1
|
Brunner M, Favaro R, van Herk WG, Bogaerts P, Rubbmark OR, Angeli S, Traugott M. Olfactory preference in chemical host plant recognition by male and female click beetles and its implications for pest management. PEST MANAGEMENT SCIENCE 2025. [PMID: 40197761 DOI: 10.1002/ps.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Plants emit volatile organic compounds (VOCs), which serve as critical cues for herbivorous insects to locate hosts for feeding and oviposition. Understanding how adults identify host plants is essential to develop pest management strategies, particularly for hemiedaphic insects like click beetles, the larvae of which are significant soil-dwelling pests. To investigate click beetle attraction towards plant VOCs and their relevance for oviposition, we tested the attractiveness of constitutive VOCs (emitted by intact plants) and damage-induced VOCs (released by chopped plants) from 11 plant species to male and female Agriotes sputator beetles. RESULTS Agriotes sputator beetles exhibit plant species-specific olfactory preferences, which are influenced by beetle sex and female maturity and differ between constitutive and damage-induced VOCs. Female beetles showed the greatest attraction to buckwheat VOCs, especially during their main oviposition period, whereas males were more attracted to clover and ryegrass. EAG recordings show strong female antennal responses to ryegrass, carrot, maize, wild carrot, barley, and buckwheat VOCs, while male antennae responded significantly only to peas. Antennae from female beetles show overall stronger responses to constitutive VOCs than those of males (P = 0.02). CONCLUSION These findings facilitate the development of new approaches for Agriotes pest management. Understanding preferred plant VOCs aids in identifying attractive semiochemicals that can be used for monitoring female beetles. Additionally, recognizing attractive plants aids wireworm management by either avoiding them in crop rotations before sensitive crops (thus reducing oviposition) or by attracting beetles to specific areas where they can be targeted by control measures. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Brunner
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Riccardo Favaro
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | - Paige Bogaerts
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | | | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Peng T, Chen Z, Cash Ahmed AC, Feng Q, Yeo S, Han HS, Robinson GE. Social evolution and absence of olfactory function in larval honey bees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646396. [PMID: 40236076 PMCID: PMC11996492 DOI: 10.1101/2025.03.31.646396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Social evolution made larval honey bees dependent on adult colony members for feeding. We therefore predicted they have diminished olfactory capabilities, and based on organismal resource conservation theory, also have downregulated olfactory receptor (OR) gene expression. Behavioral assays demonstrated that larvae cannot find food via olfaction and expressed very low levels of Orco , an essential gene for OR function. By contrast, larvae showed higher expression of Ir25a, an essential gene for multiple forms of sensory perception including gustation. These results suggest larvae rely on taste for feeding. In addition, considering that adult bees use OR-based olfaction extensively, they demonstrate strong developmental regulation of the OR system. Comparative transcriptomics of social and non-social insects further highlight the role of social evolution in shaping this sensory trait.
Collapse
|
3
|
Das De T, Pelletier J, Gupta S, Kona MP, Singh OP, Dixit R, Ignell R, Karmodiya K. Diel modulation of perireceptor activity influences olfactory sensitivity in diurnal and nocturnal mosquitoes. FEBS J 2025; 292:2095-2118. [PMID: 39887616 DOI: 10.1111/febs.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Olfaction and diel-circadian rhythm regulate different behaviors, including host-seeking, feeding, and locomotion, in mosquitoes that are important for their capacity to transmit disease. Diel-rhythmic changes of the odorant-binding proteins (OBPs) in olfactory organs are primarily accountable for olfactory rhythmicity. To better understand the molecular rhythm regulating nocturnal and diurnal behaviors in mosquitoes, we performed a comparative RNA-sequencing study of the peripheral olfactory and brain tissues of female Anopheles culicifacies and Aedes aegypti. Data analysis revealed a significant upregulation of genes encoding: OBPs and xenobiotic-metabolizing enzymes including Cytochrome P450 (CYP450) during photophase in Aedes aegypti and the dusk-transition phase in Anopheles culicifacies, hypothesizing their possible function in the regulation of perireceptor events and olfactory sensitivity. RNA interference studies and application of CYP450 inhibitors, coupled with electroantennographic recordings with Anopheles gambiae and Aedes aegypti, established that CYP450 plays a role in odorant detection and antennal sensitivity. Furthermore, brain tissue transcriptome and RNAi-mediated knockdown revealed that daily temporal modulation of neuronal serine proteases may have a crucial function in olfactory signal transmission, thereby affecting olfactory sensitivity. These findings provide a rationale to further explore the species-specific rhythmic expression pattern of the neuro-olfactory encoded molecular factors, which could pave the way to develop and implement successful mosquito control methods.
Collapse
Affiliation(s)
- Tanwee Das De
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Julien Pelletier
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Satyajeet Gupta
- Agriculture Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Om P Singh
- Vector Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Rajnikant Dixit
- Vector Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
4
|
Lizana P, Muñoz C, Mutis A, Velasco L, Palma-Millanao R, Quiroz A, Venthur H. Knockdown of a chemosensory protein disrupts soil-guided behavior of a subterranean larval pest. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104793. [PMID: 40096991 DOI: 10.1016/j.jinsphys.2025.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
In recent years, RNA interference (RNAi) has become a widely studied tool for the functional analysis of genes and more recently, for pest control. Hylamorpha elegans (Coleoptera: Scarabaeidae) is a beetle endemic to Chile, considered an important pest during its larval stage as white grubs, feeding on organic matter (OM) and crop roots (e.g., wheat and red clover). Its control is limited due to its subterranean behavior. Thus, studying a chemosensory system as a fundamental part of the transport and recognition of chemicals from the environment could provide new targets for the knowledge and control of this beetle. Recently, chemosensory genes have been identified for H. elegans white grubs, and a chemosensory protein (CSP) was selected. This study aimed to evaluate the functional role of a highly expressed CSP in the subterranean behavior of white grubs. For this purpose, food preference assays were performed and standardized. Afterward, double-stranded RNA (dsRNA) was synthesized based on a selected CSP. A chosen preference assay was conducted using white grubs treated with dsRNA. Findings showed that white grubs prefer peat with high OM over red clover roots. Additionally, the CSP gene is upregulated when OM content increases. Finally, the knockdown of the CSP led to a disruption in soil-guided behavior. This protein may represent a novel target to be studied in the frame of management strategies for H. elegans.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Camila Muñoz
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana 290140 Málaga, Spain
| | - Rubén Palma-Millanao
- Instituo de Investigaciones Agropecuarias (INIA), La Cruz, Chorrillos 86, La Cruz, Región de Valparaíso, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
5
|
Force E, Debernard S. Endocrine regulation of reproductive behaviors in insects: a comprehensive review. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101360. [PMID: 40058696 DOI: 10.1016/j.cois.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Insects use pheromones in a complex system of sexual communication for reproduction. Hormones, peptides, and biogenic amines are crucial regulators involved in reproductive behaviors. Despite knowledge gaps, this review shows how hormones and related molecules influence insect reproduction and highlights the intricate endocrine network that governs reproductive behaviors through diverse signaling pathways. In the future, it will be very interesting to explore not only endocrine regulation but also the impact of environmental changes on reproductive behaviors, deepening our understanding of insect reproductive processes and their adaptability.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005 Paris, France.
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005 Paris, France.
| |
Collapse
|
6
|
Jiménez‐Santiago B, Flores‐Villegas AL, Cruz‐Esteban S, Cabrera‐Bravo M, Toriello C. Trypanosoma cruzi infection enhances olfactory response in Triatoma pallidipennis Stål (Hemiptera: Triatominae) to compounds potentially useful for insect control. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:160-170. [PMID: 39400392 PMCID: PMC11793133 DOI: 10.1111/mve.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
In Mexico, Triatoma pallidipennis is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease. Current efforts are focused on developing attractants to control these vectors, using volatile substances derived from vertebrate hosts or compounds known to attract hematophagous insects. However, the efficacy of these compounds in attracting parasite-infected triatomines remains to be evaluated. In this study, we assessed the attractant activity of octenol (1-octen-3-ol), nonanal and a mixture of odorants consisting of ammonium hydroxide, lactic acid and hexanoic acid (in a ratio of 1:0.2:0.4 respectively), at concentrations of 1, 10 and 100 ng on the N3, N4 and N5 nymphal stages of T. pallidipennis, both infected and non-infected with T. cruzi. We also evaluated the synergistic effect of the most effective compounds and doses. All experiments were performed in a laboratory using a Y-type glass olfactometer. We found that both infected and non-infected N3 and N4 nymphs were attracted to low doses of octenol, nonanal and the odorant mixture. Particularly noteworthy was the synergistic effect observed between the odorant mixture and nonanal, which significantly increased attraction of T. cruzi-infected individuals. These findings contribute to the development of baited traps utilising these compounds for monitoring triatomines in epidemiological studies or for mass trapping to control these vectors.
