1
|
Resch M, Frickel JS, Dischinger K, Choo RSW, Hell K, Harner ME. The Mia40 substrate Mix17 exposes its N-terminus to the cytosolic side of the mitochondrial outer membrane. J Cell Sci 2025; 138:jcs263661. [PMID: 40094392 PMCID: PMC12045630 DOI: 10.1242/jcs.263661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Mitochondrial architecture and the contacts between the mitochondrial outer and the inner membranes depend on the mitochondrial contact site and cristae-organizing system (MICOS) that is highly conserved from yeast to human. Variants in the mammalian MICOS subunit Mic14 (also known as CHCHD10) have been linked to amyotrophic lateral sclerosis and frontotemporal dementia, indicating the importance of this protein. Mic14 has a yeast ortholog, Mix17, a protein of unknown function, which has not been shown to interact with MICOS so far. As a first step to elucidate the function of Mix17 and its orthologs, we analyzed its interactions, biogenesis and mitochondrial sublocation. We report that Mix17 is not a stable MICOS subunit in yeast. Our data suggest that Mix17 is the first Mia40 substrate in the mitochondrial outer membrane. Unlike all other Mia40 substrates, Mix17 spans the mitochondrial outer membrane and exposes its N-terminus to the cytosol. The insertion of Mix17 into the mitochondrial outer membrane is likely to be mediated by its interaction with Tom40, the pore of the TOM complex. Moreover, we show that the exposure of Mix17 to the cytosolic side of the mitochondrial membrane depends on its N-terminus.
Collapse
Affiliation(s)
- Moritz Resch
- Department of Physiological Chemistry, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| | - Johanna S. Frickel
- Department of Cell Biology, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| | - Korbinian Dischinger
- Department of Cell Biology, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| | - Rachel Shen Wen Choo
- Department of Cell Biology, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| | - Kai Hell
- Department of Physiological Chemistry, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| | - Max E. Harner
- Department of Cell Biology, Biomedical Center, Medical Faculty, LMU Munich, 82152 Planegg/Martinsried, Germany
| |
Collapse
|
2
|
Özdemir M, Oeljeklaus S, Schendzielorz A, Morgenstern M, Valpadashi A, Yousefi R, Warscheid B, Dennerlein S. Definition of the human mitochondrial TOM interactome reveals TRABD as a new interacting protein. J Cell Sci 2025; 138:jcs263576. [PMID: 40105103 DOI: 10.1242/jcs.263576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
The mitochondrial proteome arises from dual genetic origins. Nuclear-encoded proteins need to be transported across or inserted into two distinguished membranes, and the translocase of the outer mitochondrial membrane (TOM) complex represents the main translocase in the outer mitochondrial membrane. Its composition and regulation have been extensively investigated within yeast cells. However, we have little knowledge of the TOM complex composition within human cells. Here, we have defined the TOM interactome in a comprehensive manner using biochemical approaches to isolate the TOM complex in combination with quantitative mass spectrometry analyses. With these studies, we defined the pleiotropic nature of the human TOM complex, including new interactors, such as TRABD. Our studies provide a framework to understand the various biogenesis pathways that merge at the TOM complex within human cells.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
| | - Alexander Schendzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Marcel Morgenstern
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Roya Yousefi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| |
Collapse
|
3
|
Fiorani M, Buffi G, Bagherlou N, Canonico B, De Matteis R, Guidarelli A, Montanari M, Battistelli M, Papa S, Coppo L, Cerioni L, Spina A, Cantoni O. Clozapine blunts mitochondrial biogenesis in differentiating adipocytes: The increased ATP demand is met via stimulation of electron transport chain expression and activity in residual mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119967. [PMID: 40280335 DOI: 10.1016/j.bbamcr.2025.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Clozapine (CLZ), a second-generation antipsychotic, is associated with an elevated risk of metabolic syndrome, the underlying mechanism of which remains poorly understood. We recently showed that CLZ inhibits lipid accumulation and CAAT/enhancer-binding protein β and peroxisome proliferator-activated receptor γ expression in early differentiating SW872 liposarcoma cells. Additionally, while not affecting viability, CLZ disrupts the cellular redox state of these cells by inhibiting NADPH oxidase-dependent ROS formation, thereby leading to nuclear factor (erythroid-derived2)-like 2 downregulation, reduced antioxidant defence and increased mitochondrial ROS emission. We confirmed and extended these results by showing that, under the same conditions, CLZ reduces the size of the lipid droplets, inhibits the otherwise increased expression of transcription factors regulating mitochondrial biogenesis, as peroxisome proliferator-activated receptor γ coactivator 1-α, and prevents the increase in mitochondrial DNA and mass. Consistently, decreased expression of mitochondrial proteins as thioredoxin 2, 2-oxoglutarate/malate carrier, and translocase of outer mitochondrial membrane 20 was also observed. However, the expression of various components of the electron transport chain was unexpectedly increased, and this event was accompanied by enhanced mitochondrial dehydrogenase activity, coupled oxygen consumption, mitochondrial membrane potential, ATP synthesis and ROS production. Moreover, residual mitochondria appeared remarkably enlarged and functional, with dense and organized cristae and uniform electron density. Thus, early adipocytes differentiated with or without CLZ meet the increased ATP demand by switching from glycolysis to oxidative phosphorylation, respectively via enhanced mitochondrial biogenesis, and increased activity of residual mitochondria.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Nazanin Bagherlou
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
4
|
Callegari S, Kirk NS, Gan ZY, Dite T, Cobbold SA, Leis A, Dagley LF, Glukhova A, Komander D. Structure of human PINK1 at a mitochondrial TOM-VDAC array. Science 2025; 388:303-310. [PMID: 40080546 DOI: 10.1126/science.adu6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Mutations in the ubiquitin kinase PINK1 cause early-onset Parkinson's disease, but how PINK1 is stabilized at depolarized mitochondrial translocase complexes has remained poorly understood. We determined a 3.1-angstrom resolution cryo-electron microscopy structure of dimeric human PINK1 stabilized at an endogenous array of mitochondrial translocase of the outer membrane (TOM) and voltage-dependent anion channel (VDAC) complexes. Symmetric arrangement of two TOM core complexes around a central VDAC2 dimer is facilitated by TOM5 and TOM20, both of which also bind PINK1 kinase C-lobes. PINK1 enters mitochondria through the proximal TOM40 barrel of the TOM core complex, guided by TOM7 and TOM22. Our structure explains how human PINK1 is stabilized at the TOM complex and regulated by oxidation, uncovers a previously unknown TOM-VDAC assembly, and reveals how a physiological substrate traverses TOM40 during translocation.
