1
|
Iwasaki K, Neuhauser C, Stokes C, Rayshubskiy A. The fruit fly, Drosophila melanogaster, as a microrobotics platform. Proc Natl Acad Sci U S A 2025; 122:e2426180122. [PMID: 40198707 PMCID: PMC12012547 DOI: 10.1073/pnas.2426180122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Engineering small autonomous agents capable of operating in the microscale environment remains a key challenge, with current systems still evolving. Our study explores the fruit fly, Drosophila melanogaster, a classic model system in biology and a species adept at microscale interaction, as a biological platform for microrobotics. Initially, we focus on remotely directing the walking paths of fruit flies in an experimental arena. We accomplish this through two distinct approaches: harnessing the fruit flies' optomotor response and optogenetic modulation of its olfactory system. These techniques facilitate reliable and repeated guidance of flies between arbitrary spatial locations. We guide flies along predetermined trajectories, enabling them to scribe patterns resembling textual characters through their locomotion. We enhance olfactory-guided navigation through additional optogenetic activation of attraction-inducing mushroom body output neurons. We extend this control to collective behaviors in shared spaces and navigation through constrained maze-like environments. We further use our guidance technique to enable flies to carry a load across designated points in space, establishing the upper bound on their weight-carrying capabilities. Additionally, we demonstrate that visual guidance can facilitate novel interactions between flies and objects, showing that flies can consistently relocate a small spherical object over significant distances. Last, we demonstrate multiagent formation control, with flies alternating between distinct spatial patterns. Beyond expanding tools available for microrobotics, these behavioral contexts can provide insights into the neurological basis of behavior in fruit flies.
Collapse
Affiliation(s)
- Kenichi Iwasaki
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | - Charles Neuhauser
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Chris Stokes
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | | |
Collapse
|
2
|
Pae H, Liao J, Yuen N, Giraldo YM. Drosophila require both green and UV wavelengths for sun orientation but lack a time-compensated sun compass. J Exp Biol 2024; 227:jeb246817. [PMID: 39397575 PMCID: PMC11529886 DOI: 10.1242/jeb.246817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Celestial orientation and navigation are performed by many organisms in contexts as diverse as migration, nest finding and straight-line orientation. The vinegar fly, Drosophila melanogaster, performs menotaxis in response to celestial cues during tethered flight and can disperse more than 10 km under field conditions. However, we still do not understand how spectral components of celestial cues and pauses in flight impact heading direction in flies. To assess individual heading, we began by testing flies in a rotating tether arena using a single green LED as a stimulus. We found that flies robustly perform menotaxis and fly straight for at least 20 min. Flies maintain their preferred heading directions after experiencing a period of darkness or stopping flight, even up to 2 h, but reset their heading when the LED changes position, suggesting that flies do not treat this stimulus as the sun. Next, we assessed the flies' responses to a UV spot alone or a paired UV-green stimulus - two dots situated 180 deg apart to simulate the solar and antisolar hemispheres. We found that flies respond to UV much as they do to green light; however, when the stimuli are paired, flies adjust for sudden 90 deg movements, performing sun orientation. Lastly, we found no evidence of a time-compensated sun compass when we moved the paired stimuli at 15 deg h-1 for 6 h. This study demonstrates that wavelength influences how flies respond to visual cues during flight, shaping the interpretation of visual information to execute an appropriate behavioral response.
Collapse
Affiliation(s)
- Haneal Pae
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhu Liao
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicole Yuen
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ysabel Milton Giraldo
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Dan C, Hulse BK, Kappagantula R, Jayaraman V, Hermundstad AM. A neural circuit architecture for rapid learning in goal-directed navigation. Neuron 2024; 112:2581-2599.e23. [PMID: 38795708 DOI: 10.1016/j.neuron.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Anchoring goals to spatial representations enables flexible navigation but is challenging in novel environments when both representations must be acquired simultaneously. We propose a framework for how Drosophila uses internal representations of head direction (HD) to build goal representations upon selective thermal reinforcement. We show that flies use stochastically generated fixations and directed saccades to express heading preferences in an operant visual learning paradigm and that HD neurons are required to modify these preferences based on reinforcement. We used a symmetric visual setting to expose how flies' HD and goal representations co-evolve and how the reliability of these interacting representations impacts behavior. Finally, we describe how rapid learning of new goal headings may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in circuit architecture. Such evolutionarily structured architectures, which enable rapidly adaptive behavior driven by internal representations, may be relevant across species.
Collapse
Affiliation(s)
- Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ramya Kappagantula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
4
|
Frank DD, Kronauer DJC. The Budding Neuroscience of Ant Social Behavior. Annu Rev Neurosci 2024; 47:167-185. [PMID: 38603564 DOI: 10.1146/annurev-neuro-083023-102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Collapse
Affiliation(s)
- Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| | - Daniel J C Kronauer
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
5
|
Getahun MN, Baleba SBS, Ngiela J, Ahuya P, Masiga D. Multimodal interactions in Stomoxys navigation reveal synergy between olfaction and vision. Sci Rep 2024; 14:17724. [PMID: 39085483 PMCID: PMC11291998 DOI: 10.1038/s41598-024-68726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Stomoxys flies exhibit an attraction toward objects that offer no rewards, such as traps and targets devoid of blood or nectar incentives. This behavior provides an opportunity to develop effective tools for vector control and monitoring. However, for these systems to be sustainable and eco-friendly, the visual cues used must be specific to target vector(s). In this study, we modified the existing blue Vavoua trap, which was originally designed to attract biting flies, to create a deceptive host attraction system specifically biased toward attracting Stomoxys. Our research revealed that Stomoxys flies are attracted to various colors, with red proving to be the most attractive and selective color for Stomoxys compared to the other colors tested. Interestingly, our investigation of the cattle-Stomoxys interaction demonstrated that Stomoxys flies do not prefer a specific livestock fur color phenotype, despite variation in the spectrum. To create a realistic sensory impression of the trap in the Stomoxys nervous system, we incorporated olfactory cues from livestock host odors that significantly increased trap catches. The optimized novel polymer bead dispenser is capable of effectively releasing the attractive odor carvone + p-cresol, with strong plume strands and longevity. Overall, red trap baited with polymer bead dispenser is environmentally preferred.