Collapse
Affiliation(s)
- Berenice Jiménez‐Santiago
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de México, Circuito de Posgrados, Ciudad UniversitariaMexico CityMexico
| | - Any Laura Flores‐Villegas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Samuel Cruz‐Esteban
- Instituto de Ecología, A.C.Centro Regional del Bajío, Red de Diversidad Biológica del Occidente Mexicano.Pátzcuaro, MichoacánMexico
- CONAHCYTCiudad de MéxicoMexico
| | - Margarita Cabrera‐Bravo
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Conchita Toriello
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
7
|
Jiao Y, Luo G, Lu Y, Cheng D. Expression of a pheromone binding protein affected by timeless gene governs female mating behavior in Bactrocera dorsalis. BMC Biol 2025; 23:56. [PMID: 39988660 PMCID: PMC11849186 DOI: 10.1186/s12915-025-02164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND The rhythmic mating behavior of insects has been extensively documented, yet the regulation of this behavior through sex pheromone sensing olfactory genes affected by the clock genes in the rhythm pathway remains unclear. RESULTS In this study, we investigated the impact of circadian rhythm on female recognition of male rectal Bacillus-produced sex pheromone in B. dorsolis. Behavioral and electrophysiological assays revealed a peak in both mating behavior and response to sex pheromones in the evening in females. Comparative transcriptome analysis of female heads demonstrated rhythmic expression of the Timeless gene-Tim and odorant binding protein gene-Pbp5, with the highest expression levels occurring in the evening. Protein structural modeling, tissue expression patterns, RNAi treatment, and physiological/behavioral studies supported Pbp5 as a sex pheromone binding protein whose expression is affected by Tim. Furthermore, manipulation of the female circadian rhythm resulted in increased morning mating activity, accompanied by consistent peak expression of Tim and Pbp5 during this time period. These findings provide evidence that insect mating behavior can be modulated by clock genes through their effects on sex pheromone sensing processes. CONCLUSIONS Our results also contribute to a better understanding of the molecular mechanisms underlying rhythmic insect mating behavior.
Collapse
Affiliation(s)
- Yuting Jiao
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Guohong Luo
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
9
|
Zhang Z. Molecular characterisation and expression profiles of an odorant-binding proteins gene (FoccOBP9) from Frankliniella occidentalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:74-83. [PMID: 39780497 DOI: 10.1017/s0007485324000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Insect odorant-binding proteins (OBPs) are the key proteins in insect olfactory perception and play an important role in the perception and discrimination of insects. Frankliniella occidentalis is a polyphagous pest and seriously harms the quality and yield of fruits, flowers and crops worldwide. Therefore, the discovery of OBPs has greatly improved the understanding of behavioural response that mediates the chemoreception of F. occidentalis. To identify the OBP gene of F. occidentalis and its sequence and expression, rapid amplification cDNA ends (RACE) and qRT-PCR reaction system were performed. The results showed that the sequence of FoccOBP9 gene was 846 bp and the reading frame was 558 bp, encoding 185 amino acid residues, a 3' non-coding region of 195 bp and a 5' non-coding region of 93 bp.The molecular weight of the protein was about 20.08 kDa, and the isoelectric point was 8.89. FoccOBP9 was similar to AtumGOBP and CnipOBP2 (30%), followed by BdorGOBP, DficGOBP, DsuzGOBP, AalbOBP38, CmarOBP6 and SexiOBP. Phylogenetic analysis of the FoccOBP9 demonstrated that the FoccOBP9 had a relatively close evolutionary relationship with SgreOBP1, AtumGOBP, HeleOBP3, CbowOBP17, CnipOBP2 and CpalOBP2. The prediction of secondary structure showed that FoccOBP9 protein contained 135 amino acid residues forming α-helix, 91 amino acid residues forming β-sheets and 24 amino acid residues forming β-turning. However, three-dimensional structure prediction showed that the FoccOBP9 protein skeleton was composed of six α-helices and the loops connecting these helices. Dynamic observation of the three-dimensional structure revealed that five α-helices (α1, α2, α4, α5, α6) were found in the structure. The expression profiles analysis revealed that FoccOBP9 are highly abundant in antenna significantly, followed by the head and belly, and almost no expression in the chest and foot. Therefore, the identification and analysis of OBP may be useful for monitoring and limiting the damage of F. occidentalis.
Collapse
Affiliation(s)
- Zhike Zhang
- Ningxia Academy of Agriculture and Forestry Sciences, Institute of Plant Protection, Yinchuan, China
| |
Collapse
|
10
|
Chen X, Yao S, Xie L, Li J, Xiong L, Yang X, Chen Y, Cao F, Hou Q, You M, Liu Y, Gurr GM, You S. Disruption of the odorant receptor co-receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104248. [PMID: 39674517 DOI: 10.1016/j.ibmb.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9. This insect is a globally important crop pest for which novel control methods are urgently required. Behavioral assays demonstrated that PxOrco knockout males exhibited abolished courtship behaviors, inability to mate, and loss of selective preference for P. xylostella's key sex pheromone components. Whilst female mating behavior and fecundity remained unaffected by PxOrco knockout, oviposition response to leaf alcohol, a key cue for normal oviposition behavior, was lost. Electroantennography revealed drastically reduced responses to sex pheromones and plant volatiles in PxOrco-deficient adults but food location by larvae was unaffected. Moreover, expression analysis of PxOrco-deficient pheromone receptors (PRs) indicated varied regulation patterns, with down-regulation observed in several PRs in both sexes. These findings underscore the critical role of PxOrco in regulating multiple olfactory aspects in P. xylostella, including feeding, mating, and host location. Our study identifies the potential of disrupting the Orco gene in this and other pest species to provide novel avenues for future pest control.
Collapse
Affiliation(s)
- Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Liangqian Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Lei Xiong
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Xiaozhen Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Qing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yuanyuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Geoff M Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Gulbali Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life (Basel) 2025; 15:110. [PMID: 39860050 PMCID: PMC11766477 DOI: 10.3390/life15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly. A deeper understanding of insect sensory physiology, especially during feeding, not only enhances our knowledge of insect biology but also offers significant opportunities for practical applications. This review highlights recent advancements in research on feeding-related sensory receptors, covering a wide range of insect species, from the model organism Drosophila melanogaster to agricultural and human pests. Additionally, this review examines the potential of targeting insect sensory receptors for precision pest control. Disrupting behaviors such as feeding and reproduction emerges as a promising strategy for pest management. By interfering with these essential behaviors, we can effectively control pest populations while minimizing environmental impacts and promoting ecological balance.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Chengwang Sheng
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Pesticide Science, Anhui Agricultural University, Hefei 230036, China
| | - Cassidy Kylene Lee
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Peter Nguyen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Physiology, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Yang Y, Tan S, Wang Q, Wang F, Zhang Y. Key amino acids in odorant-binding protein OBP7 enable Bradysia odoriphaga to recognize host plant volatiles. Int J Biol Macromol 2025; 284:138179. [PMID: 39615723 DOI: 10.1016/j.ijbiomac.2024.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a devastating underground pest that can cause serious economic losses. Odorant binding proteins (OBPs) are crucial components of the insect olfactory system, playing key roles in locating host plants, oviposition sites, and mates. Therefore, they are considered potential targets for pest control. Here, we obtained one OBP gene (BodoOBP7) from the antennal transcriptome of B. odoriphaga, and observed that the expression level of BodoOBP7 was primarily in the antennae of both sexes, with significantly higher expression level in females than in males. Fluorescence competitive binding assays indicated that BodoOBP7 exhibited strong binding affinities for the six host plant volatiles, including propyl disulfide, dipropyl trisulfide, dimethyl trisulfide, 2-tridecanone, 2-undecanone and alpha-ionone. Subsequently, homology modeling, molecular docking and site-directed mutagenesis revealed that four key amino acid residues (Phe79, Phe99, Ile96, Leu100) participate in the binding of BodoOBP7 with six host plant volatiles. Our results demonstrate that BodoOBP7 is involved in olfactory recognition in B. odoriphaga. These findings may enhance our understanding of the interaction mechanisms between host plants and B. odoriphaga, potentially offering new perspectives for the development of effective green control strategies.
