1
|
Wang Y, Liao Y, Zhang YJ, Wu XH, Qiao ZY, Wang H. Self-Assembled Peptide with Morphological Structure for Bioapplication. Biomacromolecules 2024; 25:6367-6394. [PMID: 39297513 DOI: 10.1021/acs.biomac.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Peptide materials, such as self-assembled peptide materials, are very important biomaterials. Driven by multiple interaction forces, peptide molecules can self-assemble into a variety of different macroscopic forms with different properties and functions. In recent years, the research on self-assembled peptides has made great progress from laboratory design to clinical application. This review focuses on the different morphologies, including nanoparticles, nanovesicles, nanotubes, nanofibers, and others, formed by self-assembled peptide. The mechanisms and applications of the morphology transformation are also discussed in this paper, and the future direction of self-assembled nanomaterials is envisioned.
Collapse
Affiliation(s)
- Yu Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yusi Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ying-Jin Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xiu-Hai Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin150081, P. R. China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| |
Collapse
|
2
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Mout R, Bretherton RC, Decarreau J, Lee S, Gregorio N, Edman NI, Ahlrichs M, Hsia Y, Sahtoe DD, Ueda G, Sharma A, Schulman R, DeForest CA, Baker D. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. Proc Natl Acad Sci U S A 2024; 121:e2309457121. [PMID: 38289949 PMCID: PMC10861882 DOI: 10.1073/pnas.2309457121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Nicole Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Medical Scientist Training Program, University of Washington, Seattle, WA98195
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alee Sharma
- College of Professional Studies, Northeastern University, Boston, MA02115
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Computer Science, Johns Hopkins University, Baltimore, MD21218
| | - Cole A. DeForest
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| |
Collapse
|
4
|
Gaspar-Morales EA, Waterston A, Sadqi M, Diaz-Parga P, Smith AM, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and Engineered Isoforms of the Inflammasome Adaptor ASC Form Noncovalent, pH-Responsive Hydrogels. Biomacromolecules 2023; 24:5563-5577. [PMID: 37930828 DOI: 10.1021/acs.biomac.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create noncovalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired by the ASC structure that also form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy and studied their viscoelastic behavior using shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
5
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Gaspar-Morales EA, Waterston A, Diaz-Parga P, Smith AM, Sadqi M, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and engineered isoforms of the inflammasome adaptor ASC form non-covalent, pH-responsive hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539154. [PMID: 37205378 PMCID: PMC10187214 DOI: 10.1101/2023.05.03.539154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create non-covalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired in the ASC structure that successfully form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy, and studied their viscoelastic behavior by shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
7
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Meleties M, Britton D, Katyal P, Lin B, Martineau RL, Gupta MK, Montclare JK. High-Throughput Microrheology for the Assessment of Protein Gelation Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Bonnie Lin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Rhett L. Martineau
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
9
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
10
|
Narayan OP. Molecular basis of light-responsive dynamically tunable biomaterials in biomedical engineering. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hou XL, Dai X, Yang J, Zhang B, Zhao DH, Li CQ, Yin ZY, Zhao YD, Liu B. Injectable polypeptide-engineered hydrogel depot for amplifying the anti-tumor immune effect induced by chemo-photothermal therapy. J Mater Chem B 2021; 8:8623-8633. [PMID: 32821893 DOI: 10.1039/d0tb01370f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immunosuppressive tumor microenvironment has caused great obstacles to tumor immunotherapy, especially where less tumor-associated antigens are released from tumor sites. Herein, a Ag2S QD/DOX/Bestatin@PC10ARGD genetically engineered polypeptide hydrogel PC10ARGD as a sustained-release material was developed for mammary carcinoma treatment. A near-infrared silver sulfide (Ag2S) QD as a photosensitizer was encapsulated into the hydrophobic cavity formed by the self-assembly of the polypeptide nanogel (PC10ARGD) for photothermal therapy. The water-soluble drug DOX and Bestatin were integrated into the PC10ARGD hydrogel. The photothermal effect could trigger the sustained release of the DOX, which could be applied to initiate in situ vaccination. Bestatin as an immune-adjuvant drug could amplify the body's immune function. The results of in vivo therapy tests exhibited that the Ag2S QD/DOX/Bestatin@PC10ARGD hydrogel with laser irradiation could activate anti-tumor immune effects that inhibit the growth of primary tumors and distal lung metastatic nodules. Meanwhile, a safer lower-temperature with multiple laser irradiation treatment strategy exhibited more effective tumor-killing performance (84.4% tumor inhibition rate) and promoted the penetration of immune cells into the tumor tissue. The CD8+ and CD4+ cytotoxic T cells ratio was increased by 5.3 and 10 times, respectively, thus exhibiting a good prognostic signal. The multifunctional polypeptide hydrogel as a green manufacturing and engineering material is promising to serve as a cancer vaccine for anticancer applications.
