1
|
Sicard L, Maillard S, Mbita Akoa D, Torrens C, Collignon AM, Coradin T, Chaussain C. Sclerostin Antibody-Loaded Dense Collagen Hydrogels Promote Critical-Size Bone Defect Repair. ACS Biomater Sci Eng 2024; 10:6451-6464. [PMID: 39269225 DOI: 10.1021/acsbiomaterials.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The management of extensive bone loss remains a clinical challenge. Numerous studies are underway to develop a combination of biomaterials, biomolecules, and stem cells to address this challenge. In particular, the systemic administration of antibodies against sclerostin, a regulator of bone formation, was recently shown to enhance the bone repair efficiency of dense collagen hydrogels (DCHs) hosting murine dental pulp stem cells (mDPSCs). The aim of the present study was to assess whether these antibodies, encapsulated and released from DCHs, could promote craniofacial bone repair by the local inhibition of sclerostin. In vitro studies showed that antibody loading modified neither the hydrogel structure nor the viability of seeded mDPSCs. When implanted in a mouse calvaria critical-size bone defect, antibody-loaded DCHs showed repair capabilities similar to those of acellular unloaded DCHs combined with antibody injections. Importantly, the addition of mDPSCs provided no further benefit. Altogether, the local delivery of antisclerostin antibodies from acellular dense collagen scaffolds is highly effective for bone repair. The drastic reduction in the required amount of antibody compared to systemic injection should reduce the cost of the procedure, making the strategy proposed here a promising therapeutic approach for large bone defect repair.
Collapse
Affiliation(s)
- Ludovic Sicard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Sophie Maillard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Daline Mbita Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Coralie Torrens
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Anne-Margaux Collignon
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université Paris Cité, 75018 Paris, France
| |
Collapse
|
2
|
Rivas IL, Soltero-Rivera M, Vapniarsky N, Arzi B. Stromal cell therapy in cats with feline chronic gingivostomatitis: current perspectives and future direction. J Feline Med Surg 2023; 25:1098612X231185395. [PMID: 37548494 PMCID: PMC10811994 DOI: 10.1177/1098612x231185395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful, immune-mediated, oral mucosal inflammatory disease in cats. The etiology of FCGS remains unclear, with evidence pointing potentially toward a viral cause. Full-mouth tooth extraction is the current standard of care, and cats that are non-responsive to extraction therapy may need lifelong medical management and, in some cases, euthanasia. Adipose-derived mesenchymal stromal cells (adMSCs) have been demonstrated to have advantages in the treatment and potentially the cure of non-responsive FCGS in cats. Therefore, adMSCs have attracted a series of ongoing clinical trials in the past decade. AdMSC therapy immediately after full-mouth tooth extraction was not explored, and we postulate that it may benefit the overall success rate of FCGS therapy. Here, we aim to summarize the current knowledge and impact of adMSCs for the therapeutic management of FCGS and to suggest a novel modified approach to further increase the efficacy of FCGS treatment in cats.
Collapse
Affiliation(s)
- Iris L Rivas
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Krasilnikova OA, Baranovskii DS, Yakimova AO, Arguchinskaya N, Kisel A, Sosin D, Sulina Y, Ivanov SA, Shegay PV, Kaprin AD, Klabukov ID. Intraoperative Creation of Tissue-Engineered Grafts with Minimally Manipulated Cells: New Concept of Bone Tissue Engineering In Situ. Bioengineering (Basel) 2022; 9:704. [PMID: 36421105 PMCID: PMC9687730 DOI: 10.3390/bioengineering9110704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities.
Collapse
Affiliation(s)
- Olga A. Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Anna O. Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Nadezhda Arguchinskaya
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Anastas Kisel
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Pogodinskaya St. 10 Bld. 1, 119121 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, Bolshaya Pirogovskaya St. 2 Bld. 3, 119435 Moscow, Russia
| | - Sergey A. Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter V. Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| |
Collapse
|
4
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
5
|
Mysore V, Alexander S, Nepal S, Venkataram A. Regenerative Medicine Treatments for Androgenetic Alopecia. Indian J Plast Surg 2022; 54:514-520. [PMID: 34984094 PMCID: PMC8719950 DOI: 10.1055/s-0041-1739257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and the role of stem cells are being studied for applications in nearly every field of medicine. The pluripotent nature of stem cells underlies their vast potential for treatment of androgenic alopecia. Several advances in recent years have heightened interest in this field, chief among them are the evolution of simpler techniques to isolate regenerative elements and stems cells. These techniques are easy, outpatient procedures with immediate injection, often single session with harvest, and minimal manipulation (usually physical). This paper seeks to critically review the existing data and determine the current evidence and their role in practice.
Collapse
Affiliation(s)
- Venkataram Mysore
- The Venkat Center for Skin ENT and Plastic Surgery, Bangalore, India
| | - Sajin Alexander
- Department of Dermatology, Sony Memorial Hospital, Erumely, Kottayam, Kerala, India
| | | | | |
Collapse
|
6
|
Wen L, Miao Y, Fan Z, Zhang J, Guo Y, Dai D, Huang J, Liu Z, Chen R, Hu Z. Establishment of an Efficient Primary Culture System for Human Hair Follicle Stem Cells Using the Rho-Associated Protein Kinase Inhibitor Y-27632. Front Cell Dev Biol 2021; 9:632882. [PMID: 33748117 PMCID: PMC7973216 DOI: 10.3389/fcell.2021.632882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hair follicle tissue engineering is a promising strategy for treating hair loss. Human hair follicle stem cells (hHFSCs), which play a key role in the hair cycle, have potential applications in regenerative medicine. However, previous studies did not achieve efficient hHFSC expansion in vitro using feeder cells. Therefore, there is a need to develop an efficient primary culture system for the expansion and maintenance of hHFSCs. Methods The hHFSCs were obtained by two-step proteolytic digestion combined with microscopy. The cell culture dishes were coated with human fibronectin and inoculated with hHFSCs. The hHFSCs were harvested using a differential enrichment procedure. The effect of Rho-associated protein kinase (ROCK) inhibitor Y-27632, supplemented in keratinocyte serum-free medium (K-SFM), on adhesion, proliferation, and stemness of hHFSCs and the underlying molecular mechanisms were evaluated. Results The hHFSCs cultured in K-SFM, supplemented with Y-27632, exhibited enhanced adhesion and proliferation. Additionally, Y-27632 treatment maintained the stemness of hHFSCs and promoted the ability of hHFSCs to regenerate hair follicles in vivo. However, Y-27632-induced proliferation and stemness in hHFSCs were conditional and reversible. Furthermore, Y-27632 maintained propagation and stemness of hHFSCs through the ERK/MAPK pathway. Conclusion An efficient short-term culture system for primary hHFSCs was successfully established using human fibronectin and the ROCK inhibitor Y-27632, which promoted the proliferation, maintained the stemness of hHFSCs and promoted the ability to regenerate hair follicles in vivo. The xenofree culturing method used in this study provided a large number of high-quality seed cells, which have applications in hair follicle tissue engineering and stem cell therapy.
