1
|
Yu K, Song Y, Gao X, Yang Y, Huang L, Fu J, Yang H, Wang X, Yang Y. Intronic alternative polyadenylation in MdMYB1 regulates fruit coloration in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112450. [PMID: 40015342 DOI: 10.1016/j.plantsci.2025.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
MdMYB1 gene plays a crucial role in anthocyanin synthesis in apple, with truncated MdMYB1 transcripts observed in the initial stage of coloration. However, the mechanism underlying the abnormal transcription of MdMYB1 and its role in fruit coloration remains unclear. Two transcript forms, MdMYB1-S and MdMYB1-L were identified through RNA-Seq and qRT-PCR analysis. The non-functional MdMYB1-S exhibited high expression in the initial coloration stage, while MdMYB1-L was predominantly expressed in the late coloration stage. 3' RACE confirmed that MdMYB1-S transcripts terminated with poly(A) in intron-2nd. Additionally, three transposable elements (TEs) in intron-2nd were highly methylated, and the polyadenylation signal region in this intron demonstrated increasing methylation during fruit development. We hypothesize that intronic alternative polyadenylation (APA) in conjunction with DNA methylation, regulates the transition from MdMYB1-S to MdMYB1-L, thereby promoting fruit coloration.
Collapse
Affiliation(s)
- Kaixuan Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Yaxiao Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Xiaohu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Yingying Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Liya Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Jianghong Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Huijuan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Yazhou Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Apple E & T Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling 712100, PR China.
| |
Collapse
|
2
|
Hou R, Li X, Bao Y, Mao G, Wang T, Chen Q, Li D, Wang L, Hou L, Li M, Zhao Y. Screening and functional verification of vernalization related transcription factor BrcFES1 in pak choi (Brassica rapa ssp. chinensis Makino). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109887. [PMID: 40220668 DOI: 10.1016/j.plaphy.2025.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Pak choi (Brassica rapa ssp. chinensis Makino) is a seed-vernalization crop that often experiences early bolting during spring production, leading to reduced quality and yield. To better understand the mechanisms underlying vernalization and flowering in pak choi, using the easy-bolting line '75#' as the experimental material, the expression profiles after complete vernalization (20 days) and non-vernalization of pak choi were analyzed by transcriptome sequencing technology. Six transcription factors related to vernalization were found as AGL24 (BraC03g053590), FES1 (BraC05g011300), VRN1 (BraC05g034710), AGL19 (BraC08g015900), FLC (BraC09g046810) and FLC (BraC10g029300). Among these genes, FES1 presented a higher expression level, and the lowest E value among the transcription factor prediction results. There is limited research on FES1 as a transcription factor that regulates vernalization and flowering. Therefore, we cloned the FES1 gene and analyzed its expression, revealing that BrcFES1 is most highly expressed in floral tissues and downregulated as vernalization treatment and flower bud differentiation. Overexpression of BrcFES1 in Arabidopsis by agrobacterium-mediated transformation resulted in delayed flowering as well as increasing of rosette leaves number, suggesting that BrcFES1 functions in delaying flowering in the vernalization pathway. Subcellular localization results revealed that the transcription factor BrcFES1 was localized in the nucleus. DNA affinity purification and high-throughput sequencing (DAP-seq) revealed that BrcFES1 can bind to the promoters of three target genes related to plant flowering, namely, HSFA4C, HTB3 and NPR6, thereby promoting HSFA4C and inhibiting the expression of HTB3 and NPR6. Further analysis suggested that BrcFES1 may inhibit flowering by regulating the expression levels of HSFA4C, HTB3 and NPR6 to inhibit SOC1 or promote the expression of FLC. These findings indicated that BrcFES1 is a crucial transcription factor in regulating flowering through the vernalization pathway in pak choi.
Collapse
Affiliation(s)
- Ruize Hou
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Xuan Li
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Yue Bao
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Guilin Mao
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Tong Wang
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Qiliang Chen
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Dong Li
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Longda Wang
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Meilan Li
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China.