Collapse
Affiliation(s)
- Merid N Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Steve B S Baleba
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - John Ngiela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Peter Ahuya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
6
|
Bassetto M, Reichl T, Kobylkov D, Kattnig DR, Winklhofer M, Hore PJ, Mouritsen H. No evidence for magnetic field effects on the behaviour of Drosophila. Nature 2023; 620:595-599. [PMID: 37558871 PMCID: PMC10432270 DOI: 10.1038/s41586-023-06397-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field1,2. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5. Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23. Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception.
Collapse
Affiliation(s)
- Marco Bassetto
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Thomas Reichl
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dmitry Kobylkov
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Mind/Brain Science, University of Trento, Rovereto, Italy
| | - Daniel R Kattnig
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Physics, University of Exeter, Exeter, UK
| | - Michael Winklhofer
- AG Sensory Biology of Animals, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - P J Hore
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Henrik Mouritsen
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
7
|
Wilson RI. Neural Networks for Navigation: From Connections to Computations. Annu Rev Neurosci 2023; 46:403-423. [PMID: 37428603 DOI: 10.1146/annurev-neuro-110920-032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the Drosophila connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Yadipour M, Billah MA, Faruque IA. Optic flow enrichment via Drosophila head and retina motions to support inflight position regulation. J Theor Biol 2023; 562:111416. [PMID: 36681182 DOI: 10.1016/j.jtbi.2023.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Developing a functional description of the neural control circuits and visual feedback paths underlying insect flight behaviors is an active research area. Feedback controllers incorporating engineering models of the insect visual system outputs have described some flight behaviors, yet they do not explain how insects are able to stabilize their body position relative to nearby targets such as neighbors or forage sources, especially in challenging environments in which optic flow is poor. The insect experimental community is simultaneously recording a growing library of in-flight head and eye motions that may be linked to increased perception. This study develops a quantitative model of the optic flow experienced by a flying insect or robot during head yawing rotations (distinct from lateral peering motions in previous work) with a single other target in view. This study then applies a model of insect visuomotor feedback to show via analysis and simulation of five species that these head motions sufficiently enrich the optic flow and that the output feedback can provide relative position regulation relative to the single target (asymptotic stability). In the simplifying case of pure rotation relative to the body, theoretical analysis provides a stronger stability guarantee. The results are shown to be robust to anatomical neck angle limits and body vibrations, persist with more detailed Drosophila lateral-directional flight dynamics simulations, and generalize to recent retinal motion studies. Together, these results suggest that the optic flow enrichment provided by head or pseudopupil rotation could be used in an insect's neural processing circuit to enable position regulation.
Collapse
Affiliation(s)
- Mehdi Yadipour
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Md Arif Billah
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Imraan A Faruque
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
Tolassy V, Cazalé-Debat L, Houot B, Reynaud R, Heydel JM, Ferveur JF, Everaerts C. Drosophila Free-Flight Odor Tracking is Altered in a Sex-Specific Manner By Preimaginal Sensory Exposure. J Chem Ecol 2023; 49:179-194. [PMID: 36881326 DOI: 10.1007/s10886-023-01416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
In insects such as Drosophila melanogaster, flight guidance is based on converging sensory information provided by several modalities, including chemoperception. Drosophila flies are particularly attracted by complex odors constituting volatile molecules from yeast, pheromones and microbe-metabolized food. Based on a recent study revealing that adult male courtship behavior can be affected by early preimaginal exposure to maternally transmitted egg factors, we wondered whether a similar exposure could affect free-flight odor tracking in flies of both sexes. Our main experiment consisted of testing flies differently conditioned during preimaginal development in a wind tunnel. Each fly was presented with a dual choice of food labeled by groups of each sex of D. melanogaster or D. simulans flies. The combined effect of food with the cis-vaccenyl acetate pheromone (cVA), which is involved in aggregation behavior, was also measured. Moreover, we used the headspace method to determine the "odorant" identity of the different labeled foods tested. We also measured the antennal electrophysiological response to cVA in females and males resulting from the different preimaginal conditioning procedures. Our data indicate that flies differentially modulated their flight response (take off, flight duration, food landing and preference) according to sex, conditioning and food choice. Our headspace analysis revealed that many food-derived volatile molecules diverged between sexes and species. Antennal responses to cVA showed clear sex-specific variation for conditioned flies but not for control flies. In summary, our study indicates that preimaginal conditioning can affect Drosophila free flight behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Vincent Tolassy
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,School of Biosciences, University of Birmingham, Edgbaston Park Road, B15 2TT, Birmingham, UK
| | - Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,Institut Gustave Roussel, 114, rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Rémy Reynaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
10
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
11
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
12
|
Abstract
Autonomous robots are expected to perform a wide range of sophisticated tasks in complex, unknown environments. However, available onboard computing capabilities and algorithms represent a considerable obstacle to reaching higher levels of autonomy, especially as robots get smaller and the end of Moore's law approaches. Here, we argue that inspiration from insect intelligence is a promising alternative to classic methods in robotics for the artificial intelligence (AI) needed for the autonomy of small, mobile robots. The advantage of insect intelligence stems from its resource efficiency (or parsimony) especially in terms of power and mass. First, we discuss the main aspects of insect intelligence underlying this parsimony: embodiment, sensory-motor coordination, and swarming. Then, we take stock of where insect-inspired AI stands as an alternative to other approaches to important robotic tasks such as navigation and identify open challenges on the road to its more widespread adoption. Last, we reflect on the types of processors that are suitable for implementing insect-inspired AI, from more traditional ones such as microcontrollers and field-programmable gate arrays to unconventional neuromorphic processors. We argue that even for neuromorphic processors, one should not simply apply existing AI algorithms but exploit insights from natural insect intelligence to get maximally efficient AI for robot autonomy.
