1
|
Douw A, Perez-Gil J, Schenk G, Vickers CE. Iron-Sulfur Cluster Enzymes of the Methylerythritol Phosphate Pathway: IspG and IspH. Biochemistry 2025. [PMID: 40432238 DOI: 10.1021/acs.biochem.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Iron-sulfur cluster (Fe-S) enzymes catalyze important biological processes in cellular metabolism. They evolved in the preoxic world and are oxygen sensitive; biology has therefore evolved a range of mechanisms to protect them from oxidative damage. The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis has two Fe-S enzymes: IspG and IspH. Both enzymes utilize 3:1 site-differentiated [4Fe-4S] clusters to perform rather unique dehydroxylation reactions. They may play roles in facilitating oxidative stress sensing and signaling. While bacterial IspG and IspH are well characterized, plant IspG and IspH are not. A particularly fascinating aspect of these enzymes is their ability to balance both their biosynthetic catalytic roles and their presumptive signaling roles in metabolism. Here we review current knowledge about the mechanism, structures, and function of IspG and IspH, and we propose future research directions to help answer the many remaining questions about them. We also provide a primer for investigators keen to start working with these enzymes, as they share with the Fe-S family a set of unique handling and experimental challenges.
Collapse
Affiliation(s)
- Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jordi Perez-Gil
- ARC Centre of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- BioBuilt Solutions, Brisbane, Queensland4075, Australia
| |
Collapse
|
2
|
Parvez SS, Mondal A, Sharma K, Steindorff AS, Grigoriev IV, Bakshi U, Banik A. Trichoderma sp. strain AM6 whole-genome guided untargeted metabolomics: Terpenoid backbone synthesis and modulation of VOCs in tea (Camellia sinensis L.). Microbiol Res 2025; 298:128215. [PMID: 40412041 DOI: 10.1016/j.micres.2025.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Industrial cash crop tea is a cherished drink for its bioactive components like terpenoids and flavonoids shaping its flavor and health benefits. Trichoderma species are potent biocontrol agents and plant growth regulators, with unexplored potential in modulation of C. sinensis terpenoid biosynthesis. Genome sequencing of a tea root-associated Trichoderma sp. strain AM6 revealed a genome size of 39.91 Mbp, comprising 446 contigs organized into 406 scaffolds, with 98.8 % completeness. Single scaffold mitochondrial genome assembly of 34,430 bp in length with a GC content of 28.03 % encodes a total of 49 genes including 27 tRNA, 2 rRNA, and 20 protein-coding genes. Metabolic pathway analysis indicates exclusive reliance on the mevalonate pathway for terpenoid biosynthesis in Trichoderma, unlike C. sinensis, which utilizes both the mevalonate and non-mevalonate (MEP/DOXP) pathways. Untargeted LC-ESI-MS/MS analysis of Trichoderma identified 11,841 secondary metabolites, including 34 monoterpenoids, 72-diterpenoids, and 76-sesquiterpenoids, emphasizing its metabolic diversity. Comparative phylogenomic study positioned it as a phylogenetically distinct species with unique adaptive traits. Untargeted GC-MS shows high volatile abundance from microbial consortia (T5) followed by only Trichoderma treatment (T2) compared to control (T1). Terpenoid transcripts of C. sinensis from the plant-microbe consortium assembly sets illuminate upregulation of genes assigned to 3-hydroxy-3-methylglutaryl-Co-A reductase (HMGCR) and downregulation of genes assigned to 1-Deoxy-D-xylulose-5-phosphate (DXS), indicating metabolic shift towards more mevalonate pathway activity influenced by this novel Trichoderma strain itself and in combination with other tea root-associated microbes.
Collapse
Affiliation(s)
- Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Anupam Mondal
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Kalpna Sharma
- R&D Centre, Danguajhar Tea Garden, Goodricke Group Ltd., Jalpaiguri, West Bengal, India
| | - Andrei Stecca Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| | - Utpal Bakshi
- Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
3
|
Sharma P, Wajid MA, Pal K, Fayaz M, Majeed A, Yadav AK, Singh D, Bhat S, Bhat WW, Misra P. Functional characterization of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) genes from Monarda citriodora establishes the key role of McDXS2 in specialized terpenoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109961. [PMID: 40344822 DOI: 10.1016/j.plaphy.2025.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
Currently, limited information is available on the molecular basis of the biosynthesis of essential oil in the Monarda citriodora plant. Given the pivotal role of the MEP pathway in the biosynthesis of monoterpenes, in the present study, DXS genes have been functionally characterized from M. citriodora, for the first time. The CDS corresponding to four McDXS genes (1-4) were cloned, and their deduced proteins displayed distinct phylogenetic positioning. Using a bacterial complementation test, we demonstrated that all four McDXS genes encode functional DXS proteins. Based on the results obtained from phylogenetic analysis, tissue-specific expression analysis, and accumulation of monoterpenes, McDXS2 was identified as the candidate gene involved in the biosynthesis of monoterpenes of essential oil in M. citriodora. Transient overexpression and silencing of McDXS2 significantly modified the content of volatile monoterpenes in M. citriodora. Constitutive expression of McDXS2 in Nicotiana tabacum resulted in increased biosynthesis of specialized diterpenoids. Further, the exogenous treatment of MeJA, ABA, and GA3 modulated the expression of McDXS2, and the content of the components of essential oil in M. citriodora. McDXS2 promoter activity was primarily restricted to the glandular trichomes of M. citriodora. The present work demonstrates that McDXS2 is primarily involved in the specialized terpenoid biosynthesis in M. citriodora.
Collapse
Affiliation(s)
- Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Pal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aasim Majeed
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Arvind Kumar Yadav
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Deepika Singh
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Wajid Waheed Bhat
- Division of Basic Sciences and Humanities, SKUAST-Kashmir, Shalimar 190025 Srinagar, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Khanijou JK, Scipion CPM, Borkar S, Chen X, Chew W. Enhancing limonene production by probing the metabolic network through time-series metabolomics data. Metabolomics 2025; 21:61. [PMID: 40335836 DOI: 10.1007/s11306-025-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Limonene is a monoterpene with diverse applications in food, medicine, fuel, and material science. Recently, engineered microbes have been used to biosynthesize target biochemicals such as limonene. OBJECTIVE Metabolic engineering has shown that factors such as feedback inhibition, enzyme activity or abundance may contribute to the loss of target biochemicals. Incorporating a hypothesis driven experimental approach can help to streamline the process of improving target yield. METHOD In this work, time-series intracellular metabolomics data from Escherichia coli cultures of a wild-type strain engineered to overproduce limonene (EcoCTs3) was collected, where we hypothesized having more carbon flux towards the engineered mevalonate (MEV) pathway would increase limonene yield. Based on the topology of the metabolic network, the pathways involved in mixed fermentation were possibly causing carbon flux loss from the MEV pathway. To prove this, knockout strains of lactate dehydrogenase (LDH) and aldehyde dehydrogenase-alcohol dehydrogenase (ALDH-ADH) were created. RESULTS The knockout strains showed 18 to 20 folds more intracellular mevalonate accumulation over time compared to the EcoCTs3 strain, thus indicating greater carbon flux directed towards the MEV pathway thereby increasing limonene yield by 8 to 9 folds. CONCLUSION Ensuring high intracellular mevalonate concentration is therefore a good strategy to enhance limonene yield and other target compounds using the MEV pathway. Once high intracellular mevalonate concentration has been achieved, the limonene producing strain can then be further modified through other strategies such as enzyme and protein engineering to ensure better conversion of mevalonate to downstream metabolites to produce the target product limonene.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Clement P M Scipion
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore, 138602, Singapore
| | - Shreyash Borkar
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wee Chew
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
5
|
Li X, Li Y, Zhang W, Tan X, Li Q, Liu Z, Qiao Y, Zhang T, Wang Z, Bai W, Wang D, Liang J, Li B. Prediction and metabolomics reveal aroma profiles of mead aged in glass bottle and oak barrels. Food Chem 2025; 486:144661. [PMID: 40345026 DOI: 10.1016/j.foodchem.2025.144661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Metabolomic analysis of volatile compounds in mead during aging in glass bottles and oak barrels revealed significant impacts on sensory characteristics. Using headspace solid-phase microextraction gas chromatography-mass spectrometry with three columns, 247 volatile compounds were identified, including 161 confirmed by standards. The XGBoost model accurately predicted sensory traits after 10 and 12 months of aging. Compared to freshly fermented mead, aged samples showed reduced off-flavors and increased herbal and fruity-sweet compounds, with OM samples exhibiting more pronounced changes (herbal compounds increased by 60.12 %, fruity-sweet compounds by 118.41 %, and off-flavors reduced by 17.07 %). PCA and OPLS-DA analyses highlighted the superiority of oak barrel aging. Key volatile compounds like ethyl caproate and ethyl heptanoate were identified through reconstitution and omission experiments. NetworkX analysis revealed rate-limiting steps in flavor compound formation, such as the conversion of benzaldehyde to phenylethanol and FPP to linalool. These findings provide key insights for optimizing mead's flavor. The abbreviations for all flavor compounds are provided in the supplementary file Table S1.