| | - Yanting Zhao
- College of Horticulture, Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
4
|
Zhang C, Lan HJ, Liao LN, Huang MJ, Xu W, Zhang H, Ma Q, Li F, Cheng N, Nakata PA, Whitham SA, Liu JZ. GmHSP40.1, a nuclear-localized soybean J domain protein, participates in regulation of flowering time through interacting with EMF1 and JMJ14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112342. [PMID: 39622386 DOI: 10.1016/j.plantsci.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Heat shock protein 40s (HSP40s) are a group of J domain proteins (JDPs), which serve as co-chaperones for heat shock protein 70s. We previously reported that over-expression of a soybean class C JDP, GmHSP40.1, in Arabidopsis activated defense responses. Surprisingly, a significantly delayed flowering phenotype was also observed for the GmHSP40.1-overexpressing (OE) lines. We provided evidence that the late-flowering phenotype observed in the GmHSP40.1-OE lines was not due to impaired pri-miRNA processing and pre-mRNA splicing. Instead, we found that GmHSP40.1 interacted and co-localized with both EMF1 and JMJ14, two major components in the EMF1 complex (EMF1c), which plays a key role in depositing and maintaining the H3K27me3 modification in the FT locus. Consistent with these interactions, the H3K27me3 modification at FT chromatin was significantly increased, whereas the H3K27me3 modification at FLC locus was significantly decreased in the GmHSP40.1-OE line compared with the wde-type Col-0. Interestingly, the H3K4me3 modification was just opposite to H3K27me3 modification at FT and FLC loci, suggesting an antagonistic relationship between these two modifications. Accordingly, the expression of FT and FLC was significantly reduced and increased, respectively, in the GmHSP40.1-OE line compared with that of Col-0. Lastly, we showed that both EMF1 and JMJ14 are genetically epistatic to GmHSP40.1-overexpression. Together, our results revealed that GmHSP40.1 negatively regulates flowering time through promoting the function of EMF1c via interacting with both EMF1 and JMJ14.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Na Liao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hui Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Ma
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ninghui Cheng
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paul A Nakata
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Hao G, Zhou L, Liu H, Kachroo P, Hunt AG. Revisiting CPSF30-mediated alternative polyadenylation in Arabidopsis thaliana. PLoS One 2025; 20:e0319180. [PMID: 39992955 PMCID: PMC11849871 DOI: 10.1371/journal.pone.0319180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative polyadenylation (APA) is an important contributor to the regulation of gene expression in plants. One subunit of the complex that cleaves and polyadenylates mRNAs in the nucleus, CPSF30 (for the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor), has been implicated in a wide-ranging network of regulatory events. CPSF30 plays roles in root development, flowering time, and response to biotic and abiotic stresses. CPSF30 also is a conduit that links cellular signaling and RNA modification with alternative RNA processing events and transcriptional dynamics. While much is known about CPSF30 and its roles in plants, questions remain regarding the connections between CPSF30-mediated APA and the downstream events that lead to specific phenotypic outcomes. To address these, we conducted a detailed analysis of poly(A) site usage in the CPSF30 mutant. Our results corroborate earlier reports that link CPSF30 with a distinctive cis element (AAUAAA) that is present 10-30 nts upstream of some, but not all, plant pre-mRNAs. Interestingly, our results reveal a distinctive shift in poly(A) site in mutants deficient in CPSF30, resulting in cleavage and polyadenylation at the location of motifs similar to AAUAAA. Importantly, CPSF30-associated APA had at best a small impact on mRNA functionality. These results necessitate the formulation of new hypotheses for mechanisms by which CPSF30-mediated APA influences physiological processes.
Collapse
Affiliation(s)
- Guijie Hao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lichun Zhou
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
6
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Otsuka N, Yamaguchi R, Sawa H, Kadofusa N, Kato N, Nomura Y, Yamaguchi N, Nagano AJ, Sato A, Shirakawa M, Ito T. Small molecules and heat treatments reverse vernalization via epigenetic modification in Arabidopsis. Commun Biol 2025; 8:108. [PMID: 39843724 PMCID: PMC11754793 DOI: 10.1038/s42003-025-07553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring. Exposure to high temperatures following vernalization causes devernalization, which cancels the vernalized state, inhibiting flowering and promoting vegetative growth. In this study, we screened over 16,000 chemical compounds and identified five small molecules (devernalizers; DVRs) that induce devernalization in Arabidopsis thaliana at room temperature without requiring a high-temperature treatment. Treatment with DVRs reactivated the expression of FLOWERING LOCUS C (FLC), a master repressor of flowering, by reducing the deposition of repressive histone modifications, thereby delaying flowering time. Three of the DVRs identified shared two structures: a hydantoin-like region and a spiro-like carbon. Treatment with DVR06, which has a simple chemical structure containing these domains, delayed flowering time and reduced the deposition of repressive histone modifications at FLC. RNA-seq and ChIP-seq analyses revealed both shared and specific transcriptomic and epigenetic effects between DVR06- and heat-induced devernalization. Overall, our extensive chemical screening indicated that hydantoin and spiro are key chemical signatures that reduce repressive histone modifications and promote devernalization in plants.
Collapse
Affiliation(s)
- Nana Otsuka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Ryoya Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Hikaru Sawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nanako Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | | | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| |
Collapse
|
8
|
Xin X, Ye L, Zhai T, Wang S, Pan Y, Qu K, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae616. [PMID: 39560102 DOI: 10.1093/plphys/kiae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of modifier of snc1, 4-associated complex/NineTeen complex, which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin. Moreover, genetic analysis confirmed that CDC5 regulates flowering in an FLC-dependent manner. Furthermore, we characterized the interaction of CDC5 with the RNA polymerase-associated factor 1 (Paf1) complex and confirmed that CDC5, as part of the spliceosome, mediates genome-wide alternative splicing, as revealed by RNA-seq. CDC5 affected the splicing of flowering-associated genes such as FLC, SEF, and MAFs. Additionally, we also demonstrated that CDC5 contributes to the regulation of histone modification of FLC chromatin, which further promotes FLC expression. In summary, our results establish CDC5 as a key factor regulating flowering. This provides valuable insight for future research into plant flowering.