Collapse
Affiliation(s)
- Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Xiang Dai
- Eugenic Genetics Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei, P. R. China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Dong-Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Zhong-Yuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China.
| | - Yuan-di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China. and Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| |
Collapse
|
12
|
Wang Y, Wang X, Montclare JK. Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release. Biomacromolecules 2021; 22:1509-1522. [PMID: 33685120 DOI: 10.1021/acs.biomac.0c01721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fabrication of protein hydrogels consisting of different properties and functional motifs is critical in the development of protein-based materials for biomedical applications. Here, we report the design and characterization of a triblock protein polymer, CEC, composed of two different self-assembling domains derived from elastin protein (E) and coiled-coil protein (C), photopolymerized with a NHS-diazirine (D) crosslinker into a CEC-D hydrogel. The optimal photocrosslinker concentration and exposure time is determined to fabricate a free-standing hydrogel. Upon increasing the concentration of the CEC-D monomer and environmental temperature, the CEC-D hydrogel's conformation decreases in helical content from 58.0% to 44.8% and increases in β-content from 25.9% to 38.1%. These gels experience 55 ± 6% protein erosion from the free-standing gel in 13 days as the gel films gradually decrease in size. The swelling ratio of 12 ± 1% denotes that the gel has a swelling ability comparable to other protein hydrogels. These photocrosslinked CEC-D hydrogels can be employed for drug delivery with high encapsulation and 14 ± 2% release of curcumin into the supernatant in a week long study. Overall, the photocrosslinked CEC-D hydrogels exhibit stability, swelling ability, and sustained release of drug.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
13
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Wang Y, Delgado-Fukushima E, Fu RX, Doerk GS, Monclare JK. Controlling Drug Absorption, Release, and Erosion of Photopatterned Protein Engineered Hydrogels. Biomacromolecules 2020; 21:3608-3619. [DOI: 10.1021/acs.biomac.0c00616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Richard X. Fu
- Sensors and Electron Devices Directorate, Advanced Concepts and Modeling Branch, US Army Research Lab, Adelphi, Maryland 20783, United States
| | - Gregory S. Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jin Kim Monclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
- Department of Biomaterials, NYU College of Dentistry, New York, New York 10010, United States
- Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
15
|
Caparco AA, Bommarius BR, Bommarius AS, Champion JA. Protein-inorganic calcium-phosphate supraparticles as a robust platform for enzyme co-immobilization. Biotechnol Bioeng 2020; 117:1979-1989. [PMID: 32255509 DOI: 10.1002/bit.27348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023]
Abstract
Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bettina R Bommarius
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Li Y, Xue B, Cao Y. 100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Lett 2020; 9:512-524. [PMID: 35648497 DOI: 10.1021/acsmacrolett.0c00109] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our bodies are composed of soft tissues made of various proteins. In contrast, most hydrogels designed for biological applications are made of synthetic polymers. Recently, it is increasingly recognized that genetically synthesized proteins can be tailored as building blocks of hydrogels with biological, chemical, and mechanical properties similar to native soft tissues. In this Viewpoint, we summarize recent progress in synthetic protein hydrogels. We compare the structural and mechanical properties of different protein building blocks. We discuss various biocompatible cross-linking strategies based on covalent chemical reactions and noncovalent physical interactions. We introduce how stimulus-responsive conformational changes or intermolecular interactions at the molecular level can be used to engineer responsive hydrogels. We highlight that hydrogel network structures are as important as the protein sequences for the properties and functions of protein hydrogels and should be carefully designed. Despite great progress and potentials of synthetic protein hydrogels, there are still quite a few unsettled challenges and unexploited opportunities, providing abundant room for future investigation and development, particularly as this field is quickly expanding beyond its initial stage. We discuss a number of possible directions, including optimizing protein production and reducing cost, engineering anisotropic hydrogels to better mimic native tissues, rationally designing hydrogel mechanical properties, investigating interplays of hydrogels and residing cells for 3D cell culture and organoid construction, and evaluating long-term cytotoxicity and immune response.
