1
|
Verbakel L, Lenaerts C, Vranken J, Marchal E, Vanden Broeck J. Essential role of eclosion hormone precursor and receptor genes in desert locust ecdysis. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104736. [PMID: 39622467 DOI: 10.1016/j.jinsphys.2024.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The process of molting represents a critical phase in the life cycle of arthropods, marking periods of growth and development. Central to this process is the eclosion hormone (EH), a neurohormone that plays a pivotal role in initiating and regulating the complex sequence of events leading to successful molting in holometabolan species. Very little information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the two EH precursors and the EH receptor (EHR), a guanylyl cyclase, in a hemimetabolan pest species, the desert locust, Schistocerca gregaria. Using qRT-PCR, an in-depth profiling study of Schgr-EH-1, -2 and Schgr-EHR transcripts was performed. Silencing of Schgr-EH-1, -2 and Schgr-EHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role during this process.
Collapse
Affiliation(s)
- Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium; Nagi Bioscience SA, EPFL Innovation Park (M), Rue des Jordils 1A 1025 Saint-Sulpice, Switzerland
| | - Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium
| | - Jerom Vranken
- Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium; Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Macarini LC, Guimarães ATB, Szinwelski N. Ecotoxicological effects of a glyphosate-based herbicide on Gryllus (Gryllus) assimilis (Orthoptera: Gryllidae) ontogeny: a study on antioxidant system, oxidative stress and cholinergic system. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:219-230. [PMID: 39546078 DOI: 10.1007/s10646-024-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Brazil is an important global agricultural producer and to increase production the country has extensively used glyphosate-based herbicides (GBH), surpassing consumption and sales records. Consequently, concerns have arisen regarding the potential impact of GBH on ecosystems and non-target organisms. Thus, the effects of GBH exposure were evaluated throughout the cricket Gryllus (Gryllus) assimilis ontogeny, with five developmental stages. Each period contained 3 control and 3 treated boxes, with 15 crickets each, resulting in 90 insects at a time. The control groups received water, while the treated ones were continuously exposed to GBH (0.864 mg.GBH.L-1), with the solutions changed every 48 h. After each exposure time the crickets' group were euthanized to assess the activity of antioxidant enzymes (GST, GR, GPx, and CAT), cholinergic enzymes (ChE), and lipid peroxidation (LPO). The results revealed changes in the systems throughout different developmental phases. Specifically, CAT activity exhibited a significant increase during the nymphal phase, associated with the dismutation of hydrogen peroxide. The GBH increased GST, indicating its role in cellular detoxification, particularly during adulthood. In the senescence stage there was a considerable rise in ChE enzymes, suggesting their involvement in both, choline esters breakdown and potential pesticide detoxification. The action of these enzymes to effectively control lipid peroxidation shows the adaptability of this species to environmental contamination. These findings underscore the long-term effects of agrochemical pollution and emphasize the importance of sustainable practices, effective regulations, and alternative weed control methods.
Collapse
Affiliation(s)
- Leanna Camila Macarini
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil.
| | | | - Neucir Szinwelski
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil
| |
Collapse
|
3
|
Hadjaje S, Andrade-Silva I, Dalbe MJ, Clément R, Marthelot J. Mechanics of Drosophila wing deployment. Nat Commun 2024; 15:10577. [PMID: 39663353 PMCID: PMC11634967 DOI: 10.1038/s41467-024-54527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
During their final transformation, insects emerge from the pupal case and deploy their wings within minutes. The wings deploy from a compact origami structure, to form a planar and rigid blade that allows the insect to fly. Deployment is powered by a rapid increase in internal pressure, and by the subsequent flow of hemolymph into the deployable wing structure. Using a combination of imaging techniques, we characterize the internal and external structure of the wing in Drosophila melanogaster, the unfolding kinematics at the organ scale, and the hemolymph flow during deployment. We find that, beyond the mere unfolding of the macroscopic folds, wing deployment also involves wing expansion, with the stretching of epithelial cells and the unwrinkling of the cuticle enveloping the wing. A quantitative computational model, incorporating mechanical measurements of the viscoelastic properties and microstructure of the wing, predicts the existence of an operating point for deployment and captures the dynamics of the process. This model shows that insects exploit material and geometric nonlinearities to achieve rapid and efficient reconfiguration of soft deployable structures.
Collapse
Affiliation(s)
- Simon Hadjaje
- Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France
| | - Ignacio Andrade-Silva
- Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Marie-Julie Dalbe
- Aix-Marseille University, CNRS, Centrale Mediterranée, IRPHE, Marseille, France
| | - Raphaël Clément
- Aix-Marseille University, CNRS, IBDM & Turing Centre for Living Systems (CENTURI), Marseille, France.
| | - Joel Marthelot
- Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France.
| |
Collapse
|
4
|
Lu JM, Shang F, Ding BY, Wang L, Li QC, Wang JJ, Dou W. Characterization of two Bursicon genes and their association with wing development in the brown citrus aphid, Aphis citricidus. INSECT SCIENCE 2024; 31:1684-1696. [PMID: 38339808 DOI: 10.1111/1744-7917.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The tanning hormone, Bursicon, is a neuropeptide secreted by the insect nervous system that functions as a heterodimer composed of Burs-α and Burs-β subunits. It plays a critical role in the processes of cuticle tanning and wing expansion in insects. In this study, we successfully identified the AcBurs-α and AcBurs-β genes in Aphis citricidus. The open reading frames of AcBurs-α and AcBurs-β were 480 and 417 bp in length, respectively. Both AcBurs-α and AcBurs-β exhibited 11 conserved cysteine residues. AcBurs-α and AcBurs-β were expressed during all developmental stages of A. citricidus and showed high expression levels in the winged aphids. To investigate the potential role of AcBurs-α and AcBurs-β in wing development, we employed RNA interference (RNAi) techniques. With the efficient silencing of AcBurs-α (44.90%) and AcBurs-β (52.31%), malformed wings were induced in aphids. The proportions of malformed wings were 22.50%, 25.84%, and 38.34% in dsAcBurs-α-, dsAcBur-β-, and dsAcBurs-α + dsAcBur-β-treated groups, respectively. Moreover, feeding protein kinase A inhibitors (H-89) also increased the proportion of malformed wings to 30.00%. Feeding both double-stranded RNA and inhibitors (H-89) significantly downregulated the wing development-related genes nubbin, vestigial, notch and spalt major. Silence of vestigial through RNAi also led to malformed wings. Meanwhile, the exogenous application of 3 hormones that influence wing development did not affect the expression level of AcBursicon genes. These findings indicate that AcBursicon genes plays a crucial role in wing development in A. citricidus; therefore, it represents a potential molecular target for the control of this pest through RNAi-based approaches.
Collapse
Affiliation(s)
- Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qing-Chun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
6
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
7
|
Li WZ, Wu YK, Zhang YX, Jin L, Li GQ. Behavioral events and functional analysis of bursicon signal during adult eclosion in the 28-spotted larger potato ladybird. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106011. [PMID: 39084776 DOI: 10.1016/j.pestbp.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.