Collapse
Affiliation(s)
- Xin Xin
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Linhan Ye
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Tingting Zhai
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Shu Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Yunjiao Pan
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Ke Qu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Mengjie Gu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Yanjiao Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Wei Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| |
Collapse
|
9
|
Gramma V, Olas JJ, Zacharaki V, Ponnu J, Musialak-Lange M, Wahl V. Carbon and nitrogen signaling regulate FLOWERING LOCUS C and impact flowering time in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae594. [PMID: 39531643 DOI: 10.1093/plphys/kiae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The timing of flowering in plants is modulated by both carbon (C) and nitrogen (N) signaling pathways. In a previous study, we established a pivotal role of the sucrose-signaling trehalose 6-phosphate pathway in regulating flowering under N-limited short-day conditions. In this work, we show that both wild-type Arabidopsis (Arabidopsis thaliana) plants grown under N-limited conditions and knock-down plants of TREHALOSE PHOSPHATE SYNTHASE 1 induce FLOWERING LOCUS C (FLC) expression, a well-known floral repressor associated with vernalization. When exposed to an extended period of cold, a flc mutant fails to respond to N availability and flowers at the same time under N-limited and full-nutrition conditions. Our data suggest that SUCROSE NON-FERMENTING 1 RELATED KINASE 1-dependent trehalose 6-phosphate-mediated C signaling and a mechanism downstream of N signaling (likely involving NIN-LIKE PROTEIN 7) impact the expression of FLC. Collectively, our data underscore the existence of a multi-factor regulatory system in which the C and N signaling pathways jointly govern the regulation of flowering in plants.
Collapse
Affiliation(s)
- Vladislav Gramma
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Justyna Jadwiga Olas
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Magdalena Musialak-Lange
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
- The James Hutton Institute, Department of Cell and Molecular Sciences, Dundee DD2 5DA, UK
| |
Collapse
|
10
|
Liu Y, Xu X, He C, Jin L, Zhou Z, Gao J, Guo M, Wang X, Chen C, Ayaad MH, Li X, Yan W. Chromatin loops gather targets of upstream regulators together for efficient gene transcription regulation during vernalization in wheat. Genome Biol 2024; 25:306. [PMID: 39623466 PMCID: PMC11613916 DOI: 10.1186/s13059-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Plants respond to environmental stimuli by altering gene transcription that is highly related with chromatin status, including histone modification, chromatin accessibility, and three-dimensional chromatin interaction. Vernalization is essential for the transition to reproductive growth for winter wheat. How wheat reshapes its chromatin features, especially chromatin interaction during vernalization, remains unknown. RESULTS Combinatory analysis of gene transcription and histone modifications in winter wheat under different vernalization conditions identifies 17,669 differential expressed genes and thousands of differentially enriched peaks of H3K4me3, H3K27me3, and H3K9ac. We find dynamic gene expression across the vernalization process is highly associated with H3K4me3. More importantly, the dynamic H3K4me3- and H3K9ac-associated chromatin-chromatin interactions demonstrate that vernalization leads to increased chromatin interactions and gene activation. Remarkably, spatially distant targets of master regulators like VRN1 and VRT2 are gathered together by chromatin loops to achieve efficient transcription regulation, which is designated as a "shepherd" model. Furthermore, by integrating gene regulatory network for vernalization and natural variation of flowering time, TaZNF10 is identified as a negative regulator for vernalization-related flowering time in wheat. CONCLUSIONS We reveal dynamic gene transcription network during vernalization and find that the spatially distant genes can be recruited together via chromatin loops associated with active histone mark thus to be more efficiently found and bound by upstream regulator. It provides new insights into understanding vernalization and response to environmental stimuli in wheat and other plants.
Collapse
Affiliation(s)
- Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintong Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed H Ayaad
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Wighard S, Sommer RJ. The Role of Epigenetic Switches in Polyphenism Control: Implications from a Nematode Model for the Developmental Regulation of Alternative Phenotypes. BIOLOGY 2024; 13:922. [PMID: 39596877 PMCID: PMC11591871 DOI: 10.3390/biology13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Polyphenisms, the capability of organisms to form two or more alternative phenotypes in response to environmental variation, are prevalent in nature. However, associated molecular mechanisms and potential general principles of polyphenisms among major organismal groups remain currently unknown. This review focuses on an emerging model system for developmental plasticity and polyphenism research, the nematode Pristionchus pacificus and explores mechanistic insight obtained through unbiased genetic, experimental and natural variation studies. Resulting findings identify a central role for epigenetic switches in the environmental control of alternative phenotypes and their micro-and macroevolution. Several features observed in P. pacificus are shared with insects and plants and might become general principles for the control of polyphenisms during development.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ralf J. Sommer
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
| |
Collapse
|
12
|
Raingeval M, Leduque B, Baduel P, Edera A, Roux F, Colot V, Quadrana L. Retrotransposon-driven environmental regulation of FLC leads to adaptive response to herbicide. NATURE PLANTS 2024; 10:1672-1681. [PMID: 39333353 DOI: 10.1038/s41477-024-01807-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
The mobilization of transposable elements is a potent source of mutations. In plants, several stransposable elements respond to external cues, fuelling the hypothesis that natural transposition can create environmentally sensitive alleles for adaptation. Here we report on the detailed characterization of a retrotransposon insertion within the first intron of the Arabidopsis floral-repressor gene FLOWERING LOCUS C (FLC) and the discovery of its role for adaptation. The insertion mutation augments the environmental sensitivity of FLC by affecting the balance between coding and non-coding transcripts in response to stress, thus expediting flowering. This balance is modulated by DNA methylation and orchestrated by IBM2, a factor involved in the processing of intronic heterochromatic sequences. The stress-sensitive allele of FLC has spread across populations subjected to recurrent chemical weeding, and we show that retrotransposon-driven acceleration of the life cycle represents a rapid response to herbicide application. Our work provides a compelling example of a transposable element-driven environmentally sensitive allele that confers an adaptive response in nature.
