1
|
Li Y, Yin W, Dong H, Wang R, Sun L, Li Y, Xie J. Novel injectable sodium alginate hydrogel developed for improved endometrial repair with human umbilical cord mesenchymal stem cells. Drug Deliv Transl Res 2025:10.1007/s13346-025-01846-4. [PMID: 40195258 DOI: 10.1007/s13346-025-01846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
This study presents a novel injectable sodium alginate hydrogel designed to enhanc stem cell therapy for endometrial regeneration. Using calcium gluconate as a crosslinking agent, we achieved improved homogeneity and injectability compared to traditional calcium chloride crosslinking. RGD modification further enhanced cell adhesion, proliferation, and differentiation in vitro, creating a bioactive scaffold for umbilical cord mesenchymal stem cells (UCMSCs) delivery. In a mouse model of endometrial injury, intrauterine transplantation of RGD-modified hydrogel encapsulating UCMSCs significantly improved endometrial thickness, reduced fibrosis, enhanced angiogenesis, and increased pregnancy rates compared to both untreated controls and UCMSCs alone. These results suggest that this injectable hydrogel system combined with stem cells holds significant promise for future applications in treating endometrial damage and improving reproductive outcomes in women.
Collapse
Affiliation(s)
- Yifan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weimin Yin
- The Institute for Biomedical Engineering & Nano Science (Inano), Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science (Inano), Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rongxiang Wang
- The Center for Reproductive Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lihua Sun
- The Center for Reproductive Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science (Inano), Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jing Xie
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- The Center for Reproductive Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
2
|
Campos MT, Pires LS, Magalhães FD, Oliveira MJ, Pinto AM. Self-assembled inorganic nanomaterials for biomedical applications. NANOSCALE 2025; 17:5526-5570. [PMID: 39905908 DOI: 10.1039/d4nr04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Controlled self-assembly of inorganic nanoparticles has the potential to generate complex nanostructures with distinctive properties. The advancement of more precise techniques empowers researchers in constructing and assembling diverse building blocks, marking a pivotal evolution in nanotechnology and biomedicine. This progress enables the creation of customizable biomaterials with unique characteristics and functions. This comprehensive review takes an innovative approach to explore the current state-of-the-art self-assembly methods and the key interactions driving the self-assembly processes and provides a range of examples of biomedical and therapeutic applications involving inorganic or hybrid nanoparticles and structures. Self-assembly methods applied to bionanomaterials are presented, ranging from commonly used methods in cancer phototherapy and drug delivery to emerging techniques in bioimaging and tissue engineering. The most promising in vitro and in vivo experimental results achieved thus far are presented. Additionally, the review engages in a discourse on safety and biocompatibility concerns related to inorganic self-assembled nanomaterials. Finally, opinions on future challenges and prospects anticipated in this evolving field are provided.
Collapse
Affiliation(s)
- Miguel T Campos
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Laura S Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Artur M Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| |
Collapse
|
3
|
Wang J, Zhang G, Xing K, Wang B, Liu Y, Xue Y, Liu S, Leong DT. Influencing inter-cellular junctions with nanomaterials. Adv Colloid Interface Sci 2025; 336:103372. [PMID: 39671889 DOI: 10.1016/j.cis.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Cell-cell junctions are essential for maintaining tissue integrity and regulating a wide range of physiological processes. While the disruption of intercellular junctions may lead to pathological conditions, it also presents an opportunity for therapeutic interventions. Nanomaterials have emerged as promising tools for modulating cell-cell junctions, offering new avenues for innovative treatments. In this review, we provide a comprehensive overview of the various nanomaterials interaction with cell-cell junctions. We discussed their underlying mechanisms, heterogenous effects on cellular behavior, and the therapeutic strategies of applying nanomaterial-induced intercellular junction disruption. Additionally, we address the challenges and opportunities involved in translating these strategies into clinical practice and discuss future directions for this rapidly advancing field.
Collapse
Affiliation(s)
- Jinping Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Guoying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Baoteng Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanping Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shankui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
4
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
5
|
Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L. Advances in Metal and Metal Oxide Nanomaterials for Topical Antimicrobial Applications: Insights and Future Perspectives. Molecules 2024; 29:5551. [PMID: 39683711 PMCID: PMC11643765 DOI: 10.3390/molecules29235551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles as antibacterial, antifungal, and antiviral agents, particularly focusing on their topical applications and their role in chronic wound therapy. We explore their use in various forms, including coated, encapsulated, and incorporated in hydrogels or as complexes, proposing them as topical antimicrobials with promising properties. Some studies have shown that metal and metal oxide nanoparticles can exhibit cytotoxic and genotoxic effects, while others have found no such properties. These effects depend on factors such as nanoparticle size, shape, concentration, and other characteristics. It is essential to establish the dose or concentration associated with potential toxic effects and to investigate the severity of these effects to determine a threshold below which metal or metal oxide nanoparticles will not produce negative outcomes. Therefore, further research should focus on safety assessments, ensuring that metal and metal oxide nanoparticles can be safely used as therapeutics in biomedical sciences.