Collapse
Affiliation(s)
- Sylvie Callegari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas S Kirk
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhong Yan Gan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon A Cobbold
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Liu D, Liu Z, Hu Y, Xiong W, Wang D, Zeng Z. MOMP: A critical event in cell death regulation and anticancer treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189280. [PMID: 39947442 DOI: 10.1016/j.bbcan.2025.189280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) refers to the increase in permeability of the mitochondrial outer membrane, allowing proteins, DNA, and other molecules to pass through the intermembrane space into the cytosol. As a crucial event in the induction of apoptosis, MOMP plays a significant role in regulating various forms of cell death, including apoptosis, ferroptosis, and pyroptosis. Importantly, MOMP is not a binary process of "all-or-nothing." Under sub-lethal stress stimuli, cells may experience a phenomenon referred to as minority MOMP (miMOMP), where only a subset of mitochondria undergo functional impairment, thereby disrupting the normal life cycle of the cell. This can lead to pathological and physiological changes such as tumor formation, cellular senescence, innate immune dysfunction, and chronic inflammation. This review focuses on the diversity of MOMP events to elucidate how varying degrees of MOMP under different stress conditions influence cell fate. Additionally, it summarizes the current research progress on novel antitumor therapeutic strategies targeting MOMP in clinical contexts.
Collapse
Affiliation(s)
- Dan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yan Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Jain N, Chacinska A, Rehling P. Understanding mitochondrial protein import: a revised model of the presequence translocase. Trends Biochem Sci 2025:S0968-0004(25)00050-7. [PMID: 40155273 DOI: 10.1016/j.tibs.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Mitochondrial function relies on the precise targeting and import of cytosolic proteins into mitochondrial subcompartments. Most matrix-targeted proteins follow the presequence pathway, which directs precursor proteins across the outer mitochondrial membrane (OMM) via the Translocase of the Outer Membrane (TOM) complex and into the matrix or inner mitochondrial membrane (IMM) via the Translocase of the Inner Membrane 23 (TIM23) complex. While classical biochemical studies provided detailed mechanistic insights into the composition and mechanism of the TIM23 complex, recent cryogenic-electron microscopy (cryo-EM) data challenge these established models and propose a revised model of translocation in which the TIM17 subunit acts as a 'slide' for precursor proteins, with Tim23 acting as a structural element. In this review, we summarize existing models, highlighting the questions and data needed to reconcile these perspectives, and enhance our understanding of TIM23 complex function.
Collapse
Affiliation(s)
- Naintara Jain
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2025; 32:530-545. [PMID: 39496783 PMCID: PMC11894137 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
8
|
Thayer JA, Petersen JD, Huang X, Hawrot J, Ramos DM, Sekine S, Li Y, Ward ME, Narendra DP. Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639160. [PMID: 40027798 PMCID: PMC11870511 DOI: 10.1101/2025.02.19.639160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Damaged mitochondria can be cleared from the cell by mitophagy, using a pathway formed by the recessive Parkinson's disease genes PINK1 and Parkin. How mitochondrial damage is sensed by the PINK1-Parkin pathway, however, remains uncertain. Here, using a Parkin substrate-based reporter in genome-wide screens, we identified that diverse forms of mitochondrial damage converge on loss of mitochondrial membrane potential (MMP) to activate PINK1. Consistently, the MMP but not the presequence translocase-associated motor (PAM) import motor provided the essential driving force for endogenous PINK1 import through the inner membrane translocase TIM23. In the absence of TIM23, PINK1 arrested in the translocase of the outer membrane (TOM) during import. The energy-state outside of the mitochondria further modulated the pathway by controlling the rate of new PINK1 synthesis. Our results identify separation of PINK1 from TOM by the MMP, as the key damage-sensing switch in the PINK1-Parkin mitophagy pathway. Highlights MFN2-Halo is a quantitative single-cell reporter of PINK1-Parkin activation.Diverse forms of mitochondrial damage, identified in whole-genome screens, activate the PINK1-Parkin pathway by disrupting the mitochondrial membrane potential (MMP).The primary driving force for endogenous PINK1 import through the TIM23 translocase is the MMP with the PAM import motor playing a supporting role.Loss of TIM23 is sufficient to stabilize PINK1 in the TOM complex and activate Parkin.
Collapse
Affiliation(s)
- Julia A. Thayer
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - James Hawrot
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912,USA
| | - Daniel M. Ramos
- iPSC Neurodegenerative Disease Initiative, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiori Sekine
- Aging Institute, Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E. Ward
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek P. Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Badrie S, Hell K, Mokranjac D. Dbi1 is an oxidoreductase and an assembly chaperone for mitochondrial inner membrane proteins. EMBO Rep 2025; 26:911-928. [PMID: 39753782 PMCID: PMC11850723 DOI: 10.1038/s44319-024-00349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 02/26/2025] Open
Abstract
Import and assembly of mitochondrial proteins into multimeric complexes are essential for cellular function. Yet, many steps of these processes and the proteins involved remain unknown. Here, we identify a novel pathway for disulfide bond formation and assembly of mitochondrial inner membrane (IM) proteins. Dbi1, a previously uncharacterized IM protein, interacts with an unassembled pool of Tim17, the central subunit of the presequence translocase of the IM, and is upregulated in cells with increased levels of unassembled Tim17. In the absence of Dbi1, the conformation of the presequence translocase is affected and stability of Tim17 is reduced. Furthermore, Dbi1, through its conserved CxxC motif, is involved in the formation of the disulfide bond in Tim17 in a manner independent of the disulfide relay system, the major oxidation-driven protein import pathway into mitochondria. The substrate spectrum of Dbi1 is not limited to Tim17 but includes at least two more IM proteins, Tim22 and Cox20. We conclude that Dbi1 is a novel oxidoreductase in mitochondria which introduces disulfide bonds into IM proteins and chaperones their assembly into multimeric protein complexes.
Collapse
Affiliation(s)
- Soraya Badrie
- LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Kai Hell
- LMU Munich, Biomedical Center-Physiological Chemistry, 82152, Planegg-Martinsried, Germany
| | - Dejana Mokranjac
- LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Deng L, Ran H, Yang D, Wang Z, Zhao P, Huang H, Wu Y, Zhang P. TOM40 as a prognostic oncogene for oral squamous cell carcinoma prognosis. BMC Cancer 2025; 25:92. [PMID: 39815211 PMCID: PMC11737269 DOI: 10.1186/s12885-024-13417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets. METHODS TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA. The signaling pathways associated with TOM40 were identified through gene set enrichment analysis. A network of genes co-expressed with TOM40 was constructed and functionally annotated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The immune infiltration pattern in OSCC was analyzed in the TCGA-OSCC cohort using the CIBERSORT algorithm. Clinically significant factors of OSCC were screened through the expression levels of TOM40 and a clinically relevant nomogram was constructed. The TCGA-OSCC cohort was divided into the TOM40high and TOM40low groups and the correlation between TOM40 expression level and the sensitivity to frequently used chemotherapeutic drugs was evaluated. CCK-8 and colony formation assays were applied to determine the cell growth. RESULTS TOM40 was highly expressed in OSCC tissues and correlated negatively with the overall survival (P < 0.05). Patients with high TOM40 expression level showed worse prognosis. Furthermore, GO and KEGG enrichment analyses of the differentially expressed genes related to TOM40 showed that these genes are mainly associated with immunity and tumorigenesis. Immunological infiltration analysis has found that the expression levels of TOM40 are correlated with the proportions of several immune cells. Moreover, we found that TOM40 knockdown inhibited cell growth in OSCC cell lines. CONCLUSIONS Our results uncovered that TOM40 is a reliable prognostic marker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Lifei Deng
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Hong Ran
- Department of Otolaryngology-Head & Neck Surgery, Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Dunhui Yang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Zhen Wang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Peng Zhao
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Hengjie Huang
- School of Computer Science and Engineering, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China.