Collapse
Affiliation(s)
- Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China.
| | - Shunyang Tan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Qinli Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Fu Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
13
|
Lu S, Yang L, Wu Z, Chen M, Lu Y. Volatiles of the Predator Xylocoris flavipes Recognized by Its Prey Tribolium castaneum (Herbst) and Oryzaephilus surinamensis (Linne) as Escape Signals. INSECTS 2024; 16:31. [PMID: 39859612 PMCID: PMC11765547 DOI: 10.3390/insects16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators. Xylocoris flavipes is a predator of Tribolium castaneum (Herbst) and Oryzaephilus surinamensis (Linne) that has been widely used in stored pest control. Herein, we analyze the volatile components of Xylocoris flavipes and their impacts on the olfactory behavior of T. castaneum and O. surinamensis. We found that T. castaneum and O. surinamensis preferred blank air rather than odors of X. flavipes and X. flavipes emissions, which significantly decreased the orientation preference of T. castaneum and O. surinamensis to wheat. X. flavipes emits three major volatiles, including linalool, α-terpineol, and geraniol. Y-tube bioassays showed that T. castaneum and O. surinamensis can recognize linalool and geraniol at certain concentrations, especially at 200 μg/mL. EAG recordings verified that linalool and geraniol elicit higher olfactory responses in the two pests, but very small EAG responses were observed in the insects to α-terpineol. A further repellency evaluation also proved that linalool and geraniol are repellent to the two pests, and this repellency can be slightly enhanced by mixing them together. T. castaneum and O. surinamensis can recognize the predator X. flavipes by perceiving its volatiles and using them as signals for escaping. The two most potent volatiles, linalool and geraniol, may have potential values as repellents in controlling pests in these two stored products.
Collapse
Affiliation(s)
- Shaohua Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.L.); (L.Y.); (Z.W.)
| | - Li Yang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.L.); (L.Y.); (Z.W.)
| | - Zonglin Wu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.L.); (L.Y.); (Z.W.)
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Yujie Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.L.); (L.Y.); (Z.W.)
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
14
|
Zheng Y, Liu Q, Tian H, Wei H. Transcriptomic analysis of male diamondback moth antennae: Response to female semiochemicals and allyl isothiocyanate. PLoS One 2024; 19:e0315397. [PMID: 39700122 DOI: 10.1371/journal.pone.0315397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Female semiochemicals and allyl isothiocyanate (AITC) attract moths, and the moths use odorant-degrading enzymes (ODEs) to break down the excess odor. By identifying antennae-specific ODEs, researchers have established the molecular foundation for odorant degradation and signal inactivation in insects. This enables further exploration of new pest control methods. Currently, the degradation of female semiochemicals and AITC has received limited attention, inspiring this study to identify target ODEs in diamondback moths through transcriptome analysis. Sequencing of antennae from male adults (MA) exposed to female adults (FA) and AITC yielded a substantial 54.18 Gb of clean data, revealing 2276 differentially expressed genes (DEGs) between the MA and MA-FA treatments, and 629 DEGs between MA and MA-AITC treatments. The analysis of MAs exposed to FAs and AITC identified 29 and 17 ODEs, respectively, mainly involving aldehyde dehydrogenases (ALDHs), alcohol dehydrogenases (ADs), cytochrome P450s (CYPs), and UDP-glucuronosyltransferases (UGTs). Pathway analysis revealed primary enrichment in glycolysis/gluconeogenesis and fatty acid degradation in female adult treatments. In contrast, AITC treatments showed major enrichment in pathways related to pentose and glucuronate interconversions, retinol metabolism, and ascorbate and aldarate metabolism. Additionally, qRT-PCR analysis validated the expression patterns of 10 ODE genes in response to these treatments, with varying results observed among the genes. These findings indicate significant changes in ODE expression levels, providing a molecular foundation for identifying potential targets for behavioral inhibitors.
Collapse
Affiliation(s)
- Yueqin Zheng
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Qianxia Liu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Houjun Tian
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
15
|
Ouyang B, True AC, Crimaldi JP, Ermentrout B. Simple olfactory navigation in air and water. J Theor Biol 2024; 595:111941. [PMID: 39260736 DOI: 10.1016/j.jtbi.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Two simple algorithms based on combining odor concentration differences across time and space along with information on the flow direction are tested for their ability to locate an odor source in four different odor landscapes. Image data taken from air plumes in three different regimes and a water plume are used as test environments for a bilateral ("stereo sampling") algorithm using concentration differences across two sensors and a "casting" algorithm that uses successive samples to decide orientation. Agents are started at random locations and orientations in the landscape and allowed to move until they reach the source of the odor (success) or leave the imaged area (failure). Parameters for the algorithm are chosen to optimize success and to minimize path length to the source. Success rates over 90% are consistently obtained with path lengths that can be as low as twice the starting distance from the source in air and four times the distance in the highly turbulent water plumes. We find that parameters that optimize success often lead to more exploratory pathways to the source. Information about the direction from which the odor is coming is necessary for successful navigation in the water plume and reduces the path length in the three tested air plumes.
Collapse
Affiliation(s)
- Bowei Ouyang
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | - Aaron C True
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - John P Crimaldi
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
16
|
Zhan Y, Zhang J, Xu M, Francis F, Liu Y. Pheromone-Binding Protein 1 Performs a Dual Function for Intra- and Intersexual Signaling in a Moth. Int J Mol Sci 2024; 25:13125. [PMID: 39684833 DOI: 10.3390/ijms252313125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Moths use pheromones to ensure intraspecific communication. Nevertheless, few studies are focused on both intra- and intersexual communication based on pheromone recognition. Pheromone-binding proteins (PBPs) are generally believed pivotal for male moths in recognizing female pheromones. Our research revealed that PBP1 of Agriphila aeneociliella (AaenPBP1) serves a dual function in both intra- and intersexual pheromone recognition. Here, a total of 20 odorant-binding protein (OBP) family genes from A. aeneociliella were identified and subjected to transcriptional analysis. Among these, AaenPBP1 was primarily highly expressed in the antennae. Competitive fluorescence binding assays and molecular docking analyses demonstrated that AaenPBP1 exhibits a strong binding affinity for the female sex pheromone (Z)-9-Hexadecenyl acetate and the male pheromone 1-Nonanal. Notably, hydrogen bonds were observed between Ser56 and the ligands. The analysis of pheromone components and PBPs in lepidopteran lineage suggested that their strong and precise interactions, shaped by coevolution, may play a crucial role in facilitating reproductive isolation in moths. Our findings provide valuable insight into the functional significance of PBPs in invertebrates and support the development of behavioral regulation tools as part of an integrated pest management strategy targeting crambid pests.