Collapse
Affiliation(s)
- Mathieu Raingeval
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
13
|
Yalamanchili K, Vermeer JEM, Scheres B, Willemsen V. Shaping root architecture: towards understanding the mechanisms involved in lateral root development. Biol Direct 2024; 19:87. [PMID: 39358783 PMCID: PMC11447941 DOI: 10.1186/s13062-024-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Collapse
Affiliation(s)
- Kavya Yalamanchili
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Dai Y, Zhang S, Guan J, Wang S, Zhang H, Li G, Sun R, Li F, Zhang S. Single-cell transcriptomic analysis of flowering regulation and vernalization in Chinese cabbage shoot apex. HORTICULTURE RESEARCH 2024; 11:uhae214. [PMID: 39391013 PMCID: PMC11464683 DOI: 10.1093/hr/uhae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 10/12/2024]
Abstract
In Chinese cabbage development the interplay between shoot apex activity and vernalization is pivotal for flowering timing. The intricate relationship between various cell types in the shoot apex meristem and their roles in regulating flowering gene expression in Chinese cabbage is not yet fully understood. A thorough analysis of single-cell types in the Chinese cabbage shoot apex and their influence on flowering genes and vernalization is essential for deeper insight. Our study first established a single-cell transcriptomic atlas of Chinese cabbage after 25 days of non-vernalization. Analyzing 19 602 single cells, we differentiated them into 15 distinct cell clusters using established marker genes. We found that key genes in shoot apex development and flowering were primarily present in shoot meristematic cells (SMCs), companion cells (CCs), and mesophyll cells (MCs). MADS-box protein FLOWERING LOCUS C 2 (BrFLC2), a gene suppressing flowering, was observed in CCs, mirroring patterns found in Arabidopsis. By mapping developmental trajectories of SMCs, CCs, and MCs, we elucidated the evolutionary pathways of crucial genes in shoot apex development and flowering. The creation of a single-cell transcriptional atlas of the Chinese cabbage shoot apex under vernalization revealed distinct alterations in the expression of known flowering genes, such as VERNALIZATION INSENSITIVE 3 (VIN3), VERNALIZATION 1 (VRN1), VERNALIZATION 2 (VRN2), BrFLC, and FLOWERING LOCUS T (FT), which varied by cell type. Our study underscores the transformative impact of single-cell RNA sequencing (scRNA-seq) for unraveling the complex differentiation and vernalization processes in the Chinese cabbage shoot apex. These insights are pivotal for enhancing breeding strategies and cultivation management of this vital vegetable.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Li
- Corresponding author. E-mail: ;
| | | |
Collapse
|
16
|
Kyung J, Jeong D, Eom H, Kim J, Kim JS, Lee I. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C. Mol Cells 2024; 47:100114. [PMID: 39293741 PMCID: PMC11822305 DOI: 10.1016/j.mocell.2024.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Arabidopsis TATA-BINDING PROTEIN-ASSOCIATED FACTOR15b (TAF15b) is a plant-specific component of the transcription factor IID complex. TAF15b is involved in the autonomous pathway for flowering and represses the transcription of FLOWERING LOCUS C (FLC), a major floral repressor in Arabidopsis. While components of the autonomous flowering pathway have been extensively studied, scant attention has been directed toward elucidating the direct transcriptional regulators responsible for repressing FLC transcription. Here, we demonstrate that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1) is a physical and functional partner of TAF15b, playing a role in FLC repression. CPL1 is a protein phosphatase that dephosphorylates the C-terminal domain of RNA polymerase II (Pol II). Through the immunoprecipitation and mass spectrometry technique, we identified CPL1 as an interacting partner of TAF15b. Similar to taf15b, the cpl1 mutant showed a late-flowering phenotype caused by an increase in FLC levels. Additionally, the increase in cpl1 was correlated with the enrichment of phosphorylated Pol II in the FLC chromatin, as expected. We also discovered that CPL1 and TAF15b share additional common target genes through transcriptome analysis. These results suggest that TAF15b and CPL1 cooperatively repress transcription through the dephosphorylation of Pol II, especially at the FLC locus.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Hyunjoo Eom
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
17
|
Cao X, Zhang Y, Ding Y, Wan Y. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol 2024; 25:784-801. [PMID: 38926530 DOI: 10.1038/s41580-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Collapse
Affiliation(s)
- Xinang Cao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
19
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
23
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
24
|
Chen J, Wu W, Long J, Liu X, Hazlerigg D, Zhan X. The circannual clock: Empowering seasonal anticipation in organisms. Sci Bull (Beijing) 2024; 69:1839-1843. [PMID: 38402031 DOI: 10.1016/j.scib.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Affiliation(s)
- Junfeng Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Long
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Department of Arctic and Marine Biology UiT, The Arctic University of Norway, Tromsø 9037, Norway
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
25
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
26
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
27
|
Landoni B, Suárez-Montes P, Habeahan RHF, Brennan AC, Pérez-Barrales R. Local climate and vernalization sensitivity predict the latitudinal patterns of flowering onset in the crop wild relative Linum bienne Mill. ANNALS OF BOTANY 2024; 134:117-130. [PMID: 38482916 PMCID: PMC11161566 DOI: 10.1093/aob/mcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.