Collapse
Affiliation(s)
- Wen-Ze Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi-Kuan Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu-Xing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Long GY, Yang XB, Wang Z, Zeng QH, Yang H, Jin DC. Wing expansion functional analysis of ion transport peptide gene in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110946. [PMID: 38266956 DOI: 10.1016/j.cbpb.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ion transport peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various physiological processes such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of ITP in Sogatella furcifera are poorly understood. To elucidate the characteristics and biological function of ITP in S. furcifera, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified SfITP gene encodes 117 amino acids. The expression of SfITP gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, SfITP RNAi in 3rd instar nymphs of S. furcifera significantly inhibited the transcript levels of SfITP, resulting in 55% mortality and 78% wing deformity. These findings suggests that SfITP is involved in the regulation of wing expansion in S. furcifera, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China; Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China; Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang 550001, People's Republic of China
| | - Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
| | - Qing-Hui Zeng
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| |
Collapse
|
9
|
Sullivan LF, Barker MS, Felix PC, Vuong RQ, White BH. Neuromodulation and the toolkit for behavioural evolution: can ecdysis shed light on an old problem? FEBS J 2024; 291:1049-1079. [PMID: 36223183 PMCID: PMC10166064 DOI: 10.1111/febs.16650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 05/10/2023]
Abstract
The geneticist Thomas Dobzhansky famously declared: 'Nothing in biology makes sense except in the light of evolution'. A key evolutionary adaptation of Metazoa is directed movement, which has been elaborated into a spectacularly varied number of behaviours in animal clades. The mechanisms by which animal behaviours have evolved, however, remain unresolved. This is due, in part, to the indirect control of behaviour by the genome, which provides the components for both building and operating the brain circuits that generate behaviour. These brain circuits are adapted to respond flexibly to environmental contingencies and physiological needs and can change as a function of experience. The resulting plasticity of behavioural expression makes it difficult to characterize homologous elements of behaviour and to track their evolution. Here, we evaluate progress in identifying the genetic substrates of behavioural evolution and suggest that examining adaptive changes in neuromodulatory signalling may be a particularly productive focus for future studies. We propose that the behavioural sequences used by ecdysozoans to moult are an attractive model for studying the role of neuromodulation in behavioural evolution.
Collapse
Affiliation(s)
- Luis F Sullivan
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Matthew S Barker
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Princess C Felix
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Richard Q Vuong
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Benjamin H White
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
11
|
Salcedo MK, Jung S, Combes SA. Autonomous Expansion of Grasshopper Wings Reveals External Forces Contribute to Final Adult Wing Shape. Integr Comp Biol 2023; 63:1111-1126. [PMID: 37715350 DOI: 10.1093/icb/icad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Ecdysis, transformation from juvenile to adult form in insects, is time-consuming and leaves insects vulnerable to predation. For winged insects, the process of wing expansion during ecdysis, unfurling and expanding the wings, is a critical bottleneck in achieving sexual maturity. Internal and external forces play a role in wing expansion. Vigorous abdominal pumping during wing expansion allows insects to pressurize and inflate their wings, filling them with hemolymph. In addition, many insects adopt expansion-specific postures and, if inhibited, do not expand their wings normally, suggesting that external forces such as gravity may play a role. However, two previous studies over 40 years ago, reported that the forewings of swarming locusts can expand autonomously when removed from the emerging insect and laid flat on a saline solution. Termed "autoexpansion," we replicated previous experiments of autoexpansion on flat liquid media, documenting changes in both wing length and area over time while also focusing on the role of gravity in autoexpansion. Using the North American bird grasshopper Schistocerca americana, we tested four autoexpansion treatments of varying surface tension and hydrophobicity (gravity, deionized water, buffer, and mineral oil) while simultaneously observing and measuring intact, normal wing expansion. Finally, we constructed a simple model of a viscoelastic expanding wing subjected to gravity, to determine whether it could capture aspects of wing expansion. Our data confirmed that wing autoexpansion does occur in S. americana, but autoexpanding wings, especially hindwings, failed to increase to the same final length and area as intact wings. We found that gravity plays an important role in wing expansion, early in the expansion process. Combined with the significant mass increase we documented in intact wings, it suggests that hydraulic pumping of hemolymph into the wings plays an important role in increasing the area of expanding wings, especially in driving expansion of the large, pleated hindwings. Autoexpansion in a non-swarming orthopteran suggests that local cues driving wing autoexpansion may serve a broader purpose, reducing total expansion time and costs by shifting some processes from central to local control. Documenting wing autoexpansion in a widely studied model organism and demonstrating a mathematical model provides a tractable new system for exploring higher level questions about the mechanisms of wing expansion and the implications of autoexpansion, as well as potential bioinspiration for future technologies applicable to micro-air vehicles, space exploration, or medical and prosthetic devices.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
13
|
Salcedo MK, Ellis TE, Sáenz ÁS, Lu J, Worrell T, Madigan ML, Socha JJ. Transient use of hemolymph for hydraulic wing expansion in cicadas. Sci Rep 2023; 13:6298. [PMID: 37072416 PMCID: PMC10113369 DOI: 10.1038/s41598-023-32533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Insect wings must be flexible, light, and strong to allow dynamic behaviors such as flying, mating, and feeding. When winged insects eclose into adults, their wings unfold, actuated hydraulically by hemolymph. Flowing hemolymph in the wing is necessary for functioning and healthy wings, both as the wing forms and as an adult. Because this process recruits the circulatory system, we asked, how much hemolymph is pumped into wings, and what happens to the hemolymph afterwards? Using Brood X cicadas (Magicicada septendecim), we collected 200 cicada nymphs, observing wing transformation over 2 h. Using dissection, weighing, and imaging of wings at set time intervals, we found that within 40 min after emergence, wing pads morphed into adult wings and total wing mass increased to ~ 16% of body mass. Thus, a significant amount of hemolymph is diverted from body to wings to effectuate expansion. After full expansion, in the ~ 80 min after, the mass of the wings decreased precipitously. In fact, the final adult wing is lighter than the initial folded wing pad, a surprising result. These results demonstrate that cicadas not only pump hemolymph into the wings, they then pump it out, producing a strong yet lightweight wing.
