1
|
Huse M. Mechanoregulation of lymphocyte cytotoxicity. Nat Rev Immunol 2025:10.1038/s41577-025-01173-2. [PMID: 40312550 DOI: 10.1038/s41577-025-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Cytotoxic lymphocytes counter intracellular pathogens and cancer by recognizing and destroying infected or transformed target cells. The basis for their function is the cytolytic immune synapse, a structurally stereotyped cell-cell interface through which lymphocytes deliver toxic proteins to target cells. The immune synapse is a highly dynamic contact capable of exerting nanonewton-scale forces against the target cell. In recent years, it has become clear that the interplay between these forces and the biophysical properties of the target influences the entirety of the cytotoxic response, from the initial activation of cytotoxic lymphocytes to the release of dying target cells. As a result, cellular cytotoxicity has become an exemplar of the ways in which biomechanics can regulate immune cell activation and effector function. This Review covers recent progress in this area, which has prompted a reconsideration of target cell killing from a more mechanobiological perspective.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Xiao K, Rangamani P. Glycocalyx-induced formation of membrane tubes. Biophys J 2025:S0006-3495(25)00218-8. [PMID: 40219606 DOI: 10.1016/j.bpj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Although extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the spontaneous curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find there exist critical values of glycocalyx grafting density and glycopolymer length needed to induce the formation of tubular structures. The presence of a vertical actin force, line tension, and spontaneous curvature reduce this critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
3
|
Lai SK, Lee ZQ, Tan TI, Tan BH, Sugrue RJ. Evidence that the cell glycocalyx envelops respiratory syncytial virus (RSV) particles that form on the surface of RSV-infected human airway cells. Virology 2025; 604:110415. [PMID: 40044247 DOI: 10.1016/j.virol.2025.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 05/11/2025]
Abstract
We examined how respiratory syncytial virus (RSV) particles circumvent the overlying glycocalyx on virus-infected A549 cells. The glycocalyx was detected using the lectin WGA-AL488 probe, and the antibodies anti-HS and anti-syndecan-4 that detect heparin sulphate (HS) and the syndecan-4 protein (SYND4) respectively. Imaging of RSV-infected cells provided evidence that the glycocalyx envelopes the virus filaments as they form, and that components of the glycocalyx such as HS moieties and SYND4 are displayed on the surface of the mature virus filaments. Recombinant expression of the G protein in these cells suggested that the G protein was trafficked into pre-existing filamentous cellular structures with a well-defined glycocalyx, further suggesting that the glycocalyx is maintained at the site of virus particle assembly. These data provide evidence that during RSV particle assembly the virus filaments become enveloped by the glycocalyx, and that the glycocalyx should be considered as a structural component of virus filaments.
Collapse
Affiliation(s)
- Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Trina Isabel Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
4
|
Radmilović MD, Ilić VL, Vučetić DD, Trivanović DI, Rabasović MD, Krmpot AJ, Drvenica IT. Light on abnormal red blood cell subpopulations: Label-free optics-based approach for studying in vitro rigidified blood cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125420. [PMID: 39549327 DOI: 10.1016/j.saa.2024.125420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
RBCs deformability plays a crucial role in maintaining proper blood flow and oxygen delivery throughout the body. Conventional ektacytometry fails to differentiate between variations in deformability of RBC subpopulations as the averaging measurement process obscures these differences. In this study, we introduced an approach that integrates label-free optics-based techniques (flow cytometry, phase-contrast, and two-photon excitation fluorescent microscopy) with ektacytometry to evaluate subpopulations that exhibit decreased RBCs deformability upon an in vitro oxidation using 0.5 mM TBHP, as a low-level oxidative agent. We found that flow cytometry can easily detect rigidified and oxidized subpopulations based on FSC/SSC light distribution, as well as RBCs fluorescence intensity and peak area likely originating from hemoglobin photo and/or degradation products. Two-photon excitation fluorescence microscopy proved altered morphology and spatial location of fluorescence intensity signal near the membrane of oxidized RBCs, when compared to control RBCs, indicating a link with the reduced deformability. The proposed label-free optics-based methodology, which combines established techniques with more sophisticated microscopy, emerges as a promising tool for detecting mechano-biological changes in different RBC subpopulations induced by oxidative stress. The findings suggest potential applications in clinical practice for monitoring pathological conditions influenced by physical or environmental stress and as a quality control measure for stored RBCs.