Collapse
Affiliation(s)
- G C H E de Croon
- Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - J J G Dupeyroux
- Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - S B Fuller
- Autonomous Insect Robotics Laboratory, Department of Mechanical Engineering and Paul G. Allen School of Computer Science, University of Washington, Seattle, WA, USA
| | - J A R Marshall
- Opteran Technologies, Sheffield, UK
- Complex Systems Modeling Group, Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Flexible navigational computations in the Drosophila central complex. Curr Opin Neurobiol 2022; 73:102514. [DOI: 10.1016/j.conb.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
|
14
|
Mishra A, Tung S, Sruti VS, Shreenidhi P, Dey S. Desiccation stress acts as cause as well as cost of dispersal in Drosophila melanogaster. Am Nat 2021; 199:E111-E123. [DOI: 10.1086/718641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Massy R, Hawkes WLS, Doyle T, Troscianko J, Menz MHM, Roberts NW, Chapman JW, Wotton KR. Hoverflies use a time-compensated sun compass to orientate during autumn migration. Proc Biol Sci 2021; 288:20211805. [PMID: 34547904 PMCID: PMC8456149 DOI: 10.1098/rspb.2021.1805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a 'time-compensated sun compass' to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.
Collapse
Affiliation(s)
- Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Will L. S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Myles H. M. Menz
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | - Jason W. Chapman
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, UK
- Department of Entomology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
16
|
Leonte MB, Leonhardt A, Borst A, Mauss AS. Aerial course stabilization is impaired in motion-blind flies. J Exp Biol 2021; 224:271038. [PMID: 34297111 DOI: 10.1242/jeb.242219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023]
Abstract
Visual motion detection is among the best understood neuronal computations. As extensively investigated in tethered flies, visual motion signals are assumed to be crucial to detect and counteract involuntary course deviations. During free flight, however, course changes are also signalled by other sensory systems. Therefore, it is as yet unclear to what extent motion vision contributes to course control. To address this question, we genetically rendered flies motion-blind by blocking their primary motion-sensitive neurons and quantified their free-flight performance. We found that such flies have difficulty maintaining a straight flight trajectory, much like unimpaired flies in the dark. By unilateral wing clipping, we generated an asymmetry in propulsive force and tested the ability of flies to compensate for this perturbation. While wild-type flies showed a remarkable level of compensation, motion-blind animals exhibited pronounced circling behaviour. Our results therefore directly confirm that motion vision is necessary to fly straight under realistic conditions.
Collapse
Affiliation(s)
- Maria-Bianca Leonte
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Aljoscha Leonhardt
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alexander Borst
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alex S Mauss
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| |
Collapse
|
17
|
Maximally efficient prediction in the early fly visual system may support evasive flight maneuvers. PLoS Comput Biol 2021; 17:e1008965. [PMID: 34014926 PMCID: PMC8136689 DOI: 10.1371/journal.pcbi.1008965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior. Survival-critical behaviors shape neural circuits to translate sensory information into strikingly fast predictions, e.g. in escaping from a predator faster than the system’s processing delay. We show that the fly visual system implements fast and accurate prediction of its visual experience. This provides crucial information for directing fast evasive maneuvers that unfold over just 40ms. Our work shows how this fast prediction is implemented, mechanistically, and suggests the existence of a novel sensory-motor pathway from the fly visual system to a wing steering motor neuron. Echoing and amplifying previous work in the retina, our work hypothesizes that the efficient encoding of predictive information is a universal design principle supporting fast, natural behaviors.
Collapse
|
18
|
Leitch KJ, Ponce FV, Dickson WB, van Breugel F, Dickinson MH. The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc Natl Acad Sci U S A 2021; 118:e2013342118. [PMID: 33879607 PMCID: PMC8092610 DOI: 10.1073/pnas.2013342118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the ecological importance of long-distance dispersal in insects, its mechanistic basis is poorly understood in genetic model species, in which advanced molecular tools are readily available. One critical question is how insects interact with the wind to detect attractive odor plumes and increase their travel distance as they disperse. To gain insight into dispersal, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster We deployed chemically baited traps in a 1 km radius ring around the release site, equipped with cameras that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies' dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼12 km in a single flight in still air and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by an agent-based model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air but are increasingly advected downwind as winds intensify. Our results suggest that dispersing insects may strike a balance between the need to cover large distances while still maintaining the chance of intercepting odor plumes from upwind sources.
Collapse
Affiliation(s)
- Katherine J Leitch
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Francesca V Ponce
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - William B Dickson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Floris van Breugel
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
19
|
Hardcastle BJ, Omoto JJ, Kandimalla P, Nguyen BCM, Keleş MF, Boyd NK, Hartenstein V, Frye MA. A visual pathway for skylight polarization processing in Drosophila. eLife 2021; 10:e63225. [PMID: 33755020 PMCID: PMC8051946 DOI: 10.7554/elife.63225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Jaison J Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Pratyush Kandimalla
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Bao-Chau M Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mehmet F Keleş
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Natalie K Boyd
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
20
|
Sancer G, Wernet MF. The development and function of neuronal subtypes processing color and skylight polarization in the optic lobes of Drosophila melanogaster. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101012. [PMID: 33618155 DOI: 10.1016/j.asd.2020.101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The retinal mosaics of many insects contain different ommatidial subtypes harboring photoreceptors that are both molecularly and morphologically specialized for comparing between different wavelengths versus detecting the orientation of skylight polarization. The neural circuits underlying these different inputs and the characterization of their specific cellular elements are the subject of intense research. Here we review recent progress on the description of both assembly and function of color and skylight polarization circuitry, by focusing on two cell types located in the distal portion of the medulla neuropil of the fruit fly Drosophila melanogaster's optic lobes, called Dm8 and Dm9. In the main part of the retina, Dm8 cells fall into two molecularly distinct subtypes whose center becomes specifically connected to either one of randomly distributed 'pale' or 'yellow' R7 photoreceptor fates during development. Only in the 'dorsal rim area' (DRA), both polarization-sensitive R7 and R8 photoreceptors are connected to different Dm8-like cell types, called Dm-DRA1 and Dm-DRA2, respectively. An additional layer of interommatidial integration is introduced by Dm9 cells, which receive input from multiple neighboring R7 and R8 cells, as well as providing feedback synapses back into these photoreceptors. As a result, the response properties of color-sensitive photoreceptor terminals are sculpted towards being both maximally decorrelated, as well as harboring several levels of opponency (both columnar as well as intercolumnar). In the DRA, individual Dm9 cells appear to mix both polarization and color signals, thereby potentially serving as the first level of integration of different celestial stimuli. The molecular mechanisms underlying the establishment of these synaptic connections are beginning to be revealed, by using a combination of live imaging, developmental genetic studies, and cell type-specific transcriptomics.