Collapse
Affiliation(s)
- Mary K Salcedo
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Tyler E Ellis
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Ángela S Sáenz
- Entomology, University of Maryland, College Park, MD, USA
| | - Joyce Lu
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Terrell Worrell
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Michael L Madigan
- Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - John J Socha
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
14
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Sterkel M, Volonté M, Albornoz MG, Wulff JP, Del Huerto Sánchez M, Terán PM, Ajmat MT, Ons S. The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect Rhodnius prolixus. J Exp Biol 2022; 225:276563. [PMID: 35929492 DOI: 10.1242/jeb.244696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which displays an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (a) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; (b) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ETH expression in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, the knockdown of ETH and OKA did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, ETH knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsEH, dsCCAP and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon CZ knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariano Volonté
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Maximiliano G Albornoz
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariana Del Huerto Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Paula María Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - María Teresa Ajmat
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
16
|
Luo GH, Chen XE, Jiao YY, Zhu GH, Zhang R, Dhandapani RK, Fang JC, Palli SR. SoxC is Required for Ecdysteroid Induction of Neuropeptide Genes During Insect Eclosion. Front Genet 2022; 13:942884. [PMID: 35899187 PMCID: PMC9309532 DOI: 10.3389/fgene.2022.942884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
In insects, the shedding of the old exoskeleton is accomplished through ecdysis which is typically followed by the expansion and tanning of the new cuticle. Four neuropeptides, eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon (Bur) are known to control ecdysis. However, the regulation of these neuropeptide genes is still poorly understood. Here, we report that in the red flour beetle (RFB) Tribolium castaneum and the fall armyworm (FAW) Spodoptera frugiperda, knockdown or knockout of the SoxC gene caused eclosion defects. The expansion and tanning of wings were not complete. In both RFB and FAW, the knockdown or knockout of SoxC resulted in a decrease in the expression of EH gene. Electrophoretic mobility shift assays revealed that the SfSoxC protein directly binds to a motif present in the promoter of SfEH. The luciferase reporter assays in Sf9 cells confirmed these results. These data suggest that transcription factor SoxC plays a key role in ecdysteroid induction of genes coding for neuropeptides such as EH involved in the regulation of insect eclosion.
Collapse
Affiliation(s)
- Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Xi-En Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Yao-Yu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ramesh Kumar Dhandapani
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| |
Collapse
|
17
|
Liu H, Heng J, Wang L, Li Y, Tang X, Huang X, Xia Q, Zhao P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. INSECT SCIENCE 2022; 29:111-127. [PMID: 33860633 DOI: 10.1111/1744-7917.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Clip-domain serine proteases (CLIPs) play important roles in insect innate immunity and development. Our previous studies indicated that CLIP13, an epidermis-specific gene, was involved in cuticle remodeling during molting and metamorphosis in the silkworm, Bombyx mori. However, the transcriptional regulatory mechanism and regulatory pathways of CLIP13 remained unclear. In the present study, we investigated CLIP13 expression and the regulation pathway controlled by 20-hydroxyecdysone (20E) in the silkworm. At the transcriptional level, expression of CLIP13 exhibited pronounced spatial and temporal specificity in different regions of the epidermis; homeodomain transcription factors POU-M2, antennapedia (Antp), and abdominal-B (Abd-B) showed similar expression change trends as CLIP13 in the head capsule, thorax, and abdomen, respectively. Furthermore, results of cell transfection assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation demonstrated that POU-M2, Antp, and Abd-B were involved in the transcriptional regulation of CLIP13 by directly binding to their cis-response elements in CLIP13 promoter. RNA interference-mediated silencing of POU-M2, Antp, and Abd-B led to a decrease of CLIP13 expression in the head capsule, the epidermis of the 1st to 3rd thoracic segments and the 7th to 10th abdominal segments, respectively. Consistent with CLIP13, 20E treatment significantly upregulated expression of POU-M2, Antp, and Abd-B in the silkworm epidermis. Taken together, these data suggest that 20E positively regulates transcription of CLIP13 via homeodomain proteins POU-M2, Antp, and Abd-B in different regions of the silkworm epidermis during metamorphosis, thus affecting the molting process. Our findings provide new insight into the functions of homeodomain transcription factors in insect molting.
Collapse
Affiliation(s)
- Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi Province, 723001, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| |
Collapse
|
18
|
Wang XX, Li J, Wang TX, Yang YN, Zhang HK, Zhou M, Kang L, Wei LY. A novel non-invasive identification of genome editing mutants from insect exuviae. INSECT SCIENCE 2022; 29:21-32. [PMID: 33860620 DOI: 10.1111/1744-7917.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
With the wide application of genome editing in insects, a simple and efficient identification method is urgently needed to meet the increasing demand for mutation detection. Here, taking migratory locusts as a model system, we developed a non-invasive method to accurately identify genome-edited mutants by using DNA from insect exuviae. We compared the quantity and quality of genomic DNA from exuviae in five instar hoppers and found that the 1st instar exuviae had the highest DNA yield and content, while the 3rd instar exuviae had the best quality. Consensus genotypes were identified from genomic DNA of hoppers at different developmental stages in the same individuals. Moreover, we demonstrated that the amplification products from DNA extracted from locust exuviae are the consensus sequences with those from the hemolymph and foreleg pre-tarsus. Therefore, non-invasive samples provide the same genotyping results as minimally invasive and invasive samples of the same individuals. Furthermore, this identification method that uses genomic DNA from exuviae can be used for early screening of positive genome-edited individuals in each generation for adult crossing. In our study, the non-invasive identification method was not only simpler and provided results earlier than existing methods, but also had a better reproducibility and accuracy. This non-invasive identification approach using genomic DNA from exuviae can be adapted to meet the growing demand for genetic analysis and will find wide application in insect genome editing research.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Jing Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Tong-Xin Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yi-Nuo Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hai-Kang Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Meng Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Le Kang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Ya Wei
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Prothoracicostatic Activity of the Ecdysis-Regulating Neuropeptide Crustacean Cardioactive Peptide (CCAP) in the Desert Locust. Int J Mol Sci 2021; 22:ijms222413465. [PMID: 34948262 PMCID: PMC8704491 DOI: 10.3390/ijms222413465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023] Open
Abstract
Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.