Collapse
Affiliation(s)
- Beatrice Landoni
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | | | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Botany Department, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
29
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
30
|
Wu T, Liu Z, Yu T, Zhou R, Yang Q, Cao R, Nie F, Ma X, Bai Y, Song X. Flowering genes identification, network analysis, and database construction for 837 plants. HORTICULTURE RESEARCH 2024; 11:uhae013. [PMID: 38585015 PMCID: PMC10995624 DOI: 10.1093/hr/uhae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024]
Abstract
Flowering is one of the most important biological phenomena in the plant kingdom, which not only has important ecological significance, but also has substantial horticultural ornamental value. In this study, we undertook an exhaustive review of the advancements in our understanding of plant flowering genes. We delved into the identification and conducted comparative analyses of flowering genes across virtually all sequenced angiosperm plant genomes. Furthermore, we established an extensive angiosperm flowering atlas, encompassing a staggering 183 720 genes across eight pathways, along with 10 155 ABCDE mode genes, which play a pivotal role in plant flowering regulation. Through the examination of expression patterns, we unveiled the specificities of these flowering genes. An interaction network between flowering genes of the ABCDE model and their corresponding upstream genes offered a blueprint for comprehending their regulatory mechanisms. Moreover, we predicted the miRNA and target genes linked to the flowering processes of each species. To culminate our efforts, we have built a user-friendly web interface, named the Plant Flowering-time Gene Database (PFGD), accessible at http://pfgd.bio2db.com/. We firmly believe that this database will serve as a cornerstone in the global research community, facilitating the in-depth exploration of flowering genes in the plant kingdom. In summation, this pioneering endeavor represents the first comprehensive collection and comparative analysis of flowering genes in plants, offering valuable resources for the study of plant flowering genetics.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066600, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
31
|
Bano Z, Westhoff P. A K homology (KH) domain protein identified by a forward genetic screen affects bundle sheath anatomy in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e577. [PMID: 38576996 PMCID: PMC10990680 DOI: 10.1002/pld3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
Because of their photosynthetic capacity, leaves function as solar panels providing the basis for the growth of the entire plant. Although the molecular mechanisms of leaf development have been well studied in model dicot and monocot species, a lot of information is still needed about the interplay of the genes that regulate cell division and differentiation and thereby affect the photosynthetic performance of the leaf. We were specifically interested in understanding the differentiation of mesophyll and bundle sheath cells in Arabidopsis thaliana and aimed to identify genes that are involved in determining bundle sheath anatomy. To this end, we established a forward genetic screen by using ethyl methanesulfonate (EMS) for mutagenizing a reporter line expressing a chloroplast-targeted green fluorescent protein (sGFP) under the control of a bundle sheath-specific promoter. Based on the GFP fluorescence phenotype, numerous mutants were produced, and by pursuing a mapping-by-sequencing approach, the genomic segments containing mutated candidate genes were identified. One of the lines with an enhanced GFP fluorescence phenotype (named ELEVATED BUNDLE SHEATH CELLS SIGNAL 1 [ebss1]) was selected for further study, and the responsible gene was verified by CRISPR/Cas9-based mutagenesis of candidate genes located in the mapped genomic segment. The verified gene, At2g25970, encodes a K homology (KH) domain-containing protein.
Collapse
Affiliation(s)
- Zahida Bano
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
32
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
33
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
34
|
Salami M, Heidari B, Alizadeh B, Batley J, Wang J, Tan XL, Dadkhodaie A, Richards C. Dissection of quantitative trait nucleotides and candidate genes associated with agronomic and yield-related traits under drought stress in rapeseed varieties: integration of genome-wide association study and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1342359. [PMID: 38567131 PMCID: PMC10985355 DOI: 10.3389/fpls.2024.1342359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security. Methods In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season. Results The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation. Discussion The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Alizadeh
- Oil Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research Education and Extension, Organization, (AREEO), Karaj, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
35
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
36
|
Qiao Z, Deng F, Zeng H, Li X, Lu L, Lei Y, Li L, Chen Y, Chen J. MADS-Box Family Genes in Lagerstroemia indica and Their Involvement in Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:709. [PMID: 38475555 DOI: 10.3390/plants13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
MADS-box is a key transcription factor regulating the transition to flowering and flower development. Lagerstroemia indica 'Xiang Yun' is a new cultivar of crape myrtle characterized by its non-fruiting nature. To study the molecular mechanism underlying the non-fruiting characteristics of 'Xiang Yun', 82 MADS-box genes were identified from the genome of L. indica. The physicochemical properties of these genes were examined using bioinformatics methods, and their expression as well as endogenous hormone levels at various stages of flower development were analyzed. The results showed that LiMADS genes were primarily classified into two types: type I and type II, with the majority being type II that contained an abundance of cis-acting elements in their promoters. By screening nine core proteins by predicted protein interactions and performing qRT-PCR analysis as well as in combination with transcriptome data, we found that the expression levels of most MADS genes involved in flower development were significantly lower in 'Xiang Yun' than in the wild type 'Hong Ye'. Hormonal analysis indicated that 'Xiang Yun' had higher levels of iP, IPR, TZR, and zeatin during its early stages of flower development than 'Hong Ye', whereas the MeJA content was substantially lower at the late stage of flower development of 'Hong Ye'. Finally, correlation analysis showed that JA, IAA, SA, and TZR were positively correlated with the expression levels of most type II genes. Based on these analyses, a working model for the non-fruiting 'Xiang Yun' was proposed. During the course of flower development, plant hormone response pathways may affect the expression of MADS genes, resulting in their low expression in flower development, which led to the abnormal development of the stamen and embryo sac and ultimately affected the fruiting process of 'Xiang Yun'.