Collapse
Affiliation(s)
- Gizem Sancer
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Mathias F Wernet
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
22
|
Mishra A, Tung S, Shree Sruti VR, Srivathsa S, Dey S. Mate-finding dispersal reduces local mate limitation and sex bias in dispersal. J Anim Ecol 2020; 89:2089-2098. [PMID: 32535925 DOI: 10.1111/1365-2656.13278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Sex-biased dispersal (SBD) often skews the local sex ratio in a population. This can result in a shortage of mates for individuals of the less-dispersive sex. Such mate limitation can lead to Allee effects in populations that are small or undergoing range expansion, consequently affecting their survival, growth, stability and invasion speed. Theory predicts that mate shortage can lead to either an increase or a decrease in the dispersal of the less-dispersive sex. However, neither of these predictions have been empirically validated. To investigate how SBD-induced mate limitation affects dispersal of the less-dispersive sex, we used Drosophila melanogaster populations with varying dispersal propensities. To rule out any mate-independent density effects, we examined the behavioural plasticity of dispersal in the presence of mates as well as same-sex individuals with differential dispersal capabilities. In the presence of high-dispersive mates, the dispersal of both male and female individuals was significantly increased. However, the magnitude of this increase was much larger in males than in females, indicating that the former shows greater mate-finding dispersal. Moreover, the dispersal of either sex did not change when dispersing alongside high- or low-dispersive individuals of the same sex. This suggested that the observed plasticity in dispersal was indeed due to mate-finding dispersal, and not mate-independent density effects. Strong mate-finding dispersal can diminish the magnitude of sex bias in dispersal. This can modulate the evolutionary processes that shape range expansions and invasions, depending on the population size. In small populations, mate-finding dispersal can ameliorate Allee effects. However, in large populations, it can dilute the effects of spatial sorting.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sahana Srivathsa
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| |
Collapse
|
23
|
Gao B, Wotton KR, Hawkes WLS, Menz MHM, Reynolds DR, Zhai BP, Hu G, Chapman JW. Adaptive strategies of high-flying migratory hoverflies in response to wind currents. Proc Biol Sci 2020; 287:20200406. [PMID: 32486972 PMCID: PMC7341907 DOI: 10.1098/rspb.2020.0406] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large migrating insects, flying at high altitude, often exhibit complex behaviour. They frequently elect to fly on winds with directions quite different from the prevailing direction, and they show a degree of common orientation, both of which facilitate transport in seasonally beneficial directions. Much less is known about the migration behaviour of smaller (10–70 mg) insects. To address this issue, we used radar to examine the high-altitude flight of hoverflies (Diptera: Syrphidae), a group of day-active, medium-sized insects commonly migrating over the UK. We found that autumn migrants, which must move south, did indeed show migration timings and orientation responses that would take them in this direction, despite the unfavourability of the prevailing winds. Evidently, these hoverfly migrants must have a compass (probably a time-compensated solar mechanism), and a means of sensing the wind direction (which may be determined with sufficient accuracy at ground level, before take-off). By contrast, hoverflies arriving in the UK in spring showed weaker orientation tendencies, and did not correct for wind drift away from their seasonally adaptive direction (northwards). However, the spring migrants necessarily come from the south (on warm southerly winds), so we surmise that complex orientation behaviour may not be so crucial for the spring movements.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.,Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Will L S Hawkes
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myles H M Menz
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK.,Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Bao-Ping Zhai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jason W Chapman
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.,Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
24
|
Jezovit JA, Rooke R, Schneider J, Levine JD. Behavioral and environmental contributions to drosophilid social networks. Proc Natl Acad Sci U S A 2020; 117:11573-11583. [PMID: 32404421 PMCID: PMC7261129 DOI: 10.1073/pnas.1920642117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals interact with each other in species-specific reproducible patterns. These patterns of organization are captured by social network analysis, and social interaction networks (SINs) have been described for a wide variety of species including fish, insects, birds, and mammals. The aim of this study is to understand the evolution of social organization in Drosophila Using a comparative ecological, phylogenetic, and behavioral approach, the different properties of SINs formed by 20 drosophilids were compared. We investigate whether drosophilid network structures arise from common ancestry, a response to the species' past climate, other social behaviors, or a combination of these factors. This study shows that differences in past climate predicted the species' current SIN properties. The drosophilid phylogeny offered no value to predicting species' differences in SINs through phylogenetic signal tests. This suggests that group-level social behaviors in drosophilid species are shaped by divergent climates. However, we find that the social distance at which flies interact correlated with the drosophilid phylogeny, indicating that behavioral elements of SINs have remained largely unchanged in their evolutionary history. We find a significant correlation of leg length to social distance, outlining the interdependence of anatomy and complex social structures. Although SINs display a complex evolutionary relationship across drosophilids, this study suggests that the ecology, and not common ancestry, contributes to diversity in social structure in Drosophila.