Collapse
Affiliation(s)
- Xian Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Yankang Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Wanqing Zhang
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Xiao Tan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China; School of Chemistry & Chemical Engineering, Yulin University, Yulin 719000, China
| | - Qian Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Ziwei Liu
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Yibing Qiao
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Tiantian Zhang
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
| | - Zhulin Wang
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Wushuang Bai
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China.
| | - Di Wang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jiayun Liang
- School of Intelligent Manufacturing, Lishui Vocational &Technical College, Lishui 323000, China
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China.
| |
Collapse
|
6
|
Jebeli L, McDaniels TA, Ho DTT, Tahir H, Kai-Ming NL, Mcgaw M, Karlic KI, Lewis JM, Scott NE. The late-stage steps of Burkholderia cenocepacia protein O-linked glycan biosynthesis are conditionally essential. J Biol Chem 2025; 301:108515. [PMID: 40286851 DOI: 10.1016/j.jbc.2025.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Periplasmic O-linked protein glycosylation is a highly conserved process observed across the Burkholderia genus. Within Burkholderia, protein glycosylation requires the five-gene cluster known as the O-glycosylation cluster (OGC, ogcXABEI), which facilitates the construction of the O-linked trisaccharide attached to periplasmic proteins. Previous studies have reported conflicting results regarding the essentiality of ogcA, predicted to be responsible for the addition of the final carbohydrate of the O-linked trisaccharide, and ogcX, the putative O-linked glycan flippase. Within this work, we aimed to dissect the impact of the loss of ogcA and ogcX on Burkholderia cenocepacia viability. We demonstrate that the loss of either ogcA or ogcX is detrimental if glycosylation is initiated, leading to marked phenotypic effects. Proteomic analysis supports that the loss of ogcA/ogcX both blocks glycosylation and drives pleotropic effects in the membrane proteome, resulting in the loss of membrane integrity. Consistent with this, strains lacking ogcA and ogcX exhibit increased sensitivity to membrane stressors, including antibiotics, and demonstrate marked changes in membrane permeability. These effects are consistent with the fouling of the undecaprenyl pool due to dead-end O-linked glycan intermediates, and consistent with this, we show that modulation of the undecaprenyl pool through the overexpression of undecaprenyl pyrophosphate synthase (UppS) or the OGC flippase (OgcX) restores viability, while expression of early-stage OGC biosynthesis genes (ogcI and ogcB) reduces B. cenocepacia viability. These findings demonstrate that disrupting O-linked glycan biosynthesis or transport appears to dramatically impact B. cenocepacia viability, supporting the assignment of ogcA and ogcX as conditionally essential.
Collapse
Affiliation(s)
- Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylor A McDaniels
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Duncan T T Ho
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hamza Tahir
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas L Kai-Ming
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Molli Mcgaw
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kristian I Karlic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
7
|
Gayen AK, Pitts Hall RS, Lund S, Williams GJ. Promiscuity of an Alcohol-Dependent Hemiterpene Pathway for the In Vivo Production of a Non-Natural Alkylated Tryptophan Derivative. ACS Synth Biol 2025; 14:1220-1229. [PMID: 40134314 DOI: 10.1021/acssynbio.4c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The prenyl motif determines the biological activity of many natural products. Yet, structural diversification of the prenyl site has been restricted due to the limitations of native biosynthetic pathways to hemiterpenes, the universal isoprenoid building blocks. Previously, we developed the artificial alcohol dependent hemiterpene (ADH) pathway comprising the acid phosphatase PhoN and the isopentenyl kinase IPK to provide natural isoprenoids assembled from hemiterpenes in vivo. Here, we revealed the broad specificity of the first enzyme of the ADH module, PhoN, and a downstream aromatic prenyltransferase. We then showed that the combined promiscuity of the ADH module and prenyltransferase were sufficient to produce a non-natural-alkylated tryptophan derivative in vivo when coupled with the previously described promiscuity of IPK. The short and modular ADH pathway provides a convenient and scalable approach to alkyl-pyrophosphates and facilitates probing the promiscuity of other downstream enzymes involved in isoprenoid biosynthesis without the tedious in vitro preparation of alkyl-pyrophosphates. This sets the stage to leverage the ADH pathway to forward engineer isoprenoid biosynthesis and expand its chemical space accessible to synthetic biology.
Collapse
Affiliation(s)
- Anuran K Gayen
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Rachael S Pitts Hall
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Sean Lund
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Biały S, Bogunia-Kubik K. Uncovering the mysteries of human gamma delta T cells: from origins to novel therapeutics. Front Immunol 2025; 16:1543454. [PMID: 40276509 PMCID: PMC12018481 DOI: 10.3389/fimmu.2025.1543454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Gamma delta (γδ) T cells represent a unique and distinct population of lymphocytes that bridge the innate and adaptive immune responses. This functional duality positions them as one of the pivotal elements in the evolution and development of the human body's defense mechanisms. This review aims to provide a comprehensive and in-depth overview of γδ T cells, covering their origins, development, classification, and functional roles in immunology. Special attention is given to their involvement in the pathogenesis of autoimmune and cancer-related diseases-areas that remain subjects of intensive research with many unanswered questions. Additionally, this article explores the therapeutic potential of γδ T cells, which hold promise as a novel approach to treating various difficult-to-manage diseases. The review also presents an analysis of the latest clinical studies utilizing γδ T cells, emphasizing their emerging role in modern medicine. The ultimate goal of this work is to offer a holistic perspective on the current state of research on γδ T cells and their prospective applications in immunotherapy and cancer treatment, highlighting their potential to become a groundbreaking tool in future medical interventions.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of
Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
9
|
Pérez-López MI, Lubrano P, Angelidou G, Hoch S, Glatter T, Paczia N, Link H, Sourjik V. The SPFH complex HflK-HflC regulates aerobic respiration in bacteria. PLoS Biol 2025; 23:e3003077. [PMID: 40193326 PMCID: PMC12005517 DOI: 10.1371/journal.pbio.3003077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/17/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
The bacterial HflK-HflC membrane complex is a member of the highly conserved family of SPFH proteins, which are present in all domains of life and include eukaryotic stomatins, flotillins, and prohibitins. These proteins organize cell membranes and are involved in various processes. However, the exact physiological functions of most bacterial SPFH proteins remain unclear. Here, we report that the HflK-HflC complex in Escherichia coli is required for growth under high aeration. The absence of this complex causes a growth defect at high oxygen levels due to a reduced abundance of IspG, an essential iron-sulfur cluster enzyme in the isoprenoid biosynthetic pathway. This reduction might be related to lower stability of IspG and several other proteins, including the iron siderophore transporter TonB, in the absence of the HflK-HflC complex. Our results suggest that decreased IspG activity leads to lower levels of ubiquinone and misregulated expression of multiple respiratory enzymes, including cytochrome oxidases, and consequently reduced respiration and lower ATP levels. This impact of the hflK hflC deletion on aerobic respiration resembles the mitochondrial respiratory defects caused by the inactivation of prohibitins in mammalian and yeast cells, indicating functional parallels between these bacterial and eukaryotic SPFH proteins.