Collapse
Affiliation(s)
- Yidi Zhan
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Jiahui Zhang
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Mengxian Xu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Frederic Francis
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Yong Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| |
Collapse
|
17
|
Yi SC, Yu JL, Abdelkhalek ST, Sun ZR, Wang MQ. Identification and odor exposure regulation of odorant-binding proteins in Picromerus lewisi. Front Physiol 2024; 15:1503440. [PMID: 39697614 PMCID: PMC11652525 DOI: 10.3389/fphys.2024.1503440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
The highly developed sensitive olfactory system is essential for Picromerus lewisi Scott (Hemiptera: Pentatomidae) adults, an widely distributed natural predatory enemy, to locate host plants. During this process, odorant-binding proteins (OBPs) are thought to have significant involvement in the olfactory recognition. However, the roles of OBPs in the olfactory perception of P. lewisi are not frequently reported. Here, we conducted odor exposure and transcriptome sequencing experiments using healthy and Spodoptera litura-infested tobacco plants as odor sources. The transcriptomic data revealed that the alteration in the expression of mRNA levels upon exposure to odor was sex-dependent. As the expression profiles differed significantly between male and female adults of P. lewisi. A total of 15 P. lewisi OBPs (PlewOBPs) were identified from the P. lewisi transcriptome. Sequence and phylogenetic analysis indicated that PlewOBPs can be classified into two subfamilies (classic OBP and plus-C OBP). The qRT-PCR results showed that the transcript abundance of 8 PlewOBPs substantially altered following exposure to S. litura-infested tobacco plants, compared to the blank control or healthy plants. This implies that these PlewOBPs may have an olfactory function in detecting S. litura-infested tobacco plants. This study establishes the foundation for further understanding of the olfactory recognition mechanism of P. lewisi and helps discover novel targets for functional characterization in future research.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ling Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zhi-Rong Sun
- Southwest Guizhou Autonomous Prefecture Tobacco Company, Xingren, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Luo Z, Zhang Y, Zhang P, Liu L, Yuan J, Yan S, Liu W, Wang G. Benzaldehyde acts as a behaviorally active component in brewer's yeast protein powder which attracts B. dorsalis through olfaction. J Chem Ecol 2024; 50:1010-1022. [PMID: 38740727 DOI: 10.1007/s10886-024-01500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.
Collapse
Affiliation(s)
- Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Leyuan Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266071, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China.
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
19
|
Agricola H, Bräunig P. The complex neurochemistry of the cockroach antennal heart. Cell Tissue Res 2024; 398:139-160. [PMID: 39240336 PMCID: PMC11525290 DOI: 10.1007/s00441-024-03915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin. These fibers most likely originate from paired neurons located in the suboesophageal ganglion. In the second system, we found octopamine co-localized with the short neuropeptide F. The source of this second system is dorsal unpaired median (DUM) neurons, also located in the suboesophageal ganglion. The possible effects of these neuromediators on different targets are discussed.
Collapse
Affiliation(s)
- Hans Agricola
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany.
| | - Peter Bräunig
- Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
20
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 PMCID: PMC11574354 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
Lizana P, Mutis A, Palma-Millanao R, Larama G, Antony B, Quiroz A, Venthur H. Transcriptomic and Gene Expression Analysis of Chemosensory Genes from White Grubs of Hylamorpha elegans (Coleoptera: Scarabaeidae), a Subterranean Pest in South America. INSECTS 2024; 15:660. [PMID: 39336628 PMCID: PMC11432230 DOI: 10.3390/insects15090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 09/30/2024]
Abstract
Olfaction and gustation processes play key roles in the life cycle of insects, such as finding and accepting food sources, oviposition sites, and mates, among other fundamental aspects of insect development. In this context, chemosensory genes found in sensory organs (e.g., antennae and maxillary palps) are crucial for understanding insect behaviour, particularly the phytophagous behaviour of insect pests that attack economically important crops. An example is the scarab beetle Hylamorpha elegans, which feeds on the roots of several crops important for livestock in its larval stage. In this study, chemosensory gene candidates of H. elegans white grubs identified through the head transcriptome and phylogenetic and tissue-biased gene expression (antennae, head without antennae, and legs) have been reported. Overall, 47 chemosensory genes were identified (2 ORs, 1 GR, 11 IRs, 9 CSPs, and 24 OBPs). Gene expression analysis revealed the predominant presence of IRs in the legs, whereas ORs and the GR were present in the heads and/or antennae. Particularly, HeleOBP9 and HeleCSP2 were significantly expressed in the head but not in the antennae or legs; these and other genes are discussed as potential targets in the context of H. elegans management.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile;
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
22
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
23
|
Lu J, Yao X, Shen Y, Du C, Guo Q, Du Y. Physiological Status of Rice Leaf-Roller Cnaphalocrocis medinalis (Lepidoptera: Crambidae) Adults Trapped by Sex Pheromone and Floral Odor. INSECTS 2024; 15:637. [PMID: 39336605 PMCID: PMC11432223 DOI: 10.3390/insects15090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
The rice leaf-roller Cnaphalocrocis medinalis is an important migratory pest of rice. We conducted a study to determine the physiological status of adults trapped by a sex pheromone and floral odor. In the immigrant group, the number of males trapped by the floral odor was greater than the number caught by sex pheromone trapping. The volume of testes was similar in the above two trapping methods but was smaller than in the sweep net method. The ovary developmental grade, mating rate, and number of matings of females caught in floral odor trap were higher than in those caught in the sweep net. In the local breeding group, the number of males trapped by sex pheromones was greater than the number trapped by the floral odor. The volume of testes was smaller in the floral odor trap compared to the pheromone trap group, with the largest in the sweep net group. The ovarian developmental grade, mating rate, and number of matings of females were significantly higher in the floral odor trap group than in the sweep net group. In the emigrant group, the adult olfactory response to the sex pheromone and floral odor was low. The volume of testes was larger in the sweep net group compared to the moths caught by floral odor trapping. The number of eggs laid by female immigrants trapped by the floral odor and sweep net was similar, while the number in the local breeding group was greater in moths caught with the sweep net in comparison with those caught by the floral odor trap. The difference in egg hatchability between the two trapping methods in both immigrants and local breedings was not significant.
Collapse
Affiliation(s)
- Jianfei Lu
- Zhejiang Provincial Plant Protection, Quarantine and Pesticide Management Station, Hangzhou 310029, China
| | - Xiaoming Yao
- Zhejiang Provincial Plant Protection, Quarantine and Pesticide Management Station, Hangzhou 310029, China
| | - Ying Shen
- Zhejiang Provincial Plant Protection, Quarantine and Pesticide Management Station, Hangzhou 310029, China
| | | | - Qianshuang Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yongjun Du
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Guo S, Liu P, Tang Y, Chen J, Zhang T, Liu H. Identification and expression profiles of olfactory-related genes in the antennal transcriptome of Graphosoma rubrolineatum (Hemiptera: Pentatomidae). PLoS One 2024; 19:e0306986. [PMID: 39106289 DOI: 10.1371/journal.pone.0306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/09/2024] Open
Abstract
Graphosoma rubrolineatum (Hemiptera: Pentatomidae) is an important pest of vegetables and herbs (e.g., Umbelliferae and Cruciferae) in China, Siberia, Korea, and Japan. Insects are highly dependent on their olfactory system to detect odorants. However, no molecular-mediated olfactory genes in G. rubrolineatum have yet been identified. In this study, we first established the antennal transcriptome of G. rubrolineatum and identified 189 candidate olfactory genes, including 31 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs),94 odorant receptors (ORs), 23 ionotropic receptors (IRs), and 22 gustatory receptors (GRs). Additionally, phylogenetic trees were constructed for olfactory genes between G. rubrolineatum and other hemipteran insects. We also detected the expression profiles of ten OBPs, five CSPs, two SNMPs, five ORs, four IRs, and four GRs by real-time quantitative PCR. The results revealed that most genes (GrubOBP1/11/31, GrubCSP3/8, GrubSNMP1a/1b, GrubOrco/OR9/11/13, GrubGR1/4/22, GrubIR25/75h/76b/GluR1) were highly expressed in the antennae, GrubOBP13/31 and GrubCSP4/11/12 were highly expressed in the legs, while GrubOBP20 and GrubGR19 were highly expressed in the wings. Our results will enrich the gene inventory of G. rubrolineatum and provide further insight into the molecular chemosensory mechanisms of G. rubrolineatum.
Collapse
Affiliation(s)
- Shibao Guo
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Panjing Liu
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Yin Tang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junhua Chen
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Tao Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
25
|
Li YJ, Liu TA, Zhao H, Han Y, Lou BH, Lei CY, Song YQ, Jiang HB. Repellency, Toxicity, and Chemical Composition of Plant Essential Oils from Myrtaceae against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae). Molecules 2024; 29:3390. [PMID: 39064968 PMCID: PMC11279514 DOI: 10.3390/molecules29143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.