| | - Yongjin Wu
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| | - Peng Zhang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Zhang L, Liu X, Zhu M, Yao Y, Liu Z, Zhang X, Deng X, Wang Y, Duan L, Guo X, Fu J, Xu Y. Optogenetic control of mitochondrial aggregation and function. Front Bioeng Biotechnol 2025; 12:1500343. [PMID: 39834642 PMCID: PMC11743975 DOI: 10.3389/fbioe.2024.1500343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The balance of mitochondrial fission and fusion plays an important role in maintaining the stability of cellular homeostasis. Abnormal mitochondrial fission and fragmentation have been shown to be associated with oxidative stress, which causes a variety of human diseases from neurodegeneration disease to cancer. Therefore, the induction of mitochondrial aggregation and fusion may provide an alternative approach to alleviate these conditions. Here, an optogenetic-based mitochondrial aggregation system (Opto-MitoA) developed, which is based on the CRY2clust/CIBN light-sensitive module. Upon blue light illumination, CRY2clust relocates from the cytosol to mitochondria where it induces mitochondrial aggregation by CRY2clust homo-oligomerization and CRY2clust-CIBN hetero-dimerization. Our functional experiments demonstrate that Opto-MitoA-induced mitochondrial aggregation potently alleviates niclosamide-caused cell dysfunction in ATP production. This study establishes a novel optogenetic-based strategy to regulate mitochondrial dynamics in cells, which may provide a potential therapy for treating mitochondrial-related diseases.
Collapse
Affiliation(s)
- Luhao Zhang
- Department of Endocrinology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- Innovation Center for Smart Medical Technologies and Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Xuechun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Min Zhu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zhichao Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xianming Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xin Deng
- Department of Endocrinology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou, China
| | - Yingke Xu
- Department of Endocrinology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- Innovation Center for Smart Medical Technologies and Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zerbes RM, Colina-Tenorio L, Bohnert M, von der Malsburg K, Peikert CD, Mehnert CS, Perschil I, Klar RFU, de Boer R, Kram A, van der Klei I, Oeljeklaus S, Warscheid B, Rampelt H, van der Laan M. Coordination of cytochrome bc 1 complex assembly at MICOS. EMBO Rep 2025; 26:353-384. [PMID: 39623166 PMCID: PMC11772845 DOI: 10.1038/s44319-024-00336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The boundary and cristae domains of the mitochondrial inner membrane are connected by crista junctions. Most cristae membrane proteins are nuclear-encoded and inserted by the mitochondrial protein import machinery into the inner boundary membrane. Thus, they must overcome the diffusion barrier imposed by crista junctions to reach their final location. Here, we show that respiratory chain complexes and assembly intermediates are physically connected to the mitochondrial contact site and cristae organizing system (MICOS) that is essential for the formation and stability of crista junctions. We identify the inner membrane protein Mar26 (Fmp10) as a determinant in the biogenesis of the cytochrome bc1 complex (complex III). Mar26 couples a Rieske Fe/S protein-containing assembly intermediate to MICOS. Our data indicate that Mar26 maintains an assembly-competent Rip1 pool at crista junctions where complex III maturation likely occurs. MICOS facilitates efficient Rip1 assembly by recruiting complex III assembly intermediates to crista junctions. We propose that MICOS, via interaction with assembly factors such as Mar26, contributes to the spatial and temporal coordination of respiratory chain biogenesis.
Collapse
Affiliation(s)
- Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149, Münster, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany
| | - Christian D Peikert
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Bioinformatics Research & Development, BioNTech SE, 55131, Mainz, Germany
| | - Carola S Mehnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Rhena F U Klar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, 79104, Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Anita Kram
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Ida van der Klei
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
15
|
Chen Y, Luo Y, Long J, Liu S, Zhao L, Chen B, Mu Q. TOMM40 Correlates with Cholesterol and is Predictive of a Favorable Prognosis in Endometrial Carcinoma. Comb Chem High Throughput Screen 2025; 28:592-607. [PMID: 38231050 DOI: 10.2174/0113862073270411240102060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND A link between cholesterol and endometrial cancer has been established, but current studies have been limited in their findings. We aimed to elucidate the causal relationship between cholesterol and endometrial cancer and to find prognostic genes for endometrial cancer. METHODS We first explored the causal relationship between total cholesterol and endometrial cancer using two-sample Mendelian randomization and then obtained differential genes to screen for prognosis-related genes in endometrial cancer. Then, we utilized pan-cancer analysis based on RNA sequencing data to evaluate the expression pattern and immunological role of the Translocase of Outer Mitochondrial Membrane 40 (TOMM40). Through multiple transcriptome datasets and multi-omics in-depth analysis, we comprehensively explore the relationship of TOMM40 expression with clinicopathologic characteristics, clinical outcomes and mutations in endometrial cancer. Lastly, we systematically associated the TOMM40 with different cancers from immunological properties from numerous perspectives, such as immune cell infiltration, immune checkpoint inhibitors, immunotherapy, gene mutation load and microsatellite instability. RESULTS We found a negative association between cholesterol and endometrial cancer. A total of 78 genes were enriched by relevant single nucleotide polymorphisms (SNPs), of which 12 upregulated genes and 5 downregulated genes in endometrial cancer. TOMM40 was found to be a prognostic gene associated with endometrial cancer by prognostic analysis. TOMM40 was found to be positively correlated with the infiltration of most immune cells and immunization checkpoints in a subsequent study. Meanwhile, TOMM40 also was an oncogene in many cancer types. High TOMM40 was associated with lower genome stability. CONCLUSION The findings of our study indicate that the maintenance of normal total cholesterol metabolism is associated with a decreased risk of developing endometrial cancer. Moreover, TOMM40 may have potential as a prognostic indicator for endometrial cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi Luo
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinling Long
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siyun Liu
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linbeini Zhao
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Baishu Chen
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiuyun Mu
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Farhan F, Raghupathy RK, Baran MR, Wong A, Biswas L, Jiang HR, Craft JA, Shu X. Dysregulation of lipid metabolism in the liver of Tspo knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159566. [PMID: 39349136 DOI: 10.1016/j.bbalip.2024.159566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The translocator protein, TSPO, has been implicated in a wide range of cellular processes exerted from its position in the outer mitochondrial membrane from where it influences lipid metabolism and mitochondrial oxidative activity. Understanding how this protein regulates a profusion of processes requires further elucidation and to that end we have examined lipid metabolism and used an RNAseq strategy to compare transcript abundance in wildtype and Tspo knockout (KO) mouse liver. The levels of cholesterol, triglyceride and phospholipid were significantly elevated in the KO mouse liver. The expression of cholesterol homeostasis genes was markedly downregulated. Determination of the differential expression revealed that many genes were either up- or downregulated in the KO animals. However, a striking observation within the results was a decrease of transcripts for protein degradation proteins in KO animals while protease inhibitors were enriched. When the entire abundance data-set was analysed with CEMiTool, and revealed a module of proteins that were under-represented in the KO animals. These could subsequently be formed into a network comprising three interlinked clusters at the centre of which were proteins of cytoplasmic ribosomes with gene ontology terms suggesting impairment to translation. The largest cluster was dominated by proteins of lipid metabolism but also contained disparate systems of iron metabolism and behaviour. The third cluster was dominated by proteins of the electron transport chain and oxidative phosphorylation. These findings suggest that TSPO contributes to lipid metabolism, detoxification of active oxygen species and oxidative phosphorylation, and regulates mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Fahad Farhan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Rakesh Kotapati Raghupathy
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Michal R Baran
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - John A Craft
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
17
|
McMinimy R, Manford AG, Gee CL, Chandrasekhar S, Mousa GA, Chuang J, Phu L, Shih KY, Rose CM, Kuriyan J, Bingol B, Rapé M. Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol Cell 2024; 84:4612-4628.e13. [PMID: 39642856 DOI: 10.1016/j.molcel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
While reactive oxygen species (ROS) have long been known to drive aging and neurodegeneration, their persistent depletion below basal levels also disrupts organismal function. Cells counteract loss of basal ROS via the reductive stress response, but the identity and biochemical activity of ROS sensed by this pathway remain unknown. Here, we show that the central enzyme of the reductive stress response, the E3 ligase Cullin 2-FEM1 homolog B (CUL2FEM1B), specifically acts at mitochondrial TOM complexes, where it senses ROS produced by complex III of the electron transport chain (ETC). ROS depletion during times of low ETC activity triggers the localized degradation of CUL2FEM1B substrates, which sustains mitochondrial import and ensures the biogenesis of the rate-limiting ETC complex IV. As complex III yields most ROS when the ETC outpaces metabolic demands or oxygen availability, basal ROS are sentinels of mitochondrial activity that help cells adjust their ETC to changing environments, as required for cell differentiation and survival.