Collapse
Affiliation(s)
- Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yixuan Guo
- Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Sheikholeslami A, Kalhor N, Sheykhhasan M, Jannatifar R, Sahraei SS. Evaluating differentiation potential of the human menstrual blood-derived stem cells from infertile women into oocyte-like cells. Reprod Biol 2021; 21:100477. [PMID: 33401233 DOI: 10.1016/j.repbio.2020.100477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
One of the most intricate infertility problems among women is the number and quality of the oocytes. Menstrual blood-derived stem cells (MenSCs) are a recently discovered source of mesenchymal stem cells which is known as a suitable source of cells for regenerative medicine. We aimed to investigate whether MenSCs as autologous cell source from endometriosis, PCOS, and healthy women have different characteristics regarding their morphology, CD marker expression pattern, differentiation potential into oocyte-like cells, and oocyte-related genes expression. Menstrual blood samples (1-2 ml) from healthy and infertile women (PCOS and endometriosis) in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method was characterized by flow cytometry. MenSCs were induced under 20 % follicular fluid (FF), and then they were evaluated for differentiation by Real time-PCR and immunocytochemistry assay. MenSCs derived from endometriosis women had different morphology from PCOS and healthy women, but similar regarding their CD marker pattern. All induced MenSCs showed morphological changes and expressed oocyte related genes (STELLA, GDF9, STRA8, PRDM, LHR, FSHR, SCP3, DDX4, and ZP2) in the 2nd week of culture, but there was a significant difference between the groups. Endometriosis-derived MenSCs showed higher levels of both gene and protein expressions. These findings propose that MenSCs derived from endometriosis and PCOS patients under 20 % FF, not only could differentiate into oocyte-like cells, but also showed more differential potential in comparison with healthy women. This indicates the possibility of using the patients' own MenSCs to differentiate into the oocyte-like cells.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran; Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| |
Collapse
|
8
|
Gillette B, Criscitelli T, Howell R, Woods J, Acerra M, Gorenstein S. Regenerative Wound Surgery: Practical Application of Regenerative Medicine in the OR. AORN J 2020; 109:298-317. [PMID: 30811562 DOI: 10.1002/aorn.12615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic nonhealing wounds cause significant morbidity and mortality and remain a challenging condition to treat. Regenerative wound surgery involves operative debridement of wounds to remove dead and healing-impaired tissue and bacterial contamination and, subsequently, the application of regenerative medicine treatments to accelerate healing. Regenerative treatments aim to restore native tissue structure and function by targeting biological mechanisms underlying impaired healing. A wide range of regenerative modalities are used for treating chronic and complex wounds, including decellularized scaffolds, living engineered donor tissues, autologous stem cells, and recombinant growth factors. Each of these modalities has specific and sometimes complex requirements for implementation. The advanced wound care team, including OR staff members, should be aware of how these products are used and regulated. This article highlights some of the common and emerging regenerative treatments that are applied in wound surgery and focuses on how the products are used practically in the OR.
Collapse
|
9
|
Veber M, Vogler J, Knežević M, Barlič A, Drobnič M. Combination of Filtered Bone Marrow Aspirate and Biomimetic Scaffold for the Treatment of Knee Osteochondral Lesions: Cellular and Early Clinical Results of a Single Centre Case Series. Tissue Eng Regen Med 2020; 17:375-386. [PMID: 32329022 DOI: 10.1007/s13770-020-00253-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Osteochondral injury is a very common orthopaedic pathology, mainly affecting young, active population, with limited current treatment options. Herein we are presenting cellular and early clinical data of a patient series treated for chronic osteochondral lesions in the knee with a filter-based intra-operative bone marrow aspirate (BMA) separation device. METHODS Fifteen patients with chronic knee osteochondral lesions (60% females, 19-59 years) were included in this prospective case series. Filtered BMA (f-BMA), containing mesenchymal stem/stromal cells (MSCs), was combined with a biomimetic collagen-hydroxyapatite scaffold (CHAS) and implanted into the site of the lesion. Harvested BMA and post-separation f-BMA were analysed for blood cell counts, flow cytometry, and fibroblast colony forming units (CFU-Fs). Patients were followed for serious adverse events and graft failures. Clinical evaluation was assessed using the knee injury and osteoarthritis outcome score (KOOS). In 8 patients a magnetic resonance imaging (MRI)/arthroscopy were performed. RESULTS Cell suspension contained 0.027% CD271+ CD45- 7-AAD- cells, 0.15% CD73+ CD90+ CD105+ cells and 0.0012% CFU-Fs of all nucleated cells with 86% viability. Filtration process resulted in 12.8 (4.0-40.8) fold enrichment in terms of CFU-F content in comparison to initial BMA. No serious adverse events related directly to the osteochondral treatment were reported. After an average follow-up of 20 months (14-25) all KOOS subscales (Symptoms/Pain/Daily activities/Sport and recreation/Quality of life) increased significantly from pre-operative 55/56/67/30/30 to post-operative 73/76/79/51/52 (p values < 0.05), respectively. MRI or arthroscopic evaluation revealed nearly normal to normal overall International Cartilage Repair Society assessment in 7/8 patients. CONCLUSION The filter-based BMA separation procedure significantly increased the frequency of mesenchymal stem/stromal cells (MSCs), however their concentration was not increased. The clinical evaluation revealed high safety profile of the treatment and resulted in improved clinical status of the patients.