Collapse
|
20
|
Muema JM, Bargul JL, Mutunga JM, Obonyo MA, Asudi GO, Njeru SN. Neurotoxic Zanthoxylum chalybeum root constituents invoke mosquito larval growth retardation through ecdysteroidogenic CYP450s transcriptional perturbations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104912. [PMID: 34446188 DOI: 10.1016/j.pestbp.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Intracellular effects exerted by phytochemicals eliciting insect growth-retarding responses during vector control intervention remain largely underexplored. We studied the effects of Zanthoxylum chalybeum Engl. (Rutaceae) (ZCE) root derivatives against malaria (Anopheles gambiae) and arbovirus vector (Aedes aegypti) larvae to decipher possible molecular targets. We report dose-dependent biphasic effects on larval response, with transient exposure to ZCE and its bioactive fraction (ZCFr.5) inhibiting acetylcholinesterase (AChE) activity, inducing larval lethality and growth retardation at sublethal doses. Half-maximal lethal concentrations (LC50) for ZCE against An. gambiae and Ae. aegypti larvae after 24-h exposure were 9.00 ppm and 12.26 ppm, respectively. The active fraction ZCFr.5 exerted LC50 of 1.58 ppm and 3.21 ppm for An. gambiae and Ae. aegypti larvae, respectively. Inhibition of AChE was potentially linked to larval toxicity afforded by 2-tridecanone, palmitic acid (hexadecanoic acid), linoleic acid ((Z,Z)-9,12-octadecadienoic acid), sesamin, β-caryophyllene among other compounds identified in the bioactive fraction. In addition, the phenotypic larval retardation induced by ZCE root constituents was exerted through transcriptional modulation of ecdysteroidogenic CYP450 genes. Collectively, these findings provide an explorative avenue for developing potential mosquito control agents from Z. chalybeum root constituents.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya; Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya
| | - James M Mutunga
- Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry & Molecular Biology, Egerton University, Egerton, Kenya
| | - George O Asudi
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
| |
Collapse
|
21
|
Zieger E, Calcino AD, Robert NSM, Baranyi C, Wanninger A. Ecdysis-related neuropeptide expression and metamorphosis in a non-ecdysozoan bilaterian. Evolution 2021; 75:2237-2250. [PMID: 34268730 DOI: 10.1111/evo.14308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Ecdysis-related neuropeptides (ERNs), including eclosion hormone, crustacean cardioactive peptide, myoinhibitory peptide, bursicon alpha, and bursicon beta regulate molting in insects and crustaceans. Recent evidence further revealed that ERNs likely play an ancestral role in invertebrate life cycle transitions, but their tempo-spatial expression patterns have not been investigated outside Arthropoda. Using RNA-seq and in situ hybridization, we show that ERNs are broadly expressed in the developing nervous system of a mollusk, the polyplacophoran Acanthochitona fascicularis. While some ERN-expressing neurons persist from larval to juvenile stages, others are only present during settlement and metamorphosis. These transient neurons belong to the "ampullary system," a polyplacophoran-specific larval sensory structure. Surprisingly, however, ERN expression is absent from the apical organ, another larval sensory structure that degenerates before settlement is completed in A. fascicularis. Our findings thus support a role of ERNs in A. fascicularis metamorphosis but contradict the common notion that the apical organ-like structures shared by various aquatic invertebrates (i.e., cnidarians, annelids, mollusks, echinoderms) are of general importance for this process.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andrew D Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Nicolas S M Robert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Elliott AD, Berndt A, Houpert M, Roy S, Scott RL, Chow CC, Shroff H, White BH. Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila. eLife 2021; 10:68656. [PMID: 34236312 PMCID: PMC8331185 DOI: 10.7554/elife.68656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single-cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution. How do we find out how the brain works? One way is to use imaging techniques to visualise an animal’s brain in action as it performs simple behaviours: as the animal moves, parts of its brain light up under the microscope. For laboratory animals like fruit flies, which have relatively small brains, this lets us observe their brain activity right down to the level of individual brain cells. The brain directs movements via collective activity of the body’s muscles. Our ability to track the activity of individual muscles is, however, more limited than our ability to observe single brain cells: even modern imaging technology still cannot monitor the activity of all the muscle cells in an animal’s body as it moves about. Yet this is precisely the information that scientists need to fully understand how the brain generates behaviour. Fruit flies perform specific behaviours at certain stages of their life cycle. When the fly pupa begins to metamorphose into an adult insect, it performs a fixed sequence of movements involving a set number of muscles, which is called the pupal ecdysis sequence. This initial movement sequence and the rest of metamorphosis both occur within the confines of the pupal case, which is a small, hardened shell surrounding the whole animal. Elliott et al. set out to determine if the fruit fly pupa’s ecdysis sequence could be used as a kind of model, to describe a simple behaviour at the level of individual muscles. Imaging experiments used fly pupae that were genetically engineered to produce an activity-dependent fluorescent protein in their muscle cells. Pupal cases were treated with a chemical to make them transparent, allowing easy observation of their visually ‘labelled’ muscles. This yielded a near-complete record of muscle activity during metamorphosis. Initially, individual muscles became active in small groups. The groups then synchronised with each other over the different regions of the pupa’s body to form distinct movements, much as syllables join to form words. This synchronisation was key to progression through metamorphosis and was co-ordinated at each step by specialised nerve cells that produce or respond to specific hormones. These results reveal how the brain might direct muscle activity to produce movement patterns. In the future, Elliott et al. hope to compare data on muscle activity with comprehensive records of brain cell activity, to shed new light on how the brain, muscles, and other factors work together to control behaviour.
Collapse
Affiliation(s)
- Amicia D Elliott
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Adama Berndt
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Matthew Houpert
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Snehashis Roy
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Robert L Scott
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Carson C Chow
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Benjamin H White
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
23
|
Shen CH, Xu QY, Fu KY, Guo WC, Jin L, Li GQ. Ecdysis triggering hormone is essential for larva-pupa-adult transformation in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2021; 30:241-252. [PMID: 33368728 DOI: 10.1111/imb.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In Drosophila melanogaster, ecdysis triggering hormone (ETH) is the key factor triggering ecdysis behaviour and promoting trachea clearance. However, whether ETH plays the dual roles in non-dipteran insects is unknown. In this survey, we found that Ldeth mRNA levels were positively correlated with circulating 20-hydroxyecdysone (20E) titers in Leptinotarsa decemlineata. Ingestion of an ecdysteroid agonist halofenozide or 20E stimulated the transcription of Ldeth, whereas RNA interference (RNAi) of ecdysteroidogenesis (LdPTTH or LdSHD) or 20E signalling (LdEcR, LdUSP or LdFTZ-F1) genes inhibited the expression, indicating ETH acts downstream of 20E. RNAi of Ldeth at the final instar stage impaired pupation. More than 80% of the Ldeth-depleted beetles remained as prepupae, completely wrapped in the old larval cuticles. These prepupae became withered, dried and darkened gradually, and finally died in soil. The remaining Ldeth hypomorphs pupated and emerged as abnormal adults, bearing smaller and wrinkle elytrum and hindwing. Moreover, the tracheae in the Ldeth hypomorphs were full of liquid. We accordingly proposed that the failure of trachea clearance disenabled air-swallowing after pupa-adult ecdysis and impacted wing expansion. Our results suggest that ETH plays the dual roles, initiation of ecdysis and motivation of trachea clearance, in a coleopteran.
Collapse
Affiliation(s)
- C-H Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - L Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Ancestral Role of Ecdysis-Related Neuropeptides in Animal Life Cycle Transitions. Curr Biol 2021; 31:207-213.e4. [DOI: 10.1016/j.cub.2020.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
|
25
|
Luan H, Diao F, Scott RL, White BH. The Drosophila Split Gal4 System for Neural Circuit Mapping. Front Neural Circuits 2020; 14:603397. [PMID: 33240047 PMCID: PMC7680822 DOI: 10.3389/fncir.2020.603397] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types-and even individual neurons-in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body-the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.