Collapse
Affiliation(s)
- Rachael McMinimy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Srividya Chandrasekhar
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Gergey Alzaem Mousa
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Joelle Chuang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lilian Phu
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Baris Bingol
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Li LG, Zhang D, Huang Q, Yan M, Chen NN, Yang Y, Xiao RC, Liu H, Han N, Qureshi AM, Hu J, Leng F, Hui YJ. Mitochondrial disruption resulting from Cepharanthine-mediated TOM inhibition triggers ferroptosis in colorectal cancer cells. J Cancer Res Clin Oncol 2024; 150:460. [PMID: 39402386 PMCID: PMC11478973 DOI: 10.1007/s00432-024-05974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Chemotherapy for colorectal cancer (CRC) urgently needs low-toxicity and highly effective phytomedicine. Cepharanthine (Cep) shown to have multiple anti-tumor effects, including colorectal cancer, whose pivotal mechanisms are not fully understood. Herein, the present work aims to reveal the impact of Cep on the mitochondrial and anti-injury functions of CRC cells. METHODS The TOM70/20 expression was screened by bioinformatic databases. SW480 cells were utilized as the colorectal cancer cell model. The expression of TOM70/20 and the downstream molecules were measured by western blots (WB). The ferroptosis was analyzed using Transmission electron microscopy (TEM), C11-BODIPY, PGSK, and DCFH-DA probes, wherein the detection was performed by flow cytometry and laser confocal microscopy. The anti-cancer efficacy was conducted by CCK-8 and Annexin-V/PI assay. The rescue experiments were carried out using Fer-1 and TOM70 plasmid transfection. RESULTS Bioinformatic data identified TOM20 and TOM70 were highly expressed in colorectal cancer, which could be down-regulated by Cep. Further findings disclosed that Cep treatment destroyed the mitochondria and inactivated the NRF2 signaling pathway, an essential pathway for resistance to ferroptosis, thereby promoting reactive oxygen species (ROS) generation in CRC cells. As a result, prominent ferroptosis could be observed in CRC cells in response to Cep, which thereby led to the reduced cell viability of cancer cells. On the contrary, recovery of TOM70 dampened the Cep-elicited mitochondria damage, ferroptosis, and anti-cancer efficacy. CONCLUSION In summary, Cep-mediated TOM inhibition inactivates the NRF2 signaling pathway, thereby triggering ferroptosis and achieving an anti-colorectal cancer effect. The current study provides an innovative chemotherapeutic approach for colorectal cancer with phytomedicine.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Di Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Qi Huang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Min Yan
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Rong-Cheng Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Abdul Moiz Qureshi
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yuan-Jian Hui
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China.
| |
Collapse
|
20
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
22
|
Kobayashi N, Imai Y, Kita S, Kawai S, Araiso Y. Large-scale purification of mitochondrial protein complexes in yeast expression system for structural analyses. Methods Enzymol 2024; 707:367-388. [PMID: 39488382 DOI: 10.1016/bs.mie.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Recent developments in cryo-electron microscopy techniques have facilitated intensive research into determining protein structures. Nevertheless, the structures of some mitochondrial membrane protein complexes remain undetermined. One possible reason for this research gap is that mitochondrial membrane protein complexes are difficult to overexpress and purify. Even using high-resolution cryo-electron microscopy, structural determination is not possible without first obtaining purified homogeneous proteins. As determining novel structures of protein complexes would provide opportunities to answer many unresolved biological questions, it is important to generalize purification methods, which often become bottlenecks in protein research. In this chapter, we introduce purification methods for mitochondrial membrane protein complexes and mitochondria-localized soluble protein complexes using a yeast expression system. We also describe the recent development of a mitochondrial membrane isolation method that enables the extraction of large amounts of protein complexes for structural analyses.
Collapse
Affiliation(s)
- Nanako Kobayashi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuta Imai
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shintaro Kita
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shiho Kawai
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuhei Araiso
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
23
|
Che T, Yang X, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. Mitochondria-Regulated Information Processing Nanosystem Promoting Immune Cell Communication for Liver Fibrosis Regression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400413. [PMID: 38721946 DOI: 10.1002/smll.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Liver fibrosis is a coordinated response to tissue injury that is mediated by immune cell interactions. A mitochondria-regulated information-processing (MIP) nanosystem that promotes immune cell communication and interactions to inhibit liver fibrosis is designed. The MIP nanosystem mimics the alkaline amino acid domain of mitochondrial precursor proteins, providing precise targeting of the mitochondria. The MIP nanosystem is driven by light to modulate the mitochondria of hepatic stellate cells, resulting in the release of mitochondrial DNA into the fibrotic microenvironment, as detected by macrophages. By activating the STING signaling pathway, the developed nanosystem-induced macrophage phenotype switches to a reparative subtype (Ly6Clow) and downstream immunostimulatory transcriptional activity, fully restoring the fibrotic liver to its normal tissue state. The MIP nanosystem serves as an advanced information transfer system, allowing precise regulation of trained immunity, and offers a promising approach for effective liver fibrosis immunotherapy with the potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
24
|
Fielden LF, Busch JD, Lindau C, Qiu J, Wiedemann N. Analysis of mitochondrial protein translocation by disulfide bond formation and cysteine specific crosslinking. Methods Enzymol 2024; 707:257-298. [PMID: 39488378 DOI: 10.1016/bs.mie.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.