Collapse
Affiliation(s)
- Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Xuelu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liushu Lu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxing Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA
| |
Collapse
|
37
|
Shang B, Li C, Zhang X. How intrinsically disordered proteins order plant gene silencing. Trends Genet 2024; 40:260-275. [PMID: 38296708 PMCID: PMC10932933 DOI: 10.1016/j.tig.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Collapse
Affiliation(s)
- Baoshuan Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
38
|
Wang X, Miao H, Lv C, Wu G. Genome-wide association study identifies a novel BMI1A QTL allele that confers FLC expression diversity in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:837-849. [PMID: 36995968 DOI: 10.1093/jxb/erad120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Identification and understanding of the genetic basis of natural variations in plants are essential for comprehending their phenotypic adaptation. Here, we report a genome-wide association study (GWAS) of FLOWERING LOCUS C (FLC) expression in 727 Arabidopsis accessions. We identified B LYMPHOMA MOLONEY MURINE LEUKEMIA VIRUS INSERTION REGION 1 HOMOLOG 1A (BMI1A) as a causal gene for one of the FLC expression quantitative trait loci (QTLs). Loss of function in BMI1A increases FLC expression and delays flowering time at 16 °C significantly compared with the wild type (Col-0). BMI1A activity is required for histone H3 lysine 27 trimethylation (H3K27me3) accumulation at the FLC, MADS AFFECTING FLOWERING 4 (MAF4), and MAF5 loci at low ambient temperature. We further uncovered two BMI1A haplotypes associated with the natural variation in FLC expression and flowering time at 16 °C, and demonstrated that polymorphisms in the BMI1A promoter region are the main contributor. Different BMI1A haplotypes are strongly associated with geographical distribution, and the low ambient temperature-sensitive BMI1A variants are associated with a lower mean temperature of the driest quarter of their collection sites compared with the temperature-non-responsive variants, indicating that the natural variations in BMI1A have adaptive functions in FLC expression and flowering time regulation. Therefore, our results provide new insights into the natural variations in FLC expression and flowering time diversity in plants.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huaiqi Miao
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Caijia Lv
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Gang Wu
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
39
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
40
|
Ahn JY, Subburaj S, Yan F, Yao J, Chandrasekaran A, Ahn KG, Lee GJ. Molecular Evaluation of the Effects of FLC Homologs and Coordinating Regulators on the Flowering Responses to Vernalization in Cabbage ( Brassica oleracea var. capitata) Genotypes. Genes (Basel) 2024; 15:154. [PMID: 38397144 PMCID: PMC10887945 DOI: 10.3390/genes15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The flowering loci of cabbage must be understood to boost their productivity. In this study, to clarify the flowering mechanisms of cabbage, we examined the three flowering repressors BoFLC1, 2 and 3, and the flowering regulators BoGI, BoCOOLAIR, and BoVIN3 of early (CAB1), middle (CAB3), and late (CAB5) flowering cabbage genotypes. Analysis of allele-specifically amplified genomic DNA and various sequence alignments demonstrated that maximal insertions and deletions influenced cabbage flowering behavior, notably in CAB3 and CAB5. Phylogenetic studies showed that BoFLC1, 2, and 3 in the CAB1, 3, and 5 genotypes had the highest homologies to other Brassica species, with CAB3 and 5 the most similar. Although CAB3 and CAB5 have comparable genetic patterns, flowering repressors and flowering regulators were investigated individually with and without vernalization to determine their minor flowering differences. The expression investigation revealed that vernalized CAB5 downregulated all BoFLC genes compared to CAB3 and, in contrast, CAB3 exhibited upregulated BoCOOLAIR. We hypothesized that the CAB3 BoFLC locus' additional insertions may have led to BoCOOLAIR overexpression and BoFLC downregulation. This study sheds light on cabbage genotypes-particularly those of CAB1 and CAB5-and suggests that structural variations in BoFLC2 and 3 bind flowering regulators, such as COOLAIR, which may affect cabbage flowering time.