Collapse
Affiliation(s)
| | - Vesna Lj Ilić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dušan D Vučetić
- Institute for Transfusiology and Haemobiology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Drenka I Trivanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Ivana T Drvenica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Moon J, Chaudhary S, Rodriguez-Martinez L, Hu Z, D'Amore PA. Endomucin regulates the endothelial cytoskeleton independently of VEGF. Exp Eye Res 2025; 250:110150. [PMID: 39542391 DOI: 10.1016/j.exer.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The endothelial glycocalyx, lining the apical surface of the endothelium, is involved in a host of vascular processes. The glycocalyx is comprised of a network of membrane-bound proteoglycans and glycoproteins along with associated plasma proteins. One such glycoprotein is endomucin (EMCN), which our lab has revealed is a modulator of VEGFR2 function. Intravitreal injection of siEMCN into the eyes of P5 mice impairs vascular development. In vitro silencing of EMCN suppresses VEGF-induced proliferation and migration. Signaling pathways that drive cell migration converge on cytoskeletal remodeling. By coupling co-immunoprecipitation with liquid chromatography/mass spectrometry, we identified interactions between EMCN and proteins associated with actin cytoskeleton organization. The aim of the study was to investigate the influence of EMCN on cytoskeleton dynamics in angiogenesis. EMCN depletion resulted in reduction of F-actin levels, whereas overexpression of EMCN induced increased membrane protrusions in cells that were rich in stress fibers. The reorganization of the actin filaments did not depend on VEGFR2 signaling, suggesting that EMCN connects the cytoskeleton and the glycocalyx.
Collapse
Affiliation(s)
- Jean Moon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lorena Rodriguez-Martinez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Troisi M, Del Prete S, Troisi S, Del Prete A, Bellucci C, Marasco D, Costagliola C. The Role of Scanning Electron Microscopy in the Evaluation of Conjunctival Microvilli as an Early Biomarker of Ocular Surface Health: A Literature Review. J Clin Med 2024; 13:7569. [PMID: 39768491 PMCID: PMC11727919 DOI: 10.3390/jcm13247569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Microvilli are bristle-like protuberances of the plasma membrane, which express the vitality of mucous and epithelial cells; their alteration indicates a condition of cellular suffering in a predictive sense, making it possible to establish how much an inflammatory state or toxic conditions affect cellular functionality. In this article, the authors evaluate the applications of scanning electron microscopy (SEM) examination to impression cytology (IC) of the bulbar conjunctiva for the assessment of microvillar alteration as an early ultrastructural indicator of ocular surface health. This method offers several advantages, starting with its simplicity: it involves the non-invasive application of a strip of bibulous paper to the bulbar or tarsal conjunctiva. Unlike conjunctival or corneal biopsies, which are surgical procedures, this technique is far less invasive and more comfortable for the patient. It also provides a more clinically relevant in vivo assessment compared to studies on cultured cell lines, which are mostly limited to scientific research and may not accurately reflect real-world conditions. This makes it an effective, repeatable, and patient-friendly option for detecting early pathological alterations of the ocular surface. It also represents a useful tool for evaluating the efficacy of topical drugs and the toxic effects of external factors and ophthalmic or systemic diseases. Finally, it allows for obtaining accessory information relating to goblet cells, the presence of inflammatory infiltrate, or any pathogens.