Collapse
Affiliation(s)
- Ying Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing, China 210044
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China, 210023
- Institute of Brain Science, Nanjing University, Nanjing, China, 210023
| |
Collapse
|
17
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
18
|
Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O’Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Thermoresponsive Protein-Engineered Coiled-Coil Hydrogel for Sustained Small Molecule Release. Biomacromolecules 2019; 20:3340-3351. [DOI: 10.1021/acs.biomac.9b00107] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Teeba Jihad
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Che-Fu Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sean O’Neill
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Raymond S. Tu
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - P. Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10009, United States
| | | | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
19
|
Wang Y, Katyal P, Montclare JK. Protein-Engineered Functional Materials. Adv Healthc Mater 2019; 8:e1801374. [PMID: 30938924 PMCID: PMC6703858 DOI: 10.1002/adhm.201801374] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein-engineered materials from the perspectives of domain-based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
- Department of Chemistry, New York University, New York, NY
10003, United States
- Department of Biomaterials, New York University College of
Dentistry, New York, NY 10010, United States
- Department of Radiology, New York University School of
Medicine, New York, New York, 10016, United States
| |
Collapse
|
20
|
Roberts AD, Finnigan W, Wolde-Michael E, Kelly P, Blaker JJ, Hay S, Breitling R, Takano E, Scrutton NS. Synthetic biology for fibres, adhesives and active camouflage materials in protection and aerospace. MRS COMMUNICATIONS 2019; 9:486-504. [PMID: 31281737 PMCID: PMC6609449 DOI: 10.1557/mrc.2019.35] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/12/2019] [Indexed: 05/03/2023]
Abstract
Synthetic biology has huge potential to produce the next generation of advanced materials by accessing previously unreachable (bio)chemical space. In this prospective review, we take a snapshot of current activity in this rapidly developing area, focussing on prominent examples for high-performance applications such as those required for protective materials and the aerospace sector. The continued growth of this emerging field will be facilitated by the convergence of expertise from a range of diverse disciplines, including molecular biology, polymer chemistry, materials science and process engineering. This review highlights the most significant recent advances and address the cross-disciplinary challenges currently being faced.
Collapse
Affiliation(s)
- Aled D. Roberts
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
- Bio-Active Materials Group, School of Materials, The University of
Manchester, Manchester, UK, M13 9PL
| | - William Finnigan
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Emmanuel Wolde-Michael
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Paul Kelly
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Jonny J. Blaker
- Bio-Active Materials Group, School of Materials, The University of
Manchester, Manchester, UK, M13 9PL
| | - Sam Hay
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| |
Collapse
|
21
|
Lombardi L, Falanga A, Del Genio V, Galdiero S. A New Hope: Self-Assembling Peptides with Antimicrobial Activity. Pharmaceutics 2019; 11:pharmaceutics11040166. [PMID: 30987353 PMCID: PMC6523692 DOI: 10.3390/pharmaceutics11040166] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
22
|
Bulutoglu B, Banta S. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Gels 2019; 5:E10. [PMID: 30823512 PMCID: PMC6473919 DOI: 10.3390/gels5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The RTX domains found in some pathogenic proteins encode repetitive peptide sequences that reversibly bind calcium and fold into the unique the β-roll secondary structure. Several of these domains have been studied in isolation, yielding key insights into their structure/function relationships. These domains are increasingly being used in protein engineering applications, where the calcium-induced control over structure can be exploited to gain new functions. Here we review recent advances in the use of RTX domains in the creation of calcium responsive biomaterials.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
23
|
J. B, Chanda K, M.M. B. Revisiting the insights and applications of protein engineered hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:312-327. [PMID: 30573255 DOI: 10.1016/j.msec.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
|
24
|
|
25