Collapse
Affiliation(s)
- Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Badrie S, Draken JA, Mokranjac D. In vitro import of mitochondrial precursor proteins into yeast mitochondria. Methods Enzymol 2024; 706:347-363. [PMID: 39455223 DOI: 10.1016/bs.mie.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain about 1000 different proteins, only a handful of which are encoded in the mitochondrial genome. The remaining c. 99% of mitochondrial proteins are encoded in the nuclear genome, synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals and are subsequently imported into the organelle. Mitochondrial targeting signals are very diverse and mitochondria therefore also have a number of very sophisticated molecular machines that recognize, import and sort mitochondrial precursor proteins to the different mitochondrial subcompartments. The ability to synthesize mitochondrial precursor proteins in vitro and subsequently import them into isolated mitochondria has revolutionized our understanding of mitochondrial protein import pathways. Here, we describe the basic protocol for synthesis of mitochondrial precursor proteins in vitro and their subsequent import into isolated mitochondria from yeast Saccharomyces cerevisiae, the method which was used to elucidate and characterize the vast majority of mitochondrial protein import pathways.
Collapse
Affiliation(s)
- Soraya Badrie
- LMU Munich, Biozentrum-Cell Biology, Planegg, Germany
| | | | | |
Collapse
|
26
|
Campo ML. Analysis of mitochondrial translocases TOM and TIM by the patch-clamping technique. Methods Enzymol 2024; 707:329-366. [PMID: 39488381 DOI: 10.1016/bs.mie.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial protein import and sorting relies on sophisticated molecular machineries or translocases, of which channels are integral. Channels are built upon membrane proteins whose functions are driven by conformational changes. This implies that structural and functional information need to be integrated to gain a deep understanding of their dynamic behavior. Patch-clamp approaches are well suited for this purpose. This chapter provides a detailed description and practical guidance for applying the patch-clamp methodology to the electrophysiological characterization of mitochondrial protein import. Implementing the technique to intact mitochondria, mitoplasts, and reconstituted proteoliposomes, combined with genetically modified yeast strains, expands the scope of these studies. Focused on the TOM, TIM23, and TIM22 translocases, an analysis of the patch-clamp contribution to the field is outlined.
Collapse
Affiliation(s)
- María Luisa Campo
- Department of Biochemistry and Molecular Biology, and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
27
|
Calvo Santos L, den Brave F. Analysis of quality control pathways for the translocase of the outer mitochondrial membrane. Methods Enzymol 2024; 707:565-584. [PMID: 39488391 DOI: 10.1016/bs.mie.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The functionality of mitochondria depends on the import of proteins synthesized on cytosolic ribosomes. Impaired import into mitochondria results in mitochondrial dysfunction and proteotoxic accumulation of precursor proteins in the cytosol. All proteins sorted to inner mitochondrial compartments are imported via the translocase of the outer membrane (TOM) complex. Premature protein folding, a reduction of the mitochondrial membrane potential or defects in translocases can result in precursor arrest during translocation, thereby clogging the TOM channel and blocking protein import. In recent years, different pathways have been identified, which employ the cytosolic ubiquitin-proteasome system in the extraction and turnover of precursor proteins from the TOM complex. Central events in this process are the modification of arrested precursor proteins with ubiquitin, their extraction by AAA-ATPases and subsequent degradation by the 26 S proteasome. Analysis of these processes is largely facilitated by the expression of model proteins that function as efficient "cloggers" of the import machinery. Here we describe the use of such clogger proteins and how their handling by the protein quality control machinery can be monitored. We provide protocols to study the extent of clogging, the ubiquitin-modification of arrested precursor proteins and their turnover by the 26 S proteasome.
Collapse
Affiliation(s)
- Lara Calvo Santos
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Leka KP, Wideman JG. An introduction to comparative genomics, EukProt, and the reciprocal best hit (RBH) method for bench biologists: Ancestral phosphorylation of Tom22 in eukaryotes as a case study. Methods Enzymol 2024; 707:209-234. [PMID: 39488375 DOI: 10.1016/bs.mie.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Comparative genomics is a useful approach for hypothesis generation for future functional investigations at the bench. However, most bench biologists shy away from computational methods. Here we reintroduce the simple but extremely effective Reciprocal Best Hit method for inferring protein orthologues. Because taxon set delimitation is perhaps the most important step in comparative genomics, we introduce The Comparative Set, a taxonomically representative subset of EukProt, a comprehensive eukaryotic predicted proteome database. After introducing the basic methods, we provide a step-by-step guide, including screen shots, for a case study on collecting Tom22 sequences from diverse eukaryotes. As an example of possible downstream analyses, we show that Tom22 proteins from diverse eukaryotes are likely regulated by conserved kinases at several sites. Though the sites evolve quickly, the processes and functions involved are likely ancestral and conserved across many eukaryotes.
Collapse
Affiliation(s)
- Kamawela P Leka
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
29
|
Xu W, Su X, Qin J, Jin Y, Zhang N, Huang S. Identification of Autophagy-Related Biomarkers and Diagnostic Model in Alzheimer's Disease. Genes (Basel) 2024; 15:1027. [PMID: 39202387 PMCID: PMC11354206 DOI: 10.3390/genes15081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Its accurate pathogenic mechanisms are incompletely clarified, and effective therapeutic treatments are still inadequate. Autophagy is closely associated with AD and plays multiple roles in eliminating harmful aggregated proteins and maintaining cell homeostasis. This study identified 1191 differentially expressed genes (DEGs) based on the GSE5281 dataset from the GEO database, intersected them with 325 autophagy-related genes from GeneCards, and screened 26 differentially expressed autophagy-related genes (DEAGs). Subsequently, GO and KEGG enrichment analysis was performed and indicated that these DEAGs were primarily involved in autophagy-lysosomal biological process. Further, eight hub genes were determined by PPI construction, and experimental validation was performed by qRT-PCR on a SH-SY5Y cell model. Finally, three hub genes (TFEB, TOMM20, GABARAPL1) were confirmed to have potential application for biomarkers. A multigenic prediction model with good predictability (AUC = 0.871) was constructed in GSE5281 and validated in the GSE132903 dataset. Hub gene-targeted miRNAs closely associated with AD were also retrieved through the miRDB and HDMM database, predicting potential therapeutic agents for AD. This study provides new insights into autophagy-related genes in brain tissues of AD patients and offers more candidate biomarkers for AD mechanistic research as well as clinical diagnosis.