Collapse
Affiliation(s)
- Mario Troisi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | | | - Salvatore Troisi
- Ophthalmologic Unit, Salerno Hospital University, 84100 Salerno, Italy
| | - Antonio Del Prete
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | - Carlo Bellucci
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
| | - Daniela Marasco
- Service Biotech s.r.l., 80121 Naples, Italy; (S.D.P.); (D.M.)
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| |
Collapse
|
7
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Kunii M, Harada A. Molecular mechanisms of polarized transport to the apical plasma membrane. Front Cell Dev Biol 2024; 12:1477173. [PMID: 39445332 PMCID: PMC11497131 DOI: 10.3389/fcell.2024.1477173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Cell polarity is essential for cellular function. Directional transport within a cell is called polarized transport, and it plays an important role in cell polarity. In this review, we will introduce the molecular mechanisms of polarized transport, particularly apical transport, and its physiological importance.
Collapse
Affiliation(s)
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, The University of Osaka, Osaka, Japan
| |
Collapse
|
9
|
Nieto-Fabregat F, Lenza MP, Marseglia A, Di Carluccio C, Molinaro A, Silipo A, Marchetti R. Computational toolbox for the analysis of protein-glycan interactions. Beilstein J Org Chem 2024; 20:2084-2107. [PMID: 39189002 PMCID: PMC11346309 DOI: 10.3762/bjoc.20.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| |
Collapse
|
10
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
11
|
Barai A, Piplani N, Saha SK, Dutta S, Gomathi V, Ghogale MM, Kumar S, Kulkarni M, Sen S. Bulky glycocalyx drives cancer invasiveness by modulating substrate-specific adhesion. PNAS NEXUS 2024; 3:pgae335. [PMID: 39211517 PMCID: PMC11358709 DOI: 10.1093/pnasnexus/pgae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The majority of the eukaryotic cell surface is decorated with a layer of membrane-attached polysaccharides and glycoproteins collectively referred to as the glycocalyx. While the formation of a bulky glycocalyx has been associated with the cancer progression, the mechanisms by which the glycocalyx regulates cancer invasiveness are incompletely understood. We address this question by first documenting subtype-specific expression of the major glycocalyx glycoprotein Mucin-1 (MUC1) in breast cancer patient samples and breast cancer cell lines. Strikingly, glycocalyx disruption led to inhibition of 2D motility, loss of 3D invasion, and reduction of clonal scattering in breast cancer cells at the population level. Tracking of 2D cell motility and 3D invasiveness of MUC1-based sorted subpopulations revealed the fastest motility and invasiveness in intermediate MUC1-expressing cells, with glycocalyx disruption abolishing these effects. While differential sensitivity in 2D motility is attributed to a nonmonotonic dependence of focal adhesion size on MUC1 levels, higher MUC1 levels enhance 3D invasiveness via increased traction generation. In contrast to inducing cell rounding on collagen-coated substrates, high MUC1 level promotes cell adhesion and confers resistance to shear flow on substrates coated with the endothelial surface protein E-selectin. Collectively, our findings illustrate how MUC1 drives cancer invasiveness by differentially regulating cell-substrate adhesion in a substrate-dependent manner.