Collapse
Affiliation(s)
- Yi-Jie Li
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Tian-Ao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hang Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Han
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Cui-Yun Lei
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ya-Qin Song
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Kong W, Wang Y, Li N, Cao W, Hu X, Liu C, Niu G, Li J, Ma R. Variations in Mating and Reproduction in Oriental Fruit Moth Caused by Adult Physiological State in Laboratory Tests. INSECTS 2024; 15:457. [PMID: 38921171 PMCID: PMC11203469 DOI: 10.3390/insects15060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Grapholita molesta (Busck) is a pest of rosaceous fruit plants worldwide. Due to a combination of monandry and promiscuity in G. molesta, the age and mating history of both sexes significantly affected the mating and reproductive success. In this study, the interactions of different ages (3, 5, or 7 days) and mating history (unmated or mated) in each sex on the mating selection, reproductive system, and offspring production were investigated in the laboratory. The results showed that these differences mainly occurred in young females or males, associated with unmated or mated state. Especially, the 3-day-old unmated females were preferred by the 7-day-old males but discriminated against by the 3- or 5-day-old unmated males, whereas the 3-day-old mated males were preferred by the 3-day-old mated or 7-day-old females but discriminated against by the 3- or 5-day-old unmated females. The lengths of the ovarian ducts were affected by age in the unmated females, with the greatest length being found at 7 days old. The size of testes varied with age in the unmated males, being the largest at 3 days old. At 3 days old, the testes size of the unmated males was larger than that of the mated males. The pairing of 5-day-old unmated females × 3-day-old mated males maximized the successful matings. The least productive pairing was 7-day-old unmated females × 5-day-old mated males. The pairing of 5-day-old mated males × 3-day-old mated females had the lowest number of matings and the highest number of offspring. The pairing of 3-day-old mated females × 3-day-old mated males had a high rate of mating success and the most offspring. These results revealed the different roles between females and males because of physiological states in terms of the reproductive biology in G. molesta.
Collapse
Affiliation(s)
- Weina Kong
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Yi Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Na Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Weiye Cao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Xuefeng Hu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Changnian Liu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Guofei Niu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| | - Jie Li
- Shanxi Agricultural University, Taiyuan 030031, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; (W.K.); (Y.W.); (N.L.); (W.C.); (X.H.); (C.L.); (G.N.)
| |
Collapse
|
27
|
Xu L, Jiang HB, Yu JL, Wang JJ. Plasticity of the olfactory behaviors in Bactrocera dorsalis under various physiological states and environmental conditions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101196. [PMID: 38555081 DOI: 10.1016/j.cois.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Insects rely heavily on their olfactory system for various behaviors, including foraging, mating, and oviposition. Numerous studies have demonstrated that insects can adjust their olfactory behaviors in response to different physiological states and environmental conditions. This flexibility allows them to perceive and process odorants according to different conditions. The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive and invasive pest causing significant economic losses to fruit and vegetable crops worldwide. The olfactory behavior of B. dorsalis exhibits strong plasticity, resulting in its successful invasion. To enhance our understanding of B. dorsalis' olfactory behavior and explore potential strategies for behavior control, we have reviewed recent literature on its olfactory plasticity and potential molecular mechanisms.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
29
|
Xu L, Jiang HB, Yu JL, Lei Q, Pan D, Chen Y, Dong B, Liu Z, Wang JJ. An Odorant Receptor Expressed in Both Antennae and Ovipositors Regulates Benzothiazole-Induced Oviposition Behavior in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6954-6963. [PMID: 38512330 DOI: 10.1021/acs.jafc.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Lizana P, Mutis A, Palma-Millanao R, González-González A, Ceballos R, Quiroz A, Bardehle L, Hidalgo A, Torres F, Romero-López A, Venthur H. Comparative transcriptomic analysis of chemoreceptors in two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101174. [PMID: 38096641 DOI: 10.1016/j.cbd.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/15/2024]
Abstract
Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
| | - Angélica González-González
- Laboratorio de Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Centro Tecnológico de Control Biológico, Instituto de Investigaciones Agropecuarias (INIA)-Quilamapu, Chillán, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Leonardo Bardehle
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Torres
- Carrera de Química y Farmacia, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Angel Romero-López
- Laboratorio de Infoquímicos y Otros Productos Bióticos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
31
|
Chen R, Ai D, Wang G, Wang B. Comparative transcriptome analysis of the antenna and proboscis reveals feeding state-dependent chemosensory genes in Eupeodes corollae. Open Biol 2024; 14:230208. [PMID: 38195061 PMCID: PMC10776234 DOI: 10.1098/rsob.230208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
The physiological state of an insect can affect its olfactory system. However, the molecular mechanism underlying the effect of nutrition-dependent states on odour-guided behaviours in hoverflies remains unclear. In this study, comparative transcriptome analysis of the antenna and proboscis from Eupeodes corollae under different feeding states was conducted. Compared with the previously published antennal transcriptome, a total of 32 novel chemosensory genes were identified, including 4 ionotropic receptors, 17 gustatory receptors, 9 odorant binding proteins and 2 chemosensory proteins. Analysis of differences in gene expression between different feeding states in male and female antennae and proboscises revealed that the expression levels of chemosensory genes were impacted by feeding state. For instance, the expression levels of EcorOBP19 in female antennae, EcorOBP6 in female proboscis, and EcorOR6, EcorOR14, EcorIR5 and EcorIR84a in male antennae were significantly upregulated after feeding. On the other hand, the expression levels of EcorCSP7 in male proboscis and EcorOR40 in male antennae were significantly downregulated. These findings suggest that nutritional state plays a role in the adaptation of hoverflies' olfactory system to food availability. Overall, our study provides important insights into the plasticity and adaptation of chemosensory systems in hoverflies.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People’s Republic of China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
32
|
Liu Y, Tian X, Gui L, Wang F, Zhang G. Molecular and functional characterization of an antenna-enriched glutathione S-transferase BminGSTd3 involved in undecanol degradation in the citrus fruit fly, Bactrocera minax (Enderlein) (Diptera Tephritidae). Int J Biol Macromol 2024; 256:128514. [PMID: 38040156 DOI: 10.1016/j.ijbiomac.2023.128514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Bactrocera minax is a disastrous pest of citrus crops in China. Numerous studies focused on the molecular mechanism of odorant perception of B. minax, but the molecular mechanism of odorant degradation remains unclear. Glutathione S-transferases (GSTs) are considered as a class of odorant-degrading enzymes involved in degrading odorant molecules in insects' olfactory system. Here, we identified a delta-class GST gene, BminGSTd3, from B. minax. It was predominantly expressed in adult's olfactory organ antennae. The bacterially expressed recombinant BminGSTd3 was able to catalyze the conjugation of glutathione (GSH) with 2, 4-dinitrochlorobenzene (CDNB). Spectrophotometric analysis showed that undecanol can inhibit catalytic activities of BminGSTd3. Metabolic assays exhibited that undecanol can be depleted by BminGSTd3. Undecanol is believed to be an important B. minax sex pheromone component. The other components of the pheromone remain unclear. To understand how BminGSTd3 specifically recognizes undecanol, a 3D model of BminGSTd3 was constructed by homology modeling. Molecular docking based on this model revealed that E64 and S65 are the key amino acids recognizing undecanol, and this was proven by site-directed mutagenesis and intrinsic fluorescence assays. We suggest that BminGSTd3 is an undecanol metabolizing GST in B.minax, and E64 and S65 may serve as the key binding sites.