Collapse
Affiliation(s)
| | | | | | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD, United States
| |
Collapse
|
26
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
27
|
Qian HY, Zhang X, Zhao GD, Guo HM, Li G, Xu AY. Effects of Pyriproxyfen Exposure on Reproduction and Gene Expressions in Silkworm, Bombyx mori. INSECTS 2020; 11:insects11080467. [PMID: 32722009 PMCID: PMC7469178 DOI: 10.3390/insects11080467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
The silkworm, Bombyx mori Linnaeus, is an important economic insect and a representative model organism of Lepidoptera, which has been widely used in the study of reproduction and development. The development of the silkworm's reproductive gland is easily affected by many external factors, such as chemical insecticides. After the silkworm larvae were treated with different concentrations of pyriproxyfen, the results showed that the number of eggs and hatching rate of eggs in the silkworm can be reduced by pyriproxyfen, and the concentration effects were displayed. Pyriproxyfen exposure could affect the normal development of the ovary tissue by reducing the number of oocytes and oogonia in the ovaries of silkworm fed with pyriproxyfen. We employed qRT-PCR, to detect the expressions of genes related to ovary development (Vg, Ovo, Otu, Sxl-S and Sxl-L) and hormone regulation (EcR and JHBP2) in silkworm. Our study showed that the transcription levels of Vg, Ovo, Otu, Sxl-S and Sxl-L in the treatment group were lower than those in the control group (6.08%, 61.99%, 83.51%, 99.31% and 71.95%, respectively). The transcription level of ECR was 70.22% for the control group, while that of JHBP2 was upregulated by 3.92-fold. Changes of transcription levels of these genes caused by pyriproxyfen exposure ultimately affect the absorption of nutrients, energy metabolism, ovary development and egg formation of the silkworm, thus leading to reproductive disorders of the silkworm. In general, our study revealed the response of silkworm reproduction to pyriproxyfen exposure and provided a certain reference value for the metabolism of the silkworm to pyriproxyfen.
Collapse
Affiliation(s)
- He-Ying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
- Correspondence: (H.-Y.Q.); (A.-Y.X.)
| | - Xiao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
| | - Guo-Dong Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
| | - Hui-Min Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
| | - Gang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
| | - An-Ying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
- Correspondence: (H.-Y.Q.); (A.-Y.X.)
| |
Collapse
|
28
|
Cheng YQ, Wang SB, Liu JH, Jin L, Liu Y, Li CY, Su YR, Liu YR, Sang X, Wan Q, Liu C, Yang L, Wang ZC. Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif 2020; 53:e12865. [PMID: 32588948 PMCID: PMC7445401 DOI: 10.1111/cpr.12865] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) plays a pivotal role in tumour fate determination. The TME acts together with the genetic material of tumour cells to determine their initiation, metastasis and drug resistance. Stromal cells in the TME promote the growth and metastasis of tumour cells by secreting soluble molecules or exosomes. The abnormal microenvironment reduces immune surveillance and tumour killing. The TME causes low anti‐tumour drug penetration and reactivity and high drug resistance. Tumour angiogenesis and microenvironmental hypoxia limit the drug concentration within the TME and enhance the stemness of tumour cells. Therefore, modifying the TME to effectively attack tumour cells could represent a comprehensive and effective anti‐tumour strategy. Normal cells, such as stem cells and immune cells, can penetrate and disrupt the abnormal TME. Reconstruction of the TME with healthy cells is an exciting new direction for tumour treatment. We will elaborate on the mechanism of the TME to support tumours and the current cell therapies for targeting tumours and the TME—such as immune cell therapies, haematopoietic stem cell (HSC) transplantation therapies, mesenchymal stem cell (MSC) transfer and embryonic stem cell‐based microenvironment therapies—to provide novel ideas for producing breakthroughs in tumour therapy strategies.
Collapse
Affiliation(s)
- Ya Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Hui Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Borbolis F, Rallis J, Kanatouris G, Kokla N, Karamalegkos A, Vasileiou C, Vakaloglou KM, Diallinas G, Stravopodis DJ, Zervas CG, Syntichaki P. mRNA decapping is an evolutionarily conserved modulator of neuroendocrine signaling that controls development and ageing. eLife 2020; 9:e53757. [PMID: 32366357 PMCID: PMC7200159 DOI: 10.7554/elife.53757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic 5'-3' mRNA decay plays important roles during development and in response to stress, regulating gene expression post-transcriptionally. In Caenorhabditis elegans, deficiency of DCAP-1/DCP1, the essential co-factor of the major cytoplasmic mRNA decapping enzyme, impacts normal development, stress survival and ageing. Here, we show that overexpression of dcap-1 in neurons of worms is sufficient to increase lifespan through the function of the insulin/IGF-like signaling and its effector DAF-16/FOXO transcription factor. Neuronal DCAP-1 affects basal levels of INS-7, an ageing-related insulin-like peptide, which acts in the intestine to determine lifespan. Short-lived dcap-1 mutants exhibit a neurosecretion-dependent upregulation of intestinal ins-7 transcription, and diminished nuclear localization of DAF-16/FOXO. Moreover, neuronal overexpression of DCP1 in Drosophila melanogaster confers longevity in adults, while neuronal DCP1 deficiency shortens lifespan and affects wing morphogenesis, cell non-autonomously. Our genetic analysis in two model-organisms suggests a critical and conserved function of DCAP-1/DCP1 in developmental events and lifespan modulation.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - John Rallis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - George Kanatouris
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Nikolitsa Kokla
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Antonis Karamalegkos
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Christina Vasileiou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlex/polisGreece
| | - Katerina M Vakaloglou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| | - George Diallinas
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Dimitrios J Stravopodis
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Christos G Zervas
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| |
Collapse
|
30
|
Melnattur K, Zhang B, Shaw PJ. Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. SCIENCE ADVANCES 2020; 6:eaaz2166. [PMID: 32494708 PMCID: PMC7209998 DOI: 10.1126/sciadv.aaz2166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/25/2020] [Indexed: 06/06/2023]
Abstract
Sleep is plastic and is influenced by ecological factors and environmental changes. The mechanisms underlying sleep plasticity are not well understood. We show that manipulations that impair flight in Drosophila increase sleep as a form of sleep plasticity. We disrupted flight by blocking the wing-expansion program, genetically disrupting flight, and by mechanical wing perturbations. We defined a new sleep regulatory circuit starting with specific wing sensory neurons, their target projection neurons in the ventral nerve cord, and the neurons they connect to in the central brain. In addition, we identified a critical neuropeptide (burs) and its receptor (rickets) that link wing expansion and sleep. Disrupting flight activates these sleep-promoting projection neurons, as indicated by increased cytosolic calcium levels, and stably increases the number of synapses in their axonal projections. These data reveal an unexpected role for flight in regulating sleep and provide new insight into how sensory processing controls sleep need.