Collapse
Affiliation(s)
| | - Jan Vogler
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | | | | | - Matej Drobnič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.,Chair of Orthopedics, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid Moosavi SM, Keshavarz S, Khodabandeh Z, Zare S, Nazari S, Heidari M, Izadi S, Poursadeghfard M, Borhani-Haghighi A. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther 2020; 26:670-681. [PMID: 32281225 PMCID: PMC7298983 DOI: 10.1111/cns.13370] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Cell‐based therapy is considered as promising strategy to cure stroke. However, employing appropriate type of stem cell to fulfill many therapeutic needs of cerebral ischemia is still challenging. In this regard, the current study was designed to elucidate therapeutic potential of epidermal neural crest stem cells (EPI‐NCSCs) compared to bone marrow mesenchymal stem cells (BM‐MSCs) in rat model of ischemic stroke. Methods Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) for 45 minutes. Immediately after reperfusion, EPI‐NCSCs or BM‐MSCs were transplanted via intra‐arterial or intravenous route. A test for neurological function was performed before ischemia and 1, 3, and 7 days after MCAO. Also, infarct volume ratio and relative expression of 15 selected target genes were evaluated 7 days after transplantation. Results EPI‐NCSCs transplantation (both intra‐arterial and intravenous) and BM‐MSCs transplantation (only intra‐arterial) tended to result in a better functional outcome, compared to the MCAO group; however, this difference was not statistically significant. The infarct volume ratio significantly decreased in NCSC‐intra‐arterial, NCSC‐intravenous and MSC‐intra‐arterial groups compared to the control. EPI‐NCSCs interventions led to higher expression levels of Bdnf, nestin, Sox10, doublecortin, β‐III tubulin, Gfap, and interleukin‐6, whereas neurotrophin‐3 and interleukin‐10 were decreased. On the other hand, BM‐MSCs therapy resulted in upregulation of Gdnf, β‐III tubulin, and Gfap and down‐regulation of neurotrophin‐3, interleukin‐1, and interleukin‐10. Conclusion These findings highlight the therapeutic effects of EPI‐NCSCs transplantation, probably through simultaneous induction of neuronal and glial formation, as well as Bdnf over‐expression in a rat model of ischemic stroke.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Somaye Keshavarz
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Izadi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
11
|
Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Front Bioeng Biotechnol 2020; 8:148. [PMID: 32185170 PMCID: PMC7058632 DOI: 10.3389/fbioe.2020.00148] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are culture-derived mesodermal progenitors isolatable from all vascularized tissues. In spite of multiple fundamental, pre-clinical and clinical studies, the native identity and role in tissue repair of MSCs have long remained elusive, with MSC selection in vitro from total cell suspensions essentially unchanged as a mere primary culture for half a century. Recent investigations have helped understand the tissue origin of these progenitor cells, and uncover alternative effects of MSCs on tissue healing via growth factor secretion and interaction with the immune system. In this review, we describe current trends in MSC biology and discuss how these may improve the use of these therapeutic cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mario Gomez-Salazar
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zaniah N Gonzalez-Galofre
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joan Casamitjana
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mihaela Crisan
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Bruno Péault
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Kim K, Bou-Ghannam S, Okano T. Cell sheet tissue engineering for scaffold-free three-dimensional (3D) tissue reconstruction. Methods Cell Biol 2020; 157:143-167. [PMID: 32334713 DOI: 10.1016/bs.mcb.2019.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) reconstruction of highly functional tissues is of great importance in advancing the clinical benefit of tissue engineering and regenerative medicine. In the last quarter century, many studies have found that by engineering a 3D microenvironment that resembles the in vivo tissue condition, cells exhibit behaviors and functions that reflect those of native tissue. Biomaterial scaffolds are a central technology for providing 3D microenvironments in vitro, and, in conjunction with diverse design and cell seeding advents, have produced highly functional and complex 3D tissues. Here, we describe a new approach to creating 3D cell-dense tissue-like constructs without a biomaterial scaffold. Cell sheet technology with cell sheet layering strategies generates highly cell dense, engineered tissue capable of direct crosstalk with the tissue-engraftment surface, in addition to paracrine-mediated signaling. In this chapter, we will introduce methods of reconstructing 3D tissue using cell sheet technology and the advantages of a scaffold-free design.
Collapse
Affiliation(s)
- Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, United States.
| | - Sophia Bou-Ghannam
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, United States; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
13
|
Trivisonno A, Alexander RW, Baldari S, Cohen SR, Di Rocco G, Gentile P, Magalon G, Magalon J, Miller RB, Womack H, Toietta G. Intraoperative Strategies for Minimal Manipulation of Autologous Adipose Tissue for Cell- and Tissue-Based Therapies: Concise Review. Stem Cells Transl Med 2019; 8:1265-1271. [PMID: 31599497 PMCID: PMC6877766 DOI: 10.1002/sctm.19-0166] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
The stromal vascular fraction (SVF) is a heterogeneous population of stem/stromal cells isolated from perivascular and extracellular matrix (ECM) of adipose tissue complex (ATC). Administration of SVF holds a strong therapeutic potential for regenerative and wound healing medicine applications aimed at functional restoration of tissues damaged by injuries or chronic diseases. SVF is commonly divided into cellular stromal vascular fraction (cSVF) and tissue stromal vascular fraction (tSVF). Cellular SVF is obtained from ATC by collagenase digestion, incubation/isolation, and pelletized by centrifugation. Enzymatic disaggregation may alter the relevant biological characteristics of adipose tissue, while providing release of complex, multiattachment of cell-to-cell and cell-to-matrix, effectively eliminating the bioactive ECM and periadventitial attachments. In many countries, the isolation of cellular elements is considered as a "more than minimal" manipulation, and is most often limited to controlled clinical trials and subject to regulatory review. Several alternative, nonenzymatic methods of adipose tissue processing have been developed to obtain via minimal mechanical manipulation an autologous tSVF product intended for delivery, reducing the procedure duration, lowering production costs, decreasing regulatory burden, and shortening the translation into the clinical setting. Ideally, these procedures might allow for the integration of harvesting and processing of adipose tissue for ease of injection, in a single procedure utilizing a nonexpanded cellular product at the point of care, while permitting intraoperative autologous cellular and tissue-based therapies. Here, we review and discuss the options, advantages, and limitations of the major strategies alternative to enzymatic processing currently developed for minimal manipulation of adipose tissue. Stem Cells Translational Medicine 2019;8:1265&1271.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical ScienceUniversity of Rome “La Sapienza”RomeItaly