Collapse
Affiliation(s)
- Belmina Saric Medic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nikolina Tomic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece
| | - Lejla Pojskic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| |
Collapse
|
6
|
Unnikrishnan G, Muthuswamy S, Kolanthai E, Megha M, Thomas J, Haris M, Gopinath G, Varghese R, Ayyasamy S. Synthesis and analysis of multifunctional graphene oxide/Ag 2O-PVA/chitosan hybrid polymeric composite for wound healing applications. Int J Biol Macromol 2024; 277:134301. [PMID: 39094875 DOI: 10.1016/j.ijbiomac.2024.134301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The requirement for accurate treatments for skin diseases and wounds, generated a rising interest towards multifunctional polymer composites, that are capable of mimicking the natural compositions in human body. Also, electroactive composite films disseminate endogenous electrical stimulations that encourage cell migration and its proliferation at wound site, proposing greater opportunities in upgrading the conventional wound patches. In this work, the composite film made of graphene oxide, Ag2O, PVA and chitosan were developed for wound healing applications, by the solution casting method. The even dispersibility of nanofiller in polymeric matrix was validated from the physicochemical analyses. The increment in roughness of the composite film surface was noted from AFM images. The thermal stability and porous nature of the polymer composite were also verified. A conductivity value of 0.16 × 10-4 Scm-1 was obtained for the film. From MTT assay, it was noted that the films were non-cytotoxic and supported cell adhesion along with cell proliferation of macrophage (RAW 264.7) cells. Moreover, the composite film also demonstrated non-hemolytic activity of <2 %, as well as excellent antibacterial activity towards E. coli and S. aureus. Thus, the obtained results validated that the prepared composite film could be chosen as an innovative candidate for developing state-of-the-art wound dressings.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jibu Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Haris
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Gokul Gopinath
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Rojin Varghese
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sakunthala Ayyasamy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
7
|
Ventisette I, Mattii F, Dallari C, Capitini C, Calamai M, Muzzi B, Pavone FS, Carpi F, Credi C. Gold-Hydrogel Nanocomposites for High-Resolution Laser-Based 3D Printing of Scaffolds with SERS-Sensing Properties. ACS APPLIED BIO MATERIALS 2024; 7:4497-4509. [PMID: 38925631 PMCID: PMC11253086 DOI: 10.1021/acsabm.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Although visible light-based stereolithography (SLA) represents an affordable technology for the rapid prototyping of 3D scaffolds for in vitro support of cells, its potential could be limited by the lack of functional photocurable biomaterials that can be SLA-structured at micrometric resolution. Even if innovative photocomposites showing biomimetic, bioactive, or biosensing properties have been engineered by loading inorganic particles into photopolymer matrices, main examples rely on UV-assisted extrusion-based low-resolution processes. Here, SLA-printable composites were obtained by mixing a polyethylene glycol diacrylate (PEGDA) hydrogel with multibranched gold nanoparticles (NPs). NPs were engineered to copolymerize with the PEGDA matrix by implementing a functionalization protocol involving covalent grafting of allylamine molecules that have C═C pendant moieties. The formulations of gold nanocomposites were tailored to achieve high-resolution fast prototyping of composite scaffolds via visible light-based SLA. Furthermore, it was demonstrated that, after mixing with a polymer and after laser structuring, gold NPs still retained their unique plasmonic properties and could be exploited for optical detection of analytes through surface-enhanced Raman spectroscopy (SERS). As a proof of concept, SERS-sensing performances of 3D printed plasmonic scaffolds were successfully demonstrated with a Raman probe molecule (e.g., 4-mercaptobenzoic acid) from the perspective of future extensions to real-time sensing of cell-specific markers released within cultures. Finally, biocompatibility tests preliminarily demonstrated that embedded NPs also played a key role by inducing physiological cell-cytoskeleton rearrangements, further confirming the potentialities of such hybrid nanocomposites as groundbreaking materials in laser-based bioprinting.
Collapse
Affiliation(s)
- Isabel Ventisette
- Department
of Industrial Engineering, University of
Florence, Florence 50121, Italy
| | - Francesco Mattii
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Caterina Dallari
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Claudia Capitini
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Martino Calamai
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
| | - Beatrice Muzzi
- Institute
of Chemistry of Organometallic Compounds–National Research
Council, Sesto Fiorentino 50019, Italy
| | - Francesco S. Pavone
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Federico Carpi
- Department
of Industrial Engineering, University of
Florence, Florence 50121, Italy
| | - Caterina Credi
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
8
|
Li T, Wang Y, Lei B. Photothermal-antibacterial bioactive noncrystalline nanosystem promotes infected wound tissue regeneration through thermo-ions activation. CHEMICAL ENGINEERING JOURNAL 2024; 491:151799. [DOI: 10.1016/j.cej.2024.151799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
9
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
10
|
Pallod S, Fuller G, Chowdhury T, Rege K. Gold nanobipyramids-based laser-activated sealants for effective skin sealing and repair. Int J Hyperthermia 2024; 41:2301035. [PMID: 38318887 DOI: 10.1080/02656736.2023.2301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Anisotropic gold nanostructures have gained increased attention for biomedical applications because of their remarkable optical properties. An emerging type of gold nanostructure-gold nanobipyramids (AuNBP)-has been shown to exhibit superior absorption properties compared to conventionally used gold nanoparticles, which makes them attractive for photothermal applications. We generated a high-shape-purity dispersion of AuNBP using a seed-mediated method and embedded them as photothermal conversion agents in a silk fibroin matrix to investigate their efficacy in photothermal sealing of incisional wounds in immunocompetent mice. These AuNBP-doped laser-activated sealants, or AuNBP-LASE were able to absorb near-infrared laser energy and convert it to heat, thereby inducing transient hyperthermia in the wound and the surrounding tissue. This photothermal conversion facilitated rapid sealing of the skin tissue by the AuNBP-LASE, which resulted in faster functional recovery of skin barrier function compared to nylon sutures at the early stages of repair. Further, the biomechanical properties of the healing skin closed with AuNBP-LASE those of intact skin more rapidly compared to incisions approximated with sutures. Histology studies indicated higher penetration of the LASE within the volume of the incision in skin tissue, lower scab formation, and a similar epidermal gap compared to conventional suturing. These results demonstrate that AuNBP-LASEs can be effective as wound approximation devices for photothermal sealing.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Gareth Fuller
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Trishita Chowdhury
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
12
|
Fol MF, Hamdi SAH, Abdel-Rahman HA, Mostafa NA. In vivo efficacy of silver nanoparticles against Syphacia muris infected laboratory Wistar rats. J Parasit Dis 2023; 47:744-756. [PMID: 38009151 PMCID: PMC10667209 DOI: 10.1007/s12639-023-01607-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/06/2023] [Indexed: 11/28/2023] Open
Abstract
Helminth infections are a worldwide problem that affects both humans and animals in developing countries. The common pinworm Syphacia muris frequently infects lab rats and can obstruct the creation of unrelated biological experiments. The objective of this study was to examine the in vivo efficacy of silver nanoparticles against S. muris infected Wistar rats. Transmission electron microscopy and X-ray diffraction examinations of silver nanoparticles revealed highly pure polycrystals with a mean size of 4 nm. Rats were divided into group I, the control: received distilled water; groups II and III, the treated: received 2, 4 mg/kg b.w. of Ag NPs, respectively. At the end of the experimental period, all rats were euthanized and dissected for collecting worms. The surface topography of the recovered worms was displayed using light and scanning electron microscopy, and their physiological status was determined using oxidative stress biomarkers. The histological changes in the rat liver, kidney, and spleen were also examined. In the current study, Ag NPs administration revealed substantial alterations in worms collected from treated rats, including shrinkage of lips, peeling and rupture of body cuticles, and disruption of surface annulations. Also, induced a significant increase in malondialdehyde and nitric oxide levels, as well as a decrease in reduced glutathione, glutathione peroxidase and catalase levels compared to control group. Moreover, sections of treated rats' liver, kidney and spleen displayed normal cellular appearance. In conclusion, this is the first in vivo study to evaluate Ag NPs efficacy against S. muris in laboratory rats without significant toxicity.