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Wu WH, Wei J, Zhang WB. Controlling SpyTag/SpyCatcher Reactivity via Redox-Gated Conformational Restriction. ACS Macro Lett 2018; 7:1388-1393. [PMID: 35651248 DOI: 10.1021/acsmacrolett.8b00668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report that the reactivity of genetically encoded SpyTag/SpyCatcher chemistry can be manipulated via redox-gated conformational restriction, which facilitates the preparation of all-protein-based hydrogel with latent reactive sites for subsequent covalent functionalization.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
27
|
Liarou E, Varlas S, Skoulas D, Tsimblouli C, Sereti E, Dimas K, Iatrou H. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Caparco AA, Bommarius AS, Champion JA. Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper‐enzyme fusion proteins. AIChE J 2018. [DOI: 10.1002/aic.16150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adam A. Caparco
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| |
Collapse
|
29
|
Olsen AJ, Katyal P, Haghpanah JS, Kubilius MB, Li R, Schnabel NL, O’Neill SC, Wang Y, Dai M, Singh N, Tu RS, Montclare JK. Protein Engineered Triblock Polymers Composed of Two SADs: Enhanced Mechanical Properties and Binding Abilities. Biomacromolecules 2018; 19:1552-1561. [DOI: 10.1021/acs.biomac.7b01259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Andrew J. Olsen
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Jennifer S. Haghpanah
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Matthew B. Kubilius
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nicole L. Schnabel
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Sean C. O’Neill
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Yao Wang
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Min Dai
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Navjot Singh
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Raymond S. Tu
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Jin Kim Montclare
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
- Biochemistry Department, SUNY Downstate Medical, 450 Clarkson Avenue, Brooklyn, New York 11203, United States
- Chemistry Department, New York University, 100 Washington Square East, New York, New York 10003, United States
- Biomaterials Department, New York University College of Dentistry, 433 First Avenue, New York, New York 10010, United States
| |
Collapse
|
30
|
Liu L, Wang H, Han Y, Lv S, Chen J. Using single molecule force spectroscopy to facilitate a rational design of Ca2+-responsive β-roll peptide-based hydrogels. J Mater Chem B 2018; 6:5303-5312. [DOI: 10.1039/c8tb01511b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical stability of Ca2+-responsive β-roll peptides (RTX) is largely responsible for the Ca2+-dependent mechanical properties of the RTX-based hydrogels.
Collapse
Affiliation(s)
- Lichao Liu
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Han Wang
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Yueying Han
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shanshan Lv
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Department of Chemistry
| | - Jianfeng Chen
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
31
|
AlDala'een NFD, Mohamad WNKW, Alias N, Ali AM, Shaikh Mohammed J. Bioinspired dynamic microcapsules. SOFT MATTER 2017; 14:124-131. [PMID: 29215674 DOI: 10.1039/c7sm01682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is an increasing interest in bioinspired dynamic materials. Abundant illustrations of protein domains exist in nature, with remarkable ligand binding characteristics and structures that undergo conformational changes. For example, calmodulin (CaM) can have three conformational states, which are the unstructured Apo-state, Ca2+-bound ligand-exposed binding state, and compact ligand-bound state. CaM's mechanical response to biological cues is highly suitable for engineering dynamic materials. The distance between CaM globular terminals in the Ca2+-bound state is 5 nm and in the ligand-bound state is 1.5 nm. CaM's nanoscale conformational changes have been used to develop dynamic hydrogel microspheres that undergo reversible volume changes. The current work presents the fabrication and preliminary results of layer-by-layer (LbL) self-assembled Dynamic MicroCapsules (DynaMicCaps) whose multilayered shell walls are composed of polyelectrolytes and CaM. Quasi-dynamic perfusion results show that the DynaMicCaps undergo drastic volume changes, with up to ∼1500% increase, when exposed to a biochemical ligand trifluoperazine (TFP) at pH 6.3. Under similar test conditions, microcapsules without CaM also underwent volume changes, with only up to ∼290% increase, indicating that CaM's bio-responsiveness was retained within the shell walls of the DynaMicCaps. Furthermore, DynaMicCaps exposed to 0.1 M NaOH underwent volume changes, with only up to ∼580% volume increase. Therefore, DynaMicCaps represent a new class of polyelectrolyte multilayer (PEM) capsules that can potentially be used to release their payload at near physiological pH. With over 200 proteins that undergo marked, well-characterized conformational changes in response to specific biochemical triggers, several other versions of DynaMicCaps can potentially be developed.
