study, we found that MdATG10 improved the drought tolerance and water use efficiency (WUE) of transgenic apple plants. MdATG10-overexpressing (OE) apple plants were more tolerant of short-term drought stress, as evidenced by their fewer drought-related injuries, compared with wild-type (WT) apple plants. In addition, the WUE of OE plants was higher than that of WT plants under long-term moderate water deficit conditions. The growth rate, biomass accumulation, photosynthetic efficiency, and stomatal aperture were higher in OE plants than in WT plants under long-term moderate drought conditions. During the process of adapting to drought, the expressions of genes involved in the abscisic acid (ABA) pathway were reduced in OE plants to decrease the synthesis of ABA, which helped maintain the stomatal opening for gas exchange. Furthermore, autophagic activity was higher in OE plants than in WT plants, as evidenced by the higher expressions of ATG genes and the greater number of autophagy bodies. In sum, our results suggested that overexpression of MdATG10 improved drought tolerance and WUE in apple plants, possibly by regulating stomatal movement and enhancing autophagic activity, which then enhanced the photosynthetic efficiency and reduced damage, as well as the reactive oxygen species (ROS) accumulation in apple plants.
Collapse
Affiliation(s)
- Weijia Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijian Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jifa Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiran Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Gong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Truong TTT, Chiu CC, Su PY, Chen JY, Nguyen TP, Ohme-Takagi M, Lee RH, Cheng WH, Huang HJ. Signaling pathways involved in microbial indoor air pollutant 3-methyl-1-butanol in the induction of stomatal closure in Arabidopsis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7556-7568. [PMID: 38165546 DOI: 10.1007/s11356-023-31641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/04/2024]
Abstract
Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.
Collapse
Affiliation(s)
- Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
- Faculty of Technology, The University of Danang-Campus in Kontum, No. 704 Phan Dinh Phung, Kontum, Vietnam
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
| |
Collapse
|
32
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Truong TTT, Chiu CC, Chen JY, Su PY, Nguyen TP, Trinh NN, Mimura T, Lee RH, Chang CH, Huang HJ. Uncovering molecular mechanisms involved in microbial volatile compounds-induced stomatal closure in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 113:143-155. [PMID: 37985583 DOI: 10.1007/s11103-023-01379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 11/22/2023]
Abstract
Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.
Collapse
Affiliation(s)
- Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, Kon Tum City, 580000, Vietnam
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Ngoc-Nam Trinh
- Industrial University of Ho Chi Minh City, No. 12, Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Tetsuro Mimura
- Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan, 701, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan, 701, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
| |
Collapse
|
34
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
35
|
Khan NZ, Ali A, Ali W, Aasim M, Khan T, Khan Z, Munir I. Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1239-1246. [PMID: 38024953 PMCID: PMC10678877 DOI: 10.1007/s12298-023-01358-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023]
Abstract
Salinity, low temperature, and drought are major environmental factors in agriculture leading to reduced crop yield. Dehydrins (DHNs) are induced transcriptionally during cellular dehydration and accumulate in different tissues during abiotic stresses. Here we isolated and characterized a bacterial gene BG757 in Arabidopsis, encoding a putative dehydrin type protein. ABA induces the expression of various dehydrins in plants, therefore, to elucidate the potential role, ABA sensitivity was examined in Arabidopsis transgenic lines expressing BG757. Interestingly, BG757-expressing plants showed hypersensitivity towards NaCl and ABA during seed germination. In addition to germination, BG757-expressing plants also showed root growth retardation in the presence of ABA and NaCl when compared with wild type (WT), suggesting that BG757 positively regulate salt stress and ABA response. Furthermore, BG757-expressing plants showed significant drought tolerance compared with WT. Consistent with drought tolerance, expression levels of stress inducible genes (DREB2A, RD22, RD26, LEA7 and SOS1) were strongly upregulated in transgenic plants compared with WT. All together these results suggest that heterologous expression of bacterial gene, BG757 in plants promotes resistance to environmental stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01358-w.