| | | | - Silvia Baldari
- Department of ResearchAdvanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer InstituteRomeItaly
- Department of Medical Surgical Sciences and BiotechnologiesUniversity of Rome “La Sapienza”LatinaItaly
| | - Steven R. Cohen
- FACES+ Plastic SurgerySkin and Laser Center and the University of CaliforniaSan DiegoCaliforniaUSA
| | - Giuliana Di Rocco
- Department of ResearchAdvanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Pietro Gentile
- Department of Plastic and Reconstructive SurgeryUniversity of Rome Tor VergataRomeItaly
| | - Guy Magalon
- Plastic Surgery DepartmentAssistance Publique Hôpitaux de Marseille (APHM), Aix Marseille UniversityMarseilleFrance
| | - Jérémy Magalon
- Vascular Research Center of MarseilleAix Marseille University, INSERM UMR 1076MarseilleFrance
- Cell Therapy LaboratoryCBT‐1409, INSERM, Assistance Publique Hôpitaux de MarseilleMarseilleFrance
| | | | - Hayley Womack
- FACES+ Plastic SurgerySkin and Laser Center and the University of CaliforniaSan DiegoCaliforniaUSA
| | - Gabriele Toietta
- Department of ResearchAdvanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
14
|
Nakao M, Kim K, Nagase K, Grainger DW, Kanazawa H, Okano T. Phenotypic traits of mesenchymal stem cell sheets fabricated by temperature-responsive cell culture plate: structural characteristics of MSC sheets. Stem Cell Res Ther 2019; 10:353. [PMID: 31779694 PMCID: PMC6883536 DOI: 10.1186/s13287-019-1431-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background In most stem cell therapy strategies reported to date, stem cells are introduced to damaged tissue sites to repair and regenerate the original tissue structure and function. MSC therapeutic efficacies are inconsistent, largely attributed to transplanted MSC difficulties both in engrafting at tissue sites and in retaining their therapeutic functions from suspension formulations. MSC functional components, including cell adhesion and cell–cell junction proteins, and ECM that contribute to essential cellular therapeutic effects, are damaged or removed by proteolytic enzymes used in stem cell harvesting strategies from culture. To overcome these limitations, methods to harvest and transplant cells without disrupting critical stem cell functions are required. Cell sheet technology, exploiting temperature-responsive cell culture surfaces, permits cell harvest without cell protein damage. This study is focused on phenotypic traits of MSC sheets structurally and functionally to understand therapeutic benefits of cell sheets. Methods/results This study verified cleaved cellular proteins (vinculin, fibronectin, laminin, integrin β-1, and connexin 43) and increased apoptotic cell death produced under standard trypsin harvesting treatment in a time-dependent manner. However, MSC sheets produced without trypsin using only temperature-controlled sheet harvest from culture plastic exhibited intact cellular structures. Also, MSCs harvested using enzymatic treatment (i.e., chemical disruption) showed higher pYAP expression compared to MSC sheets. Conclusion Retention of cellular structures such as ECM, cell–cell junctions, and cell–ECM junctions is correlated with human umbilical cord mesenchymal stem cell (hUC-MSC) survival after detachment from cell culture surfaces. Retaining these proteins intact in MSC cultures using cell sheet technology is proposed to enhance stem cell survival and their function in stem cell-based therapy.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.,Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
15
|
Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. Int J Mol Sci 2019; 20:5471. [PMID: 31684107 PMCID: PMC6862236 DOI: 10.3390/ijms20215471] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autologous therapies using adipose-derived stromal vascular fraction (AD-SVFs) and adult adipose-derived mesenchymal stem cells (AD-MSCs) warrant careful preparation of the harvested adipose tissue. Currently, no standardized technique for this preparation exists. Processing quantitative standards (PQSs) define manufacturing quantitative variables (such as time, volume, and pressure). Processing qualitative standards (PQLSs) define the quality of the materials and methods in manufacturing. The purpose of the review was to use PQSs and PQLSs to report the in vivo and in vitro results obtained by different processing kits that use different procedures (enzymatic vs. non-enzymatic) to isolate human AD-SVFs/AD-MSCs. PQSs included the volume of fat tissue harvested and reagents used, the time/gravity of centrifugation, and the time, temperature, and tilt level/speed of incubation and/or centrifugation. PQLSs included the use of a collagenase, a processing time of 30 min, kit weight, transparency of the kit components, the maintenance of a closed sterile processing environment, and the use of a small centrifuge and incubating rocker. Using a kit with the PQSs and PQLSs described in this study enables the isolation of AD-MSCs that meet the consensus quality criteria. As the discovery of new critical quality attributes (CQAs) of AD-MSCs evolve with respect to purity and potency, adjustments to these benchmark PQSs and PQLs will hopefully isolate AD-MSCs of various CQAs with greater reproducibility, quality, and safety. Confirmatory studies will no doubt need to be completed.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Barbara De Angelis
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Ashutosh Kothari
- Chief of Breast Surgery Unit, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
16
|
Kraft DL, Walck ER, Carrasco A, Crocker MD, Song L, Long MG, Mosse MA, Nadeem B, Imanbayev GT, Czechowicz AD, McCullough MJ. The MarrowMiner: A Novel Minimally Invasive and Effective Device for the Harvest of Bone Marrow. Biol Blood Marrow Transplant 2019; 26:219-229. [PMID: 31491487 DOI: 10.1016/j.bbmt.2019.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Bone marrow (BM) is a rich source of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and other important stem/progenitor cells. It is the traditional source of cells used in hematopoietic cell transplantation, which is a proven curative treatment for many blood and immune diseases. BM-derived cells have also been shown to have other diverse clinical uses and are increasingly being used in orthopedic medicine, regenerative medicine, and gene therapy applications. Traditional methods for harvesting BM are crude, tedious, time-consuming, and expensive, requiring multiple bone punctures under general anesthesia with serial small-volume aspirates often diluted with peripheral blood. The MarrowMiner (MM) is a novel device designed for rapid and minimally invasive BM harvest. Here we show the safety and efficacy of the MM in both preclinical and clinical settings. In a large-animal porcine model, the MM enabled effective BM collection with similar total nucleated cell collection and increased colony formation compared with standard methods. The MM was subsequently evaluated in a clinical study showing effective and complication-free anterior and posterior BM collection of 20 patients under only local anesthesia or light sedation. Increased total nucleated and mononucleated cell collection was achieved with the MM compared with standard methods in the same patients. Importantly, stem cell content was high with trends toward increased HSC, MSC, and endothelial progenitor cells with similar T cell content. Given the MM is a novel device approved by the US Food and Drug Administration, enabling safe, effective, and minimally invasive harvest of BM, we anticipate rapid adoption for various applications.