Collapse
Affiliation(s)
- Amlan Barai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Niyati Piplani
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sumon Kumar Saha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sarbajeet Dutta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - V Gomathi
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Mayank M Ghogale
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Madhura Kulkarni
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
12
|
Li Y, Wang S, Zhang Y, Liu Z, Zheng Y, Zhang K, Chen S, Lv X, Huang M, Pan X, Zheng Y, Yuan M, Ge G, Zeng YA, Lin C, Chen J. Ca 2+ transients on the T cell surface trigger rapid integrin activation in a timescale of seconds. Nat Commun 2024; 15:6131. [PMID: 39033133 PMCID: PMC11271479 DOI: 10.1038/s41467-024-50464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
One question in lymphocyte homing is how integrins are rapidly activated to enable immediate arrest of fast rolling lymphocytes upon encountering chemokines at target vascular beds given the slow chemokine-induced integrin inside-out activation. Herein we demonstrate that chemokine CCL25-triggered Ca2+ influx induces T cell membrane-proximal external Ca2+ concentration ([Ca2+]ex) drop in 6 s from physiological concentration 1.2 mM to 0.3 mM, a critical extracellular Ca2+ threshold for inducing αLβ2 activation, triggering rapid αLβ2 activation and T cell arrest before occurrence of αLβ2 inside-out activation. Talin knockdown inhibits the slow inside-out activation of αLβ2 but not [Ca2+]ex drop-triggered αLβ2 quick activation. Blocking Ca2+ influx significantly suppresses T cell rolling-to-arrest transition and homing to skin lesions in a mouse psoriasis model, thus alleviating skin inflammation. [Ca2+]ex decrease-triggered rapid integrin activation bridges the gap between initial chemokine stimulation and slow integrin inside-out activation, ensuring immediate lymphocyte arrest and subsequent diapedesis on the right location.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - ShiHui Wang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YouHua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - ZhaoYuan Liu
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YunZhe Zheng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - ShiYang Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - XiaoYing Lv
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - MengWen Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - XingChao Pan
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YaJuan Zheng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - MengYa Yuan
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - GaoXiang Ge
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yi Arial Zeng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - ChangDong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.
| | - JianFeng Chen
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
13
|
De Masi R, Orlando S, Carata E, Panzarini E. Ultrastructural Characterization of PBMCs and Extracellular Vesicles in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 25:6867. [PMID: 38999977 PMCID: PMC11241448 DOI: 10.3390/ijms25136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Growing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically relevant contributors to the disease and to neuroinflammation. Recently, several studies have suggested the involvement of EVs as key mediators of neuroimmune crosstalk in central nervous system (CNS) autoimmunity. To assess the role of EVs in MS, we applied electron microscopy (EM) techniques and Western blot analysis to study the morphology and content of plasma-derived EVs as well as the ultrastructure of PBMCs, considering four MS patients and four healthy controls. Through its exploratory nature, our study was able to detect significant differences between groups. Pseudopods and large vesicles were more numerous at the plasmalemma interface of cases, as were endoplasmic vesicles, resulting in an activated aspect of the PBMCs. Moreover, PBMCs from MS patients also showed an increased number of multivesicular bodies within the cytoplasm and amorphous material around the vesicles. In addition, we observed a high number of plasma-membrane-covered extensions, with multiple associated large vesicles and numerous autophagosomal vacuoles containing undigested cytoplasmic material. Finally, the study of EV cargo evidenced a number of dysregulated molecules in MS patients, including GANAB, IFI35, Cortactin, Septin 2, Cofilin 1, and ARHGDIA, that serve as inflammatory signals in a context of altered vesicular dynamics. We concluded that EM coupled with Western blot analysis applied to PBMCs and vesiculation can enhance our knowledge in the physiopathology of MS.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| |
Collapse
|
14
|
Wang Y, Wang Y, Li X, Gao Y, Pan X, Lü J. Protopanaxadiol Targeting Membrane Induces HepG2 Cell Apoptosis Via Raft-like Formation and Tubulation Disruption. Cell Biochem Biophys 2024; 82:1203-1212. [PMID: 38613700 DOI: 10.1007/s12013-024-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Protopanaxadiol (PPD), which has a molecular structure similar to cholesterol, is a potent anticancer agent that has been proposed to target the lipid membrane for the pharmacological effects. However, the underlying mechanism by which PPD modulates the cell membrane leading to cancer cell death is not be fully understood. In this work, we used single cell infrared spectroscopy, scanning electron microscopy and confocal microscopy to investigate the effects of PPD on human hepatocellular carcinoma (HepG2) cells, focusing on the change in membrane structure. We found that PPD significantly reduced the number of membrane tubules over the course of treatment. Interestingly, the addition of PPD could promote the formation of lipid raft-like domains (PPD rafts) and even restore the domain disruption caused by methyl-beta-cyclodextrin depletion of membrane cholesterol. In addition, PPD pre-treatment may increase the induction effect of FasL, which impairs cell viability, although it does not appear to be beneficial for Fas clustering in the PPD rafts. Collectively, these results highlight a non-classical mechanism by which PPD induces HepG2 apoptosis by directly affecting the physical properties of the cell membrane, providing a novel insight into understanding membrane-targeted therapy.