Collapse
Affiliation(s)
- Mona Fathi Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
13
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
14
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
15
|
Ghosh D, Salinas CM, Pallod S, Roberts J, Makin IRS, Yaron JR, Witte RS, Rege K. Temporal evaluation of efficacy and quality of tissue repair upon laser-activated sealing. Bioeng Transl Med 2023; 8:e10412. [PMID: 36925709 PMCID: PMC10013809 DOI: 10.1002/btm2.10412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Injuries caused by surgical incisions or traumatic lacerations compromise the structural and functional integrity of skin. Immediate approximation and robust repair of skin are critical to minimize occurrences of dehiscence and infection that can lead to impaired healing and further complication. Light-activated skin sealing has emerged as an alternative to sutures, staples, and superficial adhesives, which do not integrate with tissues and are prone to scarring and infection. Here, we evaluate both shorter- and longer-term efficacy of tissue repair response following laser-activated sealing of full-thickness skin incisions in immunocompetent mice and compare them to the efficacy seen with sutures. Laser-activated sealants (LASEs) in which, indocyanine green was embedded within silk fibroin films, were used to form viscous pastes and applied over wound edges. A hand-held, near-infrared laser was applied over the incision, and conversion of the light energy to heat by the LASE facilitated rapid photothermal sealing of the wound in approximately 1 min. Tissue repair with LASEs was evaluated using functional recovery (transepidermal water loss), biomechanical recovery (tensile strength), tissue visualization (ultrasound [US] and photoacoustic imaging [PAI]), and histology, and compared with that seen in sutures. Our studies indicate that LASEs promoted earlier recovery of barrier and mechanical function of healed skin compared to suture-closed incisions. Visualization of sealed skin using US and PAI indicated integration of the LASE with the tissue. Histological analyses of LASE-sealed skin sections showed reduced neutrophil and increased proresolution macrophages on Days 2 and 7 postclosure of incisions, without an increase in scarring or fibrosis. Together, our studies show that simple fabrication and application methods combined with rapid sealing of wound edges with improved histological outcomes make LASE a promising alternative for management of incisional wounds and lacerations.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | | | - Shubham Pallod
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Jordan Roberts
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | | | - Jordan R. Yaron
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Department of Chemical Engineering, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Russell S. Witte
- James C. Wyant College of Optical SciencesUniversity of ArizonaTucsonArizonaUSA
- Department of Medical ImagingUniversity of ArizonaTucsonArizonaUSA
| | - Kaushal Rege
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Department of Chemical Engineering, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
16
|
Lin Z, Fan D, Li G, He L, Qin X, Zhao B, Wang Q, Liang W. Antibacterial, Adhesive, and Conductive Hydrogel for Diabetic Wound Healing. Macromol Biosci 2023; 23:e2200349. [PMID: 36333912 DOI: 10.1002/mabi.202200349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Diabetic mellitus is one of the leading causes of chronic wounds and remains a challenging issue to be resolved. Herein, a hydrogel with conformal tissue adhesivity, skin-like conductivity, robust mechanical characteristics, as well as active antibacterial function is developed. In this hydrogel, silver nanoparticles decorated polypyrrole nanotubes (AgPPy) and cobalt ions (Co2+ ) are introduced into an in situ polymerized poly(acrylic acid) (PAA) and branched poly(ethylenimine) (PEI) network (PPCA hydrogel). The PPCA hydrogel provides active antibacterial function through synergic effects from protonated PEI and AgPPy nanotubes, with a tissue-like mechanical property (≈16.8 ± 4.5 kPa) and skin-like electrical conductivity (≈0.048 S m-1 ). The tensile and shear adhesive strength (≈15.88 and ≈12.76 kPa, respectively) of the PPCA hydrogel is about two- to threefold better than that of fibrin glue. In vitro studies show the PPCA hydrogel is highly effective against both gram-positive and gram-negative bacteria. In vivo results demonstrate that the PPCA hydrogel promotes diabetic wounds with accelerated healing, with notable inflammatory reduction and prominent angiogenesis regeneration. These results suggest the PPCA hydrogel provide a promising approach to promote diabetic wound healing.
