1
|
Kabeya JK, Ngombe NK, Mutwale PK, Safari JB, Matlou GG, Krause RWM, Nkanga CI. Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:29-42. [PMID: 39920563 DOI: 10.1080/21691401.2025.2462335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Herein, we investigated the phytochemical composition and antibacterial activities of the organic layers from biosynthesized silver nanoparticles (AgNPs). AgNPs were synthesized using Musa paradisiaca and Musa sapientum extracts. UV-vis absorption in the 400-450 nm range indicated surface plasmonic resonance peak of AgNPs. Samples analyses using dynamic light scattering and transmission electron microscopy revealed the presence of particles within nanometric ranges, with sizes of 30-140 nm and 8-40 nm, respectively. Fourier transform infrared (FTIR) unveiled the presence of several organic functional groups on the surface of AgNPs, indicating the presence of phytochemicals from plant extracts. Thin layer chromatography (TLC) of the phytochemicals (capping agents) from AgNPs identified multiple groups of secondary metabolites. These phytochemical capping agents exhibited antibacterial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with minimum inhibitory concentrations ranging from 62.5 to 1000 µg/mL. Regardless of the bacterial species or plant parts (leaves or pseudo-stems), capping agents from M. sapientum nanoparticles displayed significantly enhanced antibacterial effectiveness compared to all other samples, including the raw plant extracts and biosynthesized capped and uncapped AgNPs. These results suggest the presence of antimicrobial phytochemicals on biosynthesized AgNPs, highlighting the promise of green nanoparticle synthesis as a valuable approach in bioprospecting antimicrobial agents.
Collapse
Affiliation(s)
- Jimmy K Kabeya
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
- Center of Chemico- and Bio-Medical Research (CCBR), Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown, South Africa
- Centre d'Etudes des Substances Naturelles d'Origine Végétale (CESNOV), Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
| | - Nadège K Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
- Centre d'Etudes des Substances Naturelles d'Origine Végétale (CESNOV), Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
| | - Paulin K Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
- Centre d'Etudes des Substances Naturelles d'Origine Végétale (CESNOV), Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
| | - Justin B Safari
- Center of Chemico- and Bio-Medical Research (CCBR), Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown, South Africa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Rui W M Krause
- Center of Chemico- and Bio-Medical Research (CCBR), Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Christian I Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
2
|
Martinez J, Ingram N, Kapur N, Jayne DG, Beales PA. Composition-dependent tunability of the cell interactions of hybrid lipid - block copolymer vesicles. J Colloid Interface Sci 2025; 694:137664. [PMID: 40294502 DOI: 10.1016/j.jcis.2025.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
Hybrid vesicles composed of phospholipids and block copolymers are of interest for a wide range of applications due to the broad tunability of their material properties that can synergistically combine desirable properties of liposomes and polymersomes. A major application of vesicles in biotechnology has been in the field of drug delivery, where understanding and controlling vesicle interactions with cells is of vital importance. Here, we investigate the tunability of hybrid vesicle interaction with three distinct cell lines through modulating non-specific interactions. We formulate vesicles composed of three different constituents, the zwitterionic lipid 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the amphiphilic diblock copolymer Poly(1,2-butadiene)-b-poly(ethylene oxide) (PBD22-PEO14). This enables the tunability of cell interactions through electrostatic attraction to anionic cellular membranes and steric repulsion from the polymeric PEO brush layer. We establish a microfluidic flow protocol to enhance the reproducibility of vesicle-cell interactions by controlling the hydrodynamic stresses during incubation and washing steps. We demonstrate a high degree of tunability of cell interactions and low cytotoxicity across the three cell lines investigated (HFFF2, HEK293, HepG2). These initial findings offer critical insights into the engineering of hybrid vesicles and their potential applications in drug delivery.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK; Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - David G Jayne
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK; The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK.
| |
Collapse
|
3
|
Sivasankaran LG, Rahim S, Sreenivasan AT. Synthesis and Anticancer Activity Evaluation of Self- assembled Curcumin Loaded Gelatin - Oleic acid - Carboxymethyl Chitosan Nanoparticles on MCF-7 cells. Eur J Pharm Biopharm 2025; 211:114718. [PMID: 40216037 DOI: 10.1016/j.ejpb.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/16/2025] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Curcumin (CUR) is a natural herb with known anticancer effects against many malignancies such as breast cancer. However, CUR is poorly water-soluble and suffers from low bioavailability, and its delivery to breast cancer through oral administration is interrupted by early release and degradation before reaching the target site. So, this study aimed to develop an oral breast cancer-targeted drug delivery system (DDS) using a combination of biopolymers like mucoadhesive carboxymethyl chitosan, oleic acid and gelatin to create biopolymer-mediated nanoparticles (NPs) for the delivery of hydrophobic CUR. Gelatin-Oleic acid-Carboxymethyl chitosan (GOC) readily self-assembles into nanoparticles (GOCNPs) using the desolvation process. Such self-assembled DDS based on biopolymers without any crosslinkers for the preparation present controlled drug release and enhanced anticancer efficacy compared to existing systems. The prepared GOCNPs were characterized by FTIR, 1HNMR, XRD, SEM, HRTEM, DLS, and Zeta analysis. The DDS's maximum drug loading efficiency (DLE) and encapsulation efficiency (EE) values at pH 4.0 were 78.0 ± 2.34 % and 94.0 ± 2.8 %, respectively. The CUR-loaded GOCNPs shows a 90.0 ± 2.6 % CUR release at pH 5.5, while the release percentage of CUR at pH 7.4 was only 37.0 ± 1.06 %. According to the MTT data, CUR-GOCNPs show significant cytotoxicity to MCF-7 cells, showed a cell viability of 20.16 % towards MCF-7 cancer cells and loading of CUR to the GOCNPs notably increased its anticancer activity as the IC50 of CUR-GOCNPs was significantly lowered (6.880 µg/mL against MCF-7 in 24 h analysis). Studies on drug release kinetics, cytotoxicity, apoptosis, hemocompatibility, swelling, and in vivo pharmacokinetics were carried out to prove the effectiveness of the biopolymer-based nanoparticles developed as an effective oral delivery system for CUR. The future holds enormous possibilities for the clinical translation of prepared drug delivery system, as advances in controlled drug delivery continue to prove the design and capabilities of GOCNPs.
Collapse
Affiliation(s)
- Lekshmi Geetha Sivasankaran
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - Suriya Rahim
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - Anirudhan Thayyath Sreenivasan
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India.
| |
Collapse
|
4
|
Wang A, Wang X, Li D, Li A, He M, Yuan Y, Ye L, Liu J. A superior method for antitumor therapy and application: dual-ligand nanomedicines. J Mater Chem B 2025. [PMID: 40396464 DOI: 10.1039/d5tb00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Currently, nanomedicines have been widely applied in the treatment of various types of tumors. However, due to the complexity of the tumor microenvironment, conventional nanomedicines often exhibit poor efficacy, insufficient site specificity, and susceptibility to off-target effects. In contrast, dual-ligand nanomedicines demonstrate superior targeting ability and drug penetration in tumor therapy. These nanomedicines are equipped with two ligands on their surface, enabling targeting of specific receptors on the same or different cells. The specific binding between ligands and receptors significantly enhances the selectivity and targeting of dual-ligand nanomedicines towards tumors. This review systematically describes the preparation of dual-ligand nanomedicines, the influencing factors, and the types of delivered drugs, focusing on the application of dual-ligand nanomedicines in targeting the treatment of various tumors. We highlight the comprehensiveness of dual-ligand nanomedicines for the treatment of tumors, including glioblastoma, lung cancer, breast cancer, gastric cancer, and many other types of tumors. Finally, the possible challenges for the future development of dual-ligand nanomedicines in terms of preparation, clinic, and safety are further analyzed. We look forward to exploring dual-ligand nanomedicines in greater depth to provide references for their future development and clinical applications.
Collapse
Affiliation(s)
- Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Xuejun Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Yingying Yuan
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Ye
- School of Pharmacy and (R & D Center) Lab. for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau SAR, 999078, China.
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| |
Collapse
|
5
|
Jiang X, Ren Y, Huang C, Hu S, Gao Z, Gao J, Ma D, Liu G. ZnO Nanoparticle Exposure Disrupted Iron-Sulfur Protein Functions to Increase Macrophage Erythrophagocytosis and Disturb Systemic Iron Recycling. ACS NANO 2025; 19:18450-18465. [PMID: 40333237 DOI: 10.1021/acsnano.5c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Although anemia is a common systemic toxicological manifestation of zinc product overload, the underlying mechanisms remain elusive. Therefore, we explored the mechanisms underlying the anemia caused by exposure to zinc oxide nanoparticles (ZnO NPs), which are a widely utilized Zn product. We observed that ZnO NP-exposed mice developed evident anemia due to disrupted spleen iron metabolism. Since spleen iron metabolism relies on macrophages, we further investigated how ZnO NP exposure affected macrophage function. Results indicated that ZnO NP exposure triggered macrophage metabolic reprogramming to facilitate erythrophagocytosis and blunted the response of iron exporter ferroportin to enhanced erythrophagocytosis, thereby causing iron retention and ultimately impeding macrophage iron recycling. Mechanistically, Zn2+ released from ZnO NPs occupied the cluster-binding cysteines of iron-sulfur proteins, regulating glucose metabolism and ferroportin expression to suppress their activity, thereby inducing metabolic reprogramming and suppressing iron export. Our research unveils a category of nanobio interactions underlying ZnO NPs biotoxicity.
Collapse
Affiliation(s)
- Xiumei Jiang
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yujie Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chengquan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shunchang Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zitong Gao
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianmin Gao
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dongxiao Ma
- Department of Clinical Laboratory, the First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Hosni Z, Achour S, Saadi F, Chen Y, Al Qaraghuli M. Machine learning-driven nanoparticle toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118340. [PMID: 40393320 DOI: 10.1016/j.ecoenv.2025.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/22/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
This study presents a comprehensive machine learning-driven analysis to understand and predict the toxicity of nanoparticles (NPs), a crucial aspect in ensuring the safe application of nanotechnology in medicine, pharmaceuticals, biotechnology, and various other industries. By using a robust dataset, we deployed Random Forest (RF) and Light Gradient Boosting Machine (LightGBM) algorithms to identify key NP features that significantly influence cellular toxicity. The integration of Shapley Additive exPlanations (SHAP) values provided an interpretative insight into the predictive models, allowing for a quantitative assessment of feature impact. Our findings highlighted the inverse relationship between NP concentration and cell viability and the heightened toxicity of smaller NPs due to their larger surface-to-volume ratios. Notably, the LightGBM model's sensitivity to zeta potential elucidates the nuanced impact of surface charge on cytotoxic effects. The results from this investigation can guide the synthesis of safer NPs, emphasized the need to consider these critical features to mitigate toxicity while maintaining functional integrity. The study underlines the complexity of NP toxicity modeling and the necessity for advanced analytical methods to capture the multifaceted nature of nanomaterial interactions with biological systems. This work lays the groundwork for future research aimed at refining NP design for safer biomedical applications and consumer products, marking a significant step towards responsible nanotechnology development.
Collapse
Affiliation(s)
- Zied Hosni
- Institute for Materials Discovery, University College London, 40 Roberts Building, London WC1E 7 JE, United Kingdom.
| | - Sofiene Achour
- University of Tunis El Manar, Research Unit of Modeling in Fundamental Sciences and Didactics, IPEIEM, PO Box 254, El Manar 2, Tunis 2096, Tunisia; Center for Research in Microelectronics and Nanotechnology (CRMN), Technopôle de Sousse "Novation City", BP 334 Sahloul Sousse 4054, Sahloul, Tunisia
| | - Fatma Saadi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Yangfan Chen
- Institute for Materials Discovery, University College London, 40 Roberts Building, London WC1E 7 JE, United Kingdom
| | - Mohammed Al Qaraghuli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow G1 1XP, UK
| |
Collapse
|
7
|
Gu C, Mi Y, Zhang T, Wang S. Enhancing Monodispersity and Thermal Stability of Human H-Ferritin as a Nanocarrier by Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40377399 DOI: 10.1021/acs.jafc.5c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Cage-like ferritin has been explored as a new class of nanovehicle in the field of food and nutrition, but its aggregation characteristics and low thermal stability limit its further application. This study focused on improving the monodispersity and thermal stability of recombinant human H-ferritin (rHuHF) for enhanced cargo molecule delivery. With the aid of AlphaFold 3.0, we designed a ferritin mutant by removing cysteine residues of rHuHF to improve monodispersity during storage while introducing histidine mutations at the C3 and C4 interfaces to enhance thermal stability. Notably, the designed protein structure was validated by a resolved crystal structure at the atomic level. As expected, the designed ferritin nanocage exhibited significantly improved monodispersity and thermal stability, enhancing its cargo loading capacity and cellular uptake efficiency. Such designed ferritin offers a more stable, efficient nanocarrier for cargo delivery and cargo protection under heat stress as compared to wild-type rHuHF.
Collapse
Affiliation(s)
- Chunkai Gu
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| | - Ya'nan Mi
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| |
Collapse
|
8
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Musso N, Bonacci PG, Letizia Consoli GM, Maugeri L, Terrana M, Lanzanò L, Longo E, Buscarino G, Consoli A, Petralia S. Biofriendly glucose-derived carbon nanodots: GLUT2-mediated cell internalization for an efficient targeted drug delivery and light-triggered cancer cell damage. J Colloid Interface Sci 2025; 696:137873. [PMID: 40403481 DOI: 10.1016/j.jcis.2025.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
Personalized medicine holds great promise for treating the underlying causes of many human diseases with high precision. Low-dimensional carbon-based materials are being designed to more closely match specific delivery efficiency for targeted cancer treatment, while enabling the benefits of increased biocompatibility, high cargo-loading capacity and excellent light-responsive properties, including photoluminescence and photothermal effects. Here, we report an unprecedented example of glucose-based carbon-nanodots (CDs-gluc) obtained via a one-pot thermal process from glucose, without using organic solvent and additional reagents. The CDs-gluc nanostructures, composed of a C-sp2 inner core and a glucose outer shell, showed a high photothermal conversion efficiency (η = 42.7 % at 532 nm), good photoluminescence quantum yield (ϕPL = 6 %), and low cytotoxicity. Measurements of cellular Zeta-potential demonstrated the effective interaction of CDs-gluc with the surface of cancer cells overexpressing the Glucose Transporter Type 2 (GLUT2). The effective and specific GLUT2-mediated internalization mechanism was demonstrated by inducing up- and down-regulation of the transporter expression under conditions of glucose excess and deprivation, through fluorescence correlation spectroscopy. The potential of the CDs-gluc as drug nanocarriers was demonstrated by entrapping the anticancer drug 5-fluorouracil, achieving a drug loading capacity of 4.5 ± 0.8 %. In vitro experiments confirmed the excellent light-triggered cell damage activity and remarkable cell-targeting ability of CDs-gluc driven by GLUT2 expression. The easy and green preparation, biocompatibility, effective and specific cellular uptake, photoluminescence and hyperthermia make CDs-gluc appealing candidates in the research of novel nanostructures for cancer cell targeting.
Collapse
Affiliation(s)
- Nicolo Musso
- Faculty of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; Department of Biomedicals and Biotechnologies Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Paolo Giuseppe Bonacci
- Department of Biomedicals and Biotechnologies Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | | | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Morena Terrana
- Department of Biomedicals and Biotechnologies Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Luca Lanzanò
- Department of Physic and Astronomy, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Elisa Longo
- Department of Physic and Astronomy, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gianpiero Buscarino
- Department of Physics and Chemistry, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Antonino Consoli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy.
| |
Collapse
|
10
|
Nagi JS, Doiron AL. 20 nm nanoparticles trigger calcium influx to endothelial cells via a TRPV4 channel. Biomater Sci 2025; 13:2728-2743. [PMID: 40192740 DOI: 10.1039/d4bm01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
While increased intracellular calcium (Ca2+) has been identified as a key effect of nanoparticles on endothelial cells, the mechanism has not been fully elucidated or examined under shear stress. Here, we show the effect of several types of 20 nm particles on Ca2+ in the presence of shear stress in human umbilical vein endothelial cells (HUVECs), human coronary artery endothelial cells (HCAECs), and human cardiac microvascular endothelial cells (HMVEC-Cs). Intracellular Ca2+ levels increased by nearly three-fold in these cell types upon exposure to 100 μg mL-1 20 nm Au particles, which was not seen in response to larger or smaller particles. An antagonist to the calcium channel - transient receptor potential vanilloid-type 4 (TRPV4) - drastically reduced the amount of calcium by 9.3-fold in HUVECs exposed to 0.6 Pa shear stress and 100 μg mL-1 20 nm gold particles, a trend upheld in both HCAECs and HMVEC-Cs. Cell alignment in the direction of fluid flow is a well-known phenomenon in endothelial cells, and interestingly, cells in the presence of 20 nm particles with fluid flow had a higher alignment index than cells in the fluid flow alone. When compared with previous works, these results indicated that 20 nm particles may be inducing endothelial permeability by activating the TRPV4 channel in vitro. The potential of nanoparticle delivery technologies hinges on an improved understanding of this effect toward improved delivery with limited toxicity.
Collapse
Affiliation(s)
- Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA.
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
11
|
Ahn D, Park SH, Lee YG, Jeong MS, Gone GB, Cho Y, Chung SJ. Enhanced Targeted Drug Delivery System to Control Avidity and Drug Encapsulation Using E2 Nanocages and SpyTag/SpyCatcher. ACS Biomater Sci Eng 2025; 11:2768-2782. [PMID: 40209085 DOI: 10.1021/acsbiomaterials.5c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Although antibody-drug conjugates offer advanced targeted anticancer therapy that overcomes the limitations of conventional chemotherapy and therapeutic antibodies, they are restricted in their capacity to carry multiple hydrophobic payloads. Protein nanocages have emerged as versatile therapeutic platforms for targeted drug delivery, offering advantages like precise molecular assembly, biocompatibility, and multivalent targeting. This study presents the development of engineered E2 nanocages functionalized with anti-HER2 single-chain variable fragments (scFv) using the SpyTag/SpyCatcher ligation system to achieve controlled scFv display valency. The results demonstrate that increasing anti-HER2 scFv valency enhances HER2 binding affinity via avidity effects, with the highest valency nanocages showing the highest binding avidity. Furthermore, cysteine residues were introduced into the E2 nanocages to enable conjugation with monomethyl auristatin E (MMAE) through maleimide chemistry, achieving efficient drug loading. The resulting MMAE-conjugated nanocages displayed potent, subnanomolar cytotoxicity in HER2-positive SKBR3 and BT-474 cell lines while sparing HER2-negative MDA-MB-231 cells at concentrations up to 1 nM. These results underscore the critical role of scFv valency in enhancing HER2 targeting and highlight the potential of E2 protein nanocages as specific, potent platforms for targeted cancer therapy. In this study, we developed an enhanced targeted drug delivery system using E2 nanocages and scFv with SpyCatcher/SpyTag ligation to regulate binding avidity and encapsulate hydrophobic drugs. The modular design and pH-sensitive dissociation of these nanocages establish a foundation for next-generation precision medicine strategies.
Collapse
Affiliation(s)
- Dohee Ahn
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Hee Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Yongin 17073, Republic of Korea
| | - Yeong Geun Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Yongin 17073, Republic of Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Younghun Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Yongin 17073, Republic of Korea
| |
Collapse
|
12
|
Dai Y, Liu R, Zhou W, Guo L, Bian K, Dai W, Wang H, Lu Y, Yu Y. IgM-functionalized biomimetic nanovaccine for immunological activation and bacterial toxin neutralization. J Control Release 2025; 383:113836. [PMID: 40360045 DOI: 10.1016/j.jconrel.2025.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Pore-forming toxins (PFTs) are exotoxins secreted by bacteria that aggregate and perforate cell membranes through mechanisms such as binding to specific membrane proteins, thereby killing cells and promoting bacterial invasion, migration, and proliferation. In this study, an anti-virulence factor strategy and vaccine were combined to develop folic acid-modified red blood cell membrane-hybrid liposomes (FA-RCM-Lips). By utilizing the aggregation and perforation mechanism of pore-forming toxins on red blood cell membranes, Vibrio vulnificus hemolysin A (VvhA) was efficiently loaded as the antigenic protein, thereby neutralizing the toxicity of the toxin while maximizing the retention of its antigenic activity and constructing a toxoid nanovaccine (FA-RCM-Lips(VvhA)). The nanocarrier served as an adjuvant to enhance antigen uptake by antigen-presenting cells, while folic acid molecules adsorbed natural IgM, enhancing antigen uptake and presentation by B cells through the IgM-complement pathway. FA-RCM-Lips reduced the hemolysis rate of VvhA by 98.78 % and simultaneously inhibited VvhA-induced skin and tissue toxicity. Subcutaneous and intravenous immunization with FA-RCM-Lips(VvhA) induced stronger IgG titers, improved antigen presentation, enhanced immune responses, and provided immunoprotection in mice.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Ruiyao Liu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Wenbo Zhou
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Lingyi Guo
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Kangqing Bian
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Wuting Dai
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Huan Wang
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China.
| | - Ying Lu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China.
| | - Yuan Yu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), No.325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
13
|
Li W, Shi Z, Jing H, Dou Y, Liu X, Zhang M, Qiu Z, Heger Z, Li N. Streamlined metal-based hydrogel facilitates stem cell differentiation, extracellular matrix homeostasis and cartilage repair in male rats. Nat Commun 2025; 16:4344. [PMID: 40346121 PMCID: PMC12064686 DOI: 10.1038/s41467-025-59725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Xinyi Liu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Mengyao Zhang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Li Z, Xiao C, Yang X, Li Z. Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chem Soc Rev 2025. [PMID: 40341776 DOI: 10.1039/d3cs00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Cancer nanomedicines have attracted significant attention in the past several decades, and the physicochemical properties, such as the size, shape, composition, surface charge, hydrophobicity, and mechanical properties, of nanoparticles have been optimized for potent cancer therapy. Since publishing our 2020 tutorial review "Influence of nanomedicine mechanical properties on tumor targeting delivery" in Chemical Society Reviews, substantial advancements have been made in understanding the role of mechanical properties in cancer nanomedicine. Notably, in vivo transport processes that are dependent on the mechanical properties of nanomedicine, including long circulation, tumor accumulation, and deep penetration, have been extensively studied using various nano-drug delivery systems. These studies have demonstrated that leveraging these mechanical properties can significantly enhance the antitumor efficacy of nanomedicine. In this review, we categorize the advancements in the mechanical properties of cancer nanomedicine into three distinct themes: the interactions between nanoparticles with varied mechanical properties and cells (2002 - present), the impact of these properties on in vivo delivery processes (2007 - present), and the strategic use of mechanical properties to boost cancer therapy (2023 - present). We analyze how different mechanical properties of organic, inorganic, hybrid, and biological nanoparticles affect their delivery processes at the macroscopic level, i.e., in tissues, organs and cells. At the microscopic level, their biological and physical interactions with biological barriers, physiological structures, cell membranes, organelles, and other structures reveal the potential mechanism of nanoparticles' mechanical properties in determining their antitumor efficacy. Furthermore, we address the current challenges and future prospects in the mechanical properties of cancer nanomedicine, as well as the clinical translation potential of nanoparticles with diverse mechanical characteristics.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Solarska-Ściuk K, Pruchnik H. A Critical View on the Biocompatibility of Silica Nanoparticles and Liposomes as Drug Delivery Systems. Mol Pharm 2025. [PMID: 40340409 DOI: 10.1021/acs.molpharmaceut.5c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Silica-based materials and liposomes are widely employed in drug delivery systems, particularly as the most frequently evaluated platforms for intravenous drug administration. Their exceptional biocompatibility, versatile surface modification capabilities, and efficient encapsulation of a broad spectrum of therapeutic agents make them ideal for targeted and controlled drug delivery. Both nanodelivery systems interact with endothelial cells and various blood components, including erythrocytes (red blood cells) and white blood cells (lymphocytes, monocytes, and macrophages), potentially leading to cytotoxic effects. However, the detrimental impacts of silica nanoparticles (MSNs) and liposomes on healthy cells remain insufficiently investigated. The cytotoxicity of these carriers is strongly influenced by their physicochemical properties, such as size, surface charge, and functionalization, as well as the specific type of cells they encounter. This review aims to explore the molecular and cellular dysfunctions induced by MSNs and liposomes, which elicit various biological responses, including proinflammatory signaling, oxidative stress, and autophagy. Considering the toxicity associated with nanosilica and liposomes, strategies such as surface modifications and morphological adjustments may serve as effective approaches to mitigate these adverse effects. Implementing such modifications holds the potential to develop nanomaterials with lower toxicological profiles, thereby enhancing their safety and efficacy in clinical applications. By addressing these challenges, the advancement of silica-based materials and liposomes can be optimized for safer and more effective intravenous drug delivery systems.
Collapse
Affiliation(s)
- Katarzyna Solarska-Ściuk
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
16
|
Harting H, Herrmann T, Ehlert N, Meißner J, Angrisani N, Reifenrath J. Comparison of accumulation and distribution of PEGylated and CD-47-functionalized magnetic nanoporous silica nanoparticles in an in vivo mouse model of implant infection. PLoS One 2025; 20:e0321888. [PMID: 40315195 PMCID: PMC12047780 DOI: 10.1371/journal.pone.0321888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/12/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION Drug targeting using nanoparticles is a much-researched topic. Rapid interactions of nanoparticles with the host's immune system and clearance from the circulation is a major problem resulting in non-satisfying accumulation rates in the desired region. The aim of the presented study was to compare organ distribution and implant accumulation of magnetic nanoporous silica nanoparticles (MNPSNP) functionalized with either Polyethylenglycol (PEG) or CD-47 in vivo in a mouse model of implant infection. METHODS Synthesis and functionalization of the magnetic core-shell nanoparticles is described. In the in vivo study, 32 mice were included and received an in staphylococcus aureus solution preincubated magnetic implant subcutaneously on the left and a nonmagnetic implant on the right hind leg. MNPSNP accumulation in the inner organs as well as on and around the implants was analyzed in dependence on the functionalization. RESULTS MNPSNP were successfully functionalized with PEG or CD-47. In vivo, unexpectedly both nanoparticle variants accumulated mainly in liver and spleen. In the tissue, surrounding the implants higher nanoparticle accumulation was seen in areas with more severe signs of inflammation Nanoparticles were detectable on both implant materials, but accumulation rate was very low. CONCLUSION Although various literature describes higher accumulation rates for nanoparticles functionalized with CD-47 in target areas and a reduced accumulation in liver and spleen, this could not be shown within this study. Possible instability or rapid agglomeration of the particles are conceivable reasons. Higher accumulation rates in areas with more severe signs of inflammation indicate that inflammatory cells might be essential for the delivery of nanoparticles into inflamed regions.
Collapse
Affiliation(s)
- Heidi Harting
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Timo Herrmann
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nina Ehlert
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hanover, Foundation, Hannover, Germany
| | - Nina Angrisani
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Janin Reifenrath
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
17
|
Tarek K, Safwat G, Farid A. Evaluation of the effect of grape seed extract- loaded chitosan nanoparticles on cryptosporidiosis in dexamethasone immunosuppressed male mice. Int J Biol Macromol 2025; 306:141513. [PMID: 40015398 DOI: 10.1016/j.ijbiomac.2025.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Cryptosporidiosis is a worldwide health problem that results in an economic loss. The disease is caused by the protozoan Cryptosporidium spp. Individuals with suppressed immunity, like those with organ transplantation, cancer and human immunodeficiency virus syndrome, suffer from the infection that may lead to the death. Nitazoxanide (NTZ) is the approved FDA treatment for cryptosporidiosis in immunocompetent individuals. There is an urgent need to find a new natural treatment that can replace NTZ in immunosuppressed hosts. The study aimed to use grape seed extract loaded chitosan nanoparticles (GSEx-CHNPs) in treatment of cryptosporidiosis in immunosuppressed male mice. GSEx was prepared by the alcoholic extraction method followed by the identification of its bioactive components. GSEx-CHNPs were synthesized by ionic gelation method and physically characterized then their activities were examined in vitro. The experimental groups, included immunocompetent and immunosuppressed groups, was treated with NPs for 14 days post infection (PI). The results showed the presence of many phenolic compounds in the GSEx. GSEx-CHNPs significantly improved the loss in animals body weight, cleared the infection and amolerated the serum cytokines levels. GSEx-CHNPs showed anti-cryptosporidial activity especially in immunosuppressed mice model. Where, it ameliorated the disturbance in the cytokine profile leading to an anti-inflammatory response.
Collapse
Affiliation(s)
- Kareem Tarek
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
18
|
Tanoue T, Hamada A, Matsumoto Y, Kurihara S, Kim S, Fukaminato T. Easy Preparation of Anisotropic Nanoparticles Based on an Azobenzene Liquid Crystalline Polymer. Macromol Rapid Commun 2025; 46:e2401042. [PMID: 39973619 DOI: 10.1002/marc.202401042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Indexed: 02/21/2025]
Abstract
Herein an easy preparation method for anisotropic nanoparticles (NPs) is reported, in which the orientation of the composed molecules aligns at a certain direction in the particle, using a conventional reprecipitation method in combination with a microwave irradiation. The size, shape, and anisotropy of NPs strongly affect several physical properties and thus their regulation is essential for applications. Although some successful examples of size and shape regulation of NPs have been reported recently, the regulation of anisotropy is still challenging. In this study, NPs of azobenzene liquid crystalline polymer (LCP) using a conventional reprecipitation method, and then irradiation with microwave are introduced. With this treatment, the phase transition from the glassy phase to the smectic phase of azobenzene LCP is induced and the azobenzene groups are oriented at a certain direction. The anisotropy of NPs is confirmed by preparing fluorescent dye-doped NPs. The prepared NPs exhibit polarization dependence of signals in the fluorescence image, which originates from the uniaxial orientation of molecules inside NPs. Furthermore, the anisotropy of NPs can be reversibly controlled with external light or heat stimuli.
Collapse
Affiliation(s)
- Teruha Tanoue
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| | - Arisa Hamada
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| | - Yuka Matsumoto
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860, Japan
| |
Collapse
|
19
|
Cordeiro R, Oliveira D, Santo D, Coelho J, Faneca H. Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm 2025; 675:125553. [PMID: 40187702 DOI: 10.1016/j.ijpharm.2025.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The development of nanocarriers for pharmaceutical applications is a challenging research field as they have to fulfil several requirements, such as suitable physicochemical properties, biocompatibility, loading capacity for therapeutic agents, high stability in the bloodstream, and specific delivery to the target cells. This task becomes even more difficult when trying to transport two different therapeutic agents simultaneously, as is required by most of the current therapeutic strategies. Mesoporous silica nanoparticles (MSN) fulfil most of these requirements, although they partially fail in the last two. However, these weaknesses can be circumvented if they are combined with another type of material such as polymers. In this context, the main goal of this research work was to develop MSN-based nanocarriers capable to co-transport drugs and nucleic acids and to specifically deliver them in liver cancer cells. To this end, we have prepared MSNs coated with lactobionic acid-based copolymers, as lactobionic acid has a high binding affinity to asialoglycoprotein receptors (ASGPR), which are overexpressed in liver cells. The designed hybrid MSN-based nanocarriers exhibited appropriate physicochemical properties, high ASGPR specificity and high biological activity. These MSN-glycopolymer hybrid nanosystems showed a 280-fold higher transfection activity in liver cancer cells than bare MSN particles. Furthermore, we demonstrated the ability of these nanosystems to efficiently mediate a combined antitumor strategy involving HSV-TK/GCV suicide gene therapy and chemotherapy (epirubicin), in liver cancer cells. Overall, the data obtained showed the great potential of this MSN-based nanoplatform to be applied in combined therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Rosemeyre Cordeiro
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniel Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal
| | - Daniela Santo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
20
|
Kwun MS, Lee DG. Ferroptosis-Like Death Induction in Saccharomyces cerevisiae by Gold Nanoparticles. J Microbiol Biotechnol 2025; 35:e2501029. [PMID: 40295204 PMCID: PMC12089944 DOI: 10.4014/jmb.2501.01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Ferroptosis, a novel form of regulated cell death (RCD), has emerged as a promising therapeutic strategy for cancer treatment. While gold nanoparticles (AuNPs) are known to induce cell death and ferroptosis in combination with certain antibiotics, the mechanisms underlying ferroptosis in microorganisms remain poorly understood. This study aimed to investigate whether AuNPs induce ferroptosis-like cell death in the eukaryotic microbe Saccharomyces cerevisiae. Our findings revealed that AuNPs significantly reduced cell viability in S. cerevisiae, suggesting their ability to trigger cell death. Ferroptosis-related precursors, including intracellular iron overload and depletion of glutathione (GSH), were observed, leading to the inactivation of glutathione peroxidase (GPx). These changes were associated with the accumulation of reactive oxygen species (ROS) and lipid peroxidation, which amplified oxidative stress within the cells. Elevated ROS levels and lipid peroxidation further resulted in membrane rupture and the formation of 8-hydroxydeoxyguanosine, indicating DNA damage. Mitochondrial dysfunction, a hallmark of ferroptosis, was also evident. AuNP treatment caused mitochondrial membrane potential hyperpolarization and a reduction in mitochondrial membrane density. Unlike previously characterized forms of RCD, ferroptosis-like death in S. cerevisiae did not involve chromatin condensation, DNA fragmentation, or metacaspase activation. Finally, ferroptosis-like characteristics were confirmed using Liperfluo, a lipid ROS-specific probe. In conclusion, this study demonstrated that AuNPs can induce ferroptosis-like cell death in S. cerevisiae. These findings highlight the potential of AuNPs as antifungal agents and contribute to the broader understanding of ferroptosis in eukaryotic microbes.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Askar MRM. Bacterial responses to Ephedra aphylla stem extract and green-synthesized Ag-TiO 2 and Ag-SeO 2 core/shell nanocomposites: unveiling antimicrobial and antioxidant properties. RSC Adv 2025; 15:13152-13171. [PMID: 40275870 PMCID: PMC12020821 DOI: 10.1039/d5ra00936g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
This study reports an efficient and green protocol for the green synthesis of Ag-TiO2 and Ag-SeO2 nanocomposites using the extracted stems of Ephedra aphylla. Results of spectroscopic and analytical analyses confirmed the successful synthesis, stability, and crystalline nature of the nanomaterials. The phytochemical profile and antioxidant and antimicrobial activities of the E. aphylla extract and the nanocomposites were also studied. E. aphylla extract and both the nanomaterials exhibited significant levels of active phytochemical compounds. These compounds contributed to their potent antioxidant activity, with E. aphylla extract and Ag-TiO2 NC demonstrating the highest antioxidant activity. Besides, Ag-SeO2 NC displayed remarkable antibacterial properties against different pathogenic bacteria with 31.0 ± 1.27 mm against K. pneumonia, 31.0 ± 1.72 mm against S. aureus, and 44.0 ± 1.09 mm against B. subtilis, and antifungal properties against Candida glabrata and Aspergillus niger. The enhanced antimicrobial activity of Ag-SeO2 NC can be attributed to the synergistic effects of silver and selenium nanoparticles, which can disrupt cell membranes, induce oxidative stress, and interfere with essential cellular processes. The minimum inhibitory concentration values of Ag-SeO2 NC against S. aureus and K. pneumoniae were found to be 0.2956 mg mL-1 and 4.73 mg mL-1, respectively. The mechanism of action of Ag-SeO2 NC against both fungal strains was investigated using FTIR and HR-TEM analyses.
Collapse
|
22
|
Martinez-Serra A, Saorin A, Serrano-Lotina A, Subrati A, Soliman MG, Hristozov D, Bañares MA, Demokritou P, Monopoli MP. Dispersion protocols have minimal impact on the biomolecular corona of advanced nanomaterials in cell culture assays. NANOIMPACT 2025; 38:100560. [PMID: 40233923 DOI: 10.1016/j.impact.2025.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Industrial sectors have largely invested in the use of advanced nanomaterials (NMs), which are currently being implemented in a wide range of applications. However, the potential exposure to living beings and the environment still remains a concern. While some of these materials were not designed to be dispersible in aqueous media, the development of dispersion protocols to ensure compatibility with the in vitro and in vivo assays has become crucial for the correct assessment of the studies. NMs' identity in biological media is significantly influenced by the formation of a biomolecular corona on its surface. However, this corona might be affected by the dispersion method, altering their physicochemical characteristics and complicating the understanding of their interactions with biological systems. Therefore, understanding the efficiency of dispersion protocols and their influence on the biological identity of NMs is fundamental. However, systematic studies on the effects of dispersion protocols are still lacking, making this a crucial yet overlooked aspect in the field. This study aims to compare two standard dispersion protocols, commonly known as Harvard and Nanogenotox, and evaluate their impact on the biomolecular corona formation across a selection of advanced industrial NMs. To this aim, different techniques were used to assess particle size, colloidal stability and ion release, as well as protein and sialic acid content and abundance in the corona. Results show that the dispersion protocol modestly alters nanoparticle size and agglomeration state, and proteomics analysis revealed that each nanoparticle type forms a distinct corona, influenced by the distinct surface modifications. The presence of bovine serum albumin (BSA) in the Nanogenotox protocol minimally affected the overall trends in protein composition between the two protocols. These findings emphasize the significance of the dispersion protocol in nanotoxicology assays and demonstrate that variations between these methods do not play a decisive role in shaping the bio-identity and potential biological effects of advanced and multicomponent NMs.
Collapse
Affiliation(s)
- Alberto Martinez-Serra
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Asia Saorin
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Ana Serrano-Lotina
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie, 2, 28049 Madrid, Spain
| | - Ahmed Subrati
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Danail Hristozov
- East European Research and Innovation Enterprise (EMERGE), Otets Paisiy Str. 46, 1303 Sofia, Bulgaria
| | - Miguel A Bañares
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie, 2, 28049 Madrid, Spain
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland.
| |
Collapse
|
23
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
24
|
Reghukumar SK, Inkielewicz-Stepniak I. Tumour cell-induced platelet aggregation in breast cancer: Scope of metal nanoparticles. Biochim Biophys Acta Rev Cancer 2025; 1880:189276. [PMID: 39921012 DOI: 10.1016/j.bbcan.2025.189276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Breast cancer is a major cause of cancer-related mortality among the female population worldwide. Among the various factors promoting breast cancer metastasis, the role of cancer-cell platelet interactions leading to tumour cell-induced platelet aggregation (TCIPA) has garnered significant attention recently. Our state-of-the-art literature review verifies the implications of metal nanoparticles in breast cancer research and TCIPA-specific breast cancer metastasis. We have evaluated in vitro and in vivo research data as well as clinical investigations within the scope of this topic presented in the last ten years. Nanoparticle-based drug delivery platforms in cancer therapy can combat the growing concerns of multi-drug resistance, the alarming rates of chemotherapy-induced toxicities and cancer progression. Metal nanoparticles conjugated with chemotherapeutics can outperform their free drug counterparts in achieving targeted drug delivery and desired drug concentration inside the tumour tissue with minimal toxic effects. Existing data highlights the potential of metal nanoparticles as a promising tool for targeting the platelet-specific interactions associated with breast cancer metastasis including TCIPA.
Collapse
|
25
|
Pizzoli G, Gargaro M, Drava G, Voliani V. Inorganic Nanomaterials Meet the Immune System: An Intricate Balance. Adv Healthc Mater 2025; 14:e2404795. [PMID: 40079074 PMCID: PMC12023827 DOI: 10.1002/adhm.202404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Indexed: 03/14/2025]
Abstract
The immune system provides defense against foreign agents that are considered harmful for the organism. Inorganic nanomaterials can be recognized by the immune system as antigens, inducing an immune reaction dependent on the patient's immunological anamnesis and from several factors including size, shape, and the chemical nature of the nanoparticles. Furthermore, nanomaterials-driven immunomodulation might be exploited for therapeutic purposes, opening new horizons in oncology and beyond. In this scenario, we present a critical review of the state of the art regarding the preclinical evaluation of the effects of the most promising metals for biomedical applications (gold, silver, and copper) on the immune system. Because exploiting the interactions between the immune system and inorganic nanomaterials may result in a game changer for the management of (non)communicable diseases, within this review we encounter the need to summarize and organize the plethora of sometimes inconsistent information, analyzing the challenges and providing the expected perspectives. The field is still in its infancy, and our work emphasizes that a deep understanding on the influence of the features of metal nanomaterials on the immune system in both cultured cells and animal models is pivotal for the safe translation of nanotherapeutics to the clinical practice.
Collapse
Affiliation(s)
- Gloria Pizzoli
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| | - Marco Gargaro
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Giochetto 1Perugia06126Italy
| | - Giuliana Drava
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
| | - Valerio Voliani
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| |
Collapse
|
26
|
Everaert S, Godderis L, Raquez JM, Schoeters G, Spanoghe P, Moens J, Hens L, Michel O, Adang D, Fraeyman N. Do We Need Titanium Dioxide (TiO 2) Nanoparticles in Face Masks? TOXICS 2025; 13:244. [PMID: 40278560 PMCID: PMC12030963 DOI: 10.3390/toxics13040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The use of face masks has proven to be an effective preventive measure during the COVID-19 pandemic. However, concerns have emerged regarding the safety of metal (nano)particles incorporated into face masks for antimicrobial purposes. Specifically, this review examines the risks associated with TiO2 nanoparticles (NPs), which are classified as a possible human carcinogen. The inhalation of TiO2 NPs can cause multiple adverse effects, including oxidative stress, pulmonary inflammation, histopathological changes, and (secondary) genotoxicity. Different aspects are discussed, such as the composition and filtration efficiency of face masks, the antimicrobial mode of action and effectiveness of various metals, and the hazards of TiO2 NPs to human health, including exposure limits. A conservative risk assessment was conducted using different worst-case scenarios of potential (sub)chronic TiO2 exposure, derived from published leaching experiments. Most face masks are considered safe, especially for occasional or single use. However, the nanosafety of a minority of face masks on the European market may be inadequate for prolonged and intensive use. Important uncertainties remain, including the risks of combined exposure to TiO2 NPs and silver biocides, and the lack of direct exposure measurements. Considering the potential safety issues and the limited added protective value of TiO2 NPs, it is recommended to ban all applications of TiO2 in face masks based on the precautionary principle.
Collapse
Affiliation(s)
- Stijn Everaert
- Chemical Environmental Factors Group, Superior Health Council, 1210 Brussels, Belgium
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium;
- IDEWE, 3001 Heverlee, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 7000 Mons, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium;
| | - Pieter Spanoghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Jonas Moens
- Belgian Poison Centre, 1120 Brussels, Belgium;
| | - Luc Hens
- Vlaamse Instelling voor Technologisch Onderzoek, 2400 Mol, Belgium
| | - Olivier Michel
- Faculté de Médecine, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Dirk Adang
- Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Norbert Fraeyman
- Environmental Department, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Chen Y, Feng D, Cheng Y, Jiang X, Qiu L, Zhang L, Shi D, Wang J. Research progress of metal-CpG composite nanoadjuvants in tumor immunotherapy. Biomater Sci 2025; 13:1605-1623. [PMID: 39998438 DOI: 10.1039/d4bm01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The practical benefits and therapeutic potential of tumor vaccines in immunotherapy have drawn significant attention in the field of cancer treatment. Among the available vaccines, nanovaccines that utilize nanoparticles as carriers or adjuvants have demonstrated considerable effectiveness in combating cancer. Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), a common adjuvant in tumor nanovaccines, activates both humoral and cellular immunity by recognizing toll-like receptor 9 (TLR9), thereby aiding in the prevention and treatment of cancer. Metal nanoparticles hold great promise in tumor immunotherapy due to their adjustable size, surface functionalization, ability to regulate innate immunity, and capacity for controlled delivery of antigens or immunomodulators. Consequently, composite nanoadjuvants, formed by combining metal nanoparticles with CpG ODNs, can be customized to meet the specific performance requirements of different application scenarios, effectively overcoming the limitations of conventional immunotherapy approaches. This review provides a comprehensive analysis of the critical role of metal-CpG composite nanoadjuvants in advancing vaccine adjuvants for cancer therapy and prevention, highlighting their efficacy in preclinical settings.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Yilin Cheng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
28
|
Ow V, Lin Q, Wong JHM, Sim B, Tan YL, Leow Y, Goh R, Loh XJ. Understanding the interplay between pH and charges for theranostic nanomaterials. NANOSCALE 2025; 17:6960-6980. [PMID: 40008569 DOI: 10.1039/d4nr03706e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanotechnology has emerged as a highly promising platform for theranostics, offering dual capabilities in targeted imaging and therapy. Interactions between the nanomaterial and biological components determine the in vivo fate of these materials which makes the control of their surface properties of utmost importance. Nanoparticles with neutral or negative surface charge have a longer circulation time while positively charged nanoparticles have higher affinity to cells and better cellular uptake. This trade-off presents a key challenge in optimizing surface charge for theranostic applications. A sophisticated solution is an on-demand switch of surface charge, enabled by leveraging the distinct pH conditions at the target site. In this review, we explore the intricate relationship between pH and charge modulation, summarizing recent advances in pH-induced charge-switchable nanomaterials for theranostics over the past five years. Additionally, we discuss how these innovations enhance targeted drug delivery and imaging contrast and provide perspectives on future directions for this transformative field.
Collapse
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- Department of Biomedical Engineering, National University of Singapore (NUS), Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Belynn Sim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore
| | - Yee Lin Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Yihao Leow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
29
|
Leamkaew V, Crespy D. Preparation of barium sulfate/polymer hybrid nanoparticles from Bunte salt precursors. Chem Commun (Camb) 2025; 61:4499-4502. [PMID: 40018802 DOI: 10.1039/d5cc00554j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Barium sulfate suspensions are commonly used as contrast agents for improving the resolution of X-ray imaging. However, current limitations are rapid contrast washout and low stability in water. Polymer nanoparticles are synthesized by copolymerizing vinyl benzyl thiosulfate with methyl methacrylate in a miniemulsion by free-radical polymerization. BaSO4 is then formed by the hydrolysis of thiosulfate-functionalized nanoparticles, leading to the production of sulfate ions, which react subsequently with Ba2+ in dispersion.
Collapse
Affiliation(s)
- Vatita Leamkaew
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.
| |
Collapse
|
30
|
Zhao Z, Wang J, Liu M, Li Z, Cao F, Xu P, Fang Q, Yang J, Hu Z, Wu D, Liu R, Liu X. Neuropilin-1-target self-assembled peptide nanoparticles contribute to tumor treatment by inducing pyroptosis. BMC Cancer 2025; 25:413. [PMID: 40050758 PMCID: PMC11887077 DOI: 10.1186/s12885-025-13784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Expression of the Neuropilin-1 (NRP1) is reported in malignant cells of multiple human tumor types represented as a tumor marker. Targeting NRP1 with a peptide, CK3, is used for tumor molecular imaging, raising the question of the therapeutic potential of CK2, a peptide with a CK3 backbone which enhanced targeting and tumor enrichment properties. METHODS The tumor targeting and enrichment capacity of CK2 was detected by IncuCyte, flow cytometry and animal living imaging. To enhance its therapeutic efficacy, we developed a self-assembling peptide nanoparticles Fmoc-Gffy-AP-CK2, incorporating a peptide protective domain (Fmoc), a self-assemble domain (Gffy) and an anti-tumor peptide (AP). In vitro cellular assays and in vivo tumor-xenograft experiments were conducted to evaluate the anti-tumor effect of Fmoc-Gffy-AP-CK2. RESULTS While CK3 peptide specifically targets NRP1 in vitro and in vivo, CK2 markedly achieves stronger binding with NRP1 and higher tumor accumulation. Fmoc-Gffy-AP-CK2 exhibits a potent NRP1-dependent cytotoxic effect in vitro and in vivo. Mechanically, Fmoc-Gffy-AP-CK2 triggered caspase3/gasdermin E (GSDME)-mediated pyroptosis. Fmoc-Gffy-AP-CK2 also promotes the response rate of PD-1 checkpoint blockade. CONCLUSIONS CK2, When combined with Fmoc-Gffy-AP domain, Demonstrated high anti-tumor efficacy, Providing a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Zheng Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jingyun Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital JiangxiMedical College Nanchang University, Nanchang, China, 330000
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, 330000, Jiangxi, China
| | - Ziqian Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Fei Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Pengfei Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Qi Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zhulong Hu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Di Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Xuekui Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
31
|
Chung MC, Mendez‐Gomez HR, Soni D, McGinley R, Zacharia A, Ashbrook J, Stover B, Grippin AJ, Sayour EJ, Guan J. Multi-Step Assembly of an RNA-Liposome Nanoparticle Formulation Revealed by Real-Time, Single-Particle Quantitative Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414305. [PMID: 39887619 PMCID: PMC11948016 DOI: 10.1002/advs.202414305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 02/01/2025]
Abstract
Self-assembly plays a critical role in nanoparticle-based applications. However, it remains challenging to monitor the self-assembly of multi-component nanomaterials at a single-particle level, in real-time, with high throughput, and in a model-independent manner. Here, multi-color fluorescence microscopy is applied to track the assembly of both liposomes and mRNA simultaneously in clinical mRNA-based cancer immunotherapy. Imaging reveals that the assembly occurs in discrete steps: initially, RNA adsorbs onto the liposomes; then, the RNA-coated liposomes cluster into heterogeneous structures ranging from sub-micrometer to tens of micrometers. The clustering process is consistent with a Smoluchowski model with a Brownian diffusion kernel. The transition between the two steps of assembly is determined by the orientation of RNA-mediated interactions. Given the facile application of this approach and the ubiquity of the components studied, the imaging and analysis in this work are readily applied to monitor multi-component assembly of diverse nanomaterials.
Collapse
Affiliation(s)
- Michael C. Chung
- Division of Chemical Biology and Medicinal ChemistryCollege of PharmacyUniversity of Texas at AustinAustinTX78712USA
- Department of PhysicsUniversity of FloridaGainesvilleFL32611USA
| | - Hector R. Mendez‐Gomez
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
| | - Dhruvkumar Soni
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
| | - Reagan McGinley
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFL32603USA
| | - Alen Zacharia
- Department of PhysicsUniversity of FloridaGainesvilleFL32611USA
| | - Jewel Ashbrook
- Middlebury College Department of PhysicsMcCardell Bicentennial HallMiddleburyVT05753USA
| | - Brian Stover
- Department of PediatricsDivision of Pediatric Hematology OncologyUniversity of FloridaGainesvilleFL32610USA
| | - Adam J. Grippin
- MD Anderson Cancer CenterDivision of Radiation OncologyUniversity of TexasHoustonTX77030USA
| | - Elias J. Sayour
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
- Department of PediatricsDivision of Pediatric Hematology OncologyUniversity of FloridaGainesvilleFL32610USA
| | - Juan Guan
- Division of Chemical Biology and Medicinal ChemistryCollege of PharmacyUniversity of Texas at AustinAustinTX78712USA
| |
Collapse
|
32
|
Deng H, Chen J, Wang H, Liu R, Zhang Y, Chang H, Tung CH, Zhang W. Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy. Carbohydr Polym 2025; 351:123123. [PMID: 39779030 DOI: 10.1016/j.carbpol.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe3+ as cross-linkers. Taking advantages of HA's natural affinity towards CD44, HA@Ce6 enabled a targeted Ce6 delivery in CD44-overexpressed breast cancer cells and meanwhile enhanced iron uptake to "fuel" ferroptosis together with the light-stimulated LPO. Further, HA@Ce6 demonstrated an excellent anticancer PDT efficacy and ferroptosis induction in the murine 4 T1 xenograft model. This HA@Ce6 successfully exploited the role of HA in iron transport to sensitize ferroptosis, providing a potent strategy to facilitate the anticancer PDT.
Collapse
Affiliation(s)
- Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayu Chen
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
33
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
34
|
Sajjad M, Malik MZ, Awan ABU, Shah HS, Sarfraz M, Usman F, Chohan TA, Wani TA, Zargar S, Jawad Z. Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals (Basel) 2025; 18:347. [PMID: 40143125 PMCID: PMC11944626 DOI: 10.3390/ph18030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study examined the fabrication and characterization of nanosponges (NS) laden with polyoxometalates (TiW11Co) with the intention of targeting malignancy. Methods: By employing the emulsion solvent diffusion technique, TiW11Co-NS were generated by combining polyvinyl alcohol (PVA) and ethyl cellulose (EC) in different concentrations. Results: A significant numerical results encompassed a hydrodynamic particle diameter of 109.5 nm, loading efficiencies reaching 85.9%, and zeta potentials varying from -24.91 to -27.08 (mV). Scanning and transmission electron microscopy were employed to validate the TiW11Co-NS porous structure and surface morphology. The results of the stability investigation indicated that TiW11Co-NS exhibited prolonged sturdiness. Investigation examining the inhibition of enzymes revealed that TiW11Co-NS exhibited enhanced effectiveness against TNAP. Pharmacological evaluations of TiW11Co-NS demonstrated improved cytotoxicity and apoptotic effects in comparison to pure TiW11Co, thereby indicating their potential utility in targeted cancer therapy. In vivo investigations involving mice revealed that TiW11Co-NS caused a more substantial reduction in tumor weight and increased survival rates in comparison to pure TiW11Co. The resemblance of TiW11Co for crucial proteins associated with cancer proliferation was featured through molecular docking, thereby supporting its therapeutic potential. Conclusions: The TiW11Co-laden nanosponges demonstrated superior stability, enzyme inhibition, cytotoxicity, and in vivo anticancer efficacy, underscoring their potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | | | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Zobia Jawad
- Lady Willingdon Hospital, King Edward Medical University, Lahore 54000, Pakistan;
| |
Collapse
|
35
|
Chaki S, Román-Manso B, Senatus L, Lewis JA, Schweizer KS. Theoretical study of the impact of dilute nanoparticle additives on the shear elasticity of dense colloidal suspensions. SOFT MATTER 2025; 21:1731-1747. [PMID: 39918291 DOI: 10.1039/d4sm01193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Motivated by basic issues in soft matter physics and new experimental work on granule-nanoparticle mixtures, we systematically apply naive mode coupling theory with accurate microstructural input to investigate the elastic shear modulus of highly size asymmetric, dense, chemically complex, colloid-nanoparticle mixtures. Our analysis spans four equilibrium microstructural regimes: (i) entropic depletion induced colloid clustering, (ii) discrete adsorbed nanoparticle layers that induce colloid spatial dispersion, (iii) nanoparticle-mediated tight bridging network formation, and (iv) colloidal contact aggregation via direct attractions. Each regime typically displays a distinctive mechanical response to changing colloid-nanoparticle size ratio, packing fractions, and the strength and spatial range of interparticle attractive and repulsive interactions. Small concentrations of nanoparticles can induce orders of magnitude elastic reinforcements typically involving single or double exponential growth with increasing colloid and/or nanoparticle packing fraction. Depending on the system, the elementary stress scale can be controlled by the colloid volume, the nanoparticle volume, or a combination of both. Connections between local microstructural organization and the mixture elastic shear modulus are established. The collective structure factor of the relatively dilute nanoparticle subsystem exhibits strong spatial ordering and large osmotic concentration fluctuations imprinted by the highly correlated dense colloidal subsystem. The relevance of the theoretical results for experimental mixtures with large size asymmetry, particularly in the context of 3D ink printing and additive manufacturing, are discussed.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Benito Román-Manso
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Larissa Senatus
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Gómez-Barrera SN, Delgado-Tapia WÁ, Hernández-Gutiérrez AE, Cayetano-Cruz M, Méndez C, Bustos-Jaimes I. Surface Engineering of the Encapsulin Nanocompartment of Myxococcus xanthus for Cell-Targeted Protein Delivery. ACS OMEGA 2025; 10:7142-7152. [PMID: 40028083 PMCID: PMC11866011 DOI: 10.1021/acsomega.4c10285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Encapsulin nanocompartments (ENCs), or simply encapsulins, are a novel type of protein nanocage found in bacteria and archaea. The complete encapsulin systems include protein cargoes involved in specific metabolic tasks. Cargoes are selectively encapsulated due to the presence of a specific cargo-loading peptide (CLP). However, heterologous proteins fused to the CLP have also been successfully encapsulated, making encapsulins a very promising system for protein-carrying and delivery. Nevertheless, for precise cell or tissue delivery, encapsulins require the addition of tagging peptides or proteins. In this study, the external surface of the Myxococcus xanthus ENC (MxENC) was analyzed and modified to carry the bioorthogonal conjugation peptide (SpyTag) to further decorate the MxENCs with any targeting protein previously fused to the SpyTag orthogonal pair, the SpyCatcher protein. The structural analysis of MxENC led to the selection of the surface loop 155-159 and the C-terminus of the encapsulin shell protein (EncA) for the genetic fusion of the SpyTag peptide. The engineered EncA forms retained the competence for self-assembly into ENCs. To provide cellular specificity, the PreS121-47 hepatocyte-targeting peptide, genetically fused to the SpyCatcher protein, was successfully conjugated to both engineered versions of the MxENC. The modified nanocompartments underwent comprehensive characterization for stability, cargo loading, cellular uptake, and cargo release in HepG2 cells, demonstrating their potential as protein-delivery vehicles. These results provide valuable insights into the design and customization of nanocompartments, opening up possibilities for improved drug delivery applications in biotechnology and nanomedicine.
Collapse
Affiliation(s)
- Sac Nicté Gómez-Barrera
- Departamento
de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico
| | - Willy Ángel Delgado-Tapia
- Departamento
de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico
| | | | - Maribel Cayetano-Cruz
- Departamento
de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico
| | - Carmen Méndez
- Departamento
de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico
| | - Ismael Bustos-Jaimes
- Departamento
de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico
| |
Collapse
|
37
|
Ishkhanyan H, Santana-Bonilla A, Lorenz CD. PUCHIK: A Python Package To Analyze Molecular Dynamics Simulations of Aspherical Nanoparticles. J Chem Inf Model 2025; 65:1694-1701. [PMID: 39928985 PMCID: PMC11863366 DOI: 10.1021/acs.jcim.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
Accurately describing a nanoparticle's interface is crucial for understanding its internal structure, interfacial properties, and ultimately, its functionality. While current computational methods provide reasonable descriptions for spherical and quasi-spherical nanoparticles, there remains a need for effective models for aspherical structures such as capsules and rod-like systems. This work introduces Python Utility for Characterizing Heterogeneous Interfaces and Kinetics (PUCHIK), a novel algorithm developed to describe both spherelike and aspherical nanoparticles. With an accurate description of the location of the interface of the nanoparticle, this algorithm then allows for various other important quantities (e.g., densities of different atom/molecule types relative to the interface, volume of the nanoparticle, amount of solubilized molecules within the nanoparticle) to be calculated. Our software development, we focused on providing good performance to computationally demanding projects, while ensuring that the methodological approach can be adapted as a protocol for other code implementations.
Collapse
Affiliation(s)
- Hrachya Ishkhanyan
- Institute
for Informatics and Automation Problems of the National Academy of
Sciences of the Republic of Armenia, 0014 Yerevan, Republic of Armenia
- Department
of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | | | - Christian D. Lorenz
- Department
of Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
38
|
Gao H, Cheng R, Cardoso I, Lobita M, Pacheco-Fernández I, Bártolo R, Rodrigues LR, Hirvonen J, A. Santos H. Engineered Shape-Tunable Copper-Coordinated Nanoparticles for Macrophage Reprogramming. NANO LETTERS 2025; 25:2831-2840. [PMID: 39914892 PMCID: PMC11849021 DOI: 10.1021/acs.nanolett.4c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The immune system safeguards as primary defense by recognizing nanomaterials and maintaining homeostasis, gaining a deeper understanding of these interactions may change the treating paradigm of immunotherapy. Here, we adopted copper as the principal component of nanoparticles (NPs), given its features of coordination with different benezenecarboxylate ligands to form metal-organic frameworks and complexes with distinct morphologies. As a result, four types of shape-tunable copper-coordinated NPs (CuCNPs) are developed: cuboctahedron, needle, octahedron, and plate NPs. Biocompatibility of CuCNPs varies across different cell lines (RAW264.7, THP-1, HEK 293 and HeLa) in a shape-dependent manner, with needle-shaped CuCNPs showing pronounced cytotoxicity (IC50:104.3 μg mL-1 at 24 h). Among different shapes, a notable increase of 8.47% in the CD206+ subpopulations is observed in needle-shaped CuCNPs, followed by 77% enhancement at 48 h. Overall, this study underscores the shape-dependent immune-regulatory effects of CuCNPs and sheds light on the rational design of nanoscale metal complexes for potential immunotherapy.
Collapse
Affiliation(s)
- Han Gao
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ruoyu Cheng
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Inês Cardoso
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- CEB
- Centre of Biological Engineering, Universidade
do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Lobita
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Idaira Pacheco-Fernández
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Raquel Bártolo
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lígia R. Rodrigues
- CEB
- Centre of Biological Engineering, Universidade
do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jouni Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Hong HS, Park HJ, Lee JM, Chen ZY, Kim TW, Seo YS, Kang JW, Seo YK. Bioactive Carbon Dots from Clove Residue: Synthesis, Characterization, and Osteogenic Properties. Biomedicines 2025; 13:527. [PMID: 40002941 PMCID: PMC11852471 DOI: 10.3390/biomedicines13020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Bone regeneration using nanomaterial-based approaches shows promise for treating critical bone defects. However, developing sustainable and cost-effective therapeutic materials remains challenging. This study investigates the osteogenic potential of clove-derived carbon dots (C-CDs) for bone regeneration applications. Methods: C-CDs were synthesized using a green hydrothermal method. The osteogenic potential was evaluated in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and validated using ectopic bone formation and calvarial defect models. Results: C-CDs demonstrated uniform morphology (~10 nm) with efficient cellular uptake. In vitro studies showed successful osteogenic differentiation through the upregulation of RUNX2, ALP, COL1A1, and BMP-2 mediated by Wnt/β-catenin/GSK3β and BMP signaling pathways. In vivo models have also demonstrated that C-CDs are effective in promoting bone regeneration. Conclusions: These findings establish C-CDs as promising candidates for bone regeneration therapy, offering a sustainable alternative to current treatments. While optimization is needed, their demonstrated osteogenic properties warrant further development for regenerative medicine applications.
Collapse
Affiliation(s)
- Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| | - Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| | - Zu-Yu Chen
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| | - Yong-Seok Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (H.-S.H.); (H.-J.P.); (J.-M.L.); (Z.-Y.C.); (T.-W.K.)
| |
Collapse
|
40
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
41
|
Gambaro R, Chain CY, Scioli-Montoto S, Moreno A, Huck-Iriart C, Ruiz ME, Cisneros JS, Lamas DG, Tau J, Gehring S, Islan GA, Rodenak-Kladniew B. Phytoactive-Loaded Lipid Nanocarriers for Simvastatin Delivery: A Drug Repositioning Strategy Against Lung Cancer. Pharmaceutics 2025; 17:255. [PMID: 40006622 PMCID: PMC11858925 DOI: 10.3390/pharmaceutics17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using bioactive lipid nanoparticles formulated with plant-derived monoterpenes as both nanostructuring agents and anticancer molecules. Methods: Lipid nanoparticles were produced by ultrasonication and characterized for morphology, size, zeta potential, and polydispersity index (PDI). Monoterpenes (linalool-LN-, limonene, 1,8-cineole) or Crodamol® were used as liquid lipids. Encapsulation efficiency (EE), release profiles, stability, biocompatibility, protein adsorption, cytotoxicity, and anticancer effects were evaluated. Results: The nanoparticles exhibited high stability, size: 94.2 ± 0.9-144.0 ± 2.6 nm, PDI < 0.3, and zeta potential: -4.5 ± 0.7 to -16.3 ± 0.8 mV. Encapsulation of SV in all formulations enhanced cytotoxicity against A549 lung cancer cells, with NLC/LN/SV showing the highest activity and being chosen for further investigation. Sustained SV release over 72 h and EE > 95% was observed for NLC/LN/SV. SAXS/WAXS analysis revealed that LN altered the crystallographic structure of nanoparticles. NLC/LN/SV demonstrated excellent biocompatibility and developed a thin serum protein corona in vitro. Cellular studies showed efficient uptake by A549 cells, G0/G1 arrest, mitochondrial hyperpolarization, reactive oxygen species production, and enhanced cell death compared to free SV. NLC/LN/SV more effectively inhibited cancer cell migration than free SV. Conclusions: NLC/LN/SV represents a promising nanocarrier for SV repurposing, combining enhanced anticancer activity, biocompatibility, and sustained stability for potential lung cancer therapy.
Collapse
Affiliation(s)
- Rocío Gambaro
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Cecilia Y. Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Sebastian Scioli-Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - Ailin Moreno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - José S. Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Diego G. Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Germán A. Islan
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| |
Collapse
|
42
|
Raghavan P, Perez CA, Sorrentino TA, Kading JC, Finbloom JA, Desai TA. Physicochemical Design of Nanoparticles to Interface with and Degrade Neutrophil Extracellular Traps. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8862-8874. [PMID: 39884672 PMCID: PMC11826501 DOI: 10.1021/acsami.4c17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Neutrophil extracellular traps (NETs) are networks of decondensed chromatin, histones, and antimicrobial proteins released by neutrophils in response to an infection. NET overproduction can cause an exacerbated hyperinflammatory response in a variety of diseases and can lead to host tissue damage without clearance of infection. Nanoparticle drug delivery is a promising avenue for creating materials that can both target NETs and deliver sustained amounts of NET-degrading drugs to alleviate hyperinflammation. Here, we study how particle physicochemical properties can influence NET interaction and leverage our findings to create NET-interfacing and NET-degrading particles. We fabricated a panel of particles of varying sizes (200 to 1000 nm) and charges (positive, neutral, negative) and found that positive charge is the main driver of NET-particle interaction, with smaller 200 nm positive particles having a 10-fold increase in binding compared to larger 1000 nm positive particles. Negative and neutral particles were mostly noninteracting, except for small negatively charged particles that exhibited very low levels of NET localization. Interaction strength of particles with NETs was quantified via shear flow assays and atomic force microscopy. This information was leveraged to create DNase-loaded particles that could adhere to NETs at varying degrees and therefore degrade NETs at different rates in vitro. Positively charged, 200 nm DNase-loaded particles showed the highest degree of interaction with NETs and therefore led to faster degradation compared with larger sizes, underscoring the importance of physicochemical design for NET-targeting drug delivery. Overall, this work provides fundamental knowledge of the drivers of particle-NET interaction and a basis for designing NET-targeting particles for various disease states.
Collapse
Affiliation(s)
- Preethi Raghavan
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cynthia A. Perez
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Thomas A. Sorrentino
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jacqueline C. Kading
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joel A. Finbloom
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tejal A. Desai
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
43
|
Khalifeh M, Oude Egberink R, Roverts R, Brock R. Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. Int J Pharm 2025; 670:125109. [PMID: 39708847 DOI: 10.1016/j.ijpharm.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization. Here, we show that such nanoparticles using positively charged lipids achieve cellular uptake but only poor cytosolic mRNA delivery. However, mRNA release could be greatly enhanced through incorporation of ionizable lipids into the outer leaflet of the lipid bilayer. We optimized the composition and molar ratios of ionizable lipids, positive lipid, cholesterol, and polyethylene glycol (PEG) and evaluated the potency of the formulations for the cellular delivery of mRNA. Whereas in lipid nanoparticles, the ionizable lipid has a main role in the complexation of the mRNA, our study provides a new paradigm for the employment of ionizable cationic lipids in nanocarriers other than lipid nanoparticles (LNPs) to boost the endosomal release of nucleic acids.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Rik Oude Egberink
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Rona Roverts
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
44
|
Selim AA, Sakr TM, Essa BM, Sayed GH, Anwer KE. 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as an auspicious tumour targeting. Sci Rep 2025; 15:4687. [PMID: 39920279 PMCID: PMC11806107 DOI: 10.1038/s41598-025-88862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Sulfonamide derivatives are a significant class of medicinal compounds. Gold nanoparticles (AuNPs) offer precise cancer treatment through targeted delivery, boasting high drug-loading capacity and low toxicity. This study aimed to develop and evaluate 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as a tumor-targeting agent. A novel benzenesulfonamide derivative bearing a pyridine moiety was synthesized. Compound 3 (4-((3-cyano-4-(2,4-dichlorophenyl)-6-phenylpyridin-2-yl)amino)-N-(diaminomethylene)benzenesulfonamide) exhibited remarkable anti-cancer activity against MCF-7 cells. The chemical reduction method was employed to create compound 3-citrate-AuNPs. A comprehensive examination of the synthesized nano-platform was conducted, including zeta potential, size analysis, radiochemical yield, and in-vivo biodistribution in tumor-bearing mice. The nano-platform was successfully produced with good stability, optimal particle size (9 nm diameter for AuNPs), and high radiochemical purity for [99mTc]Tc-compound 3 (88.31 ± 2.14%). In-vivo investigations revealed that intravenously administered [99mTc]Tc-compound 3-citrate-AuNPs accumulated in tumors with a high target-to-non-target ratio. The findings validate the efficacy of the novel [99mTc]Tc-compound 3-citrate-AuNPs platform as a tumor-targeting agent.
Collapse
Affiliation(s)
- Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
45
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2025; 38:55-88. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
46
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Abdelhameed MF, Rizk MZ, Beherei HH. Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2025; 38:203-229. [PMID: 39543075 PMCID: PMC11754386 DOI: 10.1007/s10534-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC. The remyelinating neuroprotective potential of BBN-IONP relative to free BBN was evaluated against cuprizone (CPZ)-induced neurotoxicity (rats administered 0.2% CPZ powder (w/w) for five weeks). CPZ rats were treated with either free BBN or IONP-BBN (50 mg/kg/day, orally) for 14 days. Cognitive function was estimated using Y-maze. Biochemically, total antioxidant capacity lipid peroxides and reduced glutathione in the brain tissue, as well as, serum interferon-gamma levels were estimated. Moreover, the genetic expression contents of myelin basic protein Matrix metallopeptidase-9 Tumor necrosis factor-α (TNF-α), and S100β were measured. The histopathological patterns and immunohistochemical assessment of Glial Fibrillary Acidic Protein in both cerebral cortex and hippocampus CA1 regions were investigated. CPZ-rats treated with either free BBN or IONP-BBN demonstrated memory restoring, anti-oxidative, anti-inflammatory, anti-astrocytic, and remyelinating activities. Comparing free BBN with IONP-BBN revealed that the latter altered the neuromodulating activities of BBN, showing superior neuroprotective activities of IONP-BBN relative to BBN. In conclusion, both forms of BBN possess neuroprotective potential. However, the use of IONPs for brain delivery and the safety of these nano-based forms need further investigation.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
47
|
Ma T, Tran TB, Lin E, Hunt S, Haveman R, Castro K, Lu J. Size-transformable nanotherapeutics for cancer therapy. Acta Pharm Sin B 2025; 15:834-851. [PMID: 40177555 PMCID: PMC11959941 DOI: 10.1016/j.apsb.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 04/05/2025] Open
Abstract
The size of nanodrugs plays a crucial role in shaping their chemical and physical characteristics, consequently influencing their therapeutic and diagnostic interactions within biological systems. The optimal size of nanomedicines, whether small or large, offers distinct advantages in disease treatment, creating a dilemma in the selection process. Addressing this challenge, size-transformable nanodrugs have surfaced as a promising solution, as they can be tailored to entail the benefits associated with both small and large nanoparticles. In this review, various strategies are summarized for constructing size-transformable nanosystems with a focus on nanotherapeutic applications in the field of biomedicine. Particularly we highlight recent research developments in cancer therapy. This review aims to inspire researchers to further develop various toolboxes for fabricating size-transformable nanomedicines for improved intervention against diverse human diseases.
Collapse
Affiliation(s)
- Teng Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Ethan Lin
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Stephanie Hunt
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Riley Haveman
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Kylie Castro
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
- Clinical and Translational Oncology Program, the University of Arizona Cancer Center, Tucson 85721, AZ, USA
- BIO5 Institute, the University of Arizona, Tucson 85721, AZ, USA
- Southwest Environmental Health Sciences Center, the University of Arizona, Tucson 85721, AZ, USA
| |
Collapse
|
48
|
Mossburg KJ, Shepherd SJ, Barragan D, O NH, Berkow EK, Maidment PSN, Rosario Berrios DN, Hsu JC, Siedlik MJ, Yadavali S, Mitchell MJ, Issadore D, Cormode DP. Towards the clinical translation of a silver sulfide nanoparticle contrast agent: large scale production with a highly parallelized microfluidic chip. Eur J Nucl Med Mol Imaging 2025; 52:1177-1188. [PMID: 39528844 PMCID: PMC11753937 DOI: 10.1007/s00259-024-06967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Ultrasmall silver sulfide nanoparticles (Ag2S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag2S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods for inorganic nanoparticles are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent. METHODS We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag2S-NP. Ag2S-NP produced using this system were compared to bulk synthesis and a commercially available microfluidic device through characterization, contrast generation, in vivo imaging, and clearance profiles. RESULTS Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag2S-NP produced were of similar quality as measured by core size, concentration, UV-visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 5,100. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag2S-NP occurred within 24 h. CONCLUSIONS These studies have identified a promising method for the large-scale production of Ag2S-NP, paving the way for eventual clinical translation.
Collapse
Affiliation(s)
- Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph's University, Philadelphia, PA, USA
- Department of Physics, St. Joseph's University, Philadelphia, PA, USA
| | - Emily K Berkow
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Derick N Rosario Berrios
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica C Hsu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - David P Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
50
|
Iftode L, Cadinoiu AN, Raţă DM, Atanase LI, Vochiţa G, Rădulescu L, Popa M, Gherghel D. Double Peptide-Functionalized Carboxymethyl Chitosan-Coated Liposomes Loaded with Dexamethasone as a Potential Strategy for Active Targeting Drug Delivery. Int J Mol Sci 2025; 26:922. [PMID: 39940692 PMCID: PMC11816442 DOI: 10.3390/ijms26030922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Liposomes are intensively used as nanocarriers for biology, biochemistry, medicine, and in the cosmetics industry and their non-toxic and biocompatible nature makes these vesicles attractive systems for biomedical applications. Moreover, the conjugation of specific ligands to liposomes increases their cellular uptake and therapeutic efficiency. Considering these aspects, the aim of the present study was to obtain new formulations of cationic liposomes coated with dual-peptide functionalized carboxymethyl chitosan (CMCS) for the treatment of inner ear diseases. In order to achieve efficient active targeting and ensuring a high efficacy of the treatment, CMCS was functionalized with Tet1 peptide, to target specific ear cells, and TAT peptide, to ensure cellular penetration. Furthermore, dexamethasone phosphate was loaded as a model drug for the treatment of ear inflammation. The infrared spectroscopy confirmed the functionalization of CMCS with the two specific peptides. The mean diameter of the uncovered liposomes varied between 167 and 198 nm whereas the CMCS-coated liposomes ranged from 179 to 202 nm. TEM analysis showed the spherical shape and unilamellar structure of liposomes. The release efficiency of dexamethasone phosphate after 24 h from the uncoated liposomes was between 37 and 40% and it appeared that the coated liposomes modulated this release. The obtained results demonstrated that the liposomes are hemocompatible since, for a tested concentration of 100 µg/mL, the liposome suspension had a lysis of erythrocytes lower than 2.5% after 180 min of incubation. In addition, the peptide-functionalized CMCS-coated liposomes induced a non-significant effect on the viability of normal V79-4 cells after 48 h, at the highest doses. Values of 71.31% were recorded (CLCP-1), 77.28% (CLCP-2) and 74.36% (CLCP-3), correlated with cytotoxic effects of 28.69%, 22.72%, and 25.64%.
Collapse
Affiliation(s)
- Loredana Iftode
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Anca Niculina Cadinoiu
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Delia Mihaela Raţă
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Leonard Ionuț Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Gabriela Vochiţa
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| | - Luminița Rădulescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
| | - Marcel Popa
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| |
Collapse
|