Collapse
Affiliation(s)
- N F D AlDala'een
- Faculty of Innovative Design & Technology, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, 21300 Kuala Terengganu, Malaysia.
| | | | | | | | | |
Collapse
|
32
|
Gao X, Lyu S, Li H. Decorating a Blank Slate Protein Hydrogel: A General and Robust Approach for Functionalizing Protein Hydrogels. Biomacromolecules 2017; 18:3726-3732. [DOI: 10.1021/acs.biomac.7b01369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoye Gao
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shanshan Lyu
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Organic−Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongbin Li
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
Bulutoglu B, Banta S. Block V RTX Domain of Adenylate Cyclase from Bordetella pertussis: A Conformationally Dynamic Scaffold for Protein Engineering Applications. Toxins (Basel) 2017; 9:E289. [PMID: 28926974 PMCID: PMC5618222 DOI: 10.3390/toxins9090289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023] Open
Abstract
The isolated Block V repeats-in-toxin (RTX) peptide domain of adenylate cyclase (CyaA) from Bordetella pertussis reversibly folds into a β-roll secondary structure upon calcium binding. In this review, we discuss how the conformationally dynamic nature of the peptide is being engineered and employed as a switching mechanism to mediate different protein functions and protein-protein interactions. The peptide has been used as a scaffold for diverse applications including: a precipitation tag for bioseparations, a cross-linking domain for protein hydrogel formation and as an alternative scaffold for biomolecular recognition applications. Proteins and peptides such as the RTX domains that exhibit natural stimulus-responsive behavior are valuable building blocks for emerging synthetic biology applications.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
34
|
Bulutoglu B, Yang SJ, Banta S. Conditional Network Assembly and Targeted Protein Retention via Environmentally Responsive, Engineered β-Roll Peptides. Biomacromolecules 2017; 18:2139-2145. [PMID: 28578565 DOI: 10.1021/acs.biomac.7b00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| | - Sarah J. Yang
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| |
Collapse
|
35
|
B 12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 2017; 114:5912-5917. [PMID: 28533376 DOI: 10.1073/pnas.1621350114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thanks to the precise control over their structural and functional properties, genetically engineered protein-based hydrogels have emerged as a promising candidate for biomedical applications. Given the growing demand for creating stimuli-responsive "smart" hydrogels, here we show the synthesis of entirely protein-based photoresponsive hydrogels by covalently polymerizing the adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) proteins using genetically encoded SpyTag-SpyCatcher chemistry under mild physiological conditions. The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-sol transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability. A covalently cross-linked CarHC hydrogel was also designed to encapsulate and release bulky globular proteins, such as mCherry, in a light-dependent manner. The direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials.
Collapse
|
36
|
Queirós AS, Lopes-da-Silva JA. Nonthermal gelation of whey proteins induced by organic acids. J Appl Polym Sci 2017. [DOI: 10.1002/app.45134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ana S. Queirós
- Department of Chemistry; University of Aveiro; Aveiro 3810-193 Portugal
| | - José A. Lopes-da-Silva
- Department of Chemistry; Organic Chemistry, Natural and Agro-Food Products Research Unit (QOPNA), University of Aveiro; Aveiro 3810-193 Portugal
| |
Collapse
|
37
|
Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly. Sci Rep 2017; 7:44388. [PMID: 28287617 PMCID: PMC5347425 DOI: 10.1038/srep44388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/07/2017] [Indexed: 12/22/2022] Open
Abstract
Domain swapping is the process by which identical proteins exchange reciprocal segments to generate dimers. Here we introduce induced domain swapping (INDOS) as a mechanism for regulating protein function. INDOS employs a modular design consisting of the fusion of two proteins: a recognition protein that binds a triggering molecule, and a target protein that undergoes a domain swap in response to binding of the triggering ligand. The recognition protein (FK506 binding protein) is inserted into functionally-inactivated point mutants of two target proteins (staphylococcal nuclease and ribose binding protein). Binding of FK506 to the FKBP domain causes the target domain to first unfold, then refold via domain swap. The inactivating mutations become ‘swapped out’ in the dimer, increasing nuclease and ribose binding activities by 100-fold and 15-fold, respectively, restoring them to near wild-type values. INDOS is intended to convert an arbitrary protein into a functional switch, and is the first example of rational design in which a small molecule is used to trigger protein domain swapping and subsequent activation of biological function.