Collapse
Affiliation(s)
- María Isabel Pérez-López
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | | | - Sarah Hoch
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
10
|
Mentrup A, Scheitz LV, Wallenfang T, Rother M. Production of the Sesquiterpene Bisabolene From One- and Two-Carbon Compounds in Engineered Methanosarcina acetivorans. Microb Biotechnol 2025; 18:e70105. [PMID: 39937062 PMCID: PMC11816158 DOI: 10.1111/1751-7915.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The isoprenoid bisabolene, one of the simplest monocyclic sesquiterpenes, is a natural plant product that, in addition to its biological function, serves as a precursor for many industrial products. Due to the low concentration of bisabolene and the long harvest cycle, industrial production of this isoprenoid in plants is economically challenging. Chemical synthesis of bisabolene also suffers from significant disadvantages, such as low yields, toxic side products and high costs. Archaea appear suitable producers of isoprenoids, as their membrane lipids consist of isoprenoid ethers, which are synthesised via a variant of the mevalonate (MVA) pathway. Archaeal model species have versatile metabolic capacities, which makes them potential candidates for biotechnological applications. Here, we engineered Methanosarcina acetivorans for production of α-bisabolene from one-carbon substrates by introducing a bisabolene synthase from Abies grandis. Expression of a codon-optimised bisabolene synthase gene in M. acetivorans resulted in 10.6 mg bisabolene/L of culture. Overexpressing genes of the MVA pathway only slightly increased bisabolene yields, which, however, were reached much earlier during incubations than in the corresponding parent strain. The data presented argue for the suitability of M. acetivorans for the biotechnical production of certain isoprenoids.
Collapse
Affiliation(s)
- Andrea Mentrup
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| | - Luca V. Scheitz
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| | - Theo Wallenfang
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Michael Rother
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Li X, Zhang T, Liu Z, Jiao M, Li Q, Gand M, Zhu K, Qiao Y, Bai W, Guo Z, Li B, Wang Y, Dong J, Li B. Machine learning analysis of pre-culture effects on rate-limiting steps in volatile compound dynamics of Mead. Food Chem X 2025; 26:102313. [PMID: 40109907 PMCID: PMC11919604 DOI: 10.1016/j.fochx.2025.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
A novel two-step fermentation process was developed to enhance mead flavor quality. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) with three columns was used to analyze the volatile profiles of meads, along with sensory evaluation and machine learning. Compared to traditional mead (TM), our novel mead (NM) reduced off-flavor compounds by 37.6 %, with isoamyl alcohol decreasing 1.26-fold and ethyl laurate 2.09-fold. Meanwhile, aromatic compounds increased by 39.41 %, with isoamyl acetate rising 3.31-fold, ethyl caproate 2.79-fold, and phenylethyl alcohol 1.69-fold. Sensory evaluation revealed a significant reduction in bitterness (41.1 %) and irritation (42.5 %), while fruity, sweet, and pleasantly sour flavors increased by 27.4 %, 36.9 %, and 45.5 % for NM. Key aroma compounds (benzaldehyde, 2,3-butanediol, cedrol) were identified via recombination and omission experiments. Dynamic monitoring and machine learning identified key rate-limiting steps, including the oxidation of benzeneacetaldehyde (phenylethyl alcohol synthesis), isovaleraldehyde (isoamyl alcohol synthesis), and the conversion of octanoic acid to decanoic acid.
Collapse
Affiliation(s)
- Xian Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Tiantian Zhang
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
| | - Ziwei Liu
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Meng Jiao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Kexin Zhu
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Yibing Qiao
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Wushuang Bai
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| | - Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bin Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiran Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Dong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| |
Collapse
|
12
|
Fagbohun OF, Rollins A, Mattern L, Cipollini K, Rupasinghe HV. Frondoside A of Cucumaria frondosa (Gennerus, 1767): Chemistry, biosynthesis, medicinal applications, and mechanism of actions. J Pharm Pharmacol 2025; 77:32-42. [PMID: 38843504 DOI: 10.1093/jpp/rgae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 01/07/2025]
Abstract
Cucumaria frondosa (Gennerus, 1767) or orange-footed sea cucumbers are traditional food and are used as natural sources of anti-diabetic, anti-inflammatory, antioxidant, anti-angiogenic, antimicrobial, and anticancer agents. Currently, the introduction of value-added sea cucumber products to the global market has inspired basic research on frondoside A and other saponins in sea cucumbers. These saponins serve as a means of their chemical defence. However, recent studies revealed that exposure to these saponins can lead to irritating symptoms from aerosolization of various holothurins. Moreover, extraction methods are critical to the bioavailability of various bioactive compounds found in sea cucumbers. Therefore, we have critically reviewed recent studies on the chemistry, biosynthesis, and pharmacological properties of frondoside A. Furthermore, the mechanism of actions of frondoside A was postulated and further studies are required for applications in functional foods, nutraceuticals, and pharmaceuticals. Frondoside A was first discovered from Cucumaria frondosa, and it is involved in protein kinase (PI3K/AKT/ERK1/2/p38 MAPK, RAC/CDC42 PAK1, NFκB/MAPK/JNK, and LXR-β) signalling pathways. It is also involved in the suppression of MYC oncogene transcriptional factors implicated and upregulated in over 70% of cancer types. Future research needs to be aimed at optimized green extraction techniques, efficient delivery methods, safety, and efficacy.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Amanda Rollins
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Lindsey Mattern
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Kendra Cipollini
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Hp Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
13
|
Trepka KR, Olson CA, Upadhyay V, Zhang C, Turnbaugh PJ. Pharma[e]cology: How the Gut Microbiome Contributes to Variations in Drug Response. Annu Rev Pharmacol Toxicol 2025; 65:355-373. [PMID: 39107044 PMCID: PMC11864876 DOI: 10.1146/annurev-pharmtox-022724-100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.
Collapse
Affiliation(s)
- Kai R Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Christine A Olson
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Vaibhav Upadhyay
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Chen Zhang
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Peter J Turnbaugh
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| |
Collapse
|
14
|
Zhang P, Liu H, Yu Y, Peng S, Zeng A, Song L. Terpenoids mediated cell apoptotsis in cervical cancer: Mechanisms, advances and prospects. Fitoterapia 2025; 180:106323. [PMID: 39631509 DOI: 10.1016/j.fitote.2024.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cervical cancer remains one of the most common malignancies among women globally, causing hundreds of thousands of deaths annually. Despite widespread vaccination and screening programs, the incidence of cervical cancer remains high in developing countries. OBJECTIVE This review aims to systematically summarize the existing terpenoids effective in preventing cervical cancer, elucidate their potential mechanisms in the prophylaxis and treatment of cervical cancer, and assess the limitations of current studies. RESULTS Studies have shown that terpenoids can decrease the incidence of cervical cancer and promote apoptosis of cancer cells through various signaling pathways, including the PI3K/AKT pathway, the endoplasmic reticulum stress (ERS) pathway, and the mitochondria- and caspase-dependent cell death pathways. Furthermore, some terpenoids have been found to enhance the sensitivity to chemotherapy drugs, thus improving patients' quality of life. CONCLUSION Terpenoids play a significant role in inhibiting the progression of cervical cancer. However, due to their diversity and complex mechanisms of action, further research is necessary to investigate their specific targets and bioactivities to advance their clinical trials and applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yuan Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Shiyang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
15
|
Robin M, Römermann C, Niinemets Ü, Gershenzon J, Huang J, Nelson BW, Taylor TC, de Souza VF, Pinho D, Falcão L, Lacerda C, Duvoisin Júnior S, Schmidt A, Gomes Alves E. Interactions between leaf phenological type and functional traits drive variation in isoprene emissions in central Amazon forest trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1522606. [PMID: 39777083 PMCID: PMC11703902 DOI: 10.3389/fpls.2024.1522606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest. Evergreen isoprene emitters were less likely to store monoterpenes and had tougher and less photosynthetically active leaves with higher carbon-to-nitrogen ratios compared to non-emitters. Isoprene emission rates in brevideciduous trees were higher with a higher diversity of stored sesquiterpenes and total phenolics content. Our results suggest that the way isoprene emissions relate to growth and defense traits in central Amazon trees might be influenced by leaf phenological type, and that isoprene may participate in co-regulating a chemical-mechanical defense trade-off between brevideciduous and evergreen trees. Such knowledge can be used to improve emission estimates based on leaf phenological type since, as a highly-emitted biogenic volatile organic compound (BVOC), isoprene affects atmospheric processes with implications for the Earth's radiative balance.