Collapse
Affiliation(s)
| | - Emily R Walck
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | - Lin Song
- Stryker Orthopaedics, Mahwah, New Jersey
| | | | - Maia A Mosse
- School of Medicine, Stanford University, Stanford, California
| | | | | | - Agnieszka D Czechowicz
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
17
|
Gentile P, Garcovich S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019; 8:466. [PMID: 31100937 PMCID: PMC6562814 DOI: 10.3390/cells8050466] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
18
|
Miller TJ, Rodriguez-Collazo E, Frania SJ, Thione A. Regenerative Surgery & Intra-Operative Protocols Utilizing Bone Marrow Aspirate Concentrate in Microsurgical & Limb Reconstruction. ACTA ACUST UNITED AC 2019. [DOI: 10.29337/ijops.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Synovium-Derived Mesenchymal Stem/Stromal Cells and their Promise for Cartilage Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:87-106. [PMID: 31069722 DOI: 10.1007/5584_2019_381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adult tissues are reservoirs of rare populations of cells known as mesenchymal stem/stromal cells (MSCs) that have tissue-regenerating features retained from embryonic development. As well as building up the musculoskeletal system in early life, MSCs also replenish and repair tissues in adult life, such as bone, cartilage, muscle, and adipose tissue. Cells that show regenerative features at least in vitro have been identified from several connective tissues. Bone marrow and adipose tissue are the most well recognized sources of MSCs that are already used widely in clinical practice. Regenerative medicine aims to exploit MSCs and their tissue regeneration even though the underlying mechanisms for their beneficial effects are largely unknown. Despite many studies that have used various tissue-derived MSCs, the most effective tissue source for orthopedic procedures still remains to be identified. Another question that needs to be addressed is how to evaluate autologous MSCs (i.e., patient derived). Previous studies have suggested the features of bone-marrow-derived MSCs can differ widely between individuals, and can be changed in particular in patients suffering from some forms of degenerative disorder, such as osteoarthritis. The synovium is a thin membrane that protects the synovial joints, and it is a rich source of MSCs that show great potential for regenerative medicine. Here, we review synovium-derived MSCs from reports on basic and clinical studies. We discuss their potential to treat cartilage defects caused by either degeneration or trauma, and what needs to be done in further research toward their better exploitation for joint regeneration.
Collapse
|
20
|
Ferguson EL, Naseer S, Powell LC, Hardwicke J, Young FI, Zhu B, Liu Q, Song B, Thomas DW. Controlled release of dextrin-conjugated growth factors to support growth and differentiation of neural stem cells. Stem Cell Res 2018; 33:69-78. [PMID: 30321831 PMCID: PMC6288241 DOI: 10.1016/j.scr.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
An essential aspect of stem cell in vitro culture and in vivo therapy is achieving sustained levels of growth factors to support stem cell survival and expansion, while maintaining their multipotency and differentiation potential. This study investigated the ability of dextrin (~74,000 g/mol; 27.8 mol% succinoylation) conjugated to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF; or FGF-2) (3.9 and 6.7% w/w protein loading, respectively) to support the expansion and differentiation of stem cells in vitro via sustained, controllable growth factor release. Supplementation of mouse neural stem cells (mNSCs) with dextrin-growth factor conjugates led to greater and prolonged proliferation compared to unbound EGF/bFGF controls, with no detectable apoptosis after 7 days of treatment. Immunocytochemical detection of neural precursor (nestin) and differentiation (Olig2, MAP2, GFAP) markers verified that controlled release of dextrin-conjugated growth factors preserves stem cell properties of mNSCs for up to 7 days. These results show the potential of dextrin-growth factor conjugates for localized delivery of bioactive therapeutic agents to support stem cell expansion and differentiation, and as an adjunct to direct neuronal repair.
Collapse
Affiliation(s)
- Elaine L Ferguson
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK.
| | - Sameza Naseer
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Lydia C Powell
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Joseph Hardwicke
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Fraser I Young
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Bangfu Zhu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Qian Liu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Bing Song
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - David W Thomas
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| |
Collapse
|
21
|
Vedicherla S, Romanazzo S, Kelly DJ, Buckley CT, Moran CJ. Chondrocyte-based intraoperative processing strategies for the biological augmentation of a polyurethane meniscus replacement. Connect Tissue Res 2018; 59:381-392. [PMID: 29182439 DOI: 10.1080/03008207.2017.1402892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/aim of study: Menisectomies account for over 1.5 million surgical interventions in Europe annually, and there is a growing interest in regenerative strategies to improve outcomes in meniscal replacement. The overall objective of this study was to evaluate the role of intraoperatively applied fresh chondrocyte (FC) isolates compared to minced cartilage (MC) fragments, used without cell isolation, to improve bioactivity and tissue integration when combined with a polyurethane replacement. MATERIALS AND METHODS First, to optimize the intraoperative cell isolation protocol, caprine articular cartilage biopsies were digested with 750 U/ml or 3000 U/ml collagenase type II (ratio of 10 ml per g of tissue) for 30 min, 1 h or 12 h with constant agitation and compared to culture-expanded chondrocytes in terms of matrix deposition when cultured on polyurethane scaffolds. Finally, FCs and MC-augmented polyurethane scaffolds were evaluated in a caprine meniscal explant model to assess the potential enhancements on tissue integration strength. RESULTS Adequate numbers of FCs were harvested using a 30 min chondrocyte isolation protocol and were found to demonstrate improved matrix deposition compared to standard culture-expanded cells in vitro. Upon evaluation in a meniscus explant defect model, both FCs and MC showed improved matrix deposition at the tissue-scaffold interface and enhanced push-out strength, fourfold and 2.5-fold, respectively, compared with the acellular implant. CONCLUSIONS Herein, we have demonstrated a novel approach that could be applied intraoperatively, using FCs or MC for improved tissue integration with a polyurethane meniscal replacement.