Collapse
Affiliation(s)
- Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Waqar Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Zaryab Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
36
|
Chen Z, Zhang J, Wang L. ALA induces stomatal opening through regulation among PTPA, PP2AC, and SnRK2.6. FRONTIERS IN PLANT SCIENCE 2023; 14:1206728. [PMID: 37711306 PMCID: PMC10499497 DOI: 10.3389/fpls.2023.1206728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
5-Aminolevulinic acid (ALA), as a new natural plant growth regulator, has been proved to regulate protein phosphatase 2A (PP2A) activity to promote stomatal opening in apple (Malus domestica) leaves. However, the molecular mechanisms underlying remain unclear. Here, we cloned and transformed MdPTPA, MdPP2AC, and MdSnRK2.6 of apple into tobaccos (Nicotiana tabacum) and found that over-expression (OE)-MdPTPA or OE-MdPP2AC promoted stomatal aperture while OE-MdSnRK2.6 induced stomatal closure under normal or drought condition. The Ca2+ and H2O2 levels in the guard cells of OE-MdPTPA and OE-MdPP2AC was decreased but flavonols increased, and the results in OE-SnRK2.6 was contrary. Exogenous ALA stimulated PP2A activity but depressed SnRK2.6 activity in transgenic tobaccos, leading to less Ca2+, H2O2 and more flavonols in guard cells, and consequently stomatal opening. OE-MdPTPA improved stomatal opening and plant growth but impaired drought tolerance, while OE-MdSnRK2.6 improved drought tolerance but depressed the leaf P n. Only OE-MdPP2AC improved stomatal opening, leaf P n, plant growth, as well as drought tolerance. These suggest that the three genes involved in ALA-regulating stomatal movement have their respective unique biological functions. Yeast two-hybrid (Y2H) assays showed that MdPP2AC interacted with MdPTPA or MdSnRK2.6, respectively, but no interaction of MdPTPA with MdSnRK2.6 was found. Yeast three-hybrid (Y3H) assay showed that MdPTPA promoted the interactions between MdPP2AC and MdSnRK2.6. Therefore, we propose a regulatory module of PTPA-PP2AC-SnRK2.6 that may be involved in mediating the ALA-inducing stomatal aperture in green plants.
Collapse
Affiliation(s)
| | | | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Long Q, Qiu S, Man J, Ren D, Xu N, Luo R. OsAAI1 Increases Rice Yield and Drought Tolerance Dependent on ABA-Mediated Regulatory and ROS Scavenging Pathway. RICE (NEW YORK, N.Y.) 2023; 16:35. [PMID: 37535208 PMCID: PMC10400514 DOI: 10.1186/s12284-023-00650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
In this study, we investigated the function of OsAAI1 in yield and drought tolerance by constructing overexpression line OE-OsAAI1 and mutant line osaai1. Bioinformatics analysis showed that the AAI gene-OsAAI1- belongs to the HPS_like subfamily of the AAI_LTSS superfamily, and OsAAI1 was localized in the nucleus. The expression of OsAAI1 was significantly induced by ABA and drought stress. OsAAI1 overexpression (OE19) significantly increased, and gene mutant (osaai1-1) repressed plant height, primary root length, lateral root number, grain size and yield in rice. Moreover, physiological and biochemical analyses showed that osaai1 was sensitive to drought stress, while OE19 enhanced the drought tolerance in rice. DAB and NBT staining revealed that under drought treatment, osaai1 accumulated a large amount of ROS compared with the wild type, while OE19 accumulated the least, and CAT, APX, GPX, GR activities were higher in OE19 and lower in osaai1, suggesting that OE19 improves rice tolerance to drought stress by enhancing ROS scavenging ability. OE19 also induce the expression of ABA-mediated regulatory pathway genes and enhance accumulation of ABA content in rice seedling. Predictably, OE19 displayed enhanced sensitivity to ABA, and ROS accumulation was significantly higher than in wild type and osaai1 under 3 µM ABA treatment. Thus, these results suggest that OsAAI1 is a positive regulator of rice yield and drought tolerance dependent on the ABA-mediated regulatory and ROS scavenging pathway.
