1
|
Ntiri ES, Chun Nin Wong A. Microbial metabolites as engines of behavioral variation across animals. Gut Microbes 2025; 17:2501191. [PMID: 40357979 PMCID: PMC12077453 DOI: 10.1080/19490976.2025.2501191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The microbiome, especially that present in the gut, has emerged as a key modulator of animal behavior. However, the extent of its influence across species and behavioral repertoires, as well as the underlying mechanisms, remains poorly understood. Increasing evidence suggests that microbial metabolites play an important role in driving behavioral variation. In this review, we synthesize findings from vertebrates to invertebrates, spanning both model and non-model organisms, to define key groups of microbial-derived metabolites involved in modulating seven distinct behaviors: nutrition, olfaction, circadian rhythms, reproduction, locomotion, aggression, and social interactions. We discuss how these microbial metabolites interact with host chemosensory systems, neurotransmitter signaling, and epigenetic modifications to shape behavior. Additionally, we highlight critical gaps in mechanistic understanding, including the need to map additional host receptors and signaling pathways, as well as the untapped potential of microbial biosynthetic gene clusters as sources for novel bioactive compounds. Advancing these areas will enhance understanding of the microbiome's role in behavioral modulation and open new avenues for microbiome-based interventions for behavioral disorders.
Collapse
Affiliation(s)
- Eric Siaw Ntiri
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Adam Chun Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Thakur S, Jindal V, Choi MY. CAPA Neuropeptide and Its Receptor in Insects: A Mini Review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70061. [PMID: 40304355 DOI: 10.1002/arch.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
A neuropeptide, the CAPA, and its cognate receptor have been diversely characterized in different orders of class Insecta. CAPA peptides are synthesized in the abdominal neurohemal system and activate their corresponding receptor, CAPA receptor (CAPA-R), a type of G protein-coupled receptor (GPCR), to initiate cellular signals for diverse physiological functions in insects. Activation of the CAPA-R in Malpighian tubules results in ion-water homeostasis via antidiuresis in the majority of insect species; however, diuresis and myotropic activities are also known to result. Antidiuretic activity of CAPA peptides has been reported from mosquitoes, assassin bugs, spotted wing drosophila, and more; hence, this group of peptides also holds importance as potential targets when it comes to medical and agricultural entomology. GPCRs form a diverse family of cell membrane receptors responsible for signal transduction across the cell membrane in humans as well as in insects. With the advances in knowledge of human GPCRs, their physiological functions in agriculturally important insects have offered an opportunity for designing and implementing GPCR-targeting compounds in integrated pest management programs. In this review, we present a comprehensive view on physiological factors and peptides responsible for the diuresis/anti-diuresis in insects with special reference to the CAPA peptide-receptor interaction. The major focus is on the role of CAPA peptides in fluid and energy homeostasis, stress tolerance, muscle functioning, regulation of reproduction, and diapause-related processes. We end by outlining the significance of insect excretion with respect to the capa-r gene silencing and pest management.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Epiney DG, Chaya GM, Dillon NR, Lai SL, Doe CQ. Single nuclei RNA-sequencing of adult brain neurons derived from type 2 neuroblasts reveals transcriptional complexity in the insect central complex. eLife 2025; 14:RP105896. [PMID: 40371710 PMCID: PMC12081001 DOI: 10.7554/elife.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
In both Drosophila and mammals, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In Drosophila, there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of T2-derived neurons is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster. This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
Collapse
Affiliation(s)
- Derek G Epiney
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Gonzalo Morales Chaya
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Noah R Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
4
|
Civolani S, Bariselli M, Osti R, Bernacchia G. Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges. INSECTS 2025; 16:528. [PMID: 40429241 PMCID: PMC12112121 DOI: 10.3390/insects16050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries.
Collapse
Affiliation(s)
- Stefano Civolani
- Department Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| | - Massimo Bariselli
- Plant Protection Service—Emilia-Romagna Region, Via Andrea da Formigine, 3, 40128 Bologna, Italy;
| | - Riccardo Osti
- Department Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| | - Giovanni Bernacchia
- Department Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
5
|
Wang L, Guo P, Zhang X, Duan Y, Ning J, Zhang T, Yang X. Identification of Δ9 and Δ11 Desaturases Involved in Sex Pheromone Biosynthesis in Mythimna loreyi (Lepidoptera: Noctuidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11802-11813. [PMID: 40310974 DOI: 10.1021/acs.jafc.5c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In moths, sex pheromones are synthesized in pheromone glands (PGs) by a variety of enzymes. Desaturases (DESs) are critical for the introduction of double bonds into pheromones. In Mythimna loreyi, the specific DESs involved in sex pheromone biosynthesis remain unclear. In this study, we identified and characterized 25 putative DESs from the M. loreyi genome. Nineteen of them were expressed in the female PGs, with seven showing significant upregulation in response to pheromone biosynthesis activating neuropeptide (PBAN). RNAi-based knockdown