Collapse
Affiliation(s)
- Jacob A Jezovit
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Rebecca Rooke
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jonathan Schneider
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
25
|
Characterizing long-range search behavior in Diptera using complex 3D virtual environments. Proc Natl Acad Sci U S A 2020; 117:12201-12207. [PMID: 32424090 PMCID: PMC7275712 DOI: 10.1073/pnas.1912124117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exemplary search capabilities of flying insects have established them as one of the most diverse taxa on Earth. However, we still lack the fundamental ability to quantify, represent, and predict trajectories under natural contexts to understand search and its applications. For example, flying insects have evolved in complex multimodal three-dimensional (3D) environments, but we do not yet understand which features of the natural world are used to locate distant objects. Here, we independently and dynamically manipulate 3D objects, airflow fields, and odor plumes in virtual reality over large spatial and temporal scales. We demonstrate that flies make use of features such as foreground segmentation, perspective, motion parallax, and integration of multiple modalities to navigate to objects in a complex 3D landscape while in flight. We first show that tethered flying insects of multiple species navigate to virtual 3D objects. Using the apple fly Rhagoletis pomonella, we then measure their reactive distance to objects and show that these flies use perspective and local parallax cues to distinguish and navigate to virtual objects of different sizes and distances. We also show that apple flies can orient in the absence of optic flow by using only directional airflow cues, and require simultaneous odor and directional airflow input for plume following to a host volatile blend. The elucidation of these features unlocks the opportunity to quantify parameters underlying insect behavior such as reactive space, optimal foraging, and dispersal, as well as develop strategies for pest management, pollination, robotics, and search algorithms.
Collapse
|
26
|
Mathejczyk TF, Wernet MF. Modular assays for the quantitative study of visually guided navigation in both flying and walking flies. J Neurosci Methods 2020; 340:108747. [PMID: 32339523 DOI: 10.1016/j.jneumeth.2020.108747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The quantitative study of behavioral responses to visual stimuli provides crucial information about the computations executed by neural circuits. Insects have long served as powerful model systems, either when walking on air suspended balls (spherical treadmill), or flying while glued to a needle (virtual flight arena). NEW METHOD Here we present detailed instructions for 3D-printing and assembly of arenas optimized for visually guided navigation, including codes for presenting both celestial and panorama cues. These modular arenas can be used either as virtual flight arenas, or as spherical treadmills and consist entirely of commercial and 3D-printed components placed in a temperature and humidity controlled environment. COMPARISON TO EXISTING METHOD(S) Previous assays often include a combination of rather cost-intensive and technically complex, custom-built mechanical, electronic, and software components. Implementation amounts to a major challenge when working in an academic environment without the support of a professional machine shop. RESULTS Robust optomotor responses are induced in flyingDrosophila by displaying moving stripes in a cylinder surrounding the magnetically tethered fly. Similarly, changes in flight heading are induced by presenting changes in the orientation of linearly polarized UV light presented from above. Finally, responses to moving patterns are induced when individual flies are walking on an air-suspended ball. CONCLUSION These modular assays allow for the investigation of a diverse combination navigational cues (sky and panorama) in both flying and walking flies. They can be used for the molecular dissection of neural circuitry in Drosophila and can easily be rescaled for accommodating other insects.
Collapse
Affiliation(s)
- Thomas F Mathejczyk
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Mathias F Wernet
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany.
| |
Collapse
|
27
|
Schnaitmann C, Pagni M, Reiff DF. Color vision in insects: insights from Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:183-198. [PMID: 32020291 PMCID: PMC7069916 DOI: 10.1007/s00359-019-01397-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Color vision is an important sensory capability that enhances the detection of contrast in retinal images. Monochromatic animals exclusively detect temporal and spatial changes in luminance, whereas two or more types of photoreceptors and neuronal circuitries for the comparison of their responses enable animals to differentiate spectral information independent of intensity. Much of what we know about the cellular and physiological mechanisms underlying color vision comes from research on vertebrates including primates. In insects, many important discoveries have been made, but direct insights into the physiology and circuit implementation of color vision are still limited. Recent advances in Drosophila systems neuroscience suggest that a complete insect color vision circuitry, from photoreceptors to behavior, including all elements and computations, can be revealed in future. Here, we review fundamental concepts in color vision alongside our current understanding of the neuronal basis of color vision in Drosophila, including side views to selected other insects.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Manuel Pagni
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Dierk F Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
28
|
Mauss AS, Borst A. Optic flow-based course control in insects. Curr Opin Neurobiol 2020; 60:21-27. [DOI: 10.1016/j.conb.2019.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023]
|
29
|
Wehner R. Cataglyphis meets Drosophila. J Neurogenet 2020; 34:184-188. [PMID: 31997671 DOI: 10.1080/01677063.2020.1713117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In Cataglyphis and Drosophila - in desert ants and fruit flies - research on visually guided behavior took different paths. While work in Cataglyphis started in the field and covered the animal's wide navigational repertoire, in Drosophila the initial focus was on a particular kind of visual control behavior scrutinized within the confines of the laboratory arena, before research concentrated on more advanced behaviors. In recent times, these multi-pronged approaches in flies and ants increasingly converge, both conceptually and methodologically, and thus lay the ground for combined neuroethological efforts. In spite of the obvious differences in the behavioral repertoire of these two groups of insects, likely commonalities in the navigational processes and underlying neuronal circuitries are increasingly coming to the fore.