Collapse
Affiliation(s)
- Yue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yadi Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xueling Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yu Gao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
15
|
Jahnke K, Pavlovic M, Xu W, Chen A, Knowles TPJ, Arriaga LR, Weitz DA. Polysaccharide functionalization reduces lipid vesicle stiffness. Proc Natl Acad Sci U S A 2024; 121:e2317227121. [PMID: 38771870 PMCID: PMC11145274 DOI: 10.1073/pnas.2317227121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.
Collapse
Affiliation(s)
- Kevin Jahnke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Marko Pavlovic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Wentao Xu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Laura R. Arriaga
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
16
|
Dey M, Sharma A, Dhanawat G, Gupta D, Harshan KH, Parveen N. Synergistic Binding of SARS-CoV-2 to ACE2 and Gangliosides in Native Lipid Membranes. ACS Infect Dis 2024; 10:907-916. [PMID: 38412250 DOI: 10.1021/acsinfecdis.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Viruses utilize cell surface glycans and plasma membrane receptors to attain an adequate attachment strength for initiating cellular entry. We show that SARS-CoV-2 particles bind to endogenous ACE2 receptors and added sialylated gangliosides in near-native membranes. This was explored using supported membrane bilayers (SMBs) that were formed using plasma membrane vesicles having endogenous ACE2 and GD1a gangliosides reconstituted in lipid vesicles. The virus binding rate to the SMBs is influenced by GD1a and inhibition of the ganglioside reduces the extent of virus binding to the membrane receptors. Using combinations of inhibition assays, we confirm that added GD1a in lipid membranes increases the availability of the endogenous ACE2 receptor and results in the synergistic binding of SARS-CoV-2 to the membrane receptors in SMBs.
Collapse
Affiliation(s)
- Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
17
|
Pokorny L, Burden JJ, Albrecht D, Bamford R, Leigh KE, Sridhar P, Knowles TJ, Modis Y, Mercer J. The vaccinia chondroitin sulfate binding protein drives host membrane curvature to facilitate fusion. EMBO Rep 2024; 25:1310-1325. [PMID: 38321165 PMCID: PMC10933376 DOI: 10.1038/s44319-023-00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.
Collapse
Affiliation(s)
- Laura Pokorny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Jemima J Burden
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Albrecht
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Rebecca Bamford
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC-LMCB, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
19
|
Arnold D, Takatori SC. Bio-enabled Engineering of Multifunctional "Living" Surfaces. ACS NANO 2023; 17:11077-11086. [PMID: 37294942 PMCID: PMC10311588 DOI: 10.1021/acsnano.3c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Through the magic of "active matter"─matter that converts chemical energy into mechanical work to drive emergent properties─biology solves a myriad of seemingly enormous physical challenges. Using active matter surfaces, for example, our lungs clear an astronomically large number of particulate contaminants that accompany each of the 10,000 L of air we respire per day, thus ensuring that the lungs' gas exchange surfaces remain functional. In this Perspective, we describe our efforts to engineer artificial active surfaces that mimic active matter surfaces in biology. Specifically, we seek to assemble the basic active matter components─mechanical motor, driven constituent, and energy source─to design surfaces that support the continuous operation of molecular sensing, recognition, and exchange. The successful realization of this technology would generate multifunctional, "living" surfaces that combine the dynamic programmability of active matter and the molecular specificity of biological surfaces and apply them to applications in biosensors, chemical diagnostics, and other surface transport and catalytic processes. We describe our recent efforts in bio-enabled engineering of living surfaces through the design of molecular probes to understand and integrate native biological membranes into synthetic materials.