Collapse
Affiliation(s)
- Yi Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Lianyou Gui
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Fulian Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
33
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
34
|
Han KR, Wang WW, Yang WQ, Li X, Liu TX, Zhang SZ. Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. INSECTS 2023; 14:920. [PMID: 38132594 PMCID: PMC10744196 DOI: 10.3390/insects14120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Collapse
Affiliation(s)
- Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| |
Collapse
|
35
|
Fan J, Zheng K, Xie P, Dong Y, Gu Y, Wickham JD. Electrophysiological and Behavioral Responses of Batocera horsfieldi Hope to Volatiles from Pistacia chinensis Bunge. INSECTS 2023; 14:911. [PMID: 38132585 PMCID: PMC10743956 DOI: 10.3390/insects14120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Following infestation by phytophagous insects, changes in the composition and relative proportion of volatile components emitted by plants may be observed. Some phytophagous insects can accurately identify these compounds to locate suitable host plants. We investigated whether herbivore-induced plant volatiles (HIPVs) generated by herbivory on Pistacia chinensis Bunge (Sapindales: Aceraceae) might be semiochemicals for the host location of Batocera horsfieldi Hope (Coleoptera: Cerambycidae). We performed two-choice bioassays (indoor darkroom, inside cages) on plants damaged by adult feeding and intact control plants. Volatiles from these plants were then collected and identified, and the response of adult antennae to these compounds was tested via electroantennography (EAG). The behavioral responses of B. horsfieldi to these compounds were finally assessed using a Y-tube olfactometer. Host plant choice tests show that B. horsfieldi prefers feeding-damaged P. chinensis over healthy trees. In total, 15 compounds were collected from healthy and feeding-damaged P. chinensis, 10 of which were shared in both healthy and feeding-damaged P. chinensis, among which there were significant differences in the quantities of five terpenes, including α-pinene, β-pinene, α-phellandrene, D-limonene, and β-ocimene. In EAG assays, the antennae of B. horsfieldi adults responded strongly to (Z)-3-hexen-1-ol, β-ocimene, 3-carene, γ-terpinene, D-limonene, myrcene, and α-phellandrene. The antennae of B. horsfieldi adults responded in a dose-response manner to these compounds. Y-tube behavioral experiments showed that four compounds attracted mated females ((Z)-3-hexen-1-ol, β-ocimene, 3-carene, and α-phellandrene), two compounds ((Z)-3-hexen-1-ol and α-phellandrene) attracted males, and adults of both sexes avoided D-limonene. Feeding bioassays showed that (Z)-3-hexen-1-ol and β-ocimene could promote the feeding of B. horsfieldi and that D-limonene inhibited this response. These results could provide a theoretical basis for developing attractants or repellents for B. horsfieldi.
Collapse
Affiliation(s)
- Jianting Fan
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (K.Z.); (P.X.); (Y.D.); (Y.G.)
| | - Kaiwen Zheng
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (K.Z.); (P.X.); (Y.D.); (Y.G.)
| | - Ping Xie
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (K.Z.); (P.X.); (Y.D.); (Y.G.)
| | - Yifan Dong
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (K.Z.); (P.X.); (Y.D.); (Y.G.)
| | - Yutong Gu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (K.Z.); (P.X.); (Y.D.); (Y.G.)
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jacob D. Wickham
- A.N. Severstov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| |
Collapse
|
36
|
Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. Commun Biol 2023; 6:1004. [PMID: 37783732 PMCID: PMC10545721 DOI: 10.1038/s42003-023-05273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Division of labor (DOL) is a characteristic trait of insect societies, where tasks are generally performed by specialized individuals. Inside workers focus on brood or nest care, while others take risks by foraging outside. Theory proposes that workers have different thresholds to perform certain tasks when confronted with task-related stimuli, leading to specialization and consequently DOL. Workers are presumed to vary in their response to task-related cues rather than in how they perceive such information. Here, we test the hypothesis that DOL instead stems from workers varying in their efficiency to detect stimuli of specific tasks. We use transcriptomics to measure mRNA expression levels in the antennae and brain of nurses and foragers of the ant Temnothorax longispinosus. We find seven times as many genes to be differentially expressed between behavioral phenotypes in the antennae compared to the brain. Moreover, half of all odorant receptors are differentially expressed, with an overrepresentation of the 9-exon gene family upregulated in the antennae of nurses. Nurses and foragers thus apparently differ in the perception of their olfactory environment and task-related signals. Our study supports the hypothesis that antennal sensory filters predispose workers to specialize in specific tasks.
Collapse
Affiliation(s)
- Marcel A Caminer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David V Ho
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Baumann
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
37
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
38
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
39
|
Wang JX, Wei ZQ, Chen MD, Yan Q, Zhang J, Dong SL. Conserved Odorant Receptors Involved in Nonanal-Induced Female Attractive Behavior in Two Spodoptera Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13795-13804. [PMID: 37694971 DOI: 10.1021/acs.jafc.3c03265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Moths rely on plant volatiles to locate appropriate plants for feeding and laying eggs. While extensive research has been conducted on the global agricultural pests, Spodoptera frugiperda and Spodoptera litura, their molecular mechanisms for detecting plant volatiles remain mostly unknown. Here, we have demonstrated that nonanal, a common plant volatile, is attractive for both virgin and gravid females of the two species. Second, we have identified a conserved odorant receptor clade (SfruOR47 clade) that is primarily tuned to nonanal. Finally, by three-dimensional (3D) structure prediction, molecular docking, and site-directed mutagenesis, we have revealed that the His57 and Glu61 residues, also shared by other six orthologous ORs, are essential for nonanal binding in SfruOR47 and SlituOR9, indicating the conserved structure and function of ORs in the SfruOR47 clade. These findings offer novel insights into the molecular mechanisms and evolutionary aspects of moth behavior in response to plant volatiles.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Meng-Dan Chen
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
40
|
Dong JF, Wang K, Sun YL, Tian CH, Wang SL. Antennal transcriptome analysis of odorant-binding proteins and characterization of GOBP2 in the variegated cutworm Peridroma saucia. Front Physiol 2023; 14:1241324. [PMID: 37637146 PMCID: PMC10450149 DOI: 10.3389/fphys.2023.1241324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Odorant-binding proteins (OBPs) are expressed at extremely high concentrations in the chemo-sensilla lymph of insects and have long been thought to be crucial for delivering the semiochemicals to the odorant receptors. They are represented by multiple classes: general odorant-binding proteins (GOBP1 and GOBP2) and pheromone-binding proteins. In the current study, we identified a total of 35 OBPs in the antennal transcriptome of Peridroma saucia, a worldwide pest that causes serious damage to various crops. A gene expression value (TPM, transcripts per million) analysis revealed that seven OBPs (PsauPBP1/2/3, PsauGOBP1/2, PsauOBP6, and PsauOBP8) were highly abundant in the antennae. Next, we focused on the expression and functional characterization of PsauGOBP2. Real-time quantitative-PCR analysis demonstrated that PsauGOBP2 was predominantly expressed in the antennae of both sexes. Fluorescence binding assays showed that the recombinant PsauGOBP2 strongly binds to the female sex pheromone components Z11-16: Ac (Ki = 4.2 μM) and Z9-14: Ac (Ki = 4.9 μM) and binds moderately (6 µM ≤ Ki ≤ 13 µM) to the host plant volatiles phenylethyl acetate, β-myrcene, and dodecanol. Further 3D structural modeling and molecular docking revealed that several crucial amino acid residues are involved in ligand binding. The results not only increase our understanding of the olfactory system of P. saucia but also provide insights into the function of PsauGOBP2 that has implications for developing sustainable approaches for P. saucia management.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shao-Li Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Liu P, Guo J, Wei H, Feng L, Gao Z, Zhang T. Genome-wide identification of candidate chemosensory receptors in the bean bug Riptortus pedestris (Hemiptera: Alydidae) and the functional verification of its odorant receptor co-receptor (Orco) in recognizing aggregation pheromone. Front Physiol 2023; 14:1224009. [PMID: 37520822 PMCID: PMC10375722 DOI: 10.3389/fphys.2023.1224009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
A sophisticated and sensitive olfactory system plays a vital role in the survival and reproduction of insects. Chemosensory receptors are indispensable for the molecular recognition and discrimination of semiochemicals. Riptortus pedestris is a notorious pest of legume plants, resulting in yield losses and quality decreases in soybeans. It is well accepted that R. pedestris highly relies on its olfactory system in detecting aggregation pheromones, host volatiles, and pesticides; however, little research focused on its chemosensory receptors. In the present study, we identified 237 odorant receptors (ORs), 42 gustatory receptors (GRs), and 31 ionotropic receptors (IRs) from the reported genome of R. pedestris, and analyzed their phylogenetic relationship with other hemipteran species. Through the results of RNA-seq and real-time quantitative PCR (qRT-PCR), we found that RpedORs displayed different expression levels in the antennae of R. pedestris at different development stages. To further verify the function of odorant receptor co-receptor (Orco), an obligate and unique insect OR, we silenced RpedOrco by RNA interference (RNAi) method. The results showed that silencing RpedOrco could significantly impair the response to aggregation pheromone in R. pedestris, indicating that RpedOrco plays an essential role in odorant detection. Our results can provide the theoretical foundations for revealing the olfactory recognition mechanism of R. pedestris and help explore and develop novel olfactory-based agents against this pest.