Collapse
Affiliation(s)
- K. Melnattur
- Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - B. Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - P. J. Shaw
- Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Scott RL, Diao F, Silva V, Park S, Luan H, Ewer J, White BH. Non-canonical Eclosion Hormone-Expressing Cells Regulate Drosophila Ecdysis. iScience 2020; 23:101108. [PMID: 32408174 PMCID: PMC7225733 DOI: 10.1016/j.isci.2020.101108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
Eclosion hormone (EH) was originally identified as a brain-derived hormone capable of inducing the behavioral sequences required for molting across insect species. However, its role in this process (called ecdysis) has since been confounded by discrepancies in the effects of genetic and cellular manipulations of EH function in Drosophila. Although knock-out of the Eh gene results in severe ecdysis-associated deficits accompanied by nearly complete larval lethality, ablation of the only neurons known to express EH (i.e. Vm neurons) is only partially lethal and surviving adults emerge, albeit abnormally. Using new tools for sensitively detecting Eh gene expression, we show that EH is more widely expressed than previously thought, both within the nervous system and in somatic tissues, including trachea. Ablating all Eh-expressing cells has effects that closely match those of Eh gene knock-out; developmentally suppressing them severely disrupts eclosion. Our results thus clarify and extend the scope of EH action. Eh is expressed in non-neuronal peripheral tissues including trachea Eh expression is found in neurons other than the Vm neurons in pharate adults Non-Vm expression is essential for eclosion Non-neuronal Eh expression is required for normal larval ecdysis
Collapse
Affiliation(s)
- Robert L Scott
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Valeria Silva
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Playa Ancha, Valparaiso, CHILE
| | - Sanghoon Park
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Playa Ancha, Valparaiso, CHILE
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Taylor DM, Olds CL, Haney RS, Torrevillas BK, Luckhart S. Comprehensive and Durable Modulation of Growth, Development, Lifespan and Fecundity in Anopheles stephensi Following Larval Treatment With the Stress Signaling Molecule and Novel Antimalarial Abscisic Acid. Front Microbiol 2020; 10:3024. [PMID: 32010091 PMCID: PMC6979008 DOI: 10.3389/fmicb.2019.03024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
The larval environment of holometabolous insects determines many adult life history traits including, but not limited to, rate and success of development and adult lifespan and fecundity. The ancient stress signaling hormone abscisic acid (ABA), released by plants inundated with water and by leaf and root fragments in water, is likely ubiquitous in the mosquito larval environment and is well known for its wide ranging effects on invertebrate biology. Accordingly, ABA is a relevant stimulus and signal for mosquito development. In our studies, the addition of ABA at biologically relevant levels to larval rearing containers accelerated the time to pupation and increased death of A. stephensi pupae. We could not attribute these effects, however, to ABA-dependent changes in JH biosynthesis-associated gene expression, 20E titers or transcript patterns of insulin-like peptide genes. Adult females derived from ABA-treated larvae had reduced total protein content and significantly reduced post blood meal transcript expression of vitellogenin, effects that were consistent with variably reduced egg clutch sizes and oviposition success from the first through the third gonotrophic cycles. Adult female A. stephensi derived from ABA-treated larvae also exhibited reduced lifespans relative to controls. Collectively, these effects of ABA on A. stephensi life history traits are robust, durable and predictive of multiple impacts of an important malaria vector spreading to new malaria endemic regions.
Collapse
Affiliation(s)
- Dean M Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Cassandra L Olds
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Reagan S Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Brandi K Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
33
|
Simon E, de la Puebla SF, Guerrero I. Drosophila Zic family member odd-paired is needed for adult post-ecdysis maturation. Open Biol 2019; 9:190245. [PMID: 31847787 PMCID: PMC6936260 DOI: 10.1098/rsob.190245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Specific neuropeptides regulate in arthropods the shedding of the old cuticle (ecdysis) followed by maturation of the new cuticle. In Drosophila melanogaster, the last ecdysis occurs at eclosion from the pupal case, with a post-eclosion behavioural sequence that leads to wing extension, cuticle stretching and tanning. These events are highly stereotyped and are controlled by a subset of crustacean cardioactive peptide (CCAP) neurons through the expression of the neuropeptide Bursicon (Burs). We have studied the role of the transcription factor Odd-paired (Opa) during the post-eclosion period. We report that opa is expressed in the CCAP neurons of the central nervous system during various steps of the ecdysis process and in peripheral CCAP neurons innerving the larval muscles involved in adult ecdysis. We show that its downregulation alters Burs expression in the CCAP neurons. Ectopic expression of Opa, or the vertebrate homologue Zic2, in the CCAP neurons also affects Burs expression, indicating an evolutionary functional conservation. Finally, our results show that, independently of its role in Burs regulation, Opa prevents death of CCAP neurons during larval development.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sergio Fernández de la Puebla
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
34
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci U S A 2019; 116:25333-25342. [PMID: 31757847 PMCID: PMC6911193 DOI: 10.1073/pnas.1914096116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.
Collapse
Affiliation(s)
- Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116;
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Mingyuan Zhu
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Stephanie Brocke
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Cindy T Hon
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieur de Lyon, Claud Bernard University Lyon 1, CNRS, Institut National de la Recherche Agronomique, F-69342 Lyon, France
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
35
|
Deshpande SA, Meiselman M, Hice RH, Arensburger P, Rivera-Perez C, Kim DH, Croft RL, Noriega FG, Adams ME. Ecdysis triggering hormone receptors regulate male courtship behavior via antennal lobe interneurons in Drosophila. Gen Comp Endocrinol 2019; 278:79-88. [PMID: 30543770 DOI: 10.1016/j.ygcen.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Matthew Meiselman
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California, Riverside, CA 92521, United States
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 917684, United States
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Do-Hyoung Kim
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Rachel L Croft
- Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Michael E Adams
- Department of Entomology, University of California, Riverside, CA 92521, United States; Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
36
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
37
|
Bacqué-Cazenave J, Berthomieu M, Cattaert D, Fossat P, Delbecque JP. Do arthropods feel anxious during molts? ACTA ACUST UNITED AC 2019; 222:jeb.186999. [PMID: 30530836 DOI: 10.1242/jeb.186999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
The molting process of arthropods, chiefly controlled by ecdysteroids, is generally considered very stressful. Our previous investigations have shown that crayfish, after having experienced stressful situations, display anxiety-like behavior (ALB), characterized by aversion to light in a dark/light plus-maze (DLPM). In the present experiments, the spontaneous exploratory behavior of isolated crayfish was analyzed in a DLPM at different stages of their molt cycle. All tested animals displayed transitory aversion to light similar to ALB, before and, mostly, after molting, but not during inter-molt. Injection of ecdysteroids into inter-molt animals elicited ALB after a delay of 4 days, suggesting a long-term, possibly indirect, hormonal effect. Importantly, ecdysteroid-induced ALB was suppressed by the injection of an anxiolytic benzodiazepine. Thus, molts and their hormonal control impose internal stress on crayfish, leading to aversion behavior that has the main characteristics of anxiety. These observations are possibly generalizable to many other arthropods.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marion Berthomieu
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Daniel Cattaert
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Pascal Fossat
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Jean Paul Delbecque
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
38
|
Steyaert J, Scheveneels W, Vanneste J, Van Damme P, Robberecht W, Callaerts P, Bogaert E, Van Den Bosch L. FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins. Hum Mol Genet 2018; 27:4103-4116. [PMID: 30379317 PMCID: PMC6240733 DOI: 10.1093/hmg/ddy303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases characterized by the progressive loss of specific groups of neurons. Due to clinical, genetic and pathological overlap, both diseases are considered as the extremes of one disease spectrum and in a number of ALS and FTD patients, fused in sarcoma (FUS) aggregates are present. Even in families with a monogenetic disease cause, a striking variability is observed in disease presentation. This suggests the presence of important modifying genes. The identification of disease-modifying genes will contribute to defining clear therapeutic targets and to understanding the pathways involved in motor neuron death. In this study, we established a novel in vivo screening platform in which new modifying genes of FUS toxicity can be identified. Expression of human FUS induced the selective apoptosis of crustacean cardioactive peptide (CCAP) neurons from the ventral nerve cord of fruit flies. No defects in the development of these neurons were observed nor were the regulatory CCAP neurons from the brain affected. We used the number of CCAP neurons from the ventral nerve cord as an in vivo read-out for FUS toxicity in neurons. Via a targeted screen, we discovered a potent modifying role of proteins involved in nucleocytoplasmic transport. Downregulation of Nucleoporin 154 and Exportin1 (XPO1) prevented FUS-induced neurotoxicity. Moreover, we show that XPO1 interacted with FUS. Silencing XPO1 significantly reduced the propensity of FUS to form inclusions upon stress. Taken together, our findings point to an important role of nucleocytoplasmic transport proteins in FUS-induced ALS/FTD.