Collapse
Affiliation(s)
- Michelle Robin
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Christine Römermann
- Institute for Ecology and Evolution, Friedrich-Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- Senckenberg Institute for Plant Form and Function (SIP), Jena, Germany
| | - Ülo Niinemets
- Crop Science and Plant Biology Department, Estonian University of Life Sciences, Tartu, Estonia
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jianbei Huang
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Bruce W. Nelson
- Environmental Dynamics Department, National Institute of Amazonian Research, Manaus, Brazil
| | - Tyeen C. Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Davieliton Pinho
- Department of Tropical Forest Sciences, National Institute of Amazonian Research, Manaus, Brazil
| | - Lucas Falcão
- Department of Chemistry, University of Amazonas State, Manaus, Brazil
| | - Caroline Lacerda
- Department of Chemistry, University of Amazonas State, Manaus, Brazil
| | | | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Eliane Gomes Alves
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
16
|
Antoniuk O, Maranha A, Salvador JAR, Empadinhas N, Moreira VM. Bi- and tricyclic diterpenoids: landmarks from a decade (2013-2023) in search of leads against infectious diseases. Nat Prod Rep 2024; 41:1858-1894. [PMID: 39371026 DOI: 10.1039/d4np00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.
Collapse
Affiliation(s)
- Olha Antoniuk
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Maranha
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Jorge A R Salvador
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Nuno Empadinhas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Vânia M Moreira
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
17
|
Huang J, Lei T, Zhou Q, Fang Z, Ruan H, Wang L, Qian W, Lu Y, Wang Q, Gao L, Wang Z, Wang Y. Comparative Metabolome and Transcriptome Analysis Revealed the Accumulative Mechanism of Rubusoside in Chinese Sweet Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24539-24551. [PMID: 39442010 DOI: 10.1021/acs.jafc.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Terpenoids are important secondary metabolites in Rubus. Rubusoside is a relatively specific diterpenoid bioactive component in the leaves of Chinese Sweet Tea (Rubus suavissimus). However, the terpenoid anabolic pathway of Rubus and the molecular mechanism underlying the specific accumulation of rubusoside in R. suavissimus remain unclear. Here, metabolomics and transcriptomics analyses were performed on differences in terpenoid metabolism levels between R. suavissimus (sweet leaves) and Rubus chingii (bitter leaves). Steviol glycosides and goshonosides primarily accumulated in R. suavissimus and R. chingii, respectively. Three pairs of highly homologous glycosyltransferase genes (UGT85A57, UGT75L20, and UGT75T4) associated with rubusoside biosynthesis in the two Rubus species were identified. The three pairs of UGT proteins in both species could glycosylate steviol. Thus, the transcriptional regulation of UGTs in R. suavissimus appears to play a pivotal role in rubusoside accumulation. Our findings provide insights into the differences in terpenoid metabolism between R. suavissimus and R. chingii and reveal the molecular mechanism of rubusoside accumulation in R. suavissimus.
Collapse
Affiliation(s)
- Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qi Zhou
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yeyang Lu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhenhong Wang
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
18
|
Borah A, Singh S, Chattopadhyay R, Kaur J, Bari VK. Integration of CRISPR/Cas9 with multi-omics technologies to engineer secondary metabolite productions in medicinal plant: Challenges and Prospects. Funct Integr Genomics 2024; 24:207. [PMID: 39496976 DOI: 10.1007/s10142-024-01486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Plants acts as living chemical factories that may create a large variety of secondary metabolites, most of which are used in pharmaceutical products. The production of these secondary metabolites is often much lower. Moreover, the primary constraint after discovering potential metabolites is the capacity to manufacture sufficiently for use in industrial and therapeutic contexts. The development of omics technology has brought revolutionary discoveries in various scientific fields, including transcriptomics, metabolomics, and genome sequencing. The metabolic pathways leading to the utilization of new secondary metabolites in the pharmaceutical industry can be identified with the use of these technologies. Genome editing (GEd) is a versatile technology primarily used for site-directed DNA insertions, deletions, replacements, base editing, and activation/repression at the targeted locus. Utilizing GEd techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9), metabolic pathways engineered to synthesize bioactive metabolites optimally. This article will briefly discuss omics and CRISPR/Cas9-based methods to improve secondary metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Anupriya Borah
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Shailey Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Jaspreet Kaur
- RT-PCR Testing Laboratory, District Hospital, Hoshiarpur, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India.
| |
Collapse
|
19
|
Campos F, Vieira M, Sousa M, Jorge L, Ferreira G, Marques M, Boaro C. Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna. Life (Basel) 2024; 14:1416. [PMID: 39598214 PMCID: PMC11595764 DOI: 10.3390/life14111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Water availability and light during the dry and rainy seasons in the Cerrado may influence plants' stomatal movement and the entry of CO2 for organic synthesis, which is the main electron drain. A lower stomatal conductance may contribute to the energy accumulated in the chloroplasts being directed towards the synthesis of compounds, which contributes to the activity of antioxidant enzymes to neutralize reactive oxygen species. Xylopia aromatica is a characteristic Cerrado species, and it is often recommended for recovering degraded areas. This study aimed to investigate the influence of the dry and rainy seasons on the metabolic adjustments of Xylopia aromatica in a portion of the Brazilian savanna in the state of São Paulo. In the rainy season, better photosynthetic performance led to greater investment in essential oil production. In the dry season, the plants may direct part of their reducing sugars to the syntheses of carotenoids and anthocyanins, which may help the antioxidant enzymes to neutralize reactive oxygen species. Carotenoids assist in the dissipation of photosystem energy, which has the potential to cause oxidative stress. During this season, lower stomatal conductance prevented excessive water loss. These results suggest the acclimatization of this species to the conditions of the Brazilian savanna.
Collapse
Affiliation(s)
- Felipe Campos
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Maria Vieira
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Marília Sousa
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Letícia Jorge
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Gisela Ferreira
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Marcia Marques
- Agronomic Institute of Campinas (IAC), Plant Genetic Resources Center, Campinas 13075-630, SP, Brazil;
| | - Carmen Boaro
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| |
Collapse
|
20
|
Kumar V, Johnson BP, Mandal PS, Sheffield DR, Dimas DA, Das R, Maity S, Distefano MD, Singh S. The utility of Streptococcus mutans undecaprenol kinase for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Bioorg Chem 2024; 151:107707. [PMID: 39128243 PMCID: PMC11365746 DOI: 10.1016/j.bioorg.2024.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Isoprene chemoenzymatic cascades (ICCs) overcome the complexity of natural pathways by leveraging a streamlined two-enzyme cascade, facilitating efficient synthesis of C5-isoprene diphosphate precursors from readily available alcohol derivatives. Despite the documented promiscuity of enzymes in ICCs, exploration of their potential for accessing novel compounds remains limited, and existing methods require additional enzymes for generating longer-chain diphosphates. In this study, we present the utility of Streptococcus mutans undecaprenol kinase (SmUdpK) for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Using a library of 50 synthetic alcohols, we demonstrate that SmUdpK's promiscuity extends to allylic chains as small as four carbons and benzylic alcohols with various substituents. Subsequently, SmUdpK is utilized in an ICC with isopentenyl phosphate kinase and aromatic prenyltransferase to generate multiple non-natural isoprenoids. This work provides evidence that, with proper optimization, SmUdpK can act as the first enzyme in these ICCs, enhancing access to both valuable and novel compounds.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Bryce P Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Prashant S Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Daniel R Sheffield
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Dustin A Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Riki Das
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States.