Collapse
Affiliation(s)
- Panjing Liu
- Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China
| | - Jianglong Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China
| | - Hongyi Wei
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Likai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Zhanlin Gao
- Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China
| | - Tao Zhang
- Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China
| |
Collapse
|
42
|
Chappuis CJF, Cléroux M, Descombes C, Barth Y, Lefort F. Attraction of Frankliniella occidentalis Females towards the Aggregation Pheromone Neryl ( S)-2-Methylbutanoate and Kairomones in a Y-Olfactometer. INSECTS 2023; 14:562. [PMID: 37367378 DOI: 10.3390/insects14060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
An understanding of insect olfaction allows for more specific alternative methods of pest control. We evaluated the responses of the western flower thrips (WFT, Frankliniella occidentalis) in a Y-olfactometer to estimate gas-phase concentrations of the aggregation pheromone neryl (S)-2-methylbutanoate and known kairomones such as methyl isonicotinate, (S)-(-)-verbenone, and p-anisaldehyde. The gas-phase concentrations of these compounds were obtained from the release rates measured in dynamic headspace cells. The compounds were collected from the headspace using dried solid-phase extraction (SPE) cartridges and analyzed with a triple quadrupole GC-MS/MS. We observed that the aggregation pheromone significantly attracted WFT females at doses of 10 and 100 µg, whereas methyl isonicotinate and p-anisaldehyde significantly attracted WFT females at the highest dose. Verbenone did not produce any significant results. A completely different picture was obtained when the gas-phase concentrations were considered. The minimal gas-phase concentrations of the pheromone required to attract WFT females was 0.027 ng/mL, at least 100 times lower than that of the other two compounds. The relevance and implications of our results are discussed in light of the insect's biology and pest management methods.
Collapse
Affiliation(s)
- Charles J F Chappuis
- Analytical Chemistry Group, Haute École de Viticulture et Oenologie de Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland
| | - Marilyn Cléroux
- Analytical Chemistry Group, Haute École de Viticulture et Oenologie de Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland
| | - Corentin Descombes
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 1254 Jussy, Switzerland
| | - Yannick Barth
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 1254 Jussy, Switzerland
| | - François Lefort
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 1254 Jussy, Switzerland
| |
Collapse
|
43
|
Zhang R, Lun X, Zhang Y, Zhao Y, Xu X, Zhang Z. Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda. PLANTS (BASEL, SWITZERLAND) 2023; 12:2034. [PMID: 37653951 PMCID: PMC10223087 DOI: 10.3390/plants12102034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Ionotropic receptors (IRs) play a central role in detecting chemosensory information from the environment and guiding insect behaviors and are potential target genes for pest control. Empoasca onukii Matsuda is a major pest of the tea plant Camellia sinensis (L.) O. Ktze, and seriously influences tea yields and quality. In this study, the ionotropic receptor gene EonuIR25a in E. onukii was cloned, and the expression pattern of EonuIR25a was detected in various tissues. Behavioral responses of E. onukii to volatile compounds emitted by tea plants were determined using olfactometer bioassay and field trials. To further explore the function of EonuIR25a in olfactory recognition of compounds, RNA interference (RNAi) of EonuIR25a was carried out by ingestion of in vitro synthesized dsRNAs. The coding sequence (CDS) length of EonuIR25a was 1266 bp and it encoded a 48.87 kD protein. EonuIR25a was enriched in the antennae of E. onukii. E. onukii was more significantly attracted by 1-phenylethanol at a concentration of 100 µL/mL. Feeding with dsEonuIR25a significantly downregulated the expression level of EonuIR25a, after 3 h of treatment, which disturbed the behavioral responses of E. onukii to 1-phenylethanol at a concentration of 100 µL/mL. The response rate of E. onukii to 1-phenylethanol was significantly decreased after dsEonuIR25a treatment for 12 h. In summary, the ionotropic receptor gene EonuIR25a was highly expressed in the antennae of E. onukii and was involved in olfactory recognition of the tea plant volatile 1-phenylethanol. The present study may help us to use the ionotropic receptor gene as a target for the behavioral manipulation of E. onukii in the future.
Collapse
Affiliation(s)
- Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiaoyue Lun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yunhe Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Science, Ji’nan 250100, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| |
Collapse
|
44
|
Yao Q, Liang Z, Quan L, Chen B. Functional characterization of chemosensory proteins in response to artificial light treatment in Thalassodes immissaria. PEST MANAGEMENT SCIENCE 2023; 79:1760-1767. [PMID: 36622077 DOI: 10.1002/ps.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) play a vital role in the response to environmental stimuli in insects. However, the involvement of insect CSPs in the stress response to night-time environmental changes has not been examined. RESULTS In the current study, four TiCSP genes were first cloned from Thalassodes immissaria by transcriptome and RACE-PCR techniques. TiCSPs had typical characteristics of insect CSPs, including a highly conserved four-cysteine motif and olfactory-specific protein D (OS-D) or OS-D superfamily domains. TiCSP1-4 were clustered classified within different clades in a phylogenetic analysis and were differentially expressed at all developmental stages. Under night-time artificial light stress, the expression levels of TiCSP1 in males were significantly decreased at 24 h, and those of TiCSP2 were decreased in both adult sexes at 48 h. In a molecular docking analysis, TiCSPs showed relatively higher binding affinities with sex pheromone components than with host plant volatile molecules. CONCLUSION Taking the reduced expression levels of TiCSPs and binding affinities into account, TiCSP1 and TiCSP2 are involved in the stress response processes of T. immissaria under light treatment. Our study supplies basic data for the evaluation of the effects of light interference control technology - an emerging physical control measure on nontarget pests of lychee orchards. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Yao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhantu Liang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Linfa Quan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bingxu Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
45
|
Menacer K, Hervé MR, Marie Cortesero A, Aujames T, Anton S. Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104500. [PMID: 36914091 DOI: 10.1016/j.jinsphys.2023.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adult insect behaviour in response to plant-emitted volatile compounds varies between the sexes and as a function of maturity. These differences in behavioural responses can be due to modulation in the peripheral or central nervous system. In the cabbage root fly, Delia radicum, behavioural effects of certain host plant volatiles on mature female behaviour have been evaluated, and a large number of compounds emitted by brassicaceous host plants have been identified. We recorded here dose-dependent electroantennogram responses to all tested compounds and investigated if the antennal detection of individual volatile compounds emitted by intact and damaged host plants differs between male and female, as well as immature and mature flies. Our results showed dose-dependent responses in mature and immature males and females. Mean response amplitudes varied significantly between sexes for three compounds, and between maturity states for six compounds. For some additional compounds significant differences occurred only for high stimulus doses (interaction between dose and sex and/or dose and maturity status). Multivariate analysis revealed a significant global effect of maturity on electroantennogram response amplitudes and for one experimental session also a significant global effect of the sex. Interestingly, allyl isothiocyanate, a compound stimulating oviposition behaviour, elicited stronger responses in mature than in immature flies, whereas ethylacetophenone, an attractive flower volatile, elicited stronger responses in immature than in mature flies, which correlates with the behavioural role of these compounds. Several host-derived compounds elicited stronger responses in females than in males and, at least at high doses, stronger responses in mature than in immature flies, indicating differential antennal sensitivity to behaviourally active compounds. Six compounds did not cause any significant differences in responses between the different groups of flies. Our results thus confirm peripheral plasticity in plant volatile detection in the cabbage root fly and provide a basis for future behavioural investigations on the function of individual plant compounds.