Collapse
Affiliation(s)
- Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shichun Qiu
- Chongqing Three Gorges Academy of Agricultural Sciences, Wanzhou, Chongqing City, 404155, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Denghong Ren
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
38
|
Duc NH, Szentpéteri V, Mayer Z, Posta K. Distinct impact of arbuscular mycorrhizal isolates on tomato plant tolerance to drought combined with chronic and acute heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107892. [PMID: 37490823 DOI: 10.1016/j.plaphy.2023.107892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi could mitigate individual drought and heat stress in host plants. However, there are still major gaps in our understanding of AM symbiosis response to the combined stresses. Here, we compared seven AM fungi, Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum, Funneliformis verruculosum, Funneliformis coronatum, Septoglomus deserticola, Septoglomus constrictum, distributed to many world regions in terms of their impacts on tomato endurance to combined drought and chronic heat as well as combined drought and heat shock. A multidisciplinary approach including morphometric, ecophysiological, biochemical, targeted metabolic (by ultrahigh-performance LC-MS), and molecular analyses was applied. The variation among AM fungi isolates in the enhancement in leaf water potential, stomatal conductance, photosynthetic activity, and maximal PSII photochemical efficiency, proline accumulation, antioxidant enzymes (POD, SOD, CAT), and lowered ROS markers (H2O2, MDA) in host plants under combined stresses were observed. S. constrictum inoculation could better enhanced the host plant physiology and biochemical parameters, while F. geosporum colonization less positively influenced the host plants than other treatments under both combined stresses. F. mosseae- and S. constrictum-associated plants showed the common AM-induced modifications and AM species-specific alterations in phytohormones (ABA, SA, JA, IAA), aquaporin (SlSIP1-2; SlTIP2-3; SlNIP2-1; SlPIP2-1) and abiotic stress-responsive genes (SlAREB1, SlLEA, SlHSP70, SlHSP90) in host plants under combined stresses. Altogether, mycorrhizal mitigation of the negative impacts of drought + prolonged heat and drought + acute heat, with the variation among different AM fungi isolates, depending on the specific combined stress and stress duration.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Viktor Szentpéteri
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Zoltán Mayer
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary.
| |
Collapse
|
39
|
Azoulay-Shemer T, Schulze S, Nissan-Roda D, Bosmans K, Shapira O, Weckwerth P, Zamora O, Yarmolinsky D, Trainin T, Kollist H, Huffaker A, Rappel WJ, Schroeder JI. A role for ethylene signaling and biosynthesis in regulating and accelerating CO 2 - and abscisic acid-mediated stomatal movements in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:2460-2475. [PMID: 36994603 PMCID: PMC10259821 DOI: 10.1111/nph.18918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/05/2023] [Indexed: 05/19/2023]
Abstract
Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.
Collapse
Affiliation(s)
- Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Dikla Nissan-Roda
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Krystal Bosmans
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Or Shapira
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Philipp Weckwerth
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Olena Zamora
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Taly Trainin
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Alisa Huffaker
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
40
|
Xu L, Zhao H, Wang J, Wang X, Jia X, Wang L, Xu Z, Li R, Jiang K, Chen Z, Luo J, Xie X, Yi K. AIM1-dependent high basal salicylic acid accumulation modulates stomatal aperture in rice. THE NEW PHYTOLOGIST 2023; 238:1420-1430. [PMID: 36843251 DOI: 10.1111/nph.18842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The basal levels of salicylic acid (SA) vary dramatically among plant species. In the shoot, for example, rice contains almost 100 times higher SA levels than Arabidopsis. Despite its high basal levels, neither the biosynthetic pathway nor the biological functions of SA are well understood in rice. Combining with metabolite analysis, physiological, and genetic approaches, we found that the synthesis of basal SA in rice shoot is dependent on OsAIM1, which encodes a beta-oxidation enzyme in the phenylalanine ammonia-lyase (PAL) pathway. Compromised SA accumulation in the Osaim1 mutant led to a lower shoot temperature than wild-type plants. However, this shoot temperature defect resulted from increased transpiration due to elevated steady-state stomatal aperture in the mutant. Furthermore, the high basal SA level is required for sustained expression of OsWRKY45 to modulate the steady-state stomatal aperture and shoot temperature in rice. Taken together, these results provide the direct genetic evidence for the critical role of the PAL pathway in the biosynthesis of high basal level SA in rice, which plays an important role in the regulation of steady-state stomatal aperture to promote fitness under stress conditions.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyu Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junbin Wang
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
- College of Basic Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuang Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruili Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang, 310018, China
| | - Zhixiang Chen
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
41
|
Wang Z, Li L, Khan D, Chen Y, Pu X, Wang X, Guan M, Rengel Z, Chen Q. Nitric oxide acts downstream of reactive oxygen species in phytomelatonin receptor 1 (PMTR1)-mediated stomatal closure in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153917. [PMID: 36706575 DOI: 10.1016/j.jplph.2023.153917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are important signaling molecules regulating stomatal movements in plants. Melatonin (N-acetyl-5-methoxytryptamine) was found to induce stomatal closure via phytomelatonin receptor 1 (PMTR1)-mediated activation of ROS production. Here, we evaluated the interaction between ROS and NO in the melatonin-induced stomatal closure in Arabidopsis. The results showed that the exogenous melatonin-induced stomatal closure and NO production were abolished by carboxy-PTIO (cPTIO, a NO scavenger). Additionally, the mutant lines nitrate reductase 1 and 2 (nia1nia2) and NO-associated 1 (noa1) did not show melatonin-induced stomatal closure, indicating that the melatonin-mediated stomatal closure is dependent on NO. The application of H2O2 induced the NO production and stomatal closure in the presence or absence of melatonin. However, the melatonin-induced NO production was impaired in the rhohC and rbohD/F (NADPH oxidase respiratory burst oxidase homologs) mutant plants. Furthermore, the ROS levels in nia1nia2 and noa1 did not differ significantly from the wild type plants, indicating that NO is a downstream component in the melatonin-induced ROS production. Exogenous melatonin did not induce NO and ROS production in the guard cells of pmtr1 mutant lines, suggesting NO occurs downstream of ROS in the PMTR1-mediated stomatal closure in Arabidopsis. Taken together, the results presented here suggest that melatonin-induced stomatal closure via PMTR1-mediated signaling in the regulation of ROS and NO production in Arabidopsis.