Collapse
Affiliation(s)
- Wei Xu
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China; (X.S.); (J.Q.); (Y.J.); (N.Z.); (S.H.)
| | | | | | | | | | | |
Collapse
|
30
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
31
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
32
|
Ku D, Yang Y, Park Y, Jang D, Lee N, Lee YK, Lee K, Lee J, Han YB, Jang S, Choi SR, Ha YJ, Choi YS, Jeong WJ, Lee YJ, Lee KJ, Cha S, Kim Y. SLIRP promotes autoimmune diseases by amplifying antiviral signaling via positive feedback regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587146. [PMID: 38915695 PMCID: PMC11195051 DOI: 10.1101/2024.03.28.587146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The abnormal innate immune response is a prominent feature underlying autoimmune diseases. One emerging factor that can trigger dysregulated immune activation is cytosolic mitochondrial double-stranded RNAs (mt-dsRNAs). However, the mechanism by which mt-dsRNAs stimulate immune responses remains poorly understood. Here, we discover SRA stem-loop interacting RNA binding protein (SLIRP) as a key amplifier of mt-dsRNA-triggered antiviral signals. In autoimmune diseases, SLIRP is commonly upregulated, and targeted knockdown of SLIRP dampens the interferon response. We find that the activation of melanoma differentiation-associated gene 5 (MDA5) by exogenous dsRNAs upregulates SLIRP, which then stabilizes mt-dsRNAs and promotes their cytosolic release to activate MDA5 further, augmenting the interferon response. Furthermore, the downregulation of SLIRP partially rescues the abnormal interferon-stimulated gene expression in autoimmune patients' primary cells and makes cells vulnerable to certain viral infections. Our study unveils SLIRP as a pivotal mediator of interferon response through positive feedback amplification of antiviral signaling.
Collapse
Affiliation(s)
- Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yewon Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngran Park
- Center for RNA Research, Institute of Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daesong Jang
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, Florida, 32610, United States of America
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong-ki Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeseon Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Soojin Jang
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Se Rim Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology - Head & Neck Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun Jong Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Kyung Jin Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, Florida, 32610, United States of America
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Raimi OG, Ojha H, Ehses K, Dederer V, Lange SM, Rivera CP, Deegan TD, Chen Y, Wightman M, Toth R, Labib KPM, Mathea S, Ranson N, Fernández-Busnadiego R, Muqit MMK. Mechanism of human PINK1 activation at the TOM complex in a reconstituted system. SCIENCE ADVANCES 2024; 10:eadn7191. [PMID: 38848361 PMCID: PMC11160474 DOI: 10.1126/sciadv.adn7191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024]
Abstract
Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Olawale G. Raimi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hina Ojha
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kenneth Ehses
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tom D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Yinchen Chen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim P. M. Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
34
|
Wu S, Zhang Y, Xu L, Zhang H, Li Y, Yang L, Zhang Z, Zhang H. Mitochondrial Outer Membrane Translocase MoTom20 Modulates Mitochondrial Morphology and Is Important for Infectious Growth of the Rice Blast Fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:407-415. [PMID: 38171376 DOI: 10.1094/mpmi-10-23-0168-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mitochondria are highly dynamic organelles that constantly change their morphology to adapt to the cellular environment through fission and fusion, which is critical for a cell to maintain normal cellular functions. Despite the significance of this process in the development and pathogenicity of the rice blast fungus Magnaporthe oryzae, the underlying mechanism remains largely elusive. Here, we identified and characterized a mitochondrial outer membrane translocase, MoTom20, in M. oryzae. Targeted gene deletion revealed that MoTom20 plays an important role in vegetative growth, conidiogenesis, penetration, and infectious growth of M. oryzae. The growth rate, conidial production, appressorium turgor, and pathogenicity are decreased in the ΔMotom20 mutant compared with the wild-type and complemented strains. Further analysis revealed that MoTom20 localizes in mitochondrion and plays a key role in regulating mitochondrial fission and fusion balance, which is critical for infectious growth. Finally, we found that MoTom20 is involved in fatty-acid utilization, and its yeast homolog ScTom20 is able to rescue the defects of ΔMotom20 in mitochondrial morphology and pathogenicity. Overall, our data demonstrate that MoTom20 is a key regulator for mitochondrial morphology maintenance, which is important for infectious growth of the rice blast fungus M. oryzae. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lele Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haibo Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuhe Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
35
|
Busto JV, Ganesan I, Mathar H, Steiert C, Schneider EF, Straub SP, Ellenrieder L, Song J, Stiller SB, Lübbert P, Chatterjee R, Elsaesser J, Melchionda L, Schug C, den Brave F, Schulte U, Klecker T, Kraft C, Fakler B, Becker T, Wiedemann N. Role of the small protein Mco6 in the mitochondrial sorting and assembly machinery. Cell Rep 2024; 43:113805. [PMID: 38377000 DOI: 10.1016/j.celrep.2024.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The majority of mitochondrial precursor proteins are imported through the Tom40 β-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for β-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Mathar
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva F Schneider
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ritwika Chatterjee
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Schug
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Wang Q, Zhuang J, Huang R, Guan Z, Yan L, Hong S, Zhang L, Huang C, Liu Z, Yin P. The architecture of substrate-engaged TOM-TIM23 supercomplex reveals preprotein proximity sites for mitochondrial protein translocation. Cell Discov 2024; 10:19. [PMID: 38360717 PMCID: PMC10869343 DOI: 10.1038/s41421-023-00643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Affiliation(s)
- Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinjin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
37
|
den Brave F, Pfanner N, Becker T. Mitochondrial entry gate as regulatory hub. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119529. [PMID: 37951505 DOI: 10.1016/j.bbamcr.2023.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 11/14/2023]
Abstract
Mitochondria import 1000-1300 different precursor proteins from the cytosol. The main mitochondrial entry gate is formed by the translocase of the outer membrane (TOM complex). Molecular coupling and modification of TOM subunits control and modulate protein import in response to cellular signaling. The TOM complex functions as regulatory hub to integrate mitochondrial protein biogenesis and quality control into the cellular proteostasis network.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
38
|
Sakurada K, Ishikawa T. Synthesis of causal and surrogate models by non-equilibrium thermodynamics in biological systems. Sci Rep 2024; 14:1001. [PMID: 38200211 PMCID: PMC10781949 DOI: 10.1038/s41598-024-51426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
We developed a model to represent the time evolution phenomena of life through physics constraints. To do this, we took into account that living organisms are open systems that exchange messages through intracellular communication, intercellular communication and sensory systems, and introduced the concept of a message force field. As a result, we showed that the maximum entropy generation principle is valid in time evolution. Then, in order to explain life phenomena based on this principle, we modelled the living system as a nonlinear oscillator coupled by a message and derived the governing equations. The governing equations consist of two laws: one states that the systems are synchronized when the variation of the natural frequencies between them is small or the coupling strength through the message is sufficiently large, and the other states that the synchronization is broken by the proliferation of biological systems. Next, to simulate the phenomena using data obtained from observations of the temporal evolution of life, we developed an inference model that combines physics constraints and a discrete surrogate model using category theory, and simulated the phenomenon of early embryogenesis using this inference model. The results show that symmetry creation and breaking based on message force fields can be widely used to model life phenomena.