Collapse
Affiliation(s)
- Zhicong Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guojiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bin Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
17
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
18
|
Dai H, Fan Q, Wang C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210157. [PMID: 37324799 PMCID: PMC10191059 DOI: 10.1002/exp.20210157] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy is used to regulate systemic hyperactivation or hypoactivation to treat various diseases. Biomaterial-based immunotherapy systems can improve therapeutic effects through targeted drug delivery, immunoengineering, etc. However, the immunomodulatory effects of biomaterials themselves cannot be neglected. In this review, we outline biomaterials with immunomodulatory functions discovered in recent years and their applications in disease treatment. These biomaterials can treat inflammation, tumors, or autoimmune diseases by regulating immune cell function, exerting enzyme-like activity, neutralizing cytokines, etc. The prospects and challenges of biomaterial-based modulation of immunotherapy are also discussed.
Collapse
Affiliation(s)
- Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| | - Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM) and School of Materials Science and EngineeringNanjing University of Posts & TelecommunicationsNanjingChina
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| |
Collapse
|
19
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Kamalov A, Shishov M, Smirnova N, Kodolova-Chukhontseva V, Dobrovol’skaya I, Kolbe K, Didenko A, Ivan’kova E, Yudin V, Morganti P. Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts. J Funct Biomater 2022; 13:89. [PMID: 35893457 PMCID: PMC9326723 DOI: 10.3390/jfb13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10-15 to 102 S/m with increasing graphene content (from 0 to 5.0 wt.%). The characteristics of ionic and electronic currents flowing through the matrix with the superposition of cyclic potentials ± 100 mV were studied. The high stability of the composite was established during prolonged cycling (130 h) in an electric field with a frequency of 0.016 Hz. It was established that the composite films based on polyimide and graphene have good biocompatibility and are not toxic to fibroblast cells. It was shown that preliminary electrical stimulation increases the proliferative activity of human dermal fibroblasts in comparison with intact cells. It is revealed that an electric field with a strength E = 0.02-0.04 V/m applied to the polyimide films containing 0.5-3.0 wt.% of the graphene nanoparticles activates cellular processes (adhesion, proliferation).
Collapse
Affiliation(s)
- Almaz Kamalov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Mikhail Shishov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Natalia Smirnova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vera Kodolova-Chukhontseva
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Irina Dobrovol’skaya
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Konstantin Kolbe
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Andrei Didenko
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Elena Ivan’kova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vladimir Yudin
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Pierfrancesco Morganti
- R&D Unit, Academy of History of Healthcare Art, Lungotevere in Sassia 3, 00186 Rome, Italy;
| |
Collapse
|
21
|
Colapicchioni V, Millozzi F, Parolini O, Palacios D. Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1777. [PMID: 35092179 PMCID: PMC9285803 DOI: 10.1002/wnan.1777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Muscular dystrophies are a group of rare genetic disorders characterized by progressive muscle weakness, which, in the most severe forms, leads to the patient's death due to cardiorespiratory problems. There is still no cure available for these diseases and significant effort is being placed into developing new strategies to either correct the genetic defect or to compensate muscle loss by stimulating skeletal muscle regeneration. However, the vast anatomical extension of the target tissue poses great challenges to these goals, highlighting the need for complementary strategies. Nanomedicine is an actively evolving field that merges nanotechnologies with biomedical and pharmaceutical sciences. It holds great potential in regenerative medicine, both in supporting tissue engineering and regeneration, and in optimizing drug and oligonucleotide delivery and gene therapy strategies. In this review, we will summarize the state‐of‐the‐art in the field of nanomedicine applied to skeletal muscle regeneration. We will discuss the recent work toward the development of nanopatterned scaffolds for tissue engineering, the efforts in the synthesis of organic and inorganic nanoparticles for gene therapy and drug delivery applications, as well as their use as immune modulators. Although nanomedicine holds great promise for muscle and other degenerative diseases, many challenges still need to be systematically addressed to assure a smooth transition from the bench to the bedside. This article is categorized under:Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Valentina Colapicchioni
- Italian National Research Council, Institute for Atmospheric Pollution Research (CNR-IIA), Rome, Italy.,Mhetra LLC, Miami, Florida, USA
| | - Francesco Millozzi
- Histology and Embryology Unit, DAHFMO, Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
22
|
Pushpavanam K, Dutta S, Inamdar S, Bista T, Sokolowski T, Rapchak A, Sadeghi A, Sapareto S, Rege K. Versatile Detection and Monitoring of Ionizing Radiation Treatment Using Radiation-Responsive Gel Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14997-15007. [PMID: 35316013 DOI: 10.1021/acsami.2c01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern radiation therapy workflow involves complex processes intended to maximize the radiation dose delivered to tumors while simultaneously minimizing excess radiation to normal tissues. Safe and accurate delivery of radiation doses is critical to the successful execution of these treatment plans and effective treatment outcomes. Given extensive differences in existing dosimeters, the choice of devices and technologies for detecting biologically relevant doses of radiation has to be made judiciously, taking into account anatomical considerations and modality of treatment (invasive, e.g., interstitial brachytherapy vs noninvasive, e.g., external-beam therapy radiotherapy). Rapid advances in versatile radiation delivery technologies necessitate new detection platforms and devices that are readily adaptable into a multitude of form factors in order to ensure precision and safety in dose delivery. Here, we demonstrate the adaptability of radiation-responsive gel nanosensors as a platform technology for detecting ionizing radiation using three different form factors with an eye toward versatile use in the clinic. In this approach, ionizing radiation results in the reduction of monovalent gold salts leading to the formation of gold nanoparticles within gels formulated in different morphologies including one-dimensional (1D) needles for interstitial brachytherapy, two-dimensional (2D) area inserts for skin brachytherapy, and three-dimensional (3D) volumetric dose distribution in tissue phantoms. The formation of gold nanoparticles can be detected using distinct but complementary modes of readout including optical (visual) and photothermal detection, which further enhances the versatility of this approach. A linear response in the readout was seen as a function of radiation dose, which enabled straightforward calibration of each of these devices for predicting unknown doses of therapeutic relevance. Taken together, these results indicate that the gel nanosensor technology can be used to detect ionizing radiation in different morphologies and using different detection methods for application in treatment planning, delivery, and verification in radiotherapy and in trauma care.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sahil Inamdar
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tomasz Bista
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | | | - Alek Rapchak
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Amir Sadeghi
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Stephen Sapareto
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Biological Design Graduate Program, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Jiang Z, Han X, Zhao C, Wang S, Tang X. Recent Advance in Biological Responsive Nanomaterials for Biosensing and Molecular Imaging Application. Int J Mol Sci 2022; 23:ijms23031923. [PMID: 35163845 PMCID: PMC8837089 DOI: 10.3390/ijms23031923] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, as a subclass of biomaterials, biologically sensitive nanoparticles have attracted increased scientific interest. Many of the demands for physiologically responsive nanomaterials in applications involving the human body cannot be met by conventional technologies. Due to the field's importance, considerable effort has been expended, and biologically responsive nanomaterials have achieved remarkable success thus far. This review summarizes the recent advancements in biologically responsive nanomaterials and their applications in biosensing and molecular imaging. The nanomaterials change their structure or increase the chemical reaction ratio in response to specific bio-relevant stimuli (such as pH, redox potentials, enzyme kinds, and concentrations) in order to improve the signal for biologically responsive diagnosis. We use various case studies to illustrate the existing issues and provide a clear sense of direction in this area. Furthermore, the limitations and prospects of these nanomaterials for diagnosis are also discussed.