Collapse
Affiliation(s)
- Zirui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Dawood Khan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
42
|
Liu Y, Li A, Liang M, Zhang Q, Wu J. Overexpression of the maize genes ZmSKL1 and ZmSKL2 positively regulates drought stress tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2023; 42:521-533. [PMID: 36585973 DOI: 10.1007/s00299-022-02974-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Overexpression in Arabidopsis of the maize shikimate kinase-like genes SKL1 and SKL2 enhances tolerance to drought stress. The shikimate pathway has been reported to play an important role in plant signaling, reproduction, and development. However, its role in abiotic stress has not yet been reported. Here, two shikimate kinase-like genes, SKL1 and SKL2, were cloned from maize and their functions in mediating drought tolerance were investigated. Transcript levels of ZmSKL1 and ZmSKL2 in roots and leaves were strongly induced by drought stress. Both proteins were localized in the chloroplast. Furthermore, compared to the wild-type, transgenic Arabidopsis plants overexpressing ZmSKL1 or ZmSKL2 exhibited improved drought stress tolerance through increases in relative water content and stomatal closure. Additionally, the transgenic lines showed reduced accumulation of reactive oxygen species as a results of increased antioxidant enzyme activity. Interestingly, overexpression of ZmSKL1 or ZmSKL2 also increased sensitivity to exogenous abscisic acid. In addition, the ROS-related and stress-responsive genes were activated in transgenic lines under drought stress. Moreover, ZmSKL1 and ZmSKL2 were found to separately interact with ZmASR3, which is an important regulatory protein in mediating drought tolerance, suggesting that ZmSKL1 and ZmSKL2, together with ZmASR3, are proteins that may confer drought tolerance as candidates in plant genetic breeding manipulations.
Collapse
Affiliation(s)
- Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Mengna Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
43
|
Tan YQ, Yang Y, Shen X, Zhu M, Shen J, Zhang W, Hu H, Wang YF. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. THE PLANT CELL 2023; 35:239-259. [PMID: 36069643 PMCID: PMC9806652 DOI: 10.1093/plcell/koac274] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA)-activated inward Ca2+-permeable channels in the plasma membrane (PM) of guard cells are required for the initiation and regulation of ABA-specific cytosolic Ca2+ signaling and stomatal closure in plants. But the identities of the PM Ca2+ channels are still unknown. We hypothesized that the ABA-activated Ca2+ channels consist of multiple CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC) proteins from the CNGC family, which is known as a Ca2+-permeable channel family in Arabidopsis (Arabidopsis thaliana). In this research, we observed high expression of multiple CNGC genes in Arabidopsis guard cells, namely CNGC5, CNGC6, CNGC9, and CNGC12. The T-DNA insertional loss-of-function quadruple mutant cngc5-1 cngc6-2 cngc9-1 cngc12-1 (hereafter c5/6/9/12) showed a strong ABA-insensitive phenotype of stomatal closure. Further analysis revealed that ABA-activated Ca2+ channel currents were impaired, and ABA-specific cytosolic Ca2+ oscillation patterns were disrupted in c5/6/9/12 guard cells compared with in wild-type guard cells. All ABA-related phenotypes of the c5/6/9/12 mutant were successfully rescued by the expression of a single gene out of the four CNGCs under the respective native promoter. Thus, our findings reveal a type of ABA-activated PM Ca2+ channel comprising multiple CNGCs, which is essential for ABA-specific Ca2+ signaling of guard cells and ABA-induced stomatal closure in Arabidopsis.