Collapse
Affiliation(s)
- Kazuhiro Sakurada
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Open Systems Information Science Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan.
| | - Tetsuo Ishikawa
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Medical Data Mathematical Reasoning Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Japan
| |
Collapse
|
39
|
Hayashi M, Kawarasaki T, Nakatsukasa K. Degradation of citrate synthase lacking the mitochondrial targeting sequence is inhibited in cells defective in Hsp70/Hsp40 chaperones under heat stress conditions. FEMS Yeast Res 2024; 24:foad054. [PMID: 38130235 PMCID: PMC10786195 DOI: 10.1093/femsyr/foad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.
Collapse
Affiliation(s)
- Mayuko Hayashi
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
40
|
Chang S, Torii S, Inamo J, Ishikawa K, Kochi Y, Shimizu S. Uncovering the Localization and Function of a Novel Read-Through Transcript ' TOMM40-APOE'. Cells 2023; 13:69. [PMID: 38201273 PMCID: PMC10778128 DOI: 10.3390/cells13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Recent advancements in genome analysis technology have revealed the presence of read-through transcripts in which transcription continues by skipping the polyA signal. We here identified and characterized a new read-through transcript, TOMM40-APOE. With cDNA amplification from THP-1 cells, the TOMM40-APOE3 product was successfully generated. We also generated TOMM40-APOE4, another isoform, by introducing point mutations. Notably, while APOE3 and APOE4 exhibited extracellular secretion, both TOMM40-APOE3 and TOMM40-APOE4 were localized exclusively to the mitochondria. But functionally, they did not affect mitochondrial membrane potential. Cell death induction studies illustrated increased cell death with TOMM40-APOE3 and TOMM40-APOE4, and we did not find any difference in cellular function between the two isoforms. These findings indicated that the new mitochondrial protein TOMM40-APOE has cell toxic ability.
Collapse
Affiliation(s)
- Shichen Chang
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan (S.T.)
- Department of Personalized Genomic Medicine for Health, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan (S.T.)
| | - Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kinya Ishikawa
- Department of Personalized Genomic Medicine for Health, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan (S.T.)
| |
Collapse
|
41
|
Genge MG, Roy Chowdhury S, Dohnálek V, Yunoki K, Hirashima T, Endo T, Doležal P, Mokranjac D. Two domains of Tim50 coordinate translocation of proteins across the two mitochondrial membranes. Life Sci Alliance 2023; 6:e202302122. [PMID: 37748811 PMCID: PMC10520260 DOI: 10.26508/lsa.202302122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Hundreds of mitochondrial proteins with N-terminal presequences are translocated across the outer and inner mitochondrial membranes via the TOM and TIM23 complexes, respectively. How translocation of proteins across two mitochondrial membranes is coordinated is largely unknown. Here, we show that the two domains of Tim50 in the intermembrane space, named core and PBD, both have essential roles in this process. Building upon the surprising observation that the two domains of Tim50 can complement each other in trans, we establish that the core domain contains the main presequence-binding site and serves as the main recruitment point to the TIM23 complex. On the other hand, the PBD plays, directly or indirectly, a critical role in cooperation of the TOM and TIM23 complexes and supports the receptor function of Tim50. Thus, the two domains of Tim50 both have essential but distinct roles and together coordinate translocation of proteins across two mitochondrial membranes.
Collapse
Affiliation(s)
- Marcel G Genge
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| | | | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kaori Yunoki
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Takashi Hirashima
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Dejana Mokranjac
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| |
Collapse
|
42
|
Wasilewski M, Draczkowski P, Chacinska A. Protein import into mitochondria - a new path through the membranes. Nat Struct Mol Biol 2023; 30:1831-1833. [PMID: 38087086 DOI: 10.1038/s41594-023-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
| | - Piotr Draczkowski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
43
|
Anaguano D, Dedkhad W, Brooks CF, Cobb DW, Muralidharan V. Time-resolved proximity biotinylation implicates a porin protein in export of transmembrane malaria parasite effectors. J Cell Sci 2023; 136:jcs260506. [PMID: 37772444 PMCID: PMC10651097 DOI: 10.1242/jcs.260506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID). Using time-resolved proximity biotinylation and label-free quantitative proteomics, we identified two groups of SBP1TbID interactors - early interactors (pre-export) and late interactors (post-export). Notably, two promising membrane-associated proteins were identified as pre-export interactors, one of which possesses a predicted translocon domain, that could facilitate the export of membrane proteins. Further investigation using conditional mutants of these candidate proteins showed that these proteins were essential for asexual growth and localize to the host-parasite interface during early stages of the intraerythrocytic cycle. These data suggest that they might play a role in ushering membrane proteins from the parasite plasma membrane for export to the host RBC.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Watcharatip Dedkhad
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Carrie F. Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - David W. Cobb
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Zhang Y, Hu Y, Wang Z, Lin X, Li Z, Ren Y, Zhao J. The translocase of the inner mitochondrial membrane 22-2 is required for mitochondrial membrane function during Arabidopsis seed development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4427-4448. [PMID: 37105529 DOI: 10.1093/jxb/erad141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The carrier translocase (also known as translocase of the inner membrane 22; TIM22 complex) is an important component of the mitochondrial protein import apparatus. However, the biological functions of AtTIM22-2 in Arabidopsis remain poorly defined. Here, we report studies on two tim22-2 mutants that exhibit defects in embryo and endosperm development, leading to seed abortion. AtTIM22-2, which was localized in mitochondria, was widely expressed in embryos and in various seedling organs. Loss of AtTIM22-2 function resulted in irregular mitochondrial cristae, decreased respiratory activity, and a lower membrane potential, together with changes in gene expression and enzyme activity related to reactive oxygen species (ROS) metabolism, leading to increased accumulation of ROS in the embryo. The levels of transcripts encoding mitochondrial protein import components were also altered in the tim22-2 mutants. Furthermore, mass spectrometry, bimolecular fluorescence complementation and co-immunoprecipitation assays revealed that AtTIM22-2 interacted with AtTIM23-2, AtB14.7 (a member of Arabidopsis OEP16 family encoded by At2G42210), and AT5G27395 (mitochondrial inner membrane translocase complex, subunit TIM44-related protein). Taken together, these results demonstrate that AtTIM22-2 is essential for maintaining mitochondrial membrane functions during seed development. These findings lay the foundations for a new model of the composition and functions of the TIM22 complex in higher plants.
Collapse
Affiliation(s)
- Yuqin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiqin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodi Lin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafang Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Nishio K, Kawarasaki T, Sugiura Y, Matsumoto S, Konoshima A, Takano Y, Hayashi M, Okumura F, Kamura T, Mizushima T, Nakatsukasa K. Defective import of mitochondrial metabolic enzyme elicits ectopic metabolic stress. SCIENCE ADVANCES 2023; 9:eadf1956. [PMID: 37058555 PMCID: PMC10104474 DOI: 10.1126/sciadv.adf1956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Deficiencies in mitochondrial protein import are associated with a number of diseases. However, although nonimported mitochondrial proteins are at great risk of aggregation, it remains largely unclear how their accumulation causes cell dysfunction. Here, we show that nonimported citrate synthase is targeted for proteasomal degradation by the ubiquitin ligase SCFUcc1. Unexpectedly, our structural and genetic analyses revealed that nonimported citrate synthase appears to form an enzymatically active conformation in the cytosol. Its excess accumulation caused ectopic citrate synthesis, which, in turn, led to an imbalance in carbon flux of sugar, a reduction of the pool of amino acids and nucleotides, and a growth defect. Under these conditions, translation repression is induced and acts as a protective mechanism that mitigates the growth defect. We propose that the consequence of mitochondrial import failure is not limited to proteotoxic insults, but that the accumulation of a nonimported metabolic enzyme elicits ectopic metabolic stress.