Collapse
Affiliation(s)
- Daniel
P. Arnold
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Sho C. Takatori
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
20
|
Takatori SC, Son S, Lee DSW, Fletcher DA. Engineered molecular sensors for quantifying cell surface crowding. Proc Natl Acad Sci U S A 2023; 120:e2219778120. [PMID: 37186825 PMCID: PMC10214205 DOI: 10.1073/pnas.2219778120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Cells mediate interactions with the extracellular environment through a crowded assembly of transmembrane proteins, glycoproteins and glycolipids on their plasma membrane. The extent to which surface crowding modulates the biophysical interactions of ligands, receptors, and other macromolecules is poorly understood due to the lack of methods to quantify surface crowding on native cell membranes. In this work, we demonstrate that physical crowding on reconstituted membranes and live cell surfaces attenuates the effective binding affinity of macromolecules such as IgG antibodies in a surface crowding-dependent manner. We combine experiment and simulation to design a crowding sensor based on this principle that provides a quantitative readout of cell surface crowding. Our measurements reveal that surface crowding decreases IgG antibody binding by 2 to 20 fold in live cells compared to a bare membrane surface. Our sensors show that sialic acid, a negatively charged monosaccharide, contributes disproportionately to red blood cell surface crowding via electrostatic repulsion, despite occupying only ~1% of the total cell membrane by mass. We also observe significant differences in surface crowding for different cell types and find that expression of single oncogenes can both increase and decrease crowding, suggesting that surface crowding may be an indicator of both cell type and state. Our high-throughput, single-cell measurement of cell surface crowding may be combined with functional assays to enable further biophysical dissection of the cell surfaceome.
Collapse
Affiliation(s)
- Sho C. Takatori
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Daniel S. W. Lee
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, CA94720
- University of California, Berkeley/University of California, San Francisco Graduate Group in Bioengineering, Berkeley, CA94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
21
|
Arnold DP, Xu Y, Takatori SC. Antibody binding reports spatial heterogeneities in cell membrane organization. Nat Commun 2023; 14:2884. [PMID: 37208326 DOI: 10.1038/s41467-023-38525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
The spatial organization of cell membrane glycoproteins and glycolipids is critical for mediating the binding of ligands, receptors, and macromolecules on the plasma membrane. However, we currently do not have the methods to quantify the spatial heterogeneities of macromolecular crowding on live cell surfaces. In this work, we combine experiment and simulation to report crowding heterogeneities on reconstituted membranes and live cell membranes with nanometer spatial resolution. By quantifying the effective binding affinity of IgG monoclonal antibodies to engineered antigen sensors, we discover sharp gradients in crowding within a few nanometers of the crowded membrane surface. Our measurements on human cancer cells support the hypothesis that raft-like membrane domains exclude bulky membrane proteins and glycoproteins. Our facile and high-throughput method to quantify spatial crowding heterogeneities on live cell membranes may facilitate monoclonal antibody design and provide a mechanistic understanding of plasma membrane biophysical organization.