| |
Collapse
|
21
|
Chen Q, Lyu L, Xue H, Shah AM, Zhao ZK. Engineering a non-model yeast Rhodotorula mucilaginosa for terpenoids synthesis. Synth Syst Biotechnol 2024; 9:569-576. [PMID: 38690180 PMCID: PMC11058065 DOI: 10.1016/j.synbio.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Terpenoids have tremendous biological activities and are widely employed in food, healthcare and pharmaceutical industries. Using synthetic biology to product terpenoids from microbial cell factories presents a promising alternative route compared to conventional methods such as chemical synthesis or phytoextraction. The red yeast Rhodotorula mucilaginosa has been widely studied due to its natural production capacity of carotenoid and lipids, indicating a strong endogenous isoprene pathway with readily available metabolic intermediates. This study constructed several engineered strains of R. mucilaginosa with the aim of producing different terpenoids. Monoterpene α-terpineol was produced by expressing the α-terpineol synthase from Vitis vinifera. The titer of α-terpineol was further enhanced to 0.39 mg/L by overexpressing the endogenous rate-limiting gene of the MVA pathway. Overexpression of α-farnesene synthase from Malus domestica, in combination with MVA pathway rate-limiting gene resulted in significant increase in α-farnesene production, reaching a titer of 822 mg/L. The carotenoid degradation product β-ionone was produced at a titer of 0.87 mg/L by expressing the β-ionone synthase from Petunia hybrida. This study demonstrates the potential of R. mucilaginosa as a platform host for the direct biosynthesis of various terpenoids and provides insights for further development of such platforms.
Collapse
Affiliation(s)
- Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
22
|
Lee S, Park NI, Park Y, Heo K, Kwon Y, Kim ES, Son YK, Lee KJ, Choi SY, Choi BS, Kim NS, Choi IY. Contents of paeoniflorin and albiflorin in two Korean landraces of Paeonia lactiflora and characterization of paeoniflorin biosynthesis genes in peony. Genes Genomics 2024; 46:1107-1122. [PMID: 39126602 DOI: 10.1007/s13258-024-01553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND RESEARCH PURPOSE Paeoniflorin and albiflorin are monoterpene glycosides that exhibit various medicinal properties in Paeonia species. This study explored the terpene biosynthesis pathway and analyzed the distribution of these compounds in different tissues of two Korean landraces of Paeonia lactiflora to gain insights into the biosynthesis of monoterpene glycosides in P. lactiflora and their potential applications. MATERIALS AND METHODS Two Korean landraces, Hongcheon var. and Hwacheon var, of P. lactiflora were used for the analyses. Contents of the paeoniflorin and albiflorin were analyzed using HPLC. RNA was extracted, sequenced, and subjected to transcriptome analysis. Differential gene expression, KEGG, and GO analyses were performed. Paeoniflorin biosynthesis genes were isolated from the transcriptomes using the genes in Euphorbia maculata with the NBLAST program. Phylogenetic analysis of of 1-Deoxy-D-xylulose 5-phosphate synthase (DOXPS), geranyl pyrophosphate synthase (GPPS), and pinene synthase (PS) was carried out with ClustalW and MEGA v5.0. RESULTS AND DISCUSSION Analysis of paeoniflorin and albiflorin content in different tissues of the two P. lactiflora landraces revealed significant variation. Transcriptome analysis yielded 36,602 unigenes, most of which were involved in metabolic processes. The DEG analysis revealed tissue-specific expression patterns with correlations between landraces. The isolation of biosynthetic genes identified 173 candidates. Phylogenetic analysis of the key enzymes in these pathways provides insights into their evolutionary relationships. The sequencing and analysis of DOXPS, GPPS, PS revealed distinct clades and subclades, highlighting their evolutionary divergence and functional conservation. Our findings highlight the roots as the primary sites of paeoniflorin and albiflorin accumulation in P. lactiflora, underscoring the importance of tissue-specific gene expression in their biosynthesis. CONCLUSION this study advances our understanding of monoterpene glycoside production and distribution in Paeonia, thereby guiding further plant biochemistry investigations.
Collapse
Affiliation(s)
- Seungki Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Kweon Heo
- Department of Plant Resources and Applied Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Yongsoo Kwon
- Department of Pharmacy, Kangwon National University, Chucheon, 24341, Korea
| | - Eun Sil Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Kyung Jin Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | | | | | - Nam-Soo Kim
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
23
|
Kesharwani S, Eeba, Tandi M, Agarwal N, Sundriyal S. Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies. RSC Adv 2024; 14:27530-27554. [PMID: 39221132 PMCID: PMC11362829 DOI: 10.1039/d4ra05083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 μM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Eeba
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| |
Collapse
|
24
|
Hoondee P, Phuengjayaem S, Kingkaew E, Rojsitthisak P, Sritularak B, Thompho S, Pornputtapong N, Thitikornpong W, Tanasupawat S. Comparative genomic analysis and optimization of astaxanthin production of Rhodotorula paludigena TL35-5 and Rhodotorula sampaioana PL61-2. PLoS One 2024; 19:e0304699. [PMID: 38995888 PMCID: PMC11244826 DOI: 10.1371/journal.pone.0304699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 07/14/2024] Open
Abstract
Astaxanthin is a powerful antioxidant known to enhance skin, cardiovascular, eye, and brain health. In this study, the genome insights and astaxanthin production of two newly isolated astaxanthin-producing yeasts (TL35-5 and PL61-2) were evaluated and compared. Based on their phenotypic and genotypic characteristics, TL35-5 and PL61-2 were identified as basidiomycetous yeasts belonging to Rhodotorula paludigena and Rhodotorula sampaioana, respectively. To optimize astaxanthin production, the effects of cultural medium composition and cultivation conditions were examined. The optimal conditions for astaxanthin production in R. paludigena TL35-5 involved cultivation in AP medium containing 10 g/L glucose as the sole carbon source, supplemented with 1.92 g/L potassium nitrate, pH 6.5, and incubation at 20°C for 3 days with shaking at 200 rpm. For R. sampaioana PL61-2, the optimal medium composition for astaxanthin production consisted of AP medium with 40 g/L glucose, supplemented with 0.67 g/L urea, pH 7.5, and the fermentation was carried out at 20°C for 3 days with agitating at 200 rpm. Under their optimal conditions, R. paludigena TL35-5 and R. sampaioana PL61-2 gave the highest astaxanthin yields of 3.689 ± 0.031 and 4.680 ± 0.019 mg/L, respectively. The genome of TL35-5 was 20,982,417 bp in length, with a GC content of 64.20%. A total of 6,789 protein-encoding genes were predicted. Similarly, the genome of PL61-2 was 21,374,169 bp long, with a GC content of 64.88%. It contained 6,802 predicted protein-encoding genes. Furthermore, all essential genes involved in astaxanthin biosynthesis, including CrtE, CrtYB, CrtI, CrtS, and CrtR, were identified in both R. paludigena TL35-5 and R. sampaioana PL61-2, providing evidence for their ability to produce astaxanthin.