Collapse
Affiliation(s)
- Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
- School of Chemistry and Chemical Engineering, Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China;
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
| | - Chen Zhao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China;
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
- Correspondence:
| |
Collapse
|
24
|
Neuron Compatibility and Antioxidant Activity of Barium Titanate and Lithium Niobate Nanoparticles. Int J Mol Sci 2022; 23:ijms23031761. [PMID: 35163681 PMCID: PMC8836423 DOI: 10.3390/ijms23031761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The biocompatibility and the antioxidant activity of barium titanate (BaTiO3) and lithium niobate (LiNbO3) were investigated on a neuronal cell line, the PC12, to explore the possibility of using piezoelectric nanoparticles in the treatment of inner ear diseases, avoiding damage to neurons, the most delicate and sensitive human cells. The cytocompatibility of the compounds was verified by analysing cell viability, cell morphology, apoptotic markers, oxidative stress and neurite outgrowth. The results showed that BaTiO3 and LiNbO3 nanoparticles do not affect the viability, morphological features, cytochrome c distribution and production of reactive oxygen species (ROS) by PC12 cells, and stimulate neurite branching. These data suggest the biocompatibility of BaTiO3 and LiNbO3 nanoparticles, and that they could be suitable candidates to improve the efficiency of new implantable hearing devices without damaging the neuronal cells.
Collapse
|
25
|
Qiu M, Kuang F, Chen Y, Shan W, Li Y, Bao X, Gao X, An D. Biomimetic FeCo@PDA nanozyme platform with Fenton catalytic activity as efficient antibacterial agent. J Mater Chem B 2022; 10:5582-5593. [DOI: 10.1039/d2tb00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multidrug resistance of bacteria caused by the abuse of traditional antibiotics poses a great threat to public health security, so it is urgent to develop effective antibacterial agents to...
Collapse
|
26
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
27
|
Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. EXPLORATION (BEIJING, CHINA) 2021; 1:20210089. [PMID: 37323697 PMCID: PMC10191050 DOI: 10.1002/exp.20210089] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Bioactive materials are a kind of materials with unique bioactivities, which can change the cellular behaviors and elicit biological responses from living tissues. Bioactive materials came into the spotlight in the late 1960s when the researchers found that the materials such as bioglass could react with surrounding bone tissue for bone regeneration. In the following decades, advances in nanotechnology brought the new development opportunities to bioactive nanomaterials. Bioactive nanomaterials are not a simple miniaturization of macroscopic materials. They exhibit unique bioactivities due to their nanoscale size effect, high specific surface area, and precise nanostructure, which can significantly influence the interactions with biological systems. Nowadays, bioactive nanomaterials have represented an important and exciting area of research. Current and future applications ensure that bioactive nanomaterials have a high academic and clinical importance. This review summaries the recent advances in the field of bioactive nanomaterials, and evaluate the influence factors of bioactivities. Then, a range of bioactive nanomaterials and their potential biomedical applications are discussed. Furthermore, the limitations, challenges, and future opportunities of bioactive nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| |
Collapse
|
28
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
29
|
Qadir A, Jahan S, Aqil M, Warsi MH, Alhakamy NA, Alfaleh MA, Khan N, Ali A. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing. Gels 2021; 7:gels7040209. [PMID: 34842674 PMCID: PMC8628765 DOI: 10.3390/gels7040209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Medicinal plants have been used since ancient times for their various therapeutic activities and are safer compared to modern medicines, especially when properly identifying and preparing them and choosing an adequate dose administration. The phytochemical compounds present in plants are progressively yielding evidence in modern drug delivery systems by treating various diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial, viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients’ compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control. Nano-formulations could target certain parts of the body and control drug release. Different studies report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology and phytochemicals are effective for treating skin burns.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
- Correspondence: or
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India;
| | - Athar Ali
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
30
|
Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021; 22:11543. [PMID: 34768972 PMCID: PMC8584045 DOI: 10.3390/ijms222111543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.