Collapse
Affiliation(s)
- Daniel P Arnold
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yaxin Xu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
22
|
Nicolson GL, Ferreira de Mattos G. The Fluid-Mosaic model of cell membranes: A brief introduction, historical features, some general principles, and its adaptation to current information. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184135. [PMID: 36746313 DOI: 10.1016/j.bbamem.2023.184135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
The Fluid-Mosaic Membrane (FMM) model was originally proposed as a general, nanometer-scale representation of cell membranes (Singer and Nicolson, 1972). The FMM model was based on some general principles, such as thermodynamic considerations, intercalation of globular proteins into a lipid bilayer, independent protein and lipid dynamics, cooperativity and other characteristics. Other models had trimolecular structures or membrane globular lipoprotein units. These latter models were flawed, because they did not allow autonomous lipids, membrane domains or discrete lateral dynamics. The FMM model was also consistent with membrane asymmetry, cis- and trans-membrane linkages and associations of membrane components into multi-molecular complexes and domains. It has remained useful for explaining the basic organizational principles and properties of various biological membranes. New information has been added, such as membrane-associated cytoskeletal assemblies, extracellular matrix interactions, transmembrane controls, specialized lipid-protein domains that differ in compositions, rotational and lateral mobilities, lifetimes, functions, and other characteristics. The presence of dense, structured membrane domains has reduced significantly the extent of fluid-lipid membrane areas, and the FMM model is now considered to be more mosaic and dense than the original proposal.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
24
|
Kozlov MM, Taraska JW. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 2023; 24:63-78. [PMID: 35918535 DOI: 10.1038/s41580-022-00511-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Kahle ER, Patel N, Sreenivasappa HB, Marcolongo MS, Han L. Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:67-81. [PMID: 36055517 PMCID: PMC9691605 DOI: 10.1016/j.pbiomolbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensing at the interface of a cell and its surrounding microenvironment is an essential driving force of physiological processes. Understanding molecular activities at the cell-matrix interface has the potential to provide novel targets for improving tissue regeneration and early disease intervention. In the past few decades, the advancement of atomic force microscopy (AFM) has offered a unique platform for probing mechanobiology at this crucial microdomain. In this review, we describe key advances under this topic through the use of an integrated system of AFM (as a biomechanical testing tool) with complementary immunofluorescence (IF) imaging (as an in situ navigation system). We first describe the body of work investigating the micromechanics of the pericellular matrix (PCM), the immediate cell micro-niche, in healthy, diseased, and genetically modified tissues, with a focus on articular cartilage. We then summarize the key findings in understanding cellular biomechanics and mechanotransduction, in which, molecular mechanisms governing transmembrane ion channel-mediated mechanosensing, cytoskeleton remodeling, and nucleus remodeling have been studied in various cell and tissue types. Lastly, we provide an overview of major technical advances that have enabled more in-depth studies of mechanobiology, including the integration of AFM with a side-view microscope, multiple optomicroscopy, a fluorescence recovery after photobleaching (FRAP) module, and a tensile stretching device. The innovations described here have contributed greatly to advancing the fundamental knowledge of extracellular matrix biomechanics and cell mechanobiology for improved understanding, detection, and intervention of various diseases.
Collapse
Affiliation(s)
- Elizabeth R Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Harini B Sreenivasappa
- Cell Imaging Center, Office of Research and Innovation, Drexel University, PA 19104, United States
| | - Michele S Marcolongo
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
26
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
27
|
Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement. Biomedicines 2022; 10:biomedicines10071711. [PMID: 35885016 PMCID: PMC9313417 DOI: 10.3390/biomedicines10071711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022] Open
Abstract
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular interactions, component dynamics, macromolecular organization and other features. Previous researchers placed most membrane proteins on the exterior and interior surfaces of lipid bilayers to form trimolecular structures or as lipoprotein units arranged as modular sheets. Such membrane models were structurally and thermodynamically unsound and did not allow independent lipid and protein lateral movements. The Fluid–Mosaic Membrane Model was the only model that accounted for these and other characteristics, such as membrane asymmetry, variable lateral movements of membrane components, cis- and transmembrane linkages and dynamic associations of membrane components into multimolecular complexes. The original version of the Fluid–Mosaic Membrane Model was never proposed as the ultimate molecular description of all biomembranes, but it did provide a basic framework for nanometer-scale biomembrane organization and dynamics. Because this model was based on available 1960s-era data, it could not explain all of the properties of various biomembranes discovered in subsequent years. However, the fundamental organizational and dynamic aspects of this model remain relevant to this day. After the first generation of this model was published, additional data on various structures associated with membranes were included, resulting in the addition of membrane-associated cytoskeletal, extracellular matrix and other structures, specialized lipid–lipid and lipid–protein domains, and other configurations that can affect membrane dynamics. The presence of such specialized membrane domains has significantly reduced the extent of the fluid lipid membrane matrix as first proposed, and biomembranes are now considered to be less fluid and more mosaic with some fluid areas, rather than a fluid matrix with predominantly mobile components. However, the fluid–lipid matrix regions remain very important in biomembranes, especially those involved in the binding and release of membrane lipid vesicles and the uptake of various nutrients. Membrane phospholipids can associate spontaneously to form lipid structures and vesicles that can fuse with various cellular membranes to transport lipids and other nutrients into cells and organelles and expel damaged lipids and toxic hydrophobic molecules from cells and tissues. This process and the clinical use of membrane phospholipid supplements has important implications for chronic illnesses and the support of healthy mitochondria, plasma membranes and other cellular membrane structures.