Collapse
Affiliation(s)
- Patcharaporn Hoondee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, Thailand
| | - Sukanya Phuengjayaem
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somphob Thompho
- Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Worathat Thitikornpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Zheng J, He X, Zhou X, Liu X, Yi Y, Su D, Zhang W, Liao Y, Ye J, Xu F. The Ginkgo biloba microRNA160-ERF4 module participates in terpene trilactone biosynthesis. PLANT PHYSIOLOGY 2024; 195:1446-1460. [PMID: 38431523 DOI: 10.1093/plphys/kiae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factor 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase [HMGR], 3-hydroxy-3-methylglutaryl-CoA synthase [HMGS], 1-deoxy-D-xylulose-5-phosphate reductoisomerase [DXR], 1-deoxy-D-xylulose-5-phosphate synthase [DXS], acetyl-CoA C-acetyltransferase [AACT], and geranylgeranyl diphosphate synthase [GGPPS]) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast 1-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the biosynthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yuwei Yi
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Dongxue Su
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
26
|
Laoué J, Gea-Izquierdo G, Dupouyet S, Conde M, Fernandez C, Ormeño E. Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field. TREE PHYSIOLOGY 2024; 44:tpae047. [PMID: 38676920 DOI: 10.1093/treephys/tpae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | | | - Sylvie Dupouyet
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - María Conde
- CIFOR-INIA, CSIC, Centro de Investigación Forestal Moncloa - Aravaca 28040 Madrid, Spain
| | - Catherine Fernandez
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - Elena Ormeño
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| |
Collapse
|
27
|
Riaz A, Thomas J, Ali HH, Zaheer MS, Ahmad N, Pereira A. High night temperature stress on rice ( Oryza sativa) - insights from phenomics to physiology. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24057. [PMID: 38815128 DOI: 10.1071/fp24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.
Collapse
Affiliation(s)
- Awais Riaz
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Hafiz Haider Ali
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; and Department of Agriculture, Government College University Lahore, Lahore 54000, Pakistan; and Department of Plant Sciences, Aberdeen Research & Extension Center, University of Idaho, Aberdeen, ID, USA
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
28
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
29
|
Wu X, Yang Z, Song C, Bu M, Li W, Duan J, Yang GF, Zhang A. Hydroxamate-Containing Bisphosphonates as Fosmidomycin Analogues: Design, Synthesis, and Proherbicide Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7684-7693. [PMID: 38532701 DOI: 10.1021/acs.jafc.3c07872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiguo Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
30
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
31
|
Raghavan I, Juman R, Wang ZQ. The non-mevalonate pathway requires a delicate balance of intermediates to maximize terpene production. Appl Microbiol Biotechnol 2024; 108:245. [PMID: 38421431 PMCID: PMC10904526 DOI: 10.1007/s00253-024-13077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.
Collapse
Affiliation(s)
- Indu Raghavan
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Rosheena Juman
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA.
| |
Collapse
|
32
|
Wu X, Bu M, Yang Z, Ping H, Song C, Duan J, Zhang A. Design and synthesis of fosmidomycin analogs containing aza-linkers and their biological activity evaluation. PEST MANAGEMENT SCIENCE 2024; 80:846-856. [PMID: 37794283 DOI: 10.1002/ps.7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway are attractive targets of a new mode of action for developing anti-infective drugs and herbicides, and inhibitors against 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), the second key enzyme in the pathway, have been intensively investigated; however, few works are reported regarding IspC inhibitors designed for new herbicide discovery. RESULTS A series of fosmidomycin (FOS) analogs were designed with nitrogen-containing linkers replacing the trimethylene linker between the two active substructures of FOS, phosphonic acid and hydroxamic acid. Synthesis followed a facile three-step route of sequential aza-Michael addition of α-amino acids to dibenzyl vinylphosphonate, amidation of the amino acid carboxyl with O-benzyl hydroxylamine, and simultaneous removal of the benzyl protective groups. Biological activity evaluation of IspC and model plants revealed that some compounds had moderate enzyme and model plant growth inhibition effects. In particular, compound 10g, which has a N-(4-fluorophenylethyl) nitrogen-containing linker, exhibited the best plant inhibition activities, superior to the control FOS against the model plants Arabidopsis thaliana, Brassica napus L., Amaranthus retroflexus and Echinochloa crus-galli. A dimethylallyl pyrophosphate rescue assay on A. thaliana confirmed that both 10g and FOS exert their herbicidal activity by blocking the MEP pathway. This result consistent with molecular docking, which confirmed 10g and FOS binding to the IspC active site in a similar way. CONCLUSION Compound 10g has excellent herbicidal activity and represents the first herbicide lead structure of a new mode of action that targets IspC enzyme in the MEP pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongrui Ping
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
33
|
Simonet B, Herrscher V, Witjaksono C, Chaignon P, Massicot F, Vasse JL, Seemann M, Behr JB. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. J Org Chem 2023; 88:15832-15843. [PMID: 37917513 DOI: 10.1021/acs.joc.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.
Collapse
Affiliation(s)
- Basile Simonet
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Vivien Herrscher
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Fabien Massicot
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Bernard Behr
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| |
Collapse
|
34
|
Wu X, Yang Z, Bu M, Duan J, Zhang A. Design, Synthesis and Bioactivity Evaluation of Heterocycle-Containing Mono- and Bisphosphonic Acid Compounds. Molecules 2023; 28:7509. [PMID: 38005231 PMCID: PMC10673511 DOI: 10.3390/molecules28227509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Fosmidomycin (FOS) is a naturally occurring compound active against the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, and using it as a template for lead structure design is an effective strategy to develop new active compounds. In this work, by replacing the hydroxamate unit of FOS with pyrazole, isoxazole and the related heterocycles that also have metal ion binding affinity, while retaining the monophosphonic acid in FOS or replacing it with a bisphosphonic acid group, heterocycle-containing mono- and bisphosphonic acid compounds as FOS analogs were designed. The key steps involved in the facile synthesis of these FOS analogs included the Michael addition of diethyl vinylphosphonate or tetraethyl vinylidenebisphosphonate to β-dicarbonyl compounds and the subsequent cyclic condensation with hydrazine or hydroxylamine. Two additional isoxazolinone-bearing FOS analogs were synthesized via the Michaelis-Becker reaction with diethyl phosphite as a key step. The bioactivity evaluation on model plants demonstrated that several compounds have better herbicidal activities compared to FOS, with the most active compound showing a 3.7-fold inhibitory activity on Arabidopsis thaliana, while on the roots and stalks of Brassica napus L. and Echinochloa crus-galli in a pre-emergence inhibitory activity test, the activities of this compound were found to be 3.2- and 14.3-fold and 5.4- and 9.4-fold, respectively, and in a post-emergency activity test on Amaranthus retroflexus and Echinochloa crus-galli, 2.2- and 2.0-fold inhibition activities were displayed. Despite the significant herbicidal activity, this compound exhibited a DXR inhibitory activity lower than that of FOS but comparable to that of other non-hydroxamate DXR inhibitors, and the dimethylallyl pyrophosphate rescue assay gave no statistical significance, suggesting that a different target might be involved in the inhibiting process. This work demonstrates that using bioisosteric replacement can be considered as a valuable strategy to discover new FOS analogs that may have high herbicidal activities.