Collapse
Affiliation(s)
- Srujana Vedicherla
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Sara Romanazzo
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Daniel J Kelly
- b Department of Mechanical & Manufacturing Engineering , School of Engineering, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland
| | - Conor T Buckley
- b Department of Mechanical & Manufacturing Engineering , School of Engineering, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland
| | - Cathal J Moran
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland.,e Sports Surgery Clinic , Santry , Dublin , Ireland
| |
Collapse
|
22
|
Petters O, Schmidt C, Thuemmler C, Peinemann F, Zscharnack M, Somerson JS, Schulz RM. Point-of-care treatment of focal cartilage defects with selected chondrogenic mesenchymal stromal cells-An in vitro proof-of-concept study. J Tissue Eng Regen Med 2018; 12:1717-1727. [PMID: 29766671 DOI: 10.1002/term.2699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/16/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Due to the poor self-healing capacities of cartilage, innovative approaches are a major clinical need. The use of in vitro expanded mesenchymal stromal cells (MSCs) in a 2-stage approach is accompanied by cost-, time-, and personnel-intensive good manufacturing practice production. A 1-stage intraoperative procedure could overcome these drawbacks. The aim was to prove the feasibility of a point-of-care concept for the treatment of cartilage lesions using defined MSC subpopulations in a collagen hydrogel without prior MSC monolayer expansion. We tested 4 single marker candidates (MSCA-1, W4A5, CD146, CD271) for their effectiveness of separating colony-forming units of ovine MSCs via magnetic cell separation. The most promising surface marker with regard to the highest enrichment of colony-forming cells was subsequently used to isolate a MSC subpopulation for the direct generation of a cartilage graft composed of a collagen type I hydrogel without the propagation of MSCs in monolayer. We observed that separation with CD271 sustained the highest enrichment of colony-forming units. We then demonstrated the feasibility of generating a cartilage graft with an unsorted bone marrow mononuclear cell fraction and with a characterized CD271 positive MSC subpopulation without the need for a prior cell expansion. A reduced volume of 6.25% of the CD271 positive MSCs was needed to achieve the same results regarding chondrogenesis compared with the unseparated bone marrow mononuclear cell fraction, drastically reducing the number of nonrelevant cells. This study provides a proof-of-concept and reflects the potential of an intraoperative procedure for direct seeding of cartilage grafts with selected CD271 positive cells from bone marrow.
Collapse
Affiliation(s)
- Oliver Petters
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Schmidt
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Thuemmler
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Peinemann
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Zscharnack
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Jeremy S Somerson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Ronny M Schulz
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Jakus A, Geisendorfer N, Lewis P, Shah R. 3D-printing porosity: A new approach to creating elevated porosity materials and structures. Acta Biomater 2018; 72:94-109. [PMID: 29601901 DOI: 10.1016/j.actbio.2018.03.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/23/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. STATEMENT OF SIGNIFICANCE Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer structures are almost entirely porous and contain very little solid material, but the maintain their 3D-printed form and are highly compatible with adult human stem cells, are mechanically robust enough to use in surgical manipulations, and can be filled with and act as carriers for biologically active liquids and gels. We can also extend this process to three-dimensionally printing other porous materials, such as graphene, metals, and even ceramics.
Collapse
|
24
|
Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev 2018; 129:285-294. [PMID: 29357301 DOI: 10.1016/j.addr.2018.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 02/06/2023]
Abstract
Bone tissue has a strong intrinsic regenerative capacity, thanks to a delicate and complex interplay of cellular and molecular processes, which tightly involve the immune system. Pathological settings of anatomical, biomechanical or inflammatory nature may lead to impaired bone healing. Innovative strategies to enhance bone repair, including the delivery of osteoprogenitor cells or of potent cytokines/morphogens, indicate the potential of 'orthobiologics', but are not fully satisfactory. Here, we review different approaches based on the delivery of regenerative cues produced by cells but in cell-free, possibly off-the-shelf configurations. Such strategies exploit the paracrine effect of the secretome of mesenchymal stem/stromal cells, presented in soluble form, shuttled through extracellular vesicles, or embedded within the network of extracellular matrix molecules. In addition to osteoinductive molecules, attention is given to factors targeting the resident immune cells, to reshape inflammatory and immunity processes from scarring to regenerative patterns.
Collapse
Affiliation(s)
- Alexander Haumer
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| | - Paul Emile Bourgine
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| | - Paola Occhetta
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| | - Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| | - Roberta Tasso
- Ospedale Policlinico San Martino-IST, IRCCS per l'Oncologia, Genova, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| |
Collapse
|
25
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
27
|
Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: A simulation of intraoperative procedure. J Craniomaxillofac Surg 2016; 44:1750-1760. [PMID: 27624644 DOI: 10.1016/j.jcms.2016.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/02/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023] Open
Abstract
Bone defects represent a serious problem in cranio-maxillofacial surgery. Autologous adipose-derived stromal vascular fraction (SVF) cells in combination with biological factors and bone substitutes were previously proposed as alternative to bone grafting. By simulating an intraoperative procedure we examined osteogenic capacity of the combination of two autologous components, freshly isolated adipose-derived SVF cells, and platelet-rich plasma (PRP), delivered on bone mineral matrix (BMM) carrier (SPB group) in mice ectopic bone forming model. Implantation of BMM only (B group) was a control. The presence of adipose-derived stem cells (ADSCs) in SVF was detected by immunocytochemical analysis. Expression of bone- and endothelial-related genes was compared between freshly isolated SVF and ADSCs obtained from SVF after in vitro cultivation. The implants were analyzed using expression analysis of bone-related genes at one, two, four and eight weeks and histochemical, immunohistochemical and histomorphometrical analyses at two and eight weeks after implantation. Freshly isolated adipose-derived SVF contained ADSCs and exhibited promising osteogenic and vasculogenic capacity. At two and four weeks, significantly higher expression of bone-related genes was detected in SPB group compared to B group. The signs of osteogenic process were more pronounced in SPB than in B implants. By the end of experiment, percentage of infiltrated tissue and vascularization was significantly higher in SPB than in B implants. Adipose-derived SVF cells, PRP and BMM rapidly initiated osteogenesis what makes this combination promising candidate for treatment of bone defects.