Collapse
|
38
|
Rapp PB, Omar AK, Shen JJ, Buck ME, Wang ZG, Tirrell DA. Analysis and Control of Chain Mobility in Protein Hydrogels. J Am Chem Soc 2017; 139:3796-3804. [DOI: 10.1021/jacs.6b13146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter B. Rapp
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Ahmad K. Omar
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Jeff J. Shen
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Maren E. Buck
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
39
|
Abstract
Proteins are nature's building blocks and indispensable in living organisms. Protein-based hydrogels have a wide variety of applications in research and biotechnology. In this chapter, we describe an intein-mediated protein hydrogel that utilizes two synthetic soluble protein block copolymers, each containing a subunit of a trimeric protein that serves as a cross-linker and one half of the naturally split DnaE intein from Nostoc punctiforme. Mixing of these two protein block copolymers initiates an intein trans-splicing reaction that constitutes a self-assembling polypeptide flanked by cross-linkers, triggering protein hydrogel formation. The generated hydrogels are highly stable under both acidic and basic conditions, and at temperatures up to 50 °C. In addition, these hydrogels are able to undergo rapid reassembly after shear-induced rupture. Incorporation of an appropriate binding motif into the protein block copolymers enables the convenient site-specific incorporation of functional globular proteins into the hydrogel network.
Collapse
|
40
|
Solanki K, Abdallah W, Banta S. Extreme makeover: Engineering the activity of a thermostable alcohol dehydrogenase (AdhD) from Pyrococcus furiosus. Biotechnol J 2016; 11:1483-1497. [PMID: 27593979 DOI: 10.1002/biot.201600152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Alcohol dehydrogenase D (AdhD) is a monomeric thermostable alcohol dehydrogenase from the aldo-keto reductase (AKR) superfamily of proteins. We have been exploring various strategies of engineering the activity of AdhD so that it could be employed in future biotechnology applications. Driven by insights made in other AKRs, we have made mutations in the cofactor-binding pocket of the enzyme and broadened its cofactor specificity. A pre-steady state kinetic analysis yielded new insights into the conformational behavior of this enzyme. The most active mutant enzyme concomitantly gained activity with a non-native cofactor, nicotinamide mononucleotide, NMN(H), and an enzymatic biofuel cell was demonstrated with this enzyme/cofactor pair. Substrate specificity was altered by grafting loop regions near the active site pocket from a mesostable human aldose reductase (hAR) onto the thermostable AdhD. These moves not only transferred the substrate specificity of hAR but also the cofactor specificity of hAR. We have added alpha-helical appendages to AdhD to enable it to self-assemble into a thermostable catalytic proteinaceous hydrogel. As our understanding of the structure/function relationship in AdhD and other AKRs advances, this ubiquitous protein scaffold could be engineered for a variety of catalytic activities that will be useful for many future applications.
Collapse
Affiliation(s)
- Kusum Solanki
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| | - Walaa Abdallah
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| |
Collapse
|
41
|
Gao X, Fang J, Xue B, Fu L, Li H. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry. Biomacromolecules 2016; 17:2812-9. [DOI: 10.1021/acs.biomac.6b00566] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoye Gao
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jie Fang
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Linglan Fu
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
42
|
Bandiera A. Elastin-like polypeptides: the power of design for smart cell encapsulation. Expert Opin Drug Deliv 2016; 14:37-48. [PMID: 27414195 DOI: 10.1080/17425247.2016.1206072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.
Collapse
|
43
|
Renner JN, Minteer SD. The use of engineered protein materials in electrochemical devices. Exp Biol Med (Maywood) 2016; 241:980-5. [PMID: 27188516 PMCID: PMC4950353 DOI: 10.1177/1535370216647127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bioelectrochemical technologies have an important and growing role in healthcare, with applications in sensing and diagnostics, as well as the potential to be used as implantable power sources and be integrated with automated drug delivery systems. Challenges associated with enzyme-based electrodes include low current density and short functional lifetimes. Protein engineering is emerging as a powerful tool to overcome these issues. By taking advantage of the ability to precisely define protein sequences, electrodes can be organized into high performing structures, and enable the next generation of medical devices.