Collapse
|
28
|
The many faces of membrane tension: Challenges across systems and scales. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183897. [PMID: 35231438 DOI: 10.1016/j.bbamem.2022.183897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Our understanding of the role of membrane tension in the field of membrane biophysics is rapidly evolving from a passive construct to an active player in a variety of cellular phenomena. Membrane tension has been shown to be a key regulator of many cellular processes ranging including trafficking, ion channel activation, and the invasion of red blood cells by malaria parasites. Recent experimental advances in cells, including the development of a fluorescent tension reporter, have shown that membrane tension is heterogeneous. In this mini-review, I summarize the recent advances in membrane tension measurements and discuss the contributions from different cellular constituents such as the cortical cytoskeleton. Then, I will explore how these different complexities can be considered in biophysical models of different scales. Finally, I will elaborate on the need for iterations between models and experiments as technologies in both fields advance to enable us to obtain critical insights into the physiological role of membrane tension as a critical component of mechanotransduction.
Collapse
|
29
|
Nicolson GL, Ferreira de Mattos G. A Brief Introduction to Some Aspects of the Fluid-Mosaic Model of Cell Membrane Structure and Its Importance in Membrane Lipid Replacement. MEMBRANES 2021; 11:947. [PMID: 34940448 PMCID: PMC8708848 DOI: 10.3390/membranes11120947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Early cell membrane models placed most proteins external to lipid bilayers in trimolecular structures or as modular lipoprotein units. These thermodynamically untenable structures did not allow lipid lateral movements independent of membrane proteins. The Fluid-Mosaic Membrane Model accounted for these and other properties, such as membrane asymmetry, variable lateral mobilities of membrane components and their associations with dynamic complexes. Integral membrane proteins can transform into globular structures that are intercalated to various degrees into a heterogeneous lipid bilayer matrix. This simplified version of cell membrane structure was never proposed as the ultimate biomembrane description, but it provided a basic nanometer scale framework for membrane organization. Subsequently, the structures associated with membranes were considered, including peripheral membrane proteins, and cytoskeletal and extracellular matrix components that restricted lateral mobility. In addition, lipid-lipid and lipid-protein membrane domains, essential for cellular signaling, were proposed and eventually discovered. The presence of specialized membrane domains significantly reduced the extent of the fluid lipid matrix, so membranes have become more mosaic with some fluid areas over time. However, the fluid regions of membranes are very important in lipid transport and exchange. Various lipid globules, droplets, vesicles and other membranes can fuse to incorporate new lipids or expel damaged lipids from membranes, or they can be internalized in endosomes that eventually fuse with other internal vesicles and membranes. They can also be externalized in a reverse process and released as extracellular vesicles and exosomes. In this Special Issue, the use of membrane phospholipids to modify cellular membranes in order to modulate clinically relevant host properties is considered.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| |
Collapse
|