Collapse
|
28
|
Allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold to promote lumbar interbody spine fusion in an ovine model. Spine J 2016; 16:389-99. [PMID: 26291397 DOI: 10.1016/j.spinee.2015.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Advances in immunomagnetic cell sorting have enabled isolation and purification of pleuripotent stem cells from marrow aspirates and have expanded stem cell therapies to include allogeneic sources. PURPOSE This study aimed to determine the safety and efficacy of allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold in lumbar interbody spinal fusion using an ovine model. STUDY DESIGN Thirty-two skeletally mature ewes underwent a single-level interbody fusion procedure using a Polyetheretherketone fusion cage supplemented with either iliac crest autograft (AG) or an osteconductive scaffold (Mastergraft Matrix, Medtronic, Memphis, TN, USA) with 2.5×10(6) MPCs, 6.25×10(6) MPCs, or 12.5×10(6) MPCs. METHODS Plain radiographs and computed tomography scans were scored for bridging bone at multiple points during healing and at necropsy. The biomechanical competency of fusion was scored by manual palpation and quantified using functional radiographs at necropsy. Postnecropsy histopathology and histomorphometric analysis assessed the local response to MPC treatment and quantified the volume and connectivity of newly formed bridging bone. Safety was assessed by serum biochemistry, hematology, and organ histopathology. RESULTS Mesenchymal precursor cell treatment caused no adverse systemic or local tissue responses. All analyses indicated MPCs combined with an osteoconductive scaffold achieved similar or better fusion success as AG treatment after 16 weeks, and increasing the MPC dose did not enhance fusion. Manual palpation of the fusion site indicated more than 75% of MPC-treated and 65% of AG-treated animals achieved rigid fusion, which was corroborated with functional radiography. Computed tomography fusion scores indicated all animals in the MPC- and AG-treatment groups were fused at 16 weeks, yet X-ray scores indicated only 67% of the AG-treated animals were fused. Histomorphometry analyses showed equivalent outcomes for fusion connectivity and bony fusion area for MPC- and AG-treated groups. Approximately 6% residual graft material remained in the MPC-treated fusion sites at 16 weeks. CONCLUSIONS Adult allogeneic MPCs delivered using an osteoconductive scaffold were both safe and efficacious in this ovine spine interbody fusion model. These results support the use ofallogeneic MPCs as an alternative to AG for lumbar interbody spinal fusion procedures.
Collapse
|
29
|
Effect of Short-Term Stimulation with Interleukin-1β and Differentiation Medium on Human Mesenchymal Stromal Cell Paracrine Activity in Coculture with Osteoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714230. [PMID: 26798640 PMCID: PMC4700155 DOI: 10.1155/2015/714230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Introduction. Human mesenchymal stromal cells (hMSCs) exhibit the potential to accelerate bone healing by enhanced osteogenic differentiation. Interleukin-1β is highly expressed during fracture healing and has been demonstrated to exert a significant impact on the differentiation behaviour of hMSCs. Here, we investigate the effect of 2-hour IL-1β stimulation on the differentiation and paracrine activity of hMSCs in coculture with osteosarcoma cells in vitro. Methods. hMSCs from 3 donors were incubated for 2 hours with 10 ng/mL IL-1β and subsequently cocultured with MG63-GFP cells either in control or in differentiation medium in a transwell system for 28 days. Genetic and functional effects were investigated. Results. hMSCs cultured in control medium exhibited a regulatory effect on cocultured MG63-GFP cells, resulting in upregulation of osteogenic gene expression in combination with increased ALP activity. However, while stimulated hMSCs cultured under differentiation conditions exhibit signs of osteogenic differentiation, osteogenic differentiation also caused an impaired regulatory effect on the cocultured MG63-GFP cells. Conclusion. Short stimulation of hMSCs has the potential to modify their long-term behaviour. In addition, undifferentiated hMSCs are able to regulate osteoblast differentiation; however, this regulatory function is lost upon osteogenic differentiation in vitro. This offers a novel approach for clinical cell therapy protocols.
Collapse
|
30
|
Bae S, Lee HJ, Lee JS, Webb K. Cell-Mediated Dexamethasone Release from Semi-IPNs Stimulates Osteogenic Differentiation of Encapsulated Mesenchymal Stem Cells. Biomacromolecules 2015; 16:2757-65. [PMID: 26259127 DOI: 10.1021/acs.biomac.5b00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scaffold-based delivery of bioactive molecules capable of directing stem cell differentiation is critical to the development of point-of-care cell therapy for orthopedic repair. Dexamethasone-conjugated hyaluronic acid (HA-DXM) was synthesized and combined with hydrolytically degradable, photo-cross-linkable PEG-bis(2-acryloyloxy propanoate) (PEG-bis-AP) to form semi-IPNs. Dexamethasone (DX) release was limited in physiological buffer and substantially increased in the presence of encapsulated human mesenchymal stem cells (hMSCs) or exogenous hyaluronidase, confirming that release occurred primarily by a cell-mediated enzymatic mechanism. hMSCs encapsulated in PEG-bis-AP/HA-DXM semi-IPNs increased osteoblast-specific gene expression, alkaline phosphatase activity, and matrix mineralization, attaining levels that were not significantly different from positive controls consisting of hMSCs in PEG-bis-AP/native HA cultured with DX supplementation in the culture medium. These studies demonstrate that PEG-bis-AP/HA-DXM semi-IPNs can provide cell-mediated release of bioactive free DX that induces hMSC osteogenic differentiation. This approach offers an efficient system for local delivery of osteogenic molecules empowering point of care applications.
Collapse
Affiliation(s)
- Sooneon Bae
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ho-Joon Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Jeoung Soo Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ken Webb
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| |
Collapse
|
31
|
Sununliganon L, Peng L, Singhatanadgit W, Cheung LK. Osteogenic efficacy of bone marrow concentrate in rabbit maxillary sinus grafting. J Craniomaxillofac Surg 2014; 42:1753-65. [PMID: 25052732 DOI: 10.1016/j.jcms.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/29/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
Maxillary sinus grafting is required to increase bone volume in the atrophic posterior maxilla to facilitate dental implant placement. Grafting with autogenous bone (AB) is ideal, but additional bone harvesting surgery is unpleasant. Alternatively, bone substitutes have been used but they limit new bone formation. The strategy of single-visit clinical stem cell therapy using bone marrow aspirate concentrate (BMAC) to facilitate new bone formation has been proposed. This study aimed to assess bone regeneration capacity of autologous BMAC mixed with bovine bone mineral (BBM) in maxillary sinus grafting. Twenty-four white New Zealand rabbits were used and their maxillary sinuses were randomly assigned for grafting with 4 different materials. Rates of new bone apposition in augmented sinuses were measured and bone histomorphometry were examined. Significant increase in the quantity of nucleated cells and colony forming unit-fibroblasts were confirmed in BMAC. Mesenchymal stem cells in BMAC retained their in vitro multi-differentiation capability. Higher rates of mineral appositions in the early period were detected in BBM + BMAC and AB than BBM alone, though they are not significantly different. Graft volume/tissue volumes in BBM and BBM + BMAC were found to be higher than those in AB and sham.