Collapse
Affiliation(s)
- Julie N Renner
- Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
44
|
Cardoso AZ, Mears LLE, Cattoz BN, Griffiths PC, Schweins R, Adams DJ. Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators. SOFT MATTER 2016; 12:3612-3621. [PMID: 26963370 DOI: 10.1039/c5sm03072b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some functionalised dipeptides can form hydrogels when salts are added to solutions at high pH. We have used surface tension, conductivity, rheology, optical, confocal and scanning electron microscopy, (1)H NMR and UV-Vis spectroscopy measurements to characterise fully the phase behaviour of solutions of one specific gelator, 2NapFF, at 25 °C at pH 10.5. We show that this specific naphthalene-dipeptide undergoes structural transformations as the concentration is increased, initially forming spherical micelles, then worm-like micelles, followed by association of these worm-like micelles. On addition of a calcium salt, gels are generally formed as long as worm-like micelles are initially present in solution, although there are structural re-organisations that occur at lower concentrations, allowing gelation at lower than expected concentration. Using IR and SANS, we show the differences between the structures present in the solution and hydrogel phases.
Collapse
Affiliation(s)
- Andre Zamith Cardoso
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Laura L E Mears
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Beatrice N Cattoz
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Peter C Griffiths
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Ralf Schweins
- Institut Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble CEDEX 9, France
| | - Dave J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| |
Collapse
|
45
|
Kaplan JA, Barthélémy P, Grinstaff MW. Self-assembled nanofiber hydrogels for mechanoresponsive therapeutic anti-TNFα antibody delivery. Chem Commun (Camb) 2016; 52:5860-3. [PMID: 27049283 DOI: 10.1039/c6cc02221a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Low molecular weight hydrogels, prepared from glycosyl-nucleoside-lipid amphiphiles, exhibit shear-thinning behaviour and reversible thermally- and mechanically-triggered sol-gel transitions. Using mechanical shear stimulation, the release of entrapped anti-TNFα increases and the released anti-TNFα demonstrates efficacy in in vitro neutralization bioassays. Delivery of anti-TNFα is of general interest and broad medicinal utility for treating autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- J A Kaplan
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
46
|
Milton RD, Wang T, Knoche KL, Minteer SD. Tailoring Biointerfaces for Electrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2291-301. [PMID: 26898265 DOI: 10.1021/acs.langmuir.5b04742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioelectrocatalysis is an expanding research area due to the use of this type of electrocatalysis in electrochemical biosensors, biofuel cells, bioelectrochemical cells, and biosolar cells. This feature article discusses recent advancements in tailoring the biointerface between electrodes and biocatalysts for facile electrocatalysis. This includes the design of pyrene moieties for directing the orientation of biocatalysts on electrode surfaces and mediation as well as the rational design of redox polymers for self-exchange-based electron transport to/from biocatalysts and the electrode and the use of bioscaffolding techniques for designing the bioelectrode structure. However, recent advances in the past decade have shown the importance of hybrid bioelectrocatalytic systems, and future work will be needed to use these same pyrene, redox polymer, and bioscaffolding techniques for hybrid bioelectrocatalysis.
Collapse
Affiliation(s)
- Ross D Milton
- Departments of Chemistry and Materials Engineering, University of Utah , 315 S. 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| | - Tao Wang
- Departments of Chemistry and Materials Engineering, University of Utah , 315 S. 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| | - Krysti L Knoche
- Departments of Chemistry and Materials Engineering, University of Utah , 315 S. 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Departments of Chemistry and Materials Engineering, University of Utah , 315 S. 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
47
|
Sharma KP, Harniman R, Farrugia T, Briscoe WH, Perriman AW, Mann S. Dynamic Behavior in Enzyme-Polymer Surfactant Hydrogel Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1597-1602. [PMID: 26676924 DOI: 10.1002/adma.201504740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Dynamic protein-polymer surfactant films are highly hydrophilic and show a soft solid to hydrogel transition upon hydration to produce a swollen hydrogel. An unusual reversible autospreading/self-folding response is observed when the water-saturated films are transferred from water into air.
Collapse
Affiliation(s)
- Kamendra P Sharma
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Robert Harniman
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Thomas Farrugia
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen Mann
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
48
|
Li H, Kong N, Laver B, Liu J. Hydrogels Constructed from Engineered Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:973-987. [PMID: 26707834 DOI: 10.1002/smll.201502429] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Na Kong
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Bryce Laver
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Junqiu Liu
- Key Lab for Supramolecular Structure and Materials, Jilin University, Changchun, Jilin Province, 130012, P. R. China
| |
Collapse
|
49
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
50
|
Walsh G. Non-Catalytic Industrial Proteins. Proteins 2015. [DOI: 10.1002/9781119117599.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|