Collapse
Affiliation(s)
- Maradhana Agung Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Ridhola Tri Ariski
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Riska Rachmantyo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| |
Collapse
|
31
|
Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021; 29:60-71. [PMID: 34094859 PMCID: PMC8164005 DOI: 10.1016/j.jot.2021.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUD Tissue engineering using cells, scaffolds, and bioactive molecules can promote the repair and regeneration of injured tissues. Copper is an essential element for the human body that is involved in many physiological activities and in recent years, copper has been used increasingly in tissue engineering. METHODS The current advances of copper-based biomaterial for bone and cartilage tissue engineering were searched on PubMed and Web of Science. RESULTS Various forms of copper-based biomaterials, including pure copper, copper ions, copper nanoparticles, copper oxides, and copper alloy are introduced. The incorporation of copper into base materials provides unique properties, resulting in tuneable porosity, mechanical strength, degradation, and crosslinking of scaffolds. Copper also shows promising biological performance in cell migration, cell adhesion, osteogenesis, chondrogenesis, angiogenesis, and antibacterial activities. In vivo applications of copper for bone and cartilage tissue engineering are discussed. CONCLUSION This review focuses on copper's physiochemical and biological effects, and its applications in bone and cartilage tissue engineering. The potential limitations and future perspectives are also discussed. TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the recent advances in copper-based biomaterial for bone and cartilage tissue engineering. This revie could guide researchers to apply copper in biomaterials, improving the generation of bone and cartilages, decrease the possibility of infection and shorten the recovery time so as to decrease medical costs.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
34
|
Luo M, Wang M, Niu W, Chen M, Cheng W, Zhang L, Xie C, Wang Y, Guo Y, Leng T, Zhang X, Lin C, Lei B. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 412:128471. [DOI: 10.1016/j.cej.2021.128471] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
35
|
Liu C, Fan L, Tian Z, Wen H, Zhou L, Guan P, Luo Y, Chan C, Tan G, Ning C, Rong L, Liu B. Self-curling electroconductive nerve dressing for enhancing peripheral nerve regeneration in diabetic rats. Bioact Mater 2021; 6:3892-3903. [PMID: 33937592 PMCID: PMC8076708 DOI: 10.1016/j.bioactmat.2021.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Conductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries (PNIs). However, conventional conductive conduits are made of rigid structures and have limited applications for impaired diabetic patients due to their mechanical mismatch with neural tissues and poor plasticity. We propose the development of biocompatible electroconductive hydrogels (ECHs) that are identical to a surgical dressing in this study. Based on excellent adhesive and self-healing properties, the thin film-like dressing can be easily attached to the injured nerve fibers, automatically warps a tubular structure without requiring any invasive techniques. The ECH offers an intimate and stable electrical bridge coupling with the electrogenic nerve tissues. The in vitro experiments indicated that the ECH promoted the migration and adhesion of the Schwann cells. Furthermore, the ECH facilitated axonal regeneration and remyelination in vitro and in vivo through the MEK/ERK pathway, thus preventing muscle denervation atrophy while retaining functional recovery. The results of this study are likely to facilitate the development of non-invasive treatment techniques for PNIs in diabetic patients utilizing electroconductive hydrogels. Conventional conductive conduits are made of rigid structures and have limited applications for diabetic patients. Self-curling electroconductive hydrogel with porous, highly conductive, and adhesive properties were identical to a surgical dressing. Electroconductive hydrogel facilitates axonal regeneration and remyelination via MEK/ERK pathway. ECH dressing prevent muscle denervation atrophy and retain functional recovery in diabetic rats.
Collapse
Affiliation(s)
- Can Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Lei Fan
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Huiquan Wen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lei Zhou
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Pengfei Guan
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Yian Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuncheung Chan
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| |
Collapse
|
36
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
37
|
Salimi F, Mohammadipanah F. Nanomaterials Versus The Microbial Compounds With Wound Healing Property. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.584489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Age and diabetes related slow-healing or chronic wounds may result in morbidity and mortality through persistent biofilms infections and prolonged inflammatory phase. Nano-materials [metal/metal oxide NPs (39%), lipid vehicles (21%), polymer NPs (19%), ceramic nanoparticles (NPs) (14%), and carbon nanomaterials (NMs) (7%)] can be introduced as a possible next-generation therapy because of either their intrinsic wound healing activity or via carrying bioactive compounds including, antibiotics, antioxidants, growth factor or stem cell. The nanomaterials have been shown to implicate in all four stages of wound healing including hemostasis (polymer NPs, ceramic NPs, nanoceria-6.1%), inflammation (liposome/vesicles/solid lipid NPs/polymer NPs/ceramic NPs/silver NPs/gold NPs/nanoceria/fullerenes/carbon-based NPs-32.7%), proliferation (vesicles/liposome/solid lipid NPs/gold NPs/silver NPs/iron oxide NPs/ceramic NPs/copper NPs/self-assembling elastin-like NPs/nanoceria/micelle/dendrimers/polymer NPs-57.1%), remodeling (iron oxide NPs/nanoceria-4.1%). Natural compounds from alkaloids, flavonoids, retinoids, volatile oil, terpenes, carotenoids, or polyphenolic compounds with proven antioxidant, anti-inflammatory, immunomodulatory, or antimicrobial characteristics are also well known for their potential to accelerate the wound healing process. In the current paper, we survey the potential and properties of nanomaterials and microbial compounds in improving the process of wound and scar healing. Finally, we review the potential biocompounds for incorporation to nano-material in perspective to designate more effective or multivalent wound healing natural or nano-based drugs.
Collapse
|
38
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
39
|
A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent growth of nanotechnology consciousness has enhanced the attention of researchers on the utilization of polymer nanocomposites. Nanocomposite have widely been made by using synthetic, natural, biosynthetic, and synthetic biodegradable polymers with nanofillers. Nanofillers are normally modified with surfactants for increasing the mechanico-thermal properties of the nanocomposites. In this short review, two types of polymer nanocomposites modified by surfactants are classified, specifically surfactant-modified inorganic nanofiller/polymer nanocomposites and surfactant-modified organic nanofiller/polymer nanocomposites. Moreover, three types of surfactants, specifically non-ionic, anionic, and cationic surfactants that are frequently used to modify the nanofillers of polymer nanocomposites are also described. The effect of surfactants on mechanico-thermal properties of the nanocomposites is shortly reviewed. This review will capture the interest of polymer composite researchers and encourage the further enhancement of new theories in this research field.