Collapse
Affiliation(s)
- Kathleen Menacer
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France.
| | - Maxime R Hervé
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| | | | - Tom Aujames
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| | - Sylvia Anton
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
46
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
47
|
Zhang B, Yang RR, Jiang XC, Xu XX, Wang B, Wang GR. Genome-Wide Analysis of the Odorant Receptor Gene Family in Solenopsis invicta, Ooceraea biroi, and Monomorium pharaonis (Hymenoptera: Formicidae). Int J Mol Sci 2023; 24:ijms24076624. [PMID: 37047591 PMCID: PMC10095046 DOI: 10.3390/ijms24076624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory systems in eusocial insects play a vital role in the discrimination of various chemical cues. Odorant receptors (ORs) are critical for odorant detection, and this family has undergone extensive expansion in ants. In this study, we re-annotated the OR genes from the most destructive invasive ant species Solenopsis invicta and 2 other Formicidae species, Ooceraea biroi and Monomorium pharaonis, with the aim of systematically comparing and analyzing the evolution and the functions of the ORs in ant species, identifying 356, 298, and 306 potential functional ORs, respectively. The evolutionary analysis of these ORs showed that ants had undergone chromosomal rearrangements and that tandem duplication may be the main contributor to the expansion of the OR gene family in S. invicta. Our further analysis revealed that 9-exon ORs had biased chromosome localization patterns in all three ant species and that a 9-exon OR cluster (SinvOR4–8) in S. invicta was under strong positive selection (Ka/Ks = 1.32). Moreover, we identified 5 S. invicta OR genes, namely SinvOR89, SinvOR102, SinvOR352, SinvOR327, and SinvOR135, with high sequence similarity (>70%) to the orthologs in O. biroi and M. pharaonis. An RT-PCR analysis was used to verify the antennal expression levels of these ORs, which showed caste-specific expression. The subsequent analysis of the antennal expression profiles of the ORs of the S. invicta workers from the polygyne and monogyne social forms indicated that SinvOR35 and SinvOR252 were expressed at much higher levels in the monogyne workers than in the polygyne workers and that SinvOR21 was expressed at higher levels in polygyne workers. Our study has contributed to the identification and analysis of the OR gene family in ants and expanded the understanding of the evolution and functions of the ORs in Formicidae species.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Rong-Rong Yang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Chuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Xia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
48
|
Goane L, Carrizo BN, Ruiz MJ, Bachmann GE, Milla FH, Segura DF, Kuzmich D, Walse S, Vera MT. Behavioural and Electrophysiological Response of Anastrepha fraterculus (Diptera: Tephritidae) to a γ-Lactone Synthetic Semiochemical. INSECTS 2023; 14:206. [PMID: 36835775 PMCID: PMC9958615 DOI: 10.3390/insects14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Attractants are a powerful tool for pest management. The lack of specific attractants for the South American fruit fly, Anastrepha fraterculus, a complex of cryptic species of great economic importance in South America, makes it difficult to monitor the pest in the field. The γ-lactone male sex and aggregation pheromones of several Anastrepha species, naturally released in a 7:3 epianastrephin to anastrephin ratio, and a structurally related naturally occurring γ-lactone ((±)-trans-tetrahydroactinidiolide) with gem-dimethyl groups (dimethyl) at C(4), were evaluated as potential attractants of this species. Different age and mating conditions of A. fraterculus males and females were evaluated during electroantennography (EAG) and field cage experiments in which polymeric lures were deployed to contain 100 mg of attractant. Epianastrephin and dimethyl were EAG+ for all fly conditions, with epianastrephin eliciting the highest response for both sexes and immature flies showing greater responsiveness than mature flies. In the field cage experiments, immature flies were only attracted to leks; virgin females were attracted to leks, dimethyl, and both epianastrephin-anastrephin formulations (95 and 70 wt.% epianastrephin); mature-mated males were attracted to leks, dimethyl and 70 wt.% epianastrephin; and mature-mated females were only attracted to leks. Our bioassays showed a promising performance of the analog dimethyl since it elicited the same response as epianastrephin, requires fewer steps to synthesize, and contains one less chiral center than the natural pheromones. The attraction to leks was recorded for all mating conditions and ages of flies and suggests that air-borne volatiles of calling males contain cues that could act as sensory traps. The addition of any of these compounds in the synthetic attractants may result in a greater attraction and thus deserves further evaluation. Dose-response experiments will provide additional information to move a step forward and validate the results obtained in open-field conditions.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | - María Josefina Ruiz
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Guillermo E. Bachmann
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Fabian H. Milla
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Diego F. Segura
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Dan Kuzmich
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - Spencer Walse
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - María Teresa Vera
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
49
|
Liu WB, Li HM, Wang GR, Cao HQ, Wang B. Conserved Odorant Receptor, EcorOR4, Mediates Attraction of Mated Female Eupeodes corollae to 1-Octen-3-ol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1837-1844. [PMID: 36682010 DOI: 10.1021/acs.jafc.2c06132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odorant receptors (ORs) in insects are crucial for the detection of chemical signals. However, the functions of the conserved OR genes among insect species are rarely studied. In this study, we analyzed a well-conserved OR clade in Diptera insects and cloned a gene from this clade, EcorOR4, in the hoverfly Eupeodes corollae. Real-time quantitative PCR showed that EcorOR4 was highly expressed in the antennae and upregulated in the mated females, and in vitro functional characterization showed that EcorOR4 was narrowly tuned to 1-octen-3-ol. Electroantennogram assays revealed that the antennal response of mated females to 1-octen-3-ol was significantly higher than that of mated males, but no significant differences were observed between male and female virgins. Finally, a Y-tube olfactometer bioassay showed that 1-octen-3-ol is an attractant for only mated female E. corollae adults. These results demonstrate that EcorOR4 is involved in the detection of 1-octen-3-ol and that this compound may affect the host-finding and oviposition behavior in female E. corollae.
Collapse
Affiliation(s)
- Wen-Biao Liu
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui-Min Li
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hai-Qun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
50
|
Xu Q, Wu C, Xiao D, Jin Z, Zhang C, Hatt S, Guo X, Wang S. Ecological function of key volatiles in Vitex negundo infested by Aphis gossypii. FRONTIERS IN PLANT SCIENCE 2023; 13:1090559. [PMID: 36714696 PMCID: PMC9879570 DOI: 10.3389/fpls.2022.1090559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Herbivore induced plant volatiles (HIPVs) are key components of plant-herbivorous-natural enemies communications. Indeed, plants respond to herbivores feeding by releasing HIPVs to attract natural enemies. The present study analyses the effect of HIPVs of Vitex negundo (Lamiaceae), an indigenous plant species in northern China, on the predatory ladybug species Harmonia axyridis. Y-tube olfactometer bioassay showed that H. axyridis adults were significantly attracted by V. negundo infested by the aphid Aphis gossypii. We analyzed and compared volatile profiles between healthy and A. gossypii infested V. negundo, screened out the candidate active HIPVs mediated by A. gossypii which could attract H. axyridis, and tested the olfactory behavior of the candidate active compounds on H. axyridis. The gas chromatography-mass spectrometry analysis showed that five volatile compounds were significantly up-regulated after V. negundo infestation by A. gossypii, and five substances were significantly down-regulated in the terpenoid biosynthesis pathway. The olfactory behavior response showed that H. axyridis has significant preference for sclareol, eucalyptol, nonanal and α-terpineol, indicating that this chemical compounds are the important volatiles released by V. negundo to attract H. axyridis. This study preliminarily clarified that V. negundo release HIPVs to attract natural enemies when infected by herbivorous insects. The description of the volatile emission profile enriches the theoretical system of insect-induced volatile-mediated plant defense function of woody plants. Applications in crop protection would lie in designing original strategies to naturally control aphids in orchards.
Collapse
Affiliation(s)
- Qingxuan Xu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Changbing Wu
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhenyu Jin
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Changrong Zhang
- Institute of Plant Protection, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Séverin Hatt
- Agroecology and Organic Farming, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Xiaojun Guo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|