Collapse
Affiliation(s)
- Ju-Young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Jian Yao
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Kyoung-Gu Ahn
- Joen Seed Co., Ltd., Goesan 28051, Republic of Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| |
Collapse
|
41
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
42
|
Isaioglou I, Podia V, Velentzas AD, Kapolas G, Beris D, Karampelias M, Plitsi PK, Chatzopoulos D, Samakovli D, Roussis A, Merzaban J, Milioni D, Stravopodis DJ, Haralampidis K. APRF1 Interactome Reveals HSP90 as a New Player in the Complex That Epigenetically Regulates Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1313. [PMID: 38279311 PMCID: PMC10816710 DOI: 10.3390/ijms25021313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in Arabidopsis thaliana, such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet. Here, we show that the late-flowering phenotype of the anthesis promoting factor 1 (aprf1) mutants is temperature-dependent and can be suppressed when plants are grown under mild heat stress conditions. To gain further insight into the mechanism of APRF1 function, we employed a co-immunoprecipitation (Co-IP) approach to identify its interaction partners. We provide the first interactome of APRF1, which includes proteins that are localized in several subcellular compartments and are implicated in diverse cellular functions. The dual nucleocytoplasmic localization of ARRF1, which was validated through the interaction of APRF1 with HEAT SHOCK PROTEIN 1 (HSP90.1) in the nucleus and with HSP90.2 in the cytoplasm, indicates a dynamic and versatile involvement of APRF1 in multiple biological processes. The specific interaction of APRF1 with the chaperon HSP90.1 in the nucleus expands our knowledge regarding the epigenetic regulation of flowering time in A. thaliana and further suggests the existence of a delicate thermoregulated mechanism during anthesis.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Varvara Podia
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Athanassios D. Velentzas
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Georgios Kapolas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Despoina Beris
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Michael Karampelias
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Panagiota Konstantinia Plitsi
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitris Chatzopoulos
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Despina Samakovli
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Jasmeen Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Dimitra Milioni
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitrios J. Stravopodis
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| |
Collapse
|
43
|
Kim H, Kang HW, Hwang DY, Lee N, Kubota A, Imaizumi T, Song YH. Low temperature-mediated repression and far-red light-mediated induction determine morning FLOWERING LOCUS T expression levels. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:103-120. [PMID: 38088490 PMCID: PMC10829767 DOI: 10.1111/jipb.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
In order to flower in the appropriate season, plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT). In Arabidopsis, FT messenger RNA levels peak in the morning and evening under natural long-day conditions (LDs). However, the regulatory mechanisms governing morning FT induction remain poorly understood. The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light (R:FR) ratios and constant temperatures. Here, we demonstrate that ZEITLUPE (ZTL) interacts with the FT repressors TARGET OF EATs (TOEs), thereby repressing morning FT expression in natural environments. Under LDs with simulated sunlight (R:FR = 1.0) and daily temperature cycles, which are natural LD-mimicking environmental conditions, FT transcript levels in the ztl mutant were high specifically in the morning, a pattern that was mirrored in the toe1 toe2 double mutant. Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning. Far-red light counteracted ZTL activity by decreasing its abundance (possibly via phytochrome A (phyA)) while increasing GIGANTEA (GI) levels and negatively affecting the formation of the ZTL-GI complex in the morning. Therefore, the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction. Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Dae Yeon Hwang
- Department of Biology, Ajou University, Suwon, 16499, Korea
| | - Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
44
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
45
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
46
|
Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, Kajita Y, Toyama H, Satake A. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. PLANT, CELL & ENVIRONMENT 2024; 47:174-186. [PMID: 37691326 DOI: 10.1111/pce.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Climate warming is causing shifts in key life-history events, including flowering time. To assess the impacts of increasing temperature on flowering phenology, it is crucial to understand the transcriptional changes of genes underlying the phenological shifts. Here, we conducted a comprehensive investigation of genes contributing to the flowering phenology shifts in response to increasing temperature by monitoring the seasonal expression dynamics of 293 flowering-time genes along latitudinal gradients in the perennial herb, Arabidopsis halleri. Through transplant experiments at northern, southern and subtropical study sites in Japan, we demonstrated that the flowering period was shortened as latitude decreased, ultimately resulting in the loss of flowering opportunity in subtropical climates. The key transcriptional changes underlying the shortening of the flowering period and the loss of flowering opportunity were the diminished expression of floral pathway integrator genes and genes in the gibberellin synthesis and aging pathways, all of which are suppressed by increased expression of FLOWERING LOCUS C, a central repressor of flowering. These results suggest that the upper-temperature limit of reproduction is governed by a relatively small number of genes that suppress reproduction in the absence of winter cold.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ai Nagahama
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yui Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hironori Toyama