Collapse
Affiliation(s)
- Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, Leuven, Belgium
| | - Elke Bogaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| |
Collapse
|
39
|
Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 2018; 19:711. [PMID: 30257651 PMCID: PMC6158917 DOI: 10.1186/s12864-018-5057-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5057-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Jodi L Alexander
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Simon G Webster
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK.
| |
Collapse
|
40
|
Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron. Proc Natl Acad Sci U S A 2018; 115:E6890-E6899. [PMID: 29959203 PMCID: PMC6055185 DOI: 10.1073/pnas.1714610115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Whereas local recycling of synaptic vesicles has been investigated intensively, there are few studies on recycling of DCV proteins. We set up a paradigm to study DCVs in a neuron whose activity we can control. We validate our model by confirming many previous observations on DCV cell biology. We identify a set of genes involved in recycling of DCV proteins. We also find evidence that different mechanisms of DCV priming and exocytosis may operate at high and low neural activity. Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.
Collapse
|
41
|
Diao F, Elliott AD, Diao F, Shah S, White BH. Neuromodulatory connectivity defines the structure of a behavioral neural network. eLife 2017; 6:29797. [PMID: 29165248 PMCID: PMC5720592 DOI: 10.7554/elife.29797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here, we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network. Why do animals behave the way they do? Behavior occurs in response to signals from the environment, such as those indicating food or danger, or signals from the body, such as those indicating hunger or thirst. The nervous system detects these signals and triggers an appropriate response, such as seeking food or fleeing a threat. But because much of the nervous system takes part in generating these responses, it can make it difficult to understand how even simple behaviors come about. One behavior that has been studied extensively is molting in insects. Molting enables insects to grow and develop, and involves casting off the outer skeleton of the previous developmental stage. To do this, the insect performs a series of repetitive movements, known as an ecdysis sequence. In the fruit fly, the pupal ecdysis sequence consists of three distinct patterns rhythmic abdominal movement. A hormone called ecdysis triggering hormone, or ETH for short, initiates this sequence by triggering the release of two further hormones, Bursicon and CCAP. All three hormones act on the nervous system to coordinate molting behavior, but exactly how they do so is unclear. Diao et al. have now used genetic tools called Trojan exons to identify the neurons of fruit flies on which these hormones act. Trojan exons are short sequences of DNA that can be inserted into non-coding regions of a target gene to mark or manipulate the cells that express it. When a cell uses its copy of the target gene to make a protein, it also makes the product encoded by the Trojan exon. Using this technique, Diao et al. identified three sets of neurons that produce receptor proteins that recognize the molting hormones. Neurons with ETH receptors start the molting process by activating neurons that make Bursicon and CCAP. Neurons with Bursicon receptors then generate motor rhythms within the nervous system. Finally, neurons with CCAP receptors respond to these rhythms and produce the abdominal movements of the ecdysis sequence. Many other animal behaviors depend on substances like ETH, Bursicon and CCAP, which act within the brain to change the activity of neurons and circuits. The work of Diao et al. suggests that identifying the sites at which such substances act can help reveal the circuits that govern complex behaviors.
Collapse
Affiliation(s)
- Feici Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Amicia D Elliott
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, United States
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Sarav Shah
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
42
|
Endocrine network essential for reproductive success in Drosophila melanogaster. Proc Natl Acad Sci U S A 2017; 114:E3849-E3858. [PMID: 28439025 DOI: 10.1073/pnas.1620760114] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ecdysis-triggering hormone (ETH) was originally discovered and characterized as a molt termination signal in insects through its regulation of the ecdysis sequence. Here we report that ETH persists in adult Drosophila melanogaster, where it functions as an obligatory allatotropin to promote juvenile hormone (JH) production and reproduction. ETH signaling deficits lead to sharply reduced JH levels and consequent reductions of ovary size, egg production, and yolk deposition in mature oocytes. Expression of ETH and ETH receptor genes is in turn dependent on ecdysone (20E). Furthermore, 20E receptor knockdown specifically in Inka cells reduces fecundity. Our findings indicate that the canonical developmental roles of 20E, ETH, and JH during juvenile stages are repurposed to function as an endocrine network essential for reproductive success.
Collapse
|
43
|
The ecdysis triggering hormone system is essential for successful moulting of a major hemimetabolous pest insect, Schistocerca gregaria. Sci Rep 2017; 7:46502. [PMID: 28417966 PMCID: PMC5394484 DOI: 10.1038/srep46502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Insects are enclosed in a rigid exoskeleton, providing protection from desiccation and mechanical injury. To allow growth, this armour needs to be replaced regularly in a process called moulting. Moulting entails the production of a new exoskeleton and shedding of the old one and is induced by a pulse in ecdysteroids, which activates a peptide-mediated signalling cascade. In Holometabola, ecdysis triggering hormone (ETH) is the key factor in this cascade. Very little functional information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the ETH precursor and the pharmacological and functional characterisation of the ETH receptor in a hemimetabolous pest species, the desert locust, Schistocerca gregaria. Activation of SchgrETHR by SchgrETH results in an increase of both Ca2+ and cyclic AMP, suggesting that SchgrETHR displays dual coupling properties in an in vitro cell-based assay. Using qRT-PCR, an in-depth profiling study of SchgrETH and SchgrETHR transcripts was performed. Silencing of SchgrETH and SchgrETHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role in moulting.
Collapse
|
44
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
45
|
Mena W, Diegelmann S, Wegener C, Ewer J. Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators. eLife 2016; 5. [PMID: 27976997 PMCID: PMC5158135 DOI: 10.7554/elife.19686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.