Collapse
Affiliation(s)
- Yan-Qiu Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meijun Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Xin H, Li Q, Wang S, Zhang Z, Wu X, Liu R, Zhu J, Li J. Saussurea involucrata PIP2;4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111526. [PMID: 36343868 DOI: 10.1016/j.plantsci.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Aquaporins, the major facilitators of water transport across membranes, are involved in growth and development and adaptation to drought stress in plants. In this study, a plasma membrane intrinsic protein (SiPIP2;4) was cloned from Saussurea involucrata, a cold-tolerant hardy herb. The expression of SiPIP2;4 increased the stomatal density and sensitivity of tobacco (Nicotiana tabacum), thus, affecting the plant's growth and resistance to the diverse water environment. The higher stomatal density under well-watered conditions effectively promoted the photosynthetic rate, which led to the rapid growth of transgenic lines. The stomata in the transgenic lines responded more sensitively to the vapor pressure deficit than the wild-type under different levels of ambient humidity. Their stomatal apertures positively correlated with the ambient humidity. Under drought conditions, the overexpression of SiPIP2;4 promoted rapid stomatal closure, reduced water dissipation, and enhanced drought tolerance. These results indicate that SiPIP2;4 regulates the density and sensitivity of plant stomata, thus, playing an important role in balancing plant growth and stress tolerance. This suggests that SiPIP2;4 has the potential to serve as a genetic resource for crop improvement.
Collapse
Affiliation(s)
- Hongliang Xin
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Qianqin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Saisai Wang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Zexing Zhang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Xiaoyan Wu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| | - Jin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| |
Collapse
|
45
|
Yang Y, Qiu Y, Ye W, Sun G, Li H. RNA sequencing-based exploration of the effects of far-red light on microRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2023; 11:e15001. [PMID: 36967993 PMCID: PMC10035421 DOI: 10.7717/peerj.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Dendrobium officinale (D. officinale) has remarkable medicinal functions and high economic value. The shade-avoidance response to far-red light importantly affects the D. officinale productivity. However, the regulatory mechanism of miRNAs involved in the far-red light-avoidance response is unknown. Previous studies have found that, in D. officinale, 730 nm (far-red) light can promote the accumulation of plant metabolites, increase leaf area, and accelerate stem elongation. Here, the effects of far-red light on D. officinale were analysed via RNA-seq. KEGG analysis of miRNA target genes revealed various far-red light response pathways, among which the following played central roles: the one-carbon pool by folate; ascorbate and aldarate; cutin, suberine and wax biosynthesis; and sulfur metabolism. Cytoscape analysis of DE miRNA targets showed that novel_miR_484 and novel_miR_36 were most likely involved in the effects of far-red light on the D. officinale shade avoidance. Content verification revealed that far-red light promotes the accumulation of one-carbon compounds and ascorbic acid. Combined with qPCR validation results, the results showed that miR395b, novel_miR_36, novel_miR_159, novel_miR_178, novel_miR_405, and novel_miR_435 may participate in the far-red light signalling network through target genes, regulating the D. officinale shade avoidance. These findings provide new ideas for the efficient production of D. officinale.
Collapse
Affiliation(s)
- Yifan Yang
- College of Architectural Engineering, Sanming University, Sanming, China
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, China
| |
Collapse
|
46
|
Chen Z, Wang L. ALA Upregulates MdPTPA Expression to Increase the PP2A Activity and Promote Stomatal Opening in Apple Leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111490. [PMID: 36216297 DOI: 10.1016/j.plantsci.2022.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
5-Aminolevulinic acid (ALA) is a new natural plant growth regulator that inhibits abscisic acid (ABA)-induced stomatal closure. Studies have shown that protein phosphatase 2 A (PP2A) is involved in ALA-ABA antagonistically regulating stomatal movement; however, the molecular mechanisms underlying remain unclear. Here, we report that ALA promoted MdPP2A activity and the MdPP2AC expression in the epidermis of apple (Malus × domestica Borkh. cv. Fuji) leaves. Y2H (Yeast two hybrid), BiFC (Bimolecular fluorescence complement), and FLC (Firefly luciferase complementation imaging assay) analysis showed that MdPP2AC interacted with MdPTPA, a phosphortyrosyl phosphatase activator. Furthermore, the transient overexpression or interference-expression of MdPTPA transgenic apple leaves were developed. The results showed that overexpression of MdPTPA promoted stomatal opening by reducing Ca2+ and H2O2 but increasing flavonols in guard cells. Conversely, when the MdPTPA was silenced in transient transgenic apple leaves, the Ca2+, H2O2 and flavonols in guard cells and stomatal movement were completely conversed. In the transgenic apple leaves, exogenous ALA stimulated PP2A but repressed SnRK2.6 activity, while the responses are the same as that in the wild type. Therefore, we propose that MdPTPA, which increases the PP2A activity, mediates ALA signaling to promote stomatal opening in apple leaves.