Collapse
Affiliation(s)
- Rüdiger Wehner
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Dynamic Signal Compression for Robust Motion Vision in Flies. Curr Biol 2020; 30:209-221.e8. [PMID: 31928873 DOI: 10.1016/j.cub.2019.10.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visual system reduces input variability by rapidly adjusting its sensitivity to local contrast conditions. We exhaustively map functional properties of neurons in the motion detection circuit and find that local responses are compressed by surround contrast. The compressive signal is fast, integrates spatially, and derives from neural feedback. Training convolutional neural networks on estimating the velocity of natural stimuli shows that this dynamic signal compression can close the performance gap between model and organism. Overall, our work represents a comprehensive mechanistic account of how neural systems attain the robustness to carry out survival-critical tasks in challenging real-world environments.
Collapse
|
31
|
Heading choices of flying Drosophila under changing angles of polarized light. Sci Rep 2019; 9:16773. [PMID: 31727972 PMCID: PMC6856357 DOI: 10.1038/s41598-019-53330-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/30/2019] [Indexed: 11/14/2022] Open
Abstract
Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila’s abilities to use celestial cues for visually guided navigation and course correction.
Collapse
|
32
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
33
|
Spatial Cognition: Allowing Natural Behaviours to Flourish in the Lab. Curr Biol 2019; 29:R639-R641. [PMID: 31287984 DOI: 10.1016/j.cub.2019.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the computational basis of spatial cognition requires observations of natural behaviour and the underlying neural circuits, which are difficult to do simultaneously: however, recent studies show how we might achieve this, combining rich virtual reality set-ups and the use of optogenetics in freely moving animals.
Collapse
|
34
|
Liu MZ, Vosshall LB. General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female Aedes aegypti Mosquitoes. Curr Biol 2019; 29:2250-2257.e4. [PMID: 31257144 DOI: 10.1016/j.cub.2019.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023]
Abstract
Female Aedes aegypti mosquitoes use multiple sensory modalities to hunt human hosts and obtain a blood meal for egg production. Attractive cues include carbon dioxide (CO2), a major component of exhaled breath [1, 2]; heat elevated above ambient temperature, signifying warm-blooded skin [3, 4]; and dark visual contrast [5, 6], proposed to bridge long-range olfactory and short-range thermal cues [7]. Any of these sensory cues in isolation is an incomplete signal of a human host, and so a mosquito must integrate multimodal sensory information before committing to approaching and biting a person [8]. Here, we study the interaction of visual cues, heat, and CO2 to investigate the contributions of human-associated stimuli to host-seeking decisions. We show that tethered flying mosquitoes strongly orient toward dark visual contrast, regardless of CO2 stimulation and internal host-seeking status. This suggests that attraction to visual contrast is general and not contingent on other host cues. In free-flight experiments with CO2, adding a dark contrasting visual cue to a warmed surface enhanced attraction. Moderate warmth became more attractive to mosquitoes, and mosquitoes aggregated on the cue at all non-noxious temperatures. Gr3 mutants, unable to detect CO2, were lured to the visual cue at ambient temperatures but fled and did not return when the surface was warmed to host-like temperatures. This suggests that attraction to thermal cues is contingent on the presence of the additional sensory cue CO2. Our results illustrate that mosquitoes integrate general attractive visual stimuli with context-dependent thermal stimuli to seek promising sites for blood feeding.
Collapse
Affiliation(s)
- Molly Z Liu
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA.
| |
Collapse
|
35
|
Murgier J, Everaerts C, Farine JP, Ferveur JF. Live yeast in juvenile diet induces species-specific effects on Drosophila adult behaviour and fitness. Sci Rep 2019; 9:8873. [PMID: 31222019 PMCID: PMC6586853 DOI: 10.1038/s41598-019-45140-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.
Collapse
Affiliation(s)
- Juliette Murgier
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
36
|
Collett TS. Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms. ACTA ACUST UNITED AC 2019; 222:222/11/jeb205187. [PMID: 31152122 DOI: 10.1242/jeb.205187] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Path integration is a navigational strategy that gives an animal an estimate of its position relative to some starting point. For many decades, ingenious and probing behavioural experiments have been the only window onto the operation of path integration in arthropods. New methods have now made it possible to visualise the activity of neural circuits in Drosophila while they fly or walk in virtual reality. Studies of this kind, as well as electrophysiological recordings from single neurons in the brains of other insects, are revealing details of the neural mechanisms that control an insect's direction of travel and other aspects of path integration. The aim here is first to review the major features of path integration in foraging desert ants and honeybees, the current champion path integrators of the insect world, and second consider how the elaborate behaviour of these insects might be accommodated within the framework of the newly understood neural circuits. The discussion focuses particularly on the ability of ants and honeybees to use a celestial compass to give direction in Earth-based coordinates, and of honeybees to use a landscape panorama to provide directional guidance for path integration. The possibility is raised that well-ordered behaviour might in some cases substitute for complex circuitry.