Collapse
Affiliation(s)
- Wilson Mena
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| | - Sören Diegelmann
- Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | | | - John Ewer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
46
|
Flaven-Pouchon J, Farine JP, Ewer J, Ferveur JF. Regulation of cuticular hydrocarbon profile maturation by Drosophila tanning hormone, bursicon, and its interaction with desaturase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:87-96. [PMID: 27794461 DOI: 10.1016/j.ibmb.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Shortly after emergence the exoskeleton (cuticle) of adult insects is rapidly expanded, hardened (sclerotized), and pigmented (melanized). In parallel with this process, the oenocytes, which are large polyploid cells located below the abdominal epidermis, secrete onto the cuticle a cocktail of cuticular hydrocarbons (CHs) and waxes. These improve the waterproofing of the cuticle, and also provide important chemosensory and pheromonal cues linked with gender, age, and species differentiation. The hardening and pigmentation of the new cuticle are controlled by the neurohormone, bursicon, and its receptor, encoded by the DLGR2 receptor, rickets (rk); by contrast, little is known about the timecourse of changes in CH profile and about the role of bursicon in this process. Here we show in Drosophila that rk function is also required for the normal maturation of the fly's CH profile, with flies mutant for rk function showing dramatically elevated levels of CHs. Interestingly, this effect is mostly abrogated by mutations in the Δ9 desaturase encoded by the desaturase1 gene, which introduces a first double bond into elongated fatty-acid chains, suggesting that desaturase1 acts downstream of rk. In addition, flies mutant for rk showed changes in the absolute and relative levels of specific 7-monoenes (in males) and 7,11-dienes (in females). The fact that these differences in CH amounts were obtained using extractions of very different durations suggests that the particular CH profile of flies mutant for rk is not simply due to their unsclerotized cuticle but that bursicon may be involved in the process of CH biosynthesis itself.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Centro Interdiciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaíso, Chile
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne-Franche-Comté 6, Bd Gabriel, F-21000 Dijon, France
| | - John Ewer
- Centro Interdiciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaíso, Chile.
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne-Franche-Comté 6, Bd Gabriel, F-21000 Dijon, France.
| |
Collapse
|
47
|
Yu B, Li DT, Wang SL, Xu HJ, Bao YY, Zhang CX. Ion transport peptide (ITP) regulates wing expansion and cuticle melanism in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2016; 25:778-787. [PMID: 27515909 DOI: 10.1111/imb.12262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ion transport peptide (ITP) and its alternatively spliced homologous ITP-like (ITPL) products play important roles in various insect developmental processes. We found for the first time that alternative 5' untranslated regions (5' UTRs) of ITPL (NilluITPLs-1, -2, -3 and -4) control spatiotemporal expression in the brown planthopper, Nilaparvata lugens, as demonstrated by reverse-transcription quantitative PCR. By using an alternative 5' UTR, NilluITPL-1 was expressed exclusively in the male reproductive system, resulting in the production of the NilluITPL seminal fluid protein. Interestingly, NilluITPLs-3 and -4 were expressed exclusively in the integument, indicating a specialized function for NilluITPL during ecdysis and eclosion. We investigated the functions of NilluITP and NilluITPL using RNA interference (RNAi). We did not observe apparent phenotypes when expression of NilluITPLs was suppressed. However, when NilluITP expression was suppressed, the insect exhibited melanism and failed wing expansion, indicating that NilluITP is a neuropeptide associated with wing expansion in addition to bursicon. Additionally, in contrast to bursicon, the insects showed increased melanism when NilluITP was eliminated by RNAi. Unlike previous studies of ITP/ITPL in other species, NilluITP was very important in the control of N. lugens postecdysial behaviours but was not critical during ecdysis. Thus, the functions of ITP and ITPL are more complex in insects than previously thought.
Collapse
Affiliation(s)
- B Yu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - D-T Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - S-L Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - H-J Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Y-Y Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - C-X Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Strand MR, Brown MR, Vogel KJ. Mosquito Peptide Hormones: Diversity, Production, and Function. ADVANCES IN INSECT PHYSIOLOGY 2016; 51:145-188. [PMID: 30662099 PMCID: PMC6338476 DOI: 10.1016/bs.aiip.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from different precursor proteins and have a range of activities. Early studies relied on purification of bioactive peptides for hormone identification, but more recently genomic data have provided the information needed to more comprehensively identify peptide hormone genes and associated receptors. The first part of this chapter summarizes the known or predicted peptide hormones that are produced by mosquitoes. The second part of this chapter discusses the sources of these molecules and their functions.
Collapse
Affiliation(s)
- M R Strand
- University of Georgia, Athens, GA, United States
| | - M R Brown
- University of Georgia, Athens, GA, United States
| | - K J Vogel
- University of Georgia, Athens, GA, United States
| |
Collapse
|
49
|
Liu Y, Liao S, Veenstra JA, Nässel DR. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep 2016; 6:26620. [PMID: 27197757 PMCID: PMC4873736 DOI: 10.1038/srep26620] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 01/20/2023] Open
Abstract
The insulin/insulin-like growth factor signaling pathway is evolutionarily conserved in animals, and is part of nutrient-sensing mechanisms that control growth, metabolism, reproduction, stress responses, and lifespan. In Drosophila, eight insulin-like peptides (DILP1-8) are known, six of which have been investigated in some detail, whereas expression and functions of DILP1 and DILP4 remain enigmatic. Here we demonstrate that dilp1/DILP1 is transiently expressed in brain insulin producing cells (IPCs) from early pupa until a few days of adult life. However, in adult female flies where diapause is triggered by low temperature and short days, within a time window 0–10h post-eclosion, the dilp1/DILP1 expression remains high for at least 9 weeks. The dilp1 mRNA level is increased in dilp2, 3, 5 and dilp6 mutant flies, indicating feedback regulation. Furthermore, the DILP1 expression in IPCs is regulated by short neuropeptide F, juvenile hormone and presence of larval adipocytes. Male dilp1 mutant flies display increased lifespan and reduced starvation resistance, whereas in female dilp1 mutants oviposition is reduced. Thus, DILP1 is expressed in non-feeding stages and in diapausing flies, is under feedback regulation and appears to play sex-specific functional roles.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Sifang Liao
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, 33405 Talence Cedex, France
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
50
|
Diao F, Mena W, Shi J, Park D, Diao F, Taghert P, Ewer J, White BH. The Splice Isoforms of the Drosophila Ecdysis Triggering Hormone Receptor Have Developmentally Distinct Roles. Genetics 2016; 202:175-89. [PMID: 26534952 PMCID: PMC4701084 DOI: 10.1534/genetics.115.182121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone's neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced "Trojan exon" technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks.
Collapse
Affiliation(s)
- Feici Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Wilson Mena
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Playa Ancha, Valparaiso, Chile
| | - Jonathan Shi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110
| | - Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110
| | - John Ewer
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Playa Ancha, Valparaiso, Chile
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|