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Modeling the Flowering Activation Motif during Vernalization in Legumes: A Case Study of M. trancatula. Life (Basel) 2023; 14:26. [PMID: 38255642 PMCID: PMC10817331 DOI: 10.3390/life14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In many plant species, flowering is promoted by the cold treatment or vernalization. The mechanism of vernalization-induced flowering has been extensively studied in Arabidopsis but remains largely unknown in legumes. The orthologs of the FLC gene, a major regulator of vernalization response in Arabidopsis, are absent or non-functional in the vernalization-sensitive legume species. Nevertheless, the legume integrator genes FT and SOC1 are involved in the transition of the vernalization signal to meristem identity genes, including PIM (AP1 ortholog). However, the regulatory contribution of these genes to PIM activation in legumes remains elusive. Here, we presented the theoretical and data-driven analyses of a feed-forward regulatory motif that includes a vernalization-responsive FT gene and several SOC1 genes, which independently activate PIM and thereby mediate floral transition. Our theoretical model showed that the multiple regulatory branches in this regulatory motif facilitated the elimination of no-sense signals and amplified useful signals from the upstream regulator. We further developed and analyzed four data-driven models of PIM activation in Medicago trancatula in vernalized and non-vernalized conditions in wild-type and fta1-1 mutants. The model with FTa1 providing both direct activation and indirect activation via three intermediate activators, SOC1a, SOC1b, and SOC1c, resulted in the most relevant PIM dynamics. In this model, the difference between regulatory inputs of SOC1 genes was nonessential. As a result, in the M. trancatula model, the cumulative action of SOC1a, SOC1b, and SOC1c was favored. Overall, in this study, we first presented the in silico analysis of vernalization-induced flowering in legumes. The considered vernalization network motif can be supplemented with additional regulatory branches as new experimental data become available.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
48
|
Shen C, Zhang Y, Li G, Shi J, Wang D, Zhu W, Yang X, Dreni L, Tucker MR, Zhang D. MADS8 is indispensable for female reproductive development at high ambient temperatures in cereal crops. THE PLANT CELL 2023; 36:65-84. [PMID: 37738656 PMCID: PMC10734617 DOI: 10.1093/plcell/koad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/24/2023]
Abstract
Temperature is a major factor that regulates plant growth and phenotypic diversity. To ensure reproductive success at a range of temperatures, plants must maintain developmental stability of their sexual organs when exposed to temperature fluctuations. However, the mechanisms integrating plant floral organ development and temperature responses are largely unknown. Here, we generated barley and rice loss-of-function mutants in the SEPALLATA-like MADS-box gene MADS8. The mutants in both species form multiple carpels that lack ovules at high ambient temperatures. Tissue-specific markers revealed that HvMADS8 is required to maintain floral meristem determinacy and ovule initiation at high temperatures, and transcriptome analyses confirmed that temperature-dependent differentially expressed genes in Hvmads8 mutants predominantly associate with floral organ and meristem regulation. HvMADS8 temperature-responsive activity relies on increased binding to promoters of downstream targets, as revealed by a cleavage under targets and tagmentation (CUT&Tag) analysis. We also demonstrate that HvMADS8 directly binds to 2 orthologs of D-class floral homeotic genes to activate their expression. Overall, our findings revealed a new, conserved role for MADS8 in maintaining pistil number and ovule initiation in cereal crops, extending the known function of plant MADS-box proteins in floral organ regulation.
Collapse
Affiliation(s)
- Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Gang Li
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| |
Collapse
|
49
|
Kornienko AE, Nizhynska V, Molla Morales A, Pisupati R, Nordborg M. Population-level annotation of lncRNAs in Arabidopsis reveals extensive expression variation associated with transposable element-like silencing. THE PLANT CELL 2023; 36:85-111. [PMID: 37683092 PMCID: PMC10734619 DOI: 10.1093/plcell/koad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are understudied and underannotated in plants. In mammals, lncRNA loci are nearly as ubiquitous as protein-coding genes, and their expression is highly variable between individuals of the same species. Using Arabidopsis thaliana as a model, we aimed to elucidate the true scope of lncRNA transcription across plants from different regions and study its natural variation. We used transcriptome deep sequencing data sets spanning hundreds of natural accessions and several developmental stages to create a population-wide annotation of lncRNAs, revealing thousands of previously unannotated lncRNA loci. While lncRNA transcription is ubiquitous in the genome, most loci appear to be actively silenced and their expression is extremely variable between natural accessions. This high expression variability is largely caused by the high variability of repressive chromatin levels at lncRNA loci. High variability was particularly common for intergenic lncRNAs (lincRNAs), where pieces of transposable elements (TEs) present in 50% of these lincRNA loci are associated with increased silencing and variation, and such lncRNAs tend to be targeted by the TE silencing machinery. We created a population-wide lncRNA annotation in Arabidopsis and improve our understanding of plant lncRNA genome biology, raising fundamental questions about what causes transcription and silencing across the genome.
Collapse
Affiliation(s)
- Aleksandra E Kornienko
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Almudena Molla Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| |
Collapse
|
50
|
Li Z, Zhou H, Xu G, Zhang P, Zhai N, Zheng Q, Liu P, Jin L, Bai G, Zhang H. Genome-wide analysis of long noncoding RNAs in response to salt stress in Nicotiana tabacum. BMC PLANT BIOLOGY 2023; 23:646. [PMID: 38097981 PMCID: PMC10722832 DOI: 10.1186/s12870-023-04659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been shown to play important roles in the response of plants to various abiotic stresses, including drought, heat and salt stress. However, the identification and characterization of genome-wide salt-responsive lncRNAs in tobacco (Nicotiana tabacum L.) have been limited. Therefore, this study aimed to identify tobacco lncRNAs in roots and leaves in response to different durations of salt stress treatment. RESULTS A total of 5,831 lncRNAs were discovered, with 2,428 classified as differentially expressed lncRNAs (DElncRNAs) in response to salt stress. Among these, only 214 DElncRNAs were shared between the 2,147 DElncRNAs in roots and the 495 DElncRNAs in leaves. KEGG pathway enrichment analysis revealed that these DElncRNAs were primarily associated with pathways involved in starch and sucrose metabolism in roots and cysteine and methionine metabolism pathway in leaves. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 15 co-expression modules, with four modules strongly linked to salt stress across different treatment durations (MEsalmon, MElightgreen, MEgreenyellow and MEdarkred). Additionally, an lncRNA-miRNA-mRNA network was constructed, incorporating several known salt-associated miRNAs such as miR156, miR169 and miR396. CONCLUSIONS This study enhances our understanding of the role of lncRNAs in the response of tobacco to salt stress. It provides valuable information on co-expression networks of lncRNA and mRNAs, as well as networks of lncRNAs-miRNAs-mRNAs. These findings identify important candidate lncRNAs that warrant further investigation in the study of plant-environment interactions.
Collapse
Affiliation(s)
- Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Peipei Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Ge Bai
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China.
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 45000, China.
- Beijing Life Science Academy (BLSA), Beijing, China.
| |
Collapse
|