Collapse
Affiliation(s)
- Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
37
|
Corfas RA, Sharma T, Dickinson MH. Diverse Food-Sensing Neurons Trigger Idiothetic Local Search in Drosophila. Curr Biol 2019; 29:1660-1668.e4. [PMID: 31056390 DOI: 10.1016/j.cub.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023]
Abstract
Foraging animals may benefit from remembering the location of a newly discovered food patch while continuing to explore nearby [1, 2]. For example, after encountering a drop of yeast or sugar, hungry flies often perform a local search [3, 4]. That is, rather than remaining on the food or simply walking away, flies execute a series of exploratory excursions during which they repeatedly depart and return to the resource. Fruit flies, Drosophila melanogaster, can perform this food-centered search behavior in the absence of external landmarks, instead relying on internal (idiothetic) cues [5]. This path-integration behavior may represent a deeply conserved navigational capacity in insects [6, 7], but its underlying neural basis remains unknown. Here, we used optogenetic activation to screen candidate cell classes and found that local searches can be initiated by diverse sensory neurons. Optogenetically induced searches resemble those triggered by actual food, are modulated by starvation state, and exhibit key features of path integration. Flies perform tightly centered searches around the fictive food site, even within a constrained maze, and they can return to the fictive food site after long excursions. Together, these results suggest that flies enact local searches in response to a wide variety of food-associated cues and that these sensory pathways may converge upon a common neural system for navigation. Using a virtual reality system, we demonstrate that local searches can be optogenetically induced in tethered flies walking on a spherical treadmill, laying the groundwork for future studies to image the brain during path integration. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Román A Corfas
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Tarun Sharma
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Houot B, Cazalé-Debat L, Fraichard S, Everaerts C, Saxena N, Sane SP, Ferveur JF. Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Mol Biol Evol 2019; 35:3-15. [PMID: 28961885 DOI: 10.1093/molbev/msx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The flying ability of insects has coevolved with the development of organs necessary to take-off from the ground, generate, and modulate lift during flight in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free flight odor tracking in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-, inter-, and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of Drosophila pheromonal communication. We manipulated desat1 regulation and found that both neural and nonneural tissues affect distinct flight features. Together, our data suggest that desat1 is one of the genes involved in the evolution of free-flight odor tracking behaviors in Drosophila.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nitesh Saxena
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Sanjay P Sane
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
39
|
Warren TL, Giraldo YM, Dickinson MH. Celestial navigation in Drosophila. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb186148. [PMID: 30728228 DOI: 10.1242/jeb.186148] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many casual observers typecast Drosophila melanogaster as a stationary pest that lurks around fruit and wine. However, the omnipresent fruit fly, which thrives even in desert habitats, likely established and maintained its cosmopolitan status via migration over large spatial scales. To perform long-distance dispersal, flies must actively maintain a straight compass heading through the use of external orientation cues, such as those derived from the sky. In this Review, we address how D. melanogaster accomplishes long-distance navigation using celestial cues. We focus on behavioral and physiological studies indicating that fruit flies can navigate both to a pattern of linearly polarized light and to the position of the sun - the same cues utilized by more heralded insect navigators such as monarch butterflies and desert ants. In both cases, fruit flies perform menotaxis, selecting seemingly arbitrary headings that they then maintain over time. We discuss how the fly's nervous system detects and processes this sensory information to direct the steering maneuvers that underlie navigation. In particular, we highlight recent findings that compass neurons in the central complex, a set of midline neuropils, are essential for navigation. Taken together, these results suggest that fruit flies share an ancient, latent capacity for celestial navigation with other insects. Furthermore, they illustrate the potential of D. melanogaster to help us to elucidate both the cellular basis of navigation and mechanisms of directed dispersal on a landscape scale.
Collapse
Affiliation(s)
- Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Ysabel M Giraldo
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
40
|
Ortega-Jiménez VM, Combes SA. Living in a trash can: turbulent convective flows impair Drosophila flight performance. J R Soc Interface 2018; 15:rsif.2018.0636. [PMID: 30355810 DOI: 10.1098/rsif.2018.0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/01/2018] [Indexed: 11/12/2022] Open
Abstract
Turbulent flows associated with thermal convection are common in areas where the ground is heated by solar radiation, fermentation or other processes. However, it is unknown how these flow instabilities affect the locomotion of small insects, like fruit flies, that inhabit deserts and urban landscapes where surface temperatures can reach extreme values. We quantified flight performance of fruit flies (Drosophila melanogaster) traversing a chamber through still air and turbulent Rayleigh-Bénard convection cells produced by a vertical temperature gradient. A total of 34% of individuals were unable to reach the end of the chamber in convection, although peak flow speeds were modest relative to typical outdoor airflow. Individuals that were successful in convection were faster fliers and had larger wing areas than those that failed. All flies displayed higher pitch angles and lower mean flight speeds in convection. Successful individuals took longer to cross the chamber in convection, due to lower flight speeds and greater path sinuosity. All individuals displayed higher flapping frequencies in convection, and successful individuals also reduced stroke amplitude. Our results suggest that thermal convection poses a significant challenge for small fliers, resulting in increased travel times and energetic costs, or in some cases precluding insects from traversing these environments entirely.
Collapse
Affiliation(s)
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
41
|
Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH. Sun Navigation Requires Compass Neurons in Drosophila. Curr Biol 2018; 28:2845-2852.e4. [PMID: 30174187 PMCID: PMC7301569 DOI: 10.1016/j.cub.2018.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Despite their small brains, insects can navigate over long distances by orienting using visual landmarks [1], skylight polarization [2-9], and sun position [3, 4, 6, 10]. Although Drosophila are not generally renowned for their navigational abilities, mark-and-recapture experiments in Death Valley revealed that they can fly nearly 15 km in a single evening [11]. To accomplish such feats on available energy reserves [12], flies would have to maintain relatively straight headings, relying on celestial cues [13]. Cues such as sun position and polarized light are likely integrated throughout the sensory-motor pathway [14], including the highly conserved central complex [4, 15, 16]. Recently, a group of Drosophila central complex cells (E-PG neurons) have been shown to function as an internal compass [17-19], similar to mammalian head-direction cells [20]. Using an array of genetic tools, we set out to test whether flies can navigate using the sun and to identify the role of E-PG cells in this behavior. Using a flight simulator, we found that Drosophila adopt arbitrary headings with respect to a simulated sun, thus performing menotaxis, and individuals remember their heading preference between successive flights-even over several hours. Imaging experiments performed on flying animals revealed that the E-PG cells track sun stimulus motion. When these neurons are silenced, flies no longer adopt and maintain arbitrary headings relative to the sun stimulus but instead exhibit frontal phototaxis. Thus, without the compass system, flies lose the ability to execute menotaxis and revert to a simpler, reflexive behavior.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katherine J Leitch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivo G Ros
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy L Warren
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter T Weir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Green J, Maimon G. Building a heading signal from anatomically defined neuron types in the Drosophila central complex. Curr Opin Neurobiol 2018; 52:156-164. [PMID: 30029143 DOI: 10.1016/j.conb.2018.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
A network of a few hundred neurons in the Drosophila central complex carries an estimate of the fly's heading in the world, akin to the mammalian head-direction system. Here we describe how anatomically defined neuronal classes in this network are poised to implement specific sub-processes for building and updating this population-level heading signal. The computations we describe in the fly central complex strongly resemble those posited to exist in the mammalian brain, in computational models for building head-direction signals. By linking circuit anatomy to navigational physiology, the Drosophila central complex should provide a detailed example of how a heading signal is built.