Collapse
Affiliation(s)
- Zheng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
47
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
48
|
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. THE PLANT CELL 2022; 34:4293-4312. [PMID: 35929789 PMCID: PMC9614506 DOI: 10.1093/plcell/koac244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 06/10/2023]
Abstract
Stomata are crucial valves coordinating the fixation of carbon dioxide by photosynthesis and water loss through leaf transpiration. Phytochrome interacting factors (PIFs) are negative regulators of red light responses that belong to the basic helix-loop-helix family of transcription factors. Here, we show that the rice (Oryza sativa) PIF family gene OsPIL15 acts as a negative regulator of stomatal aperture to control transpiration in rice. OsPIL15 reduces stomatal aperture by activating rice ABSCISIC ACID INSENSITIVE 5 (OsABI5), which encodes a critical positive regulator of ABSCISIC ACID (ABA) signaling in rice. Moreover, OsPIL15 interacts with the NIGT1/HRS1/HHO family transcription factor rice HRS1 HOMOLOG 3 (OsHHO3) to possibly enhance the regulation of stomatal aperture. Notably, we discovered that the maize (Zea mays) PIF family genes ZmPIF1 and ZmPIF3, which are homologous to OsPIL15, are also involved in the regulation of stomatal aperture in maize, indicating that PIF-mediated regulation of stomatal aperture may be conserved in the plant lineage. Our findings explain the molecular mechanism by which PIFs play a role in red-light-mediated stomatal opening, and demonstrate that PIFs regulate stomatal aperture by coordinating the red light and ABA signaling pathways.
Collapse
Affiliation(s)
| | | | - Yanan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Hua Li
- Hezhou Academy of Agricultural Sciences, Hezhou 542813, China
| | - Jianmin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
49
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
50
|
Gao H, Cui J, Liu S, Wang S, Lian Y, Bai Y, Zhu T, Wu H, Wang Y, Yang S, Li X, Zhuang J, Chen L, Gong Z, Qin F. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. MOLECULAR PLANT 2022; 15:1558-1574. [PMID: 36045577 DOI: 10.1016/j.molp.2022.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
While crop yields have historically increased, drought resistance has become a major concern in the context of global climate change. The trade-off between crop yield and drought resistance is a common phenomenon; however, the underlying molecular modulators remain undetermined. Through genome-wide association study, we revealed that three non-synonymous variants in a drought-resistant allele of ZmSRO1d-R resulted in plasma membrane localization and enhanced mono-ADP-ribosyltransferase activity of ZmSRO1d toward ZmRBOHC, which increased reactive oxygen species (ROS) levels in guard cells and promoted stomatal closure. ZmSRO1d-R enhanced plant drought resilience and protected grain yields under drought conditions, but it led to yield drag under favorable conditions. In contrast, loss-of-function mutants of ZmRBOHC showed remarkably increased yields under well-watered conditions, whereas they showed compromised drought resistance. Interestingly, by analyzing 189 teosinte accessions, we found that the ZmSRO1d-R allele was present in teosinte but was selected against during maize domestication and modern breeding. Collectively, our work suggests that the allele frequency reduction of ZmSRO1d-R in breeding programs may have compromised maize drought resistance while increased yields. Therefore, introduction of the ZmSRO1d-R allele into modern maize cultivars would contribute to food security under drought stress caused by global climate change.
Collapse
Affiliation(s)
- Huajian Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences; Beijing 100093, China; University of Chinese Academy of Sciences; Beijing 100049, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Junjun Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Shengxue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University; Beijing 100193, China
| | - Shuhui Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Yongyan Lian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Yunting Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Tengfei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Haohao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Yijie Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Xuefeng Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China
| | - Junhong Zhuang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University; Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University; Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University; Beijing 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University; Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University; Beijing 100193, China.
| |
Collapse
|