Collapse
Affiliation(s)
- Kazuya Nishio
- Department of Life Science, Graduate School of Science, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Yuki Sugiura
- Department of Biochemistry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayano Konoshima
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Yuki Takano
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Mayuko Hayashi
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka 813-8582, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tsunehiro Mizushima
- Department of Life Science, Graduate School of Science, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
46
|
Jain N, Gomkale R, Bernhard O, Rehling P, Cruz-Zaragoza LD. A quantitative fluorescence-based approach to study mitochondrial protein import. EMBO Rep 2023; 24:e55760. [PMID: 36938994 PMCID: PMC10157374 DOI: 10.15252/embr.202255760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.
Collapse
Affiliation(s)
- Naintara Jain
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ridhima Gomkale
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Bernhard
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | | |
Collapse
|
47
|
Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG. Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants (Basel) 2023; 12:antiox12030658. [PMID: 36978905 PMCID: PMC10045078 DOI: 10.3390/antiox12030658] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mitochondria are subcellular organelles involved in essential cellular functions, including cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders (diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight the genetic changes identified at the mtDNA level. Additionally, we selected several representative biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.
Collapse
Affiliation(s)
- Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Correspondence: (A.G.); (C.-E.V.)
| | - Lucian-Mihai Antoci
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Cristian-Gabriel Ciobanu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street, No. 62, 700309 Iasi, Romania
| | - Cristiana-Elena Vlad
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Nephrology-Internal Medicine, “Dr. C. I. Parhon” Clinical Hospital, 700503 Iasi, Romania
- Correspondence: (A.G.); (C.-E.V.)
| | - Mihaela Blaj
- Anaesthesia and Intensive Care Department, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Anaesthesia and Intensive Care Department, Sf. Spiridon University Hospital, 700111 Iasi, Romania
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| |
Collapse
|
48
|
Yeung N, Murata D, Iijima M, Sesaki H. Role of human HSPE1 for OPA1 processing independent of HSPD1. iScience 2023; 26:106067. [PMID: 36818283 PMCID: PMC9929679 DOI: 10.1016/j.isci.2023.106067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The human mtHSP60/HSPD1-mtHSP10/HSPE1 system prevents protein misfolding and maintains proteostasis in the mitochondrial matrix. Altered activities of this chaperonin system have been implicated in human diseases, such as cancer and neurodegeneration. However, how defects in HSPD1 and HSPE1 affect mitochondrial structure and dynamics remains elusive. In the current study, we address this fundamental question in a human cell line, HEK293T. We found that the depletion of HSPD1 or HSPE1 results in fragmentation of mitochondria, suggesting a decrease in mitochondrial fusion. Supporting this notion, HSPE1 depletion led to proteolytic inactivation of OPA1, a dynamin-related GTPase that fuses the mitochondrial membrane. This OPA1 inactivation was mediated by a stress-activated metalloprotease, OMA1. In contrast, HSPD1 depletion did not induce OMA1 activation or OPA1 cleavage. These data suggest that HSPE1 controls mitochondrial morphology through a mechanism separate from its chaperonin activity.
Collapse
Affiliation(s)
- Nelson Yeung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Feng P, Skowyra ML, Rapoport TA. Structure and function of the peroxisomal ubiquitin ligase complex. Biochem Soc Trans 2022; 50:1921-1930. [PMID: 36421406 PMCID: PMC9788354 DOI: 10.1042/bst20221393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 09/26/2023]
Abstract
Peroxisomes are membrane-bounded organelles that exist in most eukaryotic cells and are involved in the oxidation of fatty acids and the destruction of reactive oxygen species. Depending on the organism, they house additional metabolic reactions that range from glycolysis in parasitic protozoa to the production of ether lipids in animals and antibiotics in fungi. The importance of peroxisomes for human health is revealed by various disorders - notably the Zellweger spectrum - that are caused by defects in peroxisome biogenesis and are often fatal. Most peroxisomal metabolic enzymes reside in the lumen, but are synthesized in the cytosol and imported into the organelle by mobile receptors. The receptors accompany cargo all the way into the lumen and must return to the cytosol to start a new import cycle. Recycling requires receptor monoubiquitination by a membrane-embedded ubiquitin ligase complex composed of three RING finger (RF) domain-containing proteins: PEX2, PEX10, and PEX12. A recent cryo-electron microscopy (cryo-EM) structure of the complex reveals its function as a retro-translocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that assemble into an open channel. The N terminus of a receptor likely inserts into the pore from the lumenal side, and is then monoubiquitinated by one of the RFs to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitinated by the concerted action of the other two RFs and ultimately degraded. The new data provide mechanistic insight into a crucial step of peroxisomal protein import.
Collapse
Affiliation(s)
- Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Michael L. Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| |
Collapse
|
50
|
Han X, Maita N, Shimada A, Kohda D. Effects of targeting signal mutations in a mitochondrial presequence on the spatial distribution of the conformational ensemble in the binding site of Tom20. Protein Sci 2022; 31:e4433. [PMID: 36173160 PMCID: PMC9490799 DOI: 10.1002/pro.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
The 20-kDa TOM (translocase of outer mitochondrial membrane) subunit, Tom20, is the first receptor of the protein import pathway into mitochondria. Tom20 recognizes the mitochondrial targeting signal embedded in the presequences attached to mature mitochondrial proteins, as an N-terminal extension. Consequently, ~1,000 different mitochondrial proteins are sorted into the mitochondrial matrix, and distinguished from non-mitochondrial proteins. We previously reported the MPRIDE (multiple partial recognitions in dynamic equilibrium) mechanism to explain the structural basis of the promiscuous recognition of presequences by Tom20. A subset of the targeting signal features is recognized in each pose of the presequence in the binding state, and all of the features are collectively recognized in the dynamic equilibrium between the poses. Here, we changed the volumes of the hydrophobic side chains in the targeting signal, while maintaining the binding affinity. We tethered the mutated presequences to the binding site of Tom20 and placed them in the crystal contact-free space (CCFS) created in the crystal lattice. The spatial distributions of the mutated presequences were visualized as smeared electron densities in the low-pass filtered difference maps obtained by X-ray crystallography. The mutated presequence ensembles shifted their positions in the binding state to accommodate the larger side chains, thus providing positive evidence supporting the use of the MPRIDE mechanism in the promiscuous recognition by Tom20.
Collapse
Affiliation(s)
- Xiling Han
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Nobuo Maita
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
- Institute for Quantum Life Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|