Collapse
Affiliation(s)
- Jonathan Green
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States; Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| |
Collapse
|
43
|
Warren TL, Weir PT, Dickinson MH. Flying Drosophilamelanogaster maintain arbitrary but stable headings relative to the angle of polarized light. ACTA ACUST UNITED AC 2018; 221:jeb.177550. [PMID: 29593084 DOI: 10.1242/jeb.177550] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D. melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D. melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination.
Collapse
Affiliation(s)
- Timothy L Warren
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.,Institute of Neuroscience, University of Oregon, Eugene, Oregon 97401, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Peter T Weir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.,Data Science, Yelp, San Francisco, CA, 94111, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
44
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
45
|
Abstract
The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.
Collapse
Affiliation(s)
- Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720;
| |
Collapse
|
46
|
Zhao L, Begun DJ. Genomics of parallel adaptation at two timescales in Drosophila. PLoS Genet 2017; 13:e1007016. [PMID: 28968391 PMCID: PMC5638604 DOI: 10.1371/journal.pgen.1007016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/12/2017] [Accepted: 09/11/2017] [Indexed: 01/05/2023] Open
Abstract
Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus. Both local adaptation on short timescales and the long-term accumulation of adaptive differences between species have recently been investigated using comparative genomic and population genomic approaches in several species. However, the repeatability of adaptive evolution at the genetic level is poorly understood. Here we attack this problem by comparing patterns of long and short-term adaptation in Drosophila melanogaster to patterns of adaptation on two timescales in a highly diverged congener, Drosophila hydei. We found, despite the fact that these species diverged from a common ancestor roughly 50 million years ago, the population genomics of latitudinal allele frequency differentiation shows that there is a substantial shared set of genes likely playing a role in the short term adaptive divergence of populations in both species. Analyses of longer-term adaptive protein divergence for the D. hydei-D. mojavensis and D. melanogaster-D. simulans clades reveal a striking level of parallel adaptation. This parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences.
Collapse
Affiliation(s)
- Li Zhao
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - David J. Begun
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
47
|
Dewar ADM, Wystrach A, Philippides A, Graham P. Neural coding in the visual system of Drosophila melanogaster: How do small neural populations support visually guided behaviours? PLoS Comput Biol 2017; 13:e1005735. [PMID: 29016606 PMCID: PMC5654266 DOI: 10.1371/journal.pcbi.1005735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
All organisms wishing to survive and reproduce must be able to respond adaptively to a complex, changing world. Yet the computational power available is constrained by biology and evolution, favouring mechanisms that are parsimonious yet robust. Here we investigate the information carried in small populations of visually responsive neurons in Drosophila melanogaster. These so-called 'ring neurons', projecting to the ellipsoid body of the central complex, are reported to be necessary for complex visual tasks such as pattern recognition and visual navigation. Recently the receptive fields of these neurons have been mapped, allowing us to investigate how well they can support such behaviours. For instance, in a simulation of classic pattern discrimination experiments, we show that the pattern of output from the ring neurons matches observed fly behaviour. However, performance of the neurons (as with flies) is not perfect and can be easily improved with the addition of extra neurons, suggesting the neurons' receptive fields are not optimised for recognising abstract shapes, a conclusion which casts doubt on cognitive explanations of fly behaviour in pattern recognition assays. Using artificial neural networks, we then assess how easy it is to decode more general information about stimulus shape from the ring neuron population codes. We show that these neurons are well suited for encoding information about size, position and orientation, which are more relevant behavioural parameters for a fly than abstract pattern properties. This leads us to suggest that in order to understand the properties of neural systems, one must consider how perceptual circuits put information at the service of behaviour.
Collapse
Affiliation(s)
- Alex D. M. Dewar
- Department of Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Andrew Philippides
- Department of Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Paul Graham
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
48
|
Kim IS, Dickinson MH. Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster. Curr Biol 2017; 27:2227-2238.e3. [DOI: 10.1016/j.cub.2017.06.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022]
|
49
|
Lindsay T, Sustar A, Dickinson M. The Function and Organization of the Motor System Controlling Flight Maneuvers in Flies. Curr Biol 2017; 27:345-358. [PMID: 28132816 DOI: 10.1016/j.cub.2016.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
Abstract
Animals face the daunting task of controlling their limbs using a small set of highly constrained actuators. This problem is particularly demanding for insects such as Drosophila, which must adjust wing motion for both quick voluntary maneuvers and slow compensatory reflexes using only a dozen pairs of muscles. To identify strategies by which animals execute precise actions using sparse motor networks, we imaged the activity of a complete ensemble of wing control muscles in intact, flying flies. Our experiments uncovered a remarkably efficient logic in which each of the four skeletal elements at the base of the wing are equipped with both large phasically active muscles capable of executing large changes and smaller tonically active muscles specialized for continuous fine-scaled adjustments. Based on the responses to a broad panel of visual motion stimuli, we have developed a model by which the motor array regulates aerodynamically functional features of wing motion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Theodore Lindsay
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anne Sustar
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
50
|
Houot B, Gigot V, Robichon A, Ferveur JF. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation. Sci Rep 2017; 7:40221. [PMID: 28067325 PMCID: PMC5220339 DOI: 10.1038/srep40221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 12/02/2022] Open
Abstract
The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Vincent Gigot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Alain Robichon
- UMR INRA/CNRS/UNS 7254, Institut Sophia Agrobiotech, 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| |
Collapse
|