Collapse
Affiliation(s)
| | | | | | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| |
Collapse
|
35
|
Marshall B, Amritkar K, Wolfe M, Kaçar B, Landick R. Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway. Front Microbiol 2023; 14:1286626. [PMID: 38029103 PMCID: PMC10663253 DOI: 10.3389/fmicb.2023.1286626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Bailey Marshall
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Kaustubh Amritkar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael Wolfe
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
36
|
Yadav I, Rautela A, Gangwar A, Wagadre L, Rawat S, Kumar S. Enhancement of isoprene production in engineered Synechococcus elongatus UTEX 2973 by metabolic pathway inhibition and machine learning-based optimization strategy. BIORESOURCE TECHNOLOGY 2023; 387:129677. [PMID: 37579861 DOI: 10.1016/j.biortech.2023.129677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
An engineered Synechococcus elongatus UTEX 2973-IspS.IDI is used to enhance isoprene production through geranyl diphosphate synthase (CrtE) inhibition and process parameters (light intensity, NaHCO3 and growth temperature) optimization approach. A cumulative isoprene production of 1.21 mg/gDCW was achieved with productivity of 12.6 μg/gDCW/h in culture supplemented with 20 μg/mL alendronate. This inhibition strategy improvises the cumulative isoprene production 5.76-fold in presence of alendronate. The maximum cumulative production of isoprene is observed to be 5.22 and 6.20 mg/gDCW (54.4 and 64.6 μg/gDCW/h) at statistical and artificial neural network genetic algorithm (ANN-GA) optimized conditions, respectively. The overall increase of isoprene production is found to be 29.52-fold using an integrated approach of inhibition and ANN-GA optimization in comparison to unoptimized cultures without alendronate. This study reveals that alendronate use as a potential inhibitor and machine learning based optimization is a better approach in comparison to statistical optimization to enhance the isoprene production.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Agendra Gangwar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Lokesh Wagadre
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Shweta Rawat
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
37
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
38
|
Kumar P, Banik SP, Goel A, Chakraborty S, Bagchi M, Bagchi D. A critical assessment of the whole plant-based phytotherapeutics from Withania somnifera (L.) Dunal with respect to safety and efficacy vis-a-vis leaf or root extract-based formulation. Toxicol Mech Methods 2023; 33:698-706. [PMID: 37533233 DOI: 10.1080/15376516.2023.2242933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Withania somnifera (L.) Dunal, popularly known as Ashwagandha or Indian ginseng, is well acclaimed for its health-enhancing effects, including its potent immunomodulatory, anti-inflammatory, neuroprotective, and anti-tumorigenic properties. The prime biological effectors of these attributes are a diverse group of ergostane-based steroidal lactones termed withanolides. Withanones and withanosides are distributed differentially across the plant body, whereas withanolides and withanones are known to be more abundant in leaves, while withanosides are found exclusively in the roots of the plants. Standardized W. somnifera extract is Generally Recognized as Safe (GRAS)-affirmed, however, moderate to severe toxic manifestations may occur at high dosages. Withaferin A, which also happens to be the primary bioactive ingredient for the effectiveness of this plant. There have been contrasting reports regarding the distribution of withaferin A in W. somnifera. While most reports state that the roots of the plant have the highest concentrations of this phytochemical, several others have indicated that leaves can accumulate withaferin A in proportionately higher amounts. A comprehensive survey of the available reports suggests that the biological effects of Ashwagandha are grossly synergistic in nature, with many withanolides together mediating the desired physiological effect. In addition, an assorted formulation of withanolides can also neutralize the toxic effects (if any) associated with withaferin A. This mini-review presents a fresh take on the recent developments regarding the safety and toxicity of the plant, along with a critical assessment of the use of roots against leaves as well as whole plants to develop therapeutic formulations. Going by the currently available scientific evidence, it is safe to infer that the use of whole plant formulations instead of exclusively root or leaf recipes may present the best possible option for further exploration of therapeutic benefits from this novel medicinal plant.HighlightsTherapeutic potential of withanolides owes to the presence of α,β unsaturated ketone which binds to amines, alcohols, and esters and 5β, 6β epoxy group which react with side chain thiols of proteins.At concentrations above NOAEL (no observed adverse effect level), the same mechanisms contribute towards toxicity of the molecule.Although withanosides are found exclusively in roots, whole plants have higher contents of withanones and withanolides.Whole plant-based formulations have other metabolites which can nullify the toxicity associated with roots.Extracts made from whole plants, therefore can holistically impart all therapeutic benefits as well as mitigate toxicity.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | | | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Dept of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
39
|
Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 2023; 621:840-848. [PMID: 37674084 PMCID: PMC10533412 DOI: 10.1038/s41586-023-06525-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Camelids, New World/immunology
- Lymphocyte Activation
- Molecular Dynamics Simulation
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Nuclear Magnetic Resonance, Biomolecular
- Thermodynamics
Collapse
Affiliation(s)
- Linjie Yuan
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunyun Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yingying Qu
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | | | - Jing Xue
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haoyu Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ningning Cai
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lin Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kecheng Lai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinyi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yirong Yao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuqi Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Chang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Wenqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Kumara PM, Varun E, Sanjay JR, Madhushree AH, Thimmappa R. De novo transcriptome analysis of Dysoxylum binectariferum to unravel the biosynthesis of pharmaceutically relevant specialized metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1098987. [PMID: 37636089 PMCID: PMC10450223 DOI: 10.3389/fpls.2023.1098987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/05/2023] [Indexed: 08/29/2023]
Abstract
The tropical tree, D. binectariferum, is a prominent source of chromone alkaloid rohitukine, which is used in the semi-syntheses of anticancer molecules such as flavopiridol and P-276-00. The biosynthetic pathway of rohitukine or its derivatives is currently unknown in plants. Here, we explored chromone alkaloid biosynthesis in D. binectariferum through targeted transcriptome sequencing. Illumina sequencing of leaves and roots of a year-old D. binectariferum seedling generated, 42.43 and 38.74 million paired-end short reads, respectively. Quality filtering and de novo assembly of the transcriptome generated 274,970 contigs and 126,788 unigenes with an N50 contig length of 1560 bp. The assembly generated 117,619 translated unigene protein sequences and 51,598 non-redundant sequences. Nearly 80% of these non-redundant sequences were annotated to publicly available protein and nucleotide databases, suggesting the completeness and effectiveness of the transcriptome assembly. Using the assembly, we identified a chalcone synthase (CHS) and three type III polyketide synthases (PKS-III; non-CHS type) that are likely to be involved in the biosynthesis of chromone ring/noreugenin moiety of rohitukine. We also identified key enzymes like lysine decarboxylase in the piperidine pathway that make the piperidine moiety of rohitukine. Besides these, the upstream enzymes in flavonoid biosynthesis like phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H),4-coumarate-CoA ligase (4CL), and chalcone isomerase (CHI) have also been identified. Also, terpene synthases that are likely to be involved in the biosynthesis of various terpenoid scaffolds have been identified. Together, the D. binectariferum transcriptome resource forms a basis for further exploration of biosynthetic pathways of these valuable compounds through functional validation of the candidate genes and metabolic engineering in heterologous hosts. Additionally, the transcriptome dataset generated will serve as an important resource for research on functional genomics and enzyme discovery in D. binectariferum and comparative analysis with other Meliaceae family members.
Collapse
Affiliation(s)
- Patel Mohana Kumara
- Department of Biotechnology and Crop Improvement, Kittur Rani Chennamma College of Horticulture, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka, India
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Eranna Varun
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Joshi Renuka Sanjay
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Anchedoddi Hanumegowda Madhushree
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
41
|
Ahmad MA, Chaudhary S, Deng X, Cheema M, Javed R. Nano-stevia interaction: Past, present, and future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107807. [PMID: 37311291 DOI: 10.1016/j.plaphy.2023.107807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
42
|
Bhat S, Banerjee A, Alagesan S. AraC-Based Biosensor for the Detection of Isoprene in E. coli. ACS OMEGA 2023; 8:26806-26815. [PMID: 37546622 PMCID: PMC10399174 DOI: 10.1021/acsomega.3c01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Isoprene is a valuable platform chemical, which is produced by engineered microorganisms, albeit in low quantities. The amount of isoprene produced is usually measured by gas chromatography, which can be time-consuming and expensive. Alternatively, biosensors have evolved as a powerful tool for real-time high-throughput screening and monitoring of product synthesis. The AraC-pBAD-inducible system has been widely studied, evolved, and engineered to develop biosensors for small molecules. In our preliminary studies, the AraC-pBAD system was mildly induced at higher isoprene concentrations when arabinose was also available. Hence, in the present study, we designed and constructed a synthetic biosensor based on the AraC-pBAD system, wherein the ligand-binding domain of AraC was replaced with IsoA. On introducing this chimeric AraC-IsoA (AcIa) transcription factor with the native PBAD promoter system regulating rfp gene expression, fluorescence output was observed only when wild-type Escherichia coli cells were induced with both isoprene and arabinose. The biosensor sensitivity and dynamic range were further enhanced by removing operator sequences and by substituting the native promoter (PAraC) with the strong tac promoter (Ptac). The chimeric sensor did not work in AraC knockout strains; however, functionality was restored by reintroducing AraC. Hence, AraC is essential for the functioning of our biosensor, while AcIa provides enhanced sensitivity and specificity for isoprene. However, insights into how AraC-AcIa interacts and the possible working mechanism remain to be explored. This study provides a prototype for developing chimeric AraC-based biosensors with proteins devoid of known dimerizing domains and opens a new avenue for further study and exploration.