Collapse
Affiliation(s)
- L Sununliganon
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, China; Faculty of Dentistry, Thammasat University, Thailand
| | - L Peng
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, China
| | | | - L K Cheung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, China.
| |
Collapse
|
32
|
Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 2014; 42:648-57. [PMID: 24458240 DOI: 10.1177/0363546513518007] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chondral lesions in athletically active patients cause considerable morbidity, and treatment with existing cell-based therapies can be challenging. Bone marrow has been shown as a possible source of multipotent stem cells (MSCs) with chondrogenic potential and is easy to harvest during the same surgical procedure. PURPOSE To investigate the clinical outcome in a group of active patients with large full-thickness chondral defects of the knee treated with 1-step surgery using bone marrow-derived MSCs and a second-generation matrix. STUDY DESIGN Case series; Level of evidence, 4. METHODS From January 2007 to February 2010, 25 patients (average age, 46.5 years) with symptomatic large chondral defects of the knee (International Cartilage Repair Society grade 4) who underwent cartilage transplantation with MSCs and a collagen type I/III matrix were followed up for a minimum of 3 years. The average lesion size was 8.3 cm(2). Coexisting injuries were treated during the same surgical procedure in 18 patients. All patients underwent a standard postoperative rehabilitation program. Preoperative and postoperative evaluations at 1-year, 2-year, and final follow-up included radiographs, magnetic resonance imaging (MRI), and visual analog scale (VAS) for pain, International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm, Marx, and Tegner scores. Seven patients underwent second-look arthroscopic surgery, with 4 consenting to a tissue biopsy. RESULTS No patients were lost at final follow-up. The average preoperative values for the evaluated scores were significantly improved at final follow-up (P < .001): VAS, 5.4 ± 0.37 to 0.48 ± 0.19; IKDC subjective, 37.92 ± 4.52 to 81.73 ± 2.42; KOOS pain, 61.04 ± 3.95 to 93.32 ± 1.92; KOOS symptoms, 55.64 ± 3.23 to 89.32 ± 2.32; KOOS activities of daily living, 63.96 ± 4.48 to 91.20 ± 2.74; KOOS sports, 34.20 ± 5.04 to 80.00 ± 3.92; KOOS quality of life, 32.20 ± 4.43 to 83.04 ± 3.37; Lysholm, 46.36 ± 2.25 to 86.52 ± 2.73; Marx, 3.00 ± 0.79 to 9.04 ± 0.79; and Tegner, 2.12 ± 0.32 to 5.64 ± 0.26. Patients younger than 45 years of age and those with smaller or single lesions showed better outcomes. The MRI scans showed good stability of the implant and complete filling of the defect in 80% of patients, and hyaline-like cartilage was found in the histological analysis of the biopsied tissue. No adverse reactions or postoperative complications were noted. CONCLUSION The treatment of large chondral defects with MSCs is an effective procedure and can be performed routinely in clinical practice. Moreover, it can be achieved with 1-step surgery, avoiding a previous surgical procedure to harvest cartilage and subsequent chondrocyte cultivation.
Collapse
Affiliation(s)
- Alberto Gobbi
- Alberto Gobbi, Orthopaedic Arthroscopic Surgery International (OASIBioresearch Foundation, G.A. Amadeo 24, 20133 Milan, Italy. )
| | | | | |
Collapse
|
33
|
O'Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc 2014; 89:259-73. [PMID: 24485137 DOI: 10.1016/j.mayocp.2013.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The past decade has seen the first wave of cell-based therapeutics undergo clinical trials with varying degrees of success. Although attention is increasingly focused on clinical trial design, owing to spiraling regulatory costs, tools used in delivering cells and sustaining the cells' viability and functions in vivo warrant careful scrutiny. While the clinical administration of cell-based therapeutics often requires additional safeguarding and targeted delivery compared with traditional therapeutics, there is significant opportunity for minimally invasive device-assisted cell therapy to provide the physician with new regenerative options at the point of care. Herein we detail exciting recent advances in medical devices that will aid in the safe and efficacious delivery of cell-based therapeutics.
Collapse
Affiliation(s)
- Eoin D O'Cearbhaill
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Kelvin S Ng
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey M Karp
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA.
| |
Collapse
|
34
|
Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:436029. [PMID: 24592390 PMCID: PMC3925627 DOI: 10.1155/2014/436029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.
Collapse
Affiliation(s)
- Jaewoo Pak
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
| | - Jung Hun Lee
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| |
Collapse
|
35
|
Kim J, Kim HN, Lim KT, Kim Y, Seonwoo H, Park SH, Lim HJ, Kim DH, Suh KY, Choung PH, Choung YH, Chung JH. Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep 2013; 3:3552. [PMID: 24352057 PMCID: PMC6506445 DOI: 10.1038/srep03552] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022] Open
Abstract
Inspired by ultrastructural analysis of ex vivo human tissues as well as the physiological importance of structural density, we fabricated nanogrooves with 1:1, 1:3, and 1:5 spacing ratio (width:spacing, width = 550 nm). In response to the nanotopographical density, the adhesion, migration, and differentiation of human mesenchymal stem cells (hMSCs) were sensitively controlled, but the proliferation showed no significant difference. In particular, the osteo- or neurogenesis of hMSCs were enhanced at the 1:3 spacing ratio rather than 1:1 or 1:5 spacing ratio, implying an existence of potentially optimized nanotopographical density for stem cell function. Furthermore, such cellular behaviors were positively correlated with several cell morphological indexes as well as the expression of integrin β1 or N-cadherin. Our findings propose that nanotopographical density may be a key parameter for the design and manipulation of functional scaffolds for stem cell-based tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jangho Kim
- 1] Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Hong Nam Kim
- 1] Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Ki-Taek Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yeonju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Hoon Seonwoo
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Soo Hyun Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hye Jin Lim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Kahp-Yang Suh
- 1] Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Pill-Hoon Choung
- Tooth Bioengineering National Research Lab, Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Jong Hoon Chung
- 1] Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2] Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
36
|
Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol 2013; 31:364-74. [DOI: 10.1016/j.tibtech.2013.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/20/2022]
|