Collapse
|
40
|
Chen J, Jin T, Zhang H. Nanotechnology in Chronic Pain Relief. Front Bioeng Biotechnol 2020; 8:682. [PMID: 32637406 PMCID: PMC7317276 DOI: 10.3389/fbioe.2020.00682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing awareness of chronic pain due to both injury and disease have encouraged drug companies and pharmaceutical researchers alike to design and fabricate better, more specific drugs for pain relief. However, overuse of clinically available pain medication has caused a multitude of negative repercussions, including drug tolerance, addiction, and other severe side effects, which can prolong suffering and reduce pain mediation. Applications of nanotechnology to the field of drug delivery has sought to enhance the treatment efficiency, lower side effects, and mitigate the formation of tolerance. The use of nanomaterials has several advantages for chronic pain relief, such as controlled release, prolonged circulation time, and limited side effects. With the development of nanotechnology, strategies for chronic pain relief have also bourgeoned utilizing a variety of nanomaterials and targeting surface modifications. In addition to using these materials as carriers for drug delivery, nanomaterials can also be designed to have inherent properties that relieve chronic pain. This minireview covers the current status of designed nanomaterials for pain relief and provides a discussion of future considerations for nanotechnology designed for relieving chronic pain.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Giri VP, Pandey S, Kumari M, Paswan SK, Tripathi A, Srivastava M, Rao CV, Katiyar R, Nautiyal CS, Mishra A. Biogenic silver nanoparticles as a more efficient contrivance for wound healing acceleration than common antiseptic medicine. FEMS Microbiol Lett 2020; 366:5580583. [PMID: 31580434 DOI: 10.1093/femsle/fnz201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
A simple and facile way of using biogenic silver nanoparticles (BSNP) (10-20 nm) was developed for wound healing acceleration and suppression of wound infections. The BSNP were formulated in an ointment base, and the study to accelerate the wound healing process was conducted in a rat. The pH of the BSNP ointment, pH 6.8 ± 0.5, lies in normal pH range of the human skin, with good spreadability and diffusibility. The wound closure rate, as a percentage, was highest at day 3 for a BSNP ointment-treated wound at 22.77 ± 1.60%, while in an untreated control the rate was 10.99 ± 1.74%, for Betadine 14.73 ± 2.36% and for Soframycin 18.55 ± 1.37%, compared with day 0. A similar pattern of wound closure rate was found at days 7 and 11. The antibacterial activity of BSNP was evaluated against wound-infection-causing bacteria Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by the agar diffusion method. The total bacterial counts in the wound area were enumerated by the colony forming unit method. The lowest number of bacterial counts was found in the BSNP-treated wound compared with the other groups. BSNP treatment at 7.5% concentration enhanced migration of fibroblasts in a scratch assay. These findings reveal BSNP as an efficient contrivance for wound healing acceleration and as an eco-friendly alternative therapeutic antimicrobial agent.
Collapse
Affiliation(s)
- Ved Prakash Giri
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Shipra Pandey
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhuree Kumari
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shravan Kumar Paswan
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Ashutosh Tripathi
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Manjoosha Srivastava
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Chandana Venketswara Rao
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Ratna Katiyar
- Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Chandra Shekhar Nautiyal
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Aradhana Mishra
- CSIR-Division of Microbial Technology, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
43
|
Pushpavanam K, Inamdar S, Dutta S, Bista T, Sokolowski T, Boshoven E, Sapareto S, Rege K. Determination of topographical radiation dose profiles using gel nanosensors. SCIENCE ADVANCES 2019; 5:eaaw8704. [PMID: 31763446 PMCID: PMC6858262 DOI: 10.1126/sciadv.aaw8704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Despite the emergence of sophisticated technologies in treatment planning and administration, routine determination of delivered radiation doses remains a challenge due to limitations associated with conventional dosimeters. Here, we describe a gel-based nanosensor for the colorimetric detection and quantification of topographical radiation dose profiles in radiotherapy. Exposure to ionizing radiation results in the conversion of gold ions in the gel to gold nanoparticles, which render a visual change in color in the gel due to their plasmonic properties. The intensity of color formed in the gel was used as a quantitative reporter of ionizing radiation. The gel nanosensor was used to detect complex topographical dose patterns including those administered to an anthropomorphic phantom and live canine patients undergoing clinical radiotherapy. The ease of fabrication, operation, rapid readout, colorimetric detection, and relatively low cost illustrate the translational potential of this technology for topographical dose mapping in radiotherapy applications in the clinic.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Sahil Inamdar
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tomasz Bista
- Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | | | | | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
44
|
Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol 2019; 13:778-785. [PMID: 31625517 PMCID: PMC8676206 DOI: 10.1049/iet-nbt.2018.5312] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Wound healing is a series of different dynamic and complex phenomena. Many studies have been carried out based on the type and severity of wounds. However, to recover wounds faster there are no suitable drugs available, which are highly stable, less expensive as well as has no side effects. Nanomaterials have been proven to be the most promising agent for faster wound healing among all the other wound healing materials. This review briefly discusses the recent developments of wound healing by nanotechnology, their applicability and advantages. Nanomaterials have unique physicochemical, optical, and biological properties. Some of them can be directly applied for wound healing or some of them can be incorporated into scaffolds to create hydrogel matrix or nanocomposites, which promote wound healing through their antimicrobial, as well as selective anti- and pro-inflammatory, and proangiogenic properties. Owing to their high surface area to volume ratio, nanomaterials have not only been used for drug delivery vectors but also can affect wound healing by influencing collagen deposition and realignment and provide approaches for skin tissue regeneration.
Collapse
Affiliation(s)
- Debalina Bhattacharya
- Department of Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Biva Ghosh
- Department of Biotechnology, JIS University, 81 Nilgunj Road, Kolkata 700109, West Bengal, India
| | - Mainak Mukhopadhyay
- Department of Biotechnology, JIS University, 81 Nilgunj Road, Kolkata 700109, West Bengal, India
| |
Collapse
|
45
|
Ghosh D, Urie R, Chang A, Nitiyanandan R, Lee JK, Kilbourne J, Rege K. Light-Activated Tissue-Integrating Sutures as Surgical Nanodevices. Adv Healthc Mater 2019; 8:e1900084. [PMID: 31066511 PMCID: PMC9617568 DOI: 10.1002/adhm.201900084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/26/2019] [Indexed: 01/13/2023]
Abstract
Sutures are typically the primary means of soft tissue repair in surgery and trauma. Despite their widespread use, sutures do not result in immediate sealing of approximated tissues, which can result in bacterial infection and leakage. Nonabsorbable sutures and staples can be traumatic to tissue, and the trauma can be exacerbated by their subsequent removal. Use of cyanoacrylate glues is limited because of their brittleness and toxicity. In this work, laser-activated tissue-integrating sutures (LATIS) are described as novel nanodevices for soft tissue approximation and repair. Incorporation of gold nanorods within fibers generated from collagen result in LATIS fibers which demonstrate robust photothermal responses following irradiation with near infrared laser light. Compared to conventional sutures, LATIS fibers result in greater biomechanical recovery of incised skin in a mouse model of skin closure after spine surgeries. Histopathology analyses show improved repair of the epidermal gap in skin, which indicate faster tissue recovery using LATIS. The studies indicate that LATIS-facilitated approximation of skin in live mice synergizes the benefits of conventional suturing and laser-activated tissue integration, resulting in new approaches for faster sealing, tissue repair, and healing.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Biological Design, Arizona State University, Tempe, AZ 85287, USA
| | - Russell Urie
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Andy Chang
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | - Jung Keun Lee
- Diagnostic Pathology Center, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies (DACT), Arizona State University, Tempe, AZ 85287, USA
| | - Kaushal Rege
- Biological Design, Arizona State University, Tempe, AZ 85287, USA
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
46
|
Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, Ficai D, Ficai A, Andronescu E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E230. [PMID: 31151305 PMCID: PMC6631192 DOI: 10.3390/medicina55060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Collapse
Affiliation(s)
- Alexa Croitoru
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ovidiu Oprea
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Adrian Nicoara
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Roxana Trusca
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Mihai Radu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ionela Neacsu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Denisa Ficai
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
47
|
Yadid M, Feiner R, Dvir T. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. NANO LETTERS 2019; 19:2198-2206. [PMID: 30884238 DOI: 10.1021/acs.nanolett.9b00472] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The development of scaffolding materials that recapitulate the cellular microenvironment and provide cells with physicochemical cues is crucial for successfully engineering functional tissues that can aid in repairing damaged organs. The use of gold nanoparticles for tissue engineering and regenerative medicine has raised great interest in recent years. In this mini review, we describe the shape-dependent properties of gold nanoparticles, and their versatile use in creating tunable nanocomposite scaffolds with improved mechanical and electrical properties for tissue engineering. We further describe using gold nanoparticle-integrated scaffolds to achieve improved stem cells proliferation and differentiation. Finally, we discuss the main challenges and prospects for clinical translation of gold nanoparticles-hybrid scaffolds.
Collapse
|
48
|
Oh B, George P. Conductive polymers to modulate the post-stroke neural environment. Brain Res Bull 2019; 148:10-17. [PMID: 30851354 DOI: 10.1016/j.brainresbull.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Despite the prevalence of stroke, therapies to augment recovery remain limited. Here we focus on the use of conductive polymers for cell delivery, drug release, and electrical stimulation to optimize the post-stroke environment for neural recovery. Conductive polymers and their interactions with in vitro and in vivo neural systems are explored. The ability to continuously modify the neural environment utilizing conductive polymers provides applications in directing stem cell differentiation and increasing neural repair. This exciting class of polymers offers new approaches to optimizing the post-stroke brain to improve functional recovery.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Gong M, Huang C, Huang Y, Li G, Chi C, Ye J, Xie W, Shi R, Zhang L. Core-sheath micro/nano fiber membrane with antibacterial and osteogenic dual functions as biomimetic artificial periosteum for bone regeneration applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:124-136. [PMID: 30668985 DOI: 10.1016/j.nano.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
The traditional Chinese medicine icariin (ICA) and broad-spectrum antibacterial drug moxifloxacin hydrochloride (MOX) were introduced into a polycaprolactone core and gelatin shell, respectively, to develop osteogenic and antibacterial biomimetic periosteum by coaxial electrospinning. The physical properties, drug release, degradation, antibacterial property, in vitro and in vivo osteogenesis performances were investigated. Results demonstrated that stepwise and controlled drug release profiles were achieved based on the core-shell configuration and disparate degradation rate of PCL and gelatin. Only 20% ICA was released from this dual drug-loaded membrane after 1 month while the release of MOX was almost completed. Moreover, clear in vitro antibacterial effect and enhancement in osteogenic marker expressions including osteocalcin, type-I collagen expression, and calcium deposition were observed. Notably, the dual drug-loaded membrane displayed fascinating properties contributing to in vivo bone formation in terms of quality and quantity in a rabbit radius defect model.
Collapse
Affiliation(s)
- Min Gong
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Chenlin Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Yuelong Huang
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, PR China
| | - Guangping Li
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, PR China
| | - Cheng Chi
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Jingjing Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Wenqi Xie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, PR China.
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
50
|
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7:2652-2674. [DOI: 10.1039/c9bm00423h] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of inorganic nanoparticles has generated considerable expectation for solving various biomedical issues including wound healing and tissue regeneration. This review article highlights the role and recent advancements of inorganic nanoparticles for wound healing and tissue regeneration along with their advantages, clinical status, challenges and future directions.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology
- College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| | - Sourav Das
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|