Collapse
|
43
|
Cao C, Zhang H, Cao X, Kong S, Zhu B, Lin X, Zhou YJ. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437260 DOI: 10.1021/acs.jafc.3c02932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Isoprenoids are a kind of natural product with various activities, but their plant extraction suffers low concentration. The rapid development of synthetic biology offers a sustainable route for supply of high-value-added natural products by engineering microorganisms. However, the complexity of cellular metabolism makes engineering endogenous isoprenoid biosynthetic pathways with metabolic interaction difficult. Here, for the first time, we constructed and optimized three types of isoprenoid pathways (the Haloarchaea-type, Thermoplasma-type, and isoprenoid alcohol pathway) in yeast peroxisomes for the synthesis of sesquiterpene (+)-valencene. In yeast, the Haloarchaea-type MVA pathway is more effective than the classical MVA pathway. MVK and IPK were determined to be the rate-limiting steps of the Haloarchaea-type MVA pathway, and the production of 869 mg/L (+)-valencene under fed-batch fermentation in shake flasks was realized. This work expands isoprenoid synthesis in eukaryotes and provides a more efficient pathway for isoprenoid synthesis.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Haiyan Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sijia Kong
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
44
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
45
|
Pandey VK, Tripathi A, Srivastava S, Dar AH, Singh R, Farooqui A, Pandey S. Exploiting the bioactive properties of essential oils and their potential applications in food industry. Food Sci Biotechnol 2023; 32:885-902. [PMID: 37123062 PMCID: PMC10130317 DOI: 10.1007/s10068-023-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
Fruits are an abundant source of minerals and nutrients. High nutritional value and easy-to-consume property have increased its demand. In a way to fulfil this need, farmers have increased production, thus making it available for consumers in various regions. This distribution of fruits to various regions deals with many associated problems like deterioration and spoilage. In a way, the common practices that are being used are stored at low temperatures, preservation with chemicals, and many more. Recently, edible coating has emerged as a promising preservation technique to combat the above-mentioned problems. Edible coating stands for coating fruits with bioactive compounds which maintains the nutritional characteristics of fruit and also enhances the shelf life. The property of edible coating to control moisture loss, solute movement, gas exchange, and oxidation makes it most suitable to use. Preservation is uplifted by maintaining the nutritional and physicochemical properties of fruits with the effectiveness of essential oils. The essential oil contains antioxidant, antimicrobial, flavor, and probiotic properties. The utilization of essential oil in the edible coating has increased the property of coating. This review includes the process of extraction, potential benefits and applications of essential oils in food industry.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, UP India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, UP India
| | - Anjali Tripathi
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, UP India
| | | | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, UP India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, UP India
| | - Sneha Pandey
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, UP India
| |
Collapse
|
46
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
47
|
Zhao Y, Wang J, Huang W, Zhang D, Wu J, Li B, Li M, Liu L, Yan M. Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1023. [PMID: 36903884 PMCID: PMC10005406 DOI: 10.3390/plants12051023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this heavy metal or reduce its accumulation in crops. Abscisic acid (ABA) plays an active role in plants' response to abiotic stress. The application of exogenous ABA can reduce Cd accumulation in shoots of some plants and enhance the tolerance of plants to Cd; therefore, ABA may have good application prospects. In this paper, we reviewed the synthesis and decomposition of ABA, ABA-mediated signal transduction, and ABA-mediated regulation of Cd-responsive genes in plants. We also introduced physiological mechanism underlying Cd tolerance because of ABA. Specifically, ABA affects metal ion uptake and transport by influencing transpiration and antioxidant systems, as well as by affecting the expression of metal transporter and metal chelator protein genes. This study may provide a reference for further research on the physiological mechanism of heavy metal tolerance in plants.
Collapse
Affiliation(s)
- Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaqi Wang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
48
|
Strand DD, Walker BJ. Energetic considerations for engineering novel biochemistries in photosynthetic organisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1116812. [PMID: 36814754 PMCID: PMC9939686 DOI: 10.3389/fpls.2023.1116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humans have been harnessing biology to make valuable compounds for generations. From beer and biofuels to pharmaceuticals, biology provides an efficient alternative to industrial processes. With the continuing advancement of molecular tools to genetically modify organisms, biotechnology is poised to solve urgent global problems related to environment, increasing population, and public health. However, the light dependent reactions of photosynthesis are constrained to produce a fixed stoichiometry of ATP and reducing equivalents that may not match the newly introduced synthetic metabolism, leading to inefficiency or damage. While photosynthetic organisms have evolved several ways to modify the ATP/NADPH output from their thylakoid electron transport chain, it is unknown if the native energy balancing mechanisms grant enough flexibility to match the demands of the synthetic metabolism. In this review we discuss the role of photosynthesis in the biotech industry, and the energetic considerations of using photosynthesis to power synthetic biology.
Collapse
Affiliation(s)
- Deserah D. Strand
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Berkley J. Walker
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
49
|
Liu C, Zhao Z, Xu Q, Zhang H, Liu X, Yin C, Yan H, Liu Y. Comparative Genomic Analysis of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05 for Producing Macular Pigment. Microorganisms 2023; 11:microorganisms11020266. [PMID: 36838230 PMCID: PMC9967899 DOI: 10.3390/microorganisms11020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Sphingomonas morindae sp. NBD5, which we previously identified and tested, is a new bacterial strain for producing lutein. Here, based on the next-generation sequencing technology, we analyzed high throughput genomic sequences and compared related functional genes of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05. The genome of Sphingomonas morindae sp. NBD5 has two sets of chromosomes, which is 4,239,716 bp and harbors 3882 protein coding genes. There are 59 protein-coding genes related to the macular pigment (MP) biosynthesis, of which four genes (ackA, pgm, gpmI and pckA) are unique. These genes, pckG, porB, meh, and fldA, are unique in Sphingopyxis sp. USTB-05. The analysis of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05 genomes gives an insight into the new pathway for MP production. These genes for the transformation of glucose to MP were also found in Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05. This study expands the understanding of the pathway for complete biosynthesis of MP by Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai Yan
- Correspondence: (H.Y.); (Y.L.)
| | | |
Collapse
|
50
|
Dawson RA, Crombie AT, Jansen RS, Smith TJ, Nichol T, Murrell C. Peering down the sink: A review of isoprene metabolism by bacteria. Environ Microbiol 2022; 25:786-799. [PMID: 36567445 DOI: 10.1111/1462-2920.16325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Isoprene (2-methyl-1,3-butadiene) is emitted to the atmosphere each year in sufficient quantities to rival methane (>500 Tg C yr-1 ), primarily due to emission by trees and other plants. Chemical reactions of isoprene with other atmospheric compounds, such as hydroxyl radicals and inorganic nitrogen species (NOx ), have implications for global warming and local air quality, respectively. For many years, it has been estimated that soil-dwelling bacteria consume a significant amount of isoprene (~20 Tg C yr-1 ), but the mechanisms underlying the biological sink for isoprene have been poorly understood. Studies have indicated or confirmed the ability of diverse bacterial genera to degrade isoprene, whether by the canonical iso-type isoprene degradation pathway or through other less well-characterized mechanisms. Here, we review current knowledge of isoprene metabolism and highlight key areas for further research. In particular, examples of isoprene-degraders that do not utilize the isoprene monooxygenase have been identified in recent years. This has fascinating implications both for the mechanism of isoprene uptake by bacteria, and also for the ecology of isoprene-degraders in the environments.
Collapse
Affiliation(s)
- Robin A Dawson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|