1
|
Jin D, Zhang L, Peng C, He M, Wang W, Li Z, Liu C, Du J, Zhou J, Yin L, Shan C, Qin Y, Chen M. The E3 ligase RAD18-mediated ubiquitination of henipavirus matrix protein promotes its nuclear-cytoplasmic trafficking and viral egress. Emerg Microbes Infect 2025; 14:2432344. [PMID: 39628457 PMCID: PMC11632932 DOI: 10.1080/22221751.2024.2432344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking. We demonstrate that RAD18 interacts with RAD6A, enabling the latter to supply ubiquitins for the RAD18-mediated transfer of ubiquitin to M through RAD18-M interactions. Specifically, M is ubiquitinated by the RAD6A-RAD18 complex at lysine (K) 258 through a K63-linked ubiquitination, a modification crucial for M's function. This ubiquitination drives M's relocation to the cytoplasm, directing it to plasma membranes for effective viral egress. Conversely, disrupting the RAD6A-RAD18-M axis, mutating RAD18's E3 ligase activity, or inhibiting RAD6A activity with TZ9 (a RAD6-ubiquitin thioester formation inhibitor) impairs M ubiquitination, resulting in defective nuclear export and budding of NiV. Significantly, live NiV and Hendra virus infection is attenuated in RAD18 knockout cells or in cells treated with TZ9, highlighting the critical physiological role of RAD6A-RAD18-mediated M ubiquitination in the henipavirus life cycle. Our findings not only reveal how NiV manipulates a nucleus-localized ubiquitination complex to promote virus's M protein ubiquitination and nuclear export, but also suggest that the small molecule inhibitor TZ9 could serve as a potential therapeutic against henipavirus infection.
Collapse
Affiliation(s)
- Dongning Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Linliang Zhang
- Shool of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Mingbin He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Weiwei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Zhifei Li
- Shool of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Cong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jinhong Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jin Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- Shool of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- Shool of Life Sciences, Hubei University, Wuhan, People’s Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
3
|
Norris JL, Rogers LO, Young G, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Antony E, Hedglin M. PCNA encircling primer/template junctions is eliminated by exchange of RPA for Rad51: Implications for the interplay between human DNA damage tolerance pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645792. [PMID: 40236028 PMCID: PMC11996364 DOI: 10.1101/2025.03.27.645792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The DNA genome is constantly exposed to agents, such as ultraviolet radiation (UVR), that can alter or eliminate its coding properties through covalent modifications of the template bases. Many of these damaging modifications (i.e., lesions) persist into S-phase of the cell cycle where they may stall the canonical DNA replication machinery. In humans, these stalling events are circumvented by one of at least three interconnected DNA damage tolerance (DDT) pathways; translesion DNA synthesis (TLS), Template Switching (TS), and Homology-dependent Recombination (HDR). Currently, the functional interplay between these pathways is unclear, leaving wide gaps in our fundamental understanding of human DDT. To gain insights, we focus on the activation mechanisms of the DDT pathways. PCNA sliding clamps encircling primer/template (P/T) junctions of stalled replication sites are central to the activation of both TLS and TS whereas exchange of RPA for Rad51 filaments on the single strand DNA (ssDNA) sequences of stalled replication sites is central to HDR activation. Utilizing direct, ensemble FRET approaches developed by our lab, we independently monitor and directly compare PCNA occupancy and RPA/Rad51 exchange at P/T junctions under a variety of conditions that mimic in vivo scenarios. Collectively, the results reveal that assembly of stable Rad51 filaments at P/T junctions via RPA/Rad51 exchange causes complete and irreversible unloading of the resident PCNA, both in the presence and absence of an abundant PCNA-binding protein complex. Further investigations decipher the mechanism of RPA/Rad51 exchange-dependent unloading of PCNA. Collectively, these studies provide critical insights into the interplay between human DDT pathways and direction for future studies.
Collapse
|
4
|
Wen B, Zheng HX, Heng JH, Tang Q, Deng DX, Zhang ZD, Liao LD, Xu LY, Li EM. Chromatin assembly factor 1 subunit A promotes TLS pathway by recruiting E3 ubiquitin ligase RAD18 in cancer cells. Cell Death Dis 2025; 16:147. [PMID: 40025006 PMCID: PMC11873243 DOI: 10.1038/s41419-025-07468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
The translesion DNA synthesis (TLS) pathway mediated by proliferating cell nuclear antigen (PCNA) monoubiquitination is an essential mechanism by which cancer cells bypass DNA damage caused by DNA damage to maintain genomic stability and cell survival. Chromatin assembly factor 1 subunit A (CHAF1A) traditionally promotes histone assembly during DNA replication. Here, we revealed that CHAF1A is a novel regulator of the TLS pathway in cancer cells. CHAF1A promotes restart and elongation of the replication fork under DNA replication stress. Mechanistically, the C-terminal domain of CHAF1A directly interacts with E3 ubiquitin ligase RAD18, enhancing RAD18 binding on the stalled replication fork. CHAF1A facilitates PCNA K164 monoubiquitination mediated by RAD18, thereby promoting the recruitment of Y-family DNA polymerases and enhancing cancer cell resistance to DNA damage. In addition, CHAF1A-mediated RAD18 recruitment and PCNA monoubiquitination are independent of the CHAF1A-PCNA interaction and its histone assembly function. Taken together, these findings improve our understanding of the mechanisms that regulate the TLS pathway and provide insights into the relationship between CHAF1A and DNA replication stress in cancer cells.
Collapse
Affiliation(s)
- Bing Wen
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Hai-Xiang Zheng
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Jing-Hua Heng
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Qian Tang
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Dan-Xia Deng
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Zhi-Da Zhang
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China.
- The Laboratory for Cancer Molecular Biology, Shantou Academy of Medical Sciences, Shantou, 515041, Guangdong, P.R. China.
| |
Collapse
|
5
|
Zamarreño J, Rodríguez S, Muñoz S, Bueno A, Sacristán M. Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert lysine-164 PCNA ubiquitylation at replication forks. Nucleic Acids Res 2025; 53:gkaf076. [PMID: 39964481 PMCID: PMC11833686 DOI: 10.1093/nar/gkaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is essential for the faithful duplication of eukaryotic genomes. PCNA also orchestrates events necessary to address threats to genomic integrity, such as the DNA damage tolerance (DDT) response, a mechanism by which eukaryotic cells bypass replication-blocking lesions to maintain replisome stability. DDT is regulated by the ubiquitylation of PCNA and the consequent recruitment of specialized polymerases that ensure replication continuity. We have recently described that the deubiquitylases Ubp10 and Ubp12 modulate DDT events by reverting the ubiquitylation of PCNA in Saccharomyces cerevisiae. This study identifies Ubp1 as a novel PCNA deubiquitylase that cooperates with Ubp10 and Ubp12 in the regulation of DDT during DNA replication. Ubp1, previously known as a cytoplasmic protein, also localizes to the nucleus, where it associates with DNA replication forks. Additionally, Ubp1 interacts with and deubiquitylates PCNA. Here, we provide evidence that Ubp1 collaborates with Ubp10 and Ubp12 to facilitate DNA replication by efficiently reverting PCNAK164 ubiquitylation at replication forks under conditions free from exogenous perturbations. Consequently, the deletion of UBP1, UBP10, and UBP12 leads to persistent ubiquitylation of PCNAK164 and a marked delay in S phase progression.
Collapse
Affiliation(s)
- Javier Zamarreño
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sofía Muñoz
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Avelino Bueno
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P Sacristán
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
6
|
van der Horst SC, Kollenstart L, Batté A, Keizer S, Vreeken K, Pandey P, Chabes A, van Attikum H. Replication-IDentifier links epigenetic and metabolic pathways to the replication stress response. Nat Commun 2025; 16:1416. [PMID: 39915438 PMCID: PMC11802883 DOI: 10.1038/s41467-025-56561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Perturbation of DNA replication, for instance by hydroxyurea-dependent dNTP exhaustion, often leads to stalling or collapse of replication forks. This triggers a replication stress response that stabilizes these forks, activates cell cycle checkpoints, and induces expression of DNA damage response genes. While several factors are known to act in this response, the full repertoire of proteins involved remains largely elusive. Here, we develop Replication-IDentifier (Repli-ID), which allows for genome-wide identification of regulators of DNA replication in Saccharomyces cerevisiae. During Repli-ID, the replicative polymerase epsilon (Pol ε) is tracked at a barcoded origin of replication by chromatin immunoprecipitation (ChIP) coupled to next-generation sequencing of the barcode in thousands of hydroxyurea-treated yeast mutants. Using this approach, 423 genes that promote Pol ε binding at replication forks were uncovered, including LGE1 and ROX1. Mechanistically, we show that Lge1 affects replication initiation and/or fork stability by promoting Bre1-dependent H2B mono-ubiquitylation. Rox1 affects replication fork progression by regulating S-phase entry and checkpoint activation, hinging on cellular ceramide levels via transcriptional repression of SUR2. Thus, Repli-ID provides a unique resource for the identification and further characterization of factors and pathways involved in the cellular response to DNA replication perturbation.
Collapse
Affiliation(s)
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Keizer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Praveen Pandey
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Yang Y, Jayaprakash D, Jhujh S, Reynolds J, Chen S, Gao Y, Anand J, Mutter-Rottmayer E, Ariel P, An J, Cheng X, Pearce K, Blanchet SA, Nandakumar N, Zhou P, Fradet-Turcotte A, Stewart G, Vaziri C. PCNA-binding activity separates RNF168 functions in DNA replication and DNA double-stranded break signaling. Nucleic Acids Res 2024; 52:13019-13035. [PMID: 39445802 PMCID: PMC11602139 DOI: 10.1093/nar/gkae918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
RNF168 orchestrates a ubiquitin-dependent DNA damage response to regulate the recruitment of repair factors, such as 53BP1 to DNA double-strand breaks (DSBs). In addition to its canonical functions in DSB signaling, RNF168 may facilitate DNA replication fork progression. However, the precise role of RNF168 in DNA replication remains unclear. Here, we demonstrate that RNF168 is recruited to DNA replication factories in a manner that is independent of the canonical DSB response pathway regulated by Ataxia-Telangiectasia Mutated (ATM) and RNF8. We identify a degenerate Proliferating Cell Nuclear Antigen (PCNA)-interacting peptide (DPIP) motif in the C-terminus of RNF168, which together with its Motif Interacting with Ubiquitin (MIU) domain mediates binding to mono-ubiquitylated PCNA at replication factories. An RNF168 mutant harboring inactivating substitutions in its DPIP box and MIU1 domain (termed RNF168 ΔDPIP/ΔMIU1) is not recruited to sites of DNA synthesis and fails to support ongoing DNA replication. Notably, the PCNA interaction-deficient RNF168 ΔDPIP/ΔMIU1 mutant fully rescues the ability of RNF168-/- cells to form 53BP1 foci in response to DNA DSBs. Therefore, RNF168 functions in DNA replication and DSB signaling are fully separable. Our results define a new mechanism by which RNF168 promotes DNA replication independently of its canonical functions in DSB signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adam’s School of Dentistry, University of North Carolina at Chapel Hill, 385 S Columbia Street, Chapel Hill, NC 27599, USA
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - Steve Chen
- Cytiva Life Sciences, Global Life Sciences Solutions USA LLC, 100 Results Way, Marlborough, MA 01752, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Elizabeth Mutter-Rottmayer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Pablo Ariel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Harbin Medical University, 6 Bao Jian Street, Nan Gang District, Harbin 150081, China
| | - Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital,181 Hanyu Road, Shapingba District, Chongqing 400044, China
| | - Kenneth H Pearce
- Center For Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Marsico Hall, 125 Mason Farm Road, CB# 7363, Chapel Hill, NC 27599, USA
| | - Sophie-Anne Blanchet
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Nandana Nandakumar
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Amélie Fradet-Turcotte
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Bedaiwi S, Usmani A, Carty MP. Canonical and Non-Canonical Roles of Human DNA Polymerase η. Genes (Basel) 2024; 15:1271. [PMID: 39457395 PMCID: PMC11507097 DOI: 10.3390/genes15101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
DNA damage tolerance pathways that allow for the completion of replication following fork arrest are critical in maintaining genome stability during cell division. The main DNA damage tolerance pathways include strand switching, replication fork reversal and translesion synthesis (TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered DNA structures during DNA synthesis, and are important in allowing replication to proceed after fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV). Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced by anti-cancer drugs including cisplatin. We review the current understanding of the canonical role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging non-canonical roles of the protein in other aspects of DNA metabolism.
Collapse
Affiliation(s)
| | | | - Michael P. Carty
- DNA Damage Response Laboratory, Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland; (S.B.); (A.U.)
| |
Collapse
|
9
|
Zamarreño J, Muñoz S, Alonso-Rodríguez E, Alcalá M, Rodríguez S, Bermejo R, Sacristán MP, Bueno A. Timely lagging strand maturation relies on Ubp10 deubiquitylase-mediated PCNA dissociation from replicating chromatin. Nat Commun 2024; 15:8183. [PMID: 39294185 PMCID: PMC11411133 DOI: 10.1038/s41467-024-52542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Synthesis and maturation of Okazaki Fragments is an incessant and highly efficient metabolic process completing the synthesis of the lagging strands at replication forks during S phase. Accurate Okazaki fragment maturation (OFM) is crucial to maintain genome integrity and, therefore, cell survival in all living organisms. In eukaryotes, OFM involves the consecutive action of DNA polymerase Pol ∂, 5' Flap endonuclease Fen1 and DNA ligase I, and constitutes the best example of a sequential process coordinated by the sliding clamp PCNA. For OFM to occur efficiently, cooperation of these enzymes with PCNA must be highly regulated. Here, we present evidence of a role for the K164-PCNA-deubiquitylase Ubp10 in the maturation of Okazaki fragments in the budding yeast Saccharomyces cerevisiae. We show that Ubp10 associates with lagging-strand DNA synthesis machineries on replicating chromatin to ensure timely ligation of Okazaki fragments by promoting PCNA dissociation from chromatin requiring lysine 164 deubiquitylation.
Collapse
Affiliation(s)
- Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Esmeralda Alonso-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Macarena Alcalá
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
10
|
Mukhopadhyay U, Levantovsky S, Carusone TM, Gharbi S, Stein F, Behrends C, Bhogaraju S. A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates. SCIENCE ADVANCES 2024; 10:eadp3000. [PMID: 39121224 PMCID: PMC11313854 DOI: 10.1126/sciadv.adp3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teresa Maria Carusone
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
11
|
Hegedus L, Toth A, Harami GM, Palinkas J, Karatayeva N, Sajben-Nagy E, Bene S, Afzali Jaktajdinani S, Kovacs M, Juhasz S, Burkovics P. Werner helicase interacting protein 1 contributes to G-quadruplex processing in human cells. Sci Rep 2024; 14:15740. [PMID: 38977862 PMCID: PMC11231340 DOI: 10.1038/s41598-024-66425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.
Collapse
Affiliation(s)
- Lili Hegedus
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Agnes Toth
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Janos Palinkas
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Nargis Karatayeva
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eniko Sajben-Nagy
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Szabolcs Bene
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Sara Afzali Jaktajdinani
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mihaly Kovacs
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Juhasz
- HCEMM Cancer Microbiome Core Group, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary.
| | - Peter Burkovics
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Khodaverdian V, Sano T, Maggs LR, Tomarchio G, Dias A, Tran M, Clairmont C, McVey M. REV1 coordinates a multi-faceted tolerance response to DNA alkylation damage and prevents chromosome shattering in Drosophila melanogaster. PLoS Genet 2024; 20:e1011181. [PMID: 39074150 PMCID: PMC11309488 DOI: 10.1371/journal.pgen.1011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lara R. Maggs
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Gina Tomarchio
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Ana Dias
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mai Tran
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
13
|
Chen JJ, Moy C, Pagé V, Monnin C, El-Hajj ZW, Avizonis DZ, Reyes-Lamothe R, Tanny JC. The Rtf1/Prf1-dependent histone modification axis counteracts multi-drug resistance in fission yeast. Life Sci Alliance 2024; 7:e202302494. [PMID: 38514187 PMCID: PMC10958104 DOI: 10.26508/lsa.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.
Collapse
Affiliation(s)
- Jennifer J Chen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Calvin Moy
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Cian Monnin
- Metabolomics Innovation Resource, Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Ziad W El-Hajj
- Department of Biology, McGill University, Montreal, Canada
| | - Daina Z Avizonis
- Metabolomics Innovation Resource, Goodman Cancer Institute, McGill University, Montreal, Canada
| | | | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Feng MG. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:59-82. [PMID: 39389708 DOI: 10.1016/bs.aambs.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.
Collapse
Affiliation(s)
- Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
15
|
Luo XC, Yu L, Xu SY, Ying SH, Feng MG. Rad6, a ubiquitin conjugator required for insect-pathogenic lifestyle, UV damage repair, and genomic expression of Beauveria bassiana. Microbiol Res 2024; 281:127622. [PMID: 38246123 DOI: 10.1016/j.micres.2024.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/09/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The E2 ubiquitin conjugator Rad6 is required for DNA damage bypass in budding yeast but remain functionally unknown in filamentous fungi. Here, we report pleiotropic effect of Rad6 ortholog in Beauveria bassiana, a wide-spectrum fungal insecticide. Global ubiquitination signal was greatly attenuated in the absence of rad6. The blocked ubiquitination led to severe growth defect, blocked asexual development, and abolished infectivity/insect pathogenicity, which correlated with compromised conidial quality (including viability, hydrophobicity, adherence to insect cuticle, and thermotolerance) and blocked secretion of cuticle-degrading enzymes including Pr1 family proteases. Importantly, Rad6 played much greater role in photoreactivation of UVB-impaired conidia by a 3- or 5-h light plus 9- or 7-h dark incubation than in dark reactivation of those impaired conidia by a 12-h dark incubation. The high activity of Rad6 in photoreactivation in vivo was derived from its link to a protein complex cored by the photolyase regulators WC1 and WC2 via the strong interactions of Rad6 with the E3 partner Rad18 and Rad18 with WC2 revealed in yeast two-hybrid assays. Transcriptomic analysis resulted in identification of 2700 differentially regulated genes involved in various function categories and metabolism pathways, indicating a regulatory role of Rad6-mediated ubiquitination in gene expression networks and genomic stability. Conclusively, Rad6 is required for asexual and insect-pathogenic lifecycles, solar UV damage repair, and genomic expression of B. bassiana. The primary dependence of its strong anti-UV role on photoreactivation in vivo unveils a scenario distinct from the core role of its yeast ortholog in DNA damage bypass.
Collapse
Affiliation(s)
- Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Kalweit K, Gölling V, Kosan C, Jungnickel B. Role of Rad18 in B cell activation and lymphomagenesis. Sci Rep 2024; 14:7066. [PMID: 38528023 PMCID: PMC10963733 DOI: 10.1038/s41598-024-57018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen. Previous studies have shown different roles of Rad18 in vivo and in tumorigenesis. Here, we show that B cells induce Rad18 expression upon proliferation induction. We have therefore analysed the role of Rad18 in B cell activation as well as in B cell lymphomagenesis mediated by an Eµ-Myc transgene. We find no activation defects or survival differences between Rad18 WT mice and two different models of Rad18 deficient tumour mice. Also, tumour subtypes do not differ between the mouse models. Accordingly, functions of Rad18 in B cell activation and tumorigenesis may be compensated for by other pathways in B cells.
Collapse
Affiliation(s)
- Kevin Kalweit
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Vanessa Gölling
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Christian Kosan
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
17
|
Scelfo A, Angrisani A, Grillo M, Barnes BM, Muyas F, Sauer CM, Leung CWB, Dumont M, Grison M, Mazaud D, Garnier M, Guintini L, Nelson L, Esashi F, Cortés-Ciriano I, Taylor SS, Déjardin J, Wilhelm T, Fachinetti D. Specialized replication mechanisms maintain genome stability at human centromeres. Mol Cell 2024; 84:1003-1020.e10. [PMID: 38359824 DOI: 10.1016/j.molcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marco Grillo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | - Marie Dumont
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marine Grison
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - David Mazaud
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Mickaël Garnier
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Laetitia Guintini
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
18
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby GN, Wang Y, Wang C, Gao Y, Anand JR, Shelton A, Satterlee AB, Mann B, Hsiao YC, Liu CW, Lu K, Hingtgen S, Wang J, Liu Z, Miller CR, Wu D, Vaziri C, Yang Y. Trans-lesion synthesis and mismatch repair pathway crosstalk defines chemoresistance and hypermutation mechanisms in glioblastoma. Nat Commun 2024; 15:1957. [PMID: 38438348 PMCID: PMC10912752 DOI: 10.1038/s41467-024-45979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Nabil Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Khodaverdian V, Sano T, Maggs L, Tomarchio G, Dias A, Clairmont C, Tran M, McVey M. REV1 Coordinates a Multi-Faceted Tolerance Response to DNA Alkylation Damage and Prevents Chromosome Shattering in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580051. [PMID: 38405884 PMCID: PMC10888836 DOI: 10.1101/2024.02.13.580051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Yarrow Biotechnology, New York, NY
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, MA 02155
| | - Lara Maggs
- Department of Biology, Tufts University, Medford, MA 02155
| | - Gina Tomarchio
- Current address: Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ana Dias
- Department of Biology, Tufts University, Medford, MA 02155
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Vertex Pharmaceuticals, Boston, MA
| | - Mai Tran
- Department of Biology, Tufts University, Medford, MA 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155
| |
Collapse
|
20
|
Wendel SO, Snow JA, Gu L, Banerjee NS, Malkas L, Wallace NA. The potential of PCNA inhibition as a therapeutic strategy in cervical cancer. J Med Virol 2023; 95:e29244. [PMID: 38010649 PMCID: PMC10683864 DOI: 10.1002/jmv.29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Cervical cancers are the fourth most common and most deadly cancer in women worldwide. Despite being a tremendous public health burden, few novel approaches to improve care for these malignancies have been introduced. We discuss the potential for proliferating cell nuclear antigen (PCNA) inhibition to address this need as well as the advantages and disadvantages for compounds that can therapeutically inhibit PCNA with a specific focus on cervical cancer.
Collapse
Affiliation(s)
| | - Jazmine A Snow
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Long Gu
- Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Nilam Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Linda Malkas
- Beckman Research Institute of City of Hope, Duarte, California, USA
| | | |
Collapse
|
21
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562506. [PMID: 37905107 PMCID: PMC10614844 DOI: 10.1101/2023.10.16.562506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-2367368. [PMID: 37886584 PMCID: PMC10602147 DOI: 10.21203/rs.3.rs-2367368/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
24
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
25
|
Esquivel-Chávez A, Maki T, Tsubouchi H, Handa T, Kimura H, Haber JE, Thon G, Iwasaki H. Euchromatin factors HULC and Set1C affect heterochromatin organization and mating-type switching in fission yeast Schizosaccharomyces pombe. Genes Genet Syst 2022; 97:123-138. [PMID: 35908934 DOI: 10.1266/ggs.22-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mating-type (P or M) of fission yeast Schizosaccharomyces pombe is determined by the transcriptionally active mat1 cassette and is switched by gene conversion using a donor, either mat2 or mat3, located in an adjacent heterochromatin region (mating-type switching; MTS). In the switching process, heterochromatic donors of genetic information are selected based on the P or M cell type and on the action of two recombination enhancers, SRE2 promoting the use of mat2-P and SRE3 promoting the use of mat3-M, leading to replacement of the content of the expressed mat1 cassette. Recently, we found that the histone H3K4 methyltransferase complex Set1C participates in donor selection, raising the question of how a complex best known for its effects in euchromatin controls recombination in heterochromatin. Here, we report that the histone H2BK119 ubiquitin ligase complex HULC functions with Set1C in MTS, as mutants in the shf1, brl1, brl2 and rad6 genes showed defects similar to Set1C mutants and belonged to the same epistasis group as set1Δ. Moreover, using H3K4R and H2BK119R histone mutants and a Set1-Y897A catalytic mutant, we found that ubiquitylation of histone H2BK119 by HULC and methylation of histone H3K4 by Set1C are functionally coupled in MTS. Cell-type biases in MTS in these mutants suggested that HULC and Set1C inhibit the use of the SRE3 recombination enhancer in M cells, thus favoring SRE2 and mat2-P. Consistent with this, imbalanced switching in the mutants was traced to compromised association of the directionality factor Swi6 with the recombination enhancers in M cells. Based on their known effects at other chromosomal locations, we speculate that HULC and Set1C control nucleosome mobility and strand invasion near the SRE elements. In addition, we uncovered distinct effects of HULC and Set1C on histone H3K9 methylation and gene silencing, consistent with additional functions in the heterochromatic domain.
Collapse
Affiliation(s)
- Alfredo Esquivel-Chávez
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hideo Tsubouchi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Testuya Handa
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hiroshi Kimura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University
| | | | - Hiroshi Iwasaki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
26
|
Dannenberg RL, Cardina JA, Pytko KG, Hedglin M. Tracking of progressing human DNA polymerase δ holoenzymes reveals distributions of DNA lesion bypass activities. Nucleic Acids Res 2022; 50:9893-9908. [PMID: 36107777 PMCID: PMC9508823 DOI: 10.1093/nar/gkac745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During DNA replication, DNA lesions in lagging strand templates are initially encountered by DNA polymerase δ (pol δ) holoenzymes comprised of pol δ and the PCNA processivity sliding clamp. These encounters are thought to stall replication of an afflicted template before the lesion, activating DNA damage tolerance (DDT) pathways that replicate the lesion and adjacent DNA sequence, allowing pol δ to resume. However, qualitative studies observed that human pol δ can replicate various DNA lesions, albeit with unknown proficiencies, which raises issues regarding the role of DDT in replicating DNA lesions. To address these issues, we re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with DNA lesions. The results indicate pol δ holoenzymes support dNTP incorporation opposite and beyond multiple lesions and the extent of these activities depends on the lesion and pol δ proofreading. Furthermore, after encountering a given DNA lesion, subsequent dissociation of pol δ is distributed around the lesion and a portion does not dissociate. The distributions of these events are dependent on the lesion and pol δ proofreading. Collectively, these results reveal complexity and heterogeneity in the replication of lagging strand DNA lesions, significantly advancing our understanding of human DDT.
Collapse
Affiliation(s)
- Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cardina
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Volk LB, Cooper KL, Jiang T, Paffett ML, Hudson LG. Impacts of arsenic on Rad18 and translesion synthesis. Toxicol Appl Pharmacol 2022; 454:116230. [PMID: 36087615 PMCID: PMC10144522 DOI: 10.1016/j.taap.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Arsenite interferes with DNA repair protein function resulting in the retention of UV-induced DNA damage. Accumulated DNA damage promotes replication stress which is bypassed by DNA damage tolerance pathways such as translesion synthesis (TLS). Rad18 is an essential factor in initiating TLS through PCNA monoubiquitination and contains two functionally and structurally distinct zinc fingers that are potential targets for arsenite binding. Arsenite treatment displaced zinc from endogenous Rad18 protein and mass spectrometry analysis revealed arsenite binding to both the Rad18 RING finger and UBZ domains. Consequently, arsenite inhibited Rad18 RING finger dependent PCNA monoubiquitination and polymerase eta recruitment to DNA damage in UV exposed keratinocytes, both of which enhance the bypass of cyclobutane pyrimidine dimers during replication. Further analysis demonstrated multiple effects of arsenite, including the reduction in nuclear localization and UV-induced chromatin recruitment of Rad18 and its binding partner Rad6, which may also negatively impact TLS initiation. Arsenite and Rad18 knockdown in UV exposed keratinocytes significantly increased markers of replication stress and DNA strand breaks to a similar degree, suggesting arsenite mediates its effects through Rad18. Comet assay analysis confirmed an increase in both UV-induced single-stranded DNA and DNA double-strand breaks in arsenite treated keratinocytes compared to UV alone. Altogether, this study supports a mechanism by which arsenite inhibits TLS through the altered activity and regulation of Rad18. Arsenite elevated the levels of UV-induced replication stress and consequently, single-stranded DNA gaps and DNA double-strand breaks. These potentially mutagenic outcomes support a role for TLS in the cocarcinogenicity of arsenite.
Collapse
Affiliation(s)
- L B Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - K L Cooper
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - T Jiang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - M L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, 2325 Camino de Salud, Albuquerque, NM 87131, USA.
| | - L G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
28
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
29
|
Fleming MC, Chiou LF, Tumbale PP, Droby GN, Lim J, Norris-Drouin JL, Williams JG, Pearce KH, Williams RS, Vaziri C, Bowers AA. Discovery and Structural Basis of the Selectivity of Potent Cyclic Peptide Inhibitors of MAGE-A4. J Med Chem 2022; 65:7231-7245. [PMID: 35522528 PMCID: PMC9930912 DOI: 10.1021/acs.jmedchem.2c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homology domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochemical tools and structural insights for the future development of MAGE-A4-targeted cellular probes.
Collapse
Affiliation(s)
- Matthew C Fleming
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lilly F Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Percy P Tumbale
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Gaith N Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiwoong Lim
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L Norris-Drouin
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jason G Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Kenneth H Pearce
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - R Scott Williams
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Cyrus Vaziri
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Genome-wide CRISPR screen identified Rad18 as a determinant of doxorubicin sensitivity in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:154. [PMID: 35459258 PMCID: PMC9034549 DOI: 10.1186/s13046-022-02344-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor mostly occurring in children and adolescents, while chemotherapy resistance often develops and the mechanisms involved remain challenging to be fully investigated. Methods Genome-wide CRISPR screening combined with transcriptomic sequencing were used to identify the critical genes of doxorubicin resistance. Analysis of clinical samples and datasets, and in vitro and in vivo experiments (including CCK-8, apoptosis, western blot, qRT-PCR and mouse models) were applied to confirm the function of these genes. The bioinformatics and IP-MS assays were utilized to further verify the downstream pathway. RGD peptide-directed and exosome-delivered siRNA were developed for the novel therapy strategy. Results We identified that E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin-resistance in OS. Further exploration revealed that Rad18 interact with meiotic recombination 11 (MRE11) to promote the formation of the MRE11-RAD50-NBS1 (MRN) complex, facilitating the activation of the homologous recombination (HR) pathway, which ultimately mediated DNA damage tolerance and leaded to a poor prognosis and chemotherapy response in patients with OS. Rad18-knockout effectively restored the chemotherapy response in vitro and in vivo. Also, RGD-exosome loading chemically modified siRad18 combined with doxorubicin, where exosome and chemical modification guaranteed the stability of siRad18 and the RGD peptide provided prominent targetability, had significantly improved antitumor activity of doxorubicin. Conclusions Collectively, our study identifies Rad18 as a driver of OS doxorubicin resistance that promotes the HR pathway and indicates that targeting Rad18 is an effective approach to overcome chemotherapy resistance in OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02344-y.
Collapse
|
31
|
Yan X, He Y, Yang S, Zeng T, Hua Y, Bao S, Yang F, Duan N, Sun C, Liang Y, Fu Z, Huang X, Li W, Yin Y. A positive feedback loop: RAD18-YAP-TGF-β between triple-negative breast cancer and macrophages regulates cancer stemness and progression. Cell Death Dis 2022; 8:196. [PMID: 35413945 PMCID: PMC9005530 DOI: 10.1038/s41420-022-00968-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
As a key regulator of the DNA translesion synthesis (TLS) pathway, RAD18 is error-prone and contributes to the accumulation of DNA mutations. Our previous study showed that it plays an essential role in the progression of multiple tumors. However, the mechanism through which RAD18 influences triple-negative breast cancer (TNBC), especially the interaction between tumor cells and the tumor microenvironment, remains elusive. In this study, we showed that RAD18 expression is markedly higher in patients with high T stage TNBC and inversely correlated with prognosis. High expression of RAD18 facilitated a highly stem-cell phenotype through the Hippo/YAP pathway, which supports the proliferation of TNBC. In addition, the cytokine byproduct TGF-β activates macrophages to have an M2-like tumor-associated macrophage (TAM) phenotype. Reciprocally, TGF-β from TAMs activated RAD18 in TNBC to enhance tumor stemness, forming a positive feedback loop. Inhibition of YAP or TGF-β breaks this loop and suppresses cancer stemness and proliferation In nude mice, RAD18 promoted subcutaneous transplanted tumor growth and M2-type TAM recruitment. Collectively, the RAD18-YAP-TGF-β loop is essential for the promotion of the stemness phenotype by TNBC and could be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xueqi Yan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yaozhou He
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 210029, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yijia Hua
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Shengnan Bao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Fan Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Ningjun Duan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yan Liang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Xiang Huang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
32
|
Ma X, Wang C, Zhou B, Cheng Z, Mao Z, Tang TS, Guo C. DNA polymerase η promotes nonhomologous end joining upon etoposide exposure dependent on the scaffolding protein Kap1. J Biol Chem 2022; 298:101861. [PMID: 35339488 PMCID: PMC9046958 DOI: 10.1016/j.jbc.2022.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
DNA polymerase eta (Pol η) is a eukaryotic member of the Y-family of DNA polymerase involved in translesion DNA synthesis and genome mutagenesis. Recently, several translesion DNA synthesis polymerases have been found to function in repair of DNA double-strand breaks (DSBs). However, the role of Pol η in promoting DSB repair remains to be well defined. Here, we demonstrated that Pol η could be targeted to etoposide (ETO)-induced DSBs and that depletion of Pol η in cells causes increased sensitivity to ETO. Intriguingly, depletion of Pol η also led to a nonhomologous end joining repair defect in a catalytic activity–independent manner. We further identified the scaffold protein Kap1 as a novel interacting partner of Pol η, the depletion of which resulted in impaired formation of Pol η and Rad18 foci after ETO treatment. Additionally, overexpression of Kap1 failed to restore Pol η focus formation in Rad18-deficient cells after ETO treatment. Interestingly, we also found that Kap1 bound to Rad18 in a Pol η-dependent manner, and moreover, depletion of Kap1 led to a significant reduction in Rad18–Pol η association, indicating that Kap1 forms a ternary complex with Rad18 and Pol η to stabilize Rad18–Pol η association. Our findings demonstrate that Kap1 could regulate the role of Pol η in ETO-induced DSB repair via facilitating Rad18 recruitment and stabilizing Rad18–Pol η association.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China; State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bo Zhou
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Zina Cheng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
| |
Collapse
|
33
|
Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022; 15:844193. [PMID: 35359573 PMCID: PMC8964039 DOI: 10.3389/fnmol.2022.844193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.
Collapse
Affiliation(s)
- Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
- *Correspondence: You-Shuo Liu,
| |
Collapse
|
34
|
Ler AAL, Carty MP. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol 2022; 11:822500. [PMID: 35198436 PMCID: PMC8859465 DOI: 10.3389/fonc.2021.822500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.
Collapse
Affiliation(s)
- Ashlynn Ai Li Ler
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
| | - Michael P. Carty
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
- DNA Damage Response Laboratory, Centre for Chromosome Biology, NUI Galway, Galway, Ireland
- *Correspondence: Michael P. Carty,
| |
Collapse
|
35
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
36
|
Lancey C, Tehseen M, Bakshi S, Percival M, Takahashi M, Sobhy MA, Raducanu VS, Blair K, Muskett FW, Ragan TJ, Crehuet R, Hamdan SM, De Biasio A. Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA. Nat Commun 2021; 12:6095. [PMID: 34667155 PMCID: PMC8526622 DOI: 10.1038/s41467-021-26251-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Y-family DNA polymerase κ (Pol κ) can replicate damaged DNA templates to rescue stalled replication forks. Access of Pol κ to DNA damage sites is facilitated by its interaction with the processivity clamp PCNA and is regulated by PCNA mono-ubiquitylation. Here, we present cryo-EM reconstructions of human Pol κ bound to DNA, an incoming nucleotide, and wild type or mono-ubiquitylated PCNA (Ub-PCNA). In both reconstructions, the internal PIP-box adjacent to the Pol κ Polymerase-Associated Domain (PAD) docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting the Pol κ active site through PCNA, while Pol κ C-terminal domain containing two Ubiquitin Binding Zinc Fingers (UBZs) is invisible, in agreement with disorder predictions. The ubiquitin moieties are partly flexible and extend radially away from PCNA, with the ubiquitin at the Pol κ-bound protomer appearing more rigid. Activity assays suggest that, when the internal PIP-box interaction is lost, Pol κ is retained on DNA by a secondary interaction between the UBZs and the ubiquitins flexibly conjugated to PCNA. Our data provide a structural basis for the recruitment of a Y-family TLS polymerase to sites of DNA damage. Translesion Synthesis is a process that enables cells to overcome the deleterious effects of replication stalling caused by DNA lesions. Here the authors present a Cryo-EM structure of human Y-family DNA polymerase k (Pol k) bound to PCNA, P/T DNA and an incoming nucleotide; and propose a model for polymerase switching in which “carrier state” Pol k is recruited to PCNA.
Collapse
Affiliation(s)
- Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Souvika Bakshi
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Matthew Percival
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Mohamed A Sobhy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad S Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Kerry Blair
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Frederick W Muskett
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Ramon Crehuet
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC) C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK. .,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
37
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Li J, Wen S, Li B, Li N, Zhan X. Phosphorylation-Mediated Molecular Pathway Changes in Human Pituitary Neuroendocrine Tumors Identified by Quantitative Phosphoproteomics. Cells 2021; 10:cells10092225. [PMID: 34571875 PMCID: PMC8471408 DOI: 10.3390/cells10092225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
To investigate the biological role of protein phosphorylation in human nonfunctional pituitary neuroendocrine tumors (NF-PitNETs), proteins extracted from NF-PitNET and control tissues were analyzed with tandem mass tag (TMT)-based quantitative proteomics coupled with TiO2 enrichment of phosphopeptides. A total of 595 differentially phosphorylated proteins (DPPs) with 1412 phosphosites were identified in NF-PitNETs compared to controls (p < 0.05). KEGG pathway network analysis of 595 DPPs identified nine statistically significant signaling pathways, including the spliceosome pathway, the RNA transport pathway, proteoglycans in cancer, SNARE interactions in vesicular transport, platelet activation, bacterial invasion of epithelial cells, tight junctions, vascular smooth muscle contraction, and protein processing in the endoplasmic reticulum. GO analysis revealed that these DPPs were involved in multiple cellular components (CCs), biological processes (BPs), and molecule functions (MFs). The kinase analysis of 595 DPPs identified seven kinases, including GRP78, WSTF, PKN2, PRP4, LOK, NEK1, and AMPKA1, and the substrate of these kinases could provide new ideas for seeking drug targets for NF-PitNETs. The randomly selected DPP calnexin was further confirmed with immunoprecipitation (IP) and Western blot (WB). These findings provide the first DPP profiling, phosphorylation-mediated molecular network alterations, and the key kinase profiling in NF-PitNET pathogenesis, which are a precious resource for understanding the biological roles of protein phosphorylation in NF-PitNET pathogenesis and discovering effective phosphoprotein biomarkers and therapeutic targets and drugs for the management of NF-PitNETs.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha 410008, China; (J.L.); (S.W.); (B.L.)
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China;
| | - Siqi Wen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha 410008, China; (J.L.); (S.W.); (B.L.)
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China;
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha 410008, China; (J.L.); (S.W.); (B.L.)
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China;
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China;
- Shandong Key Laboratory of Radiation Oncology, Shandong First Medical University, 440 Jiyan Road, Jinan 250117, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China;
- Shandong Key Laboratory of Radiation Oncology, Shandong First Medical University, 440 Jiyan Road, Jinan 250117, China
- Correspondence: or
| |
Collapse
|
39
|
Elserafy M, El-Shiekh I, Fleifel D, Atteya R, AlOkda A, Abdrabbou MM, Nasr M, El-Khamisy SF. A role for Rad5 in ribonucleoside monophosphate (rNMP) tolerance. Life Sci Alliance 2021; 4:4/10/e202000966. [PMID: 34407997 PMCID: PMC8380674 DOI: 10.26508/lsa.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022] Open
Abstract
Ribonucleoside incorporation in genomic DNA poses a significant threat to genomic integrity. Here, we describe how cells tolerate this threat and discuss implications for cancer therapeutics. Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
Collapse
Affiliation(s)
- Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Dalia Fleifel
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdelrahman AlOkda
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed M Abdrabbou
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mostafa Nasr
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif F El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt .,The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK.,The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK.,Center for Genomics, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
40
|
Ubiquitin-Conjugating Enzymes in Cancer. Cells 2021; 10:cells10061383. [PMID: 34199813 PMCID: PMC8227520 DOI: 10.3390/cells10061383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-mediated degradation system is responsible for controlling various tumor-promoting processes, including DNA repair, cell cycle arrest, cell proliferation, apoptosis, angiogenesis, migration and invasion, metastasis, and drug resistance. The conjugation of ubiquitin to a target protein is mediated sequentially by the E1 (activating)‒E2 (conjugating)‒E3 (ligating) enzyme cascade. Thus, E2 enzymes act as the central players in the ubiquitination system, modulating various pathophysiological processes in the tumor microenvironment. In this review, we summarize the types and functions of E2s in various types of cancer and discuss the possibility of E2s as targets of anticancer therapeutic strategies.
Collapse
|
41
|
Lou J, Yang Y, Gu Q, Price BA, Qiu Y, Fedoriw Y, Desai S, Mose LE, Chen B, Tateishi S, Parker JS, Vaziri C, Wu D. Rad18 mediates specific mutational signatures and shapes the genomic landscape of carcinogen-induced tumors in vivo. NAR Cancer 2021; 3:zcaa037. [PMID: 33447826 PMCID: PMC7787264 DOI: 10.1093/narcan/zcaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Rad18 promotes a damage-tolerant and error-prone mode of DNA replication termed trans-lesion synthesis that is pathologically activated in cancer. However, the impact of vertebrate Rad18 on cancer genomes is not known. To determine how Rad18 affects mutagenesis in vivo, we have developed and implemented a novel computational pipeline to analyze genomes of carcinogen (7, 12-Dimethylbenz[a]anthracene, DMBA)-induced skin tumors from Rad18+/+ and Rad18- / - mice. We show that Rad18 mediates specific mutational signatures characterized by high levels of A(T)>T(A) single nucleotide variations (SNVs). In Rad18- /- tumors, an alternative mutation pattern arises, which is characterized by increased numbers of deletions >4 bp. Comparison with annotated human mutational signatures shows that COSMIC signature 22 predominates in Rad18+/+ tumors whereas Rad18- / - tumors are characterized by increased contribution of COSMIC signature 3 (a hallmark of BRCA-mutant tumors). Analysis of The Cancer Genome Atlas shows that RAD18 expression is strongly associated with high SNV burdens, suggesting RAD18 also promotes mutagenesis in human cancers. Taken together, our results show Rad18 promotes mutagenesis in vivo, modulates DNA repair pathway choice in neoplastic cells, and mediates specific mutational signatures that are present in human tumors.
Collapse
Affiliation(s)
- Jitong Lou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina at Chapel Hill, 385 S. Columbia Street, Chapel Hill, NC 27599, USA
| | - Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Yuheng Qiu
- Department of Statistics, Purdue University, 250 N. University St, West Lafayette, IN 47907, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Siddhi Desai
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Brian Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Satoshi Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo Chuoku, Kumamoto 860-0811, Japan
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Gillman R, Lopes Floro K, Wankell M, Hebbard L. The role of DNA damage and repair in liver cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188493. [PMID: 33316376 DOI: 10.1016/j.bbcan.2020.188493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is rapidly becoming a major cause of global mortality due to the ever-increasing prevalence of obesity. DNA damage is known to play an important role in cancer initiation, however DNA repair systems are also vital for the survival of cancer cells. Given the function of the liver and its exposure to the gut, it is likely that DNA damage and repair would be of particular importance in hepatocellular carcinoma. However, many contemporary reports have neglected the role of individual pathways of DNA damage and repair in their hypotheses. This review, therefore, aims to provide a concise overview for researchers in the field of liver cancer to understand the pathways of DNA damage and repair and their individual roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Kylie Lopes Floro
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia.
| |
Collapse
|
43
|
Li M, Sengupta B, Benkovic SJ, Lee TH, Hedglin M. PCNA Monoubiquitination Is Regulated by Diffusion of Rad6/Rad18 Complexes along RPA Filaments. Biochemistry 2020; 59:4694-4702. [PMID: 33242956 DOI: 10.1021/acs.biochem.0c00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Translesion DNA synthesis (TLS) enables DNA replication through damaging modifications to template DNA and requires monoubiquitination of the proliferating cell nuclear antigen (PCNA) sliding clamp by the Rad6/Rad18 complex. This posttranslational modification is critical to cell survival following exposure to DNA-damaging agents and is tightly regulated to restrict TLS to damaged DNA. Replication protein A (RPA), the major single-strand DNA (ssDNA) binding protein complex, forms filaments on ssDNA exposed at TLS sites and plays critical yet undefined roles in regulating PCNA monoubiquitination. Here, we utilize kinetic assays and single-molecule FRET microscopy to monitor PCNA monoubiquitination and Rad6/Rad18 complex dynamics on RPA filaments, respectively. Results reveal that a Rad6/Rad18 complex is recruited to an RPA filament via Rad18·RPA interactions and randomly translocates along the filament. These translocations promote productive interactions between the Rad6/Rad18 complex and the resident PCNA, significantly enhancing monoubiquitination. These results illuminate critical roles of RPA in the specificity and efficiency of PCNA monoubiquitination and represent, to the best of our knowledge, the first example of ATP-independent translocation of a protein complex along a protein filament.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bhaswati Sengupta
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
44
|
Tsirkas I, Dovrat D, Lei Y, Kalyva A, Lotysh D, Li Q, Aharoni A. Cac1 WHD and PIP domains have distinct roles in replisome progression and genomic stability. Curr Genet 2020; 67:129-139. [PMID: 33025160 DOI: 10.1007/s00294-020-01113-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
Replication-coupled (RC) nucleosome assembly is an essential process in eukaryotic cells to maintain chromatin structure during DNA replication. The deposition of newly-synthesized H3/H4 histones during DNA replication is facilitated by specialized histone chaperones. CAF-1 is an important histone chaperone complex and its main subunit, Cac1p, contains a PIP and WHD domain for interaction with PCNA and the DNA, respectively. While Cac1p subunit was extensively studied in different systems much less is known regarding the importance of the PIP and WHD domains in replication fork progression and genome stability. By exploiting a time-lapse microscopy system for monitoring DNA replication in individual live cells, we examined how mutations in these Cac1p domains affect replication fork progression and post-replication characteristics. Our experiments revealed that mutations in the Cac1p WHD domain, which abolished the CAF-1-DNA interaction, slows down replication fork progression. In contrast, mutations in Cac1p PIP domain, abolishing Cac1p-PCNA interaction, lead to extended late-S/Anaphase duration, elevated number of RPA foci and increased spontaneous mutation rate. Our research shows that Cac1p WHD and PIP domains have distinct roles in high replisome progression and maintaining genome stability during cell cycle progression.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Yang Lei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Angeliki Kalyva
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Diana Lotysh
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
| |
Collapse
|
45
|
Wilkinson NA, Mnuskin KS, Ashton NW, Woodgate R. Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers (Basel) 2020; 12:cancers12102848. [PMID: 33023096 PMCID: PMC7600381 DOI: 10.3390/cancers12102848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases involved in TLS, the activation and suppression of these pathways must be tightly regulated by post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis. Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in regulating DNA damage bypass in human cells, and highlight ways in which these processes are both deregulated in cancer progression and might be targeted in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nicholas W. Ashton
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| | - Roger Woodgate
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| |
Collapse
|
46
|
Álvarez V, Frattini C, Sacristán MP, Gallego-Sánchez A, Bermejo R, Bueno A. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Rep 2020; 29:1323-1335.e5. [PMID: 31665643 DOI: 10.1016/j.celrep.2019.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
DNA damage tolerance plays a key role in protecting cell viability through translesion synthesis and template switching-mediated bypass of genotoxic polymerase-blocking base lesions. Both tolerance pathways critically rely on ubiquitylation of the proliferating-cell nuclear antigen (PCNA) on lysine 164 and have been proposed to operate uncoupled from replication. We report that Ubp10 and Ubp12 ubiquitin proteases differentially cooperate in PCNA deubiquitylation, owing to distinct activities on PCNA-linked ubiquitin chains. Ubp10 and Ubp12 associate with replication forks in a fashion determined by Ubp10 dependency on lagging-strand PCNA residence, and they downregulate translesion polymerase recruitment and template switch events engaging nascent strands. These findings reveal PCNAK164 deubiquitylation as a key mechanism for the modulation of lesion bypass during replication, which might set a framework for establishing strand-differential pathway choices. We propose that damage tolerance is tempered at replication forks to limit the extension of bypass events and sustain chromosome replication rates.
Collapse
Affiliation(s)
- Vanesa Álvarez
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain
| | | | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
47
|
Selvam K, Rahman SA, Forrester D, Bao A, Lieu M, Li S. Histone H4 LRS mutations can attenuate UV mutagenesis without affecting PCNA ubiquitination or sumoylation. DNA Repair (Amst) 2020; 95:102959. [PMID: 32927239 DOI: 10.1016/j.dnarep.2020.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
UV is a significant environmental agent that damages DNA. Translesion synthesis (TLS) is a DNA damage tolerance pathway that utilizes specialized DNA polymerases to replicate through the damaged DNA, often leading to mutagenesis. In eukaryotic cells, genomic DNA is organized into chromatin that is composed of nucleosomes. To date, if and/or how TLS is regulated by a specific nucleosome feature has been undocumented. We found that mutations of multiple histone H4 residues mostly or entirely embedded in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain attenuate UV mutagenesis in Saccharomyces cerevisiae. The attenuation is not caused by an alteration of ubiquitination or sumoylation of PCNA (proliferating cell nuclear antigen), the modifications well-known to regulate TLS. Also, the attenuation is not caused by decreased chromatin accessibility, or by alterations of methylation of histone H3 K79, which is at the center of the LRS surface. The attenuation may result from compromised TLS by both DNA polymerases ζ and η, in which Rad6 and Rad5 are but Rad18 is not implicated. We propose that a feature of the LRS is recognized or accessed by the TLS machineries either during/after a nucleosome is disassembled in front of a lesion-stalled replication fork, or during/before a nucleosome is reassembled behind a lesion-stalled replication fork.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Sheikh Arafatur Rahman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Derek Forrester
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Adam Bao
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael Lieu
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
48
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 772] [Impact Index Per Article: 154.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Russo LC, Farias JO, Forti FL. DUSP3 maintains genomic stability and cell proliferation by modulating NER pathway and cell cycle regulatory proteins. Cell Cycle 2020; 19:1545-1561. [PMID: 32380926 DOI: 10.1080/15384101.2020.1762043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The DUSP3 phosphatase regulates cell cycle, proliferation, apoptosis and senescence of different cell types, lately shown as a mediator of DNA repair processes. This work evaluated the impact of DUSP3 loss of function (lof) on DNA repair-proficient fibroblasts (MRC-5), NER-deficient cell lines (XPA and XPC) and translesion DNA synthesis (TLS)-deficient cells (XPV), after UV-radiation stress. The levels of DNA strand breaks, CPDs and 6-4-PPs have accumulated over time in all cells under DUSP3 lof, with a significant increase in NER-deficient lines. The inefficient repair of these lesions increased sub-G1 population of XPA and XPC cells 24 hours after UV treatment, notably marked by DUSP3 lof, which is associated with a reduced cell population in G1, S and G2/M phases. It was also detected an increase in S and G2/M populations of XPV and MRC-5 cells after UV-radiation exposure, which was slightly attenuated by DUSP3 lof due to a discrete increase in sub-G1 cells. The cell cycle progression was accompanied by changes in the levels of the main Cyclins (A1, B1, D1 or E1), CDKs (1, 2, 4 or 6), and the p21 Cip1 inhibitor, in a DUSP3-dependent manner. DUSP3 lof affected the proliferation of MRC-5 and XPA cells, with marked worsening of the XP phenotype after UV radiation. This work highlights the roles of DUSP3 in DNA repair fitness and in the fine control of regulatory proteins of cell cycle, essential mechanisms to maintenance of genomic stability.
Collapse
Affiliation(s)
- Lilian Cristina Russo
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| | - Jessica Oliveira Farias
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| |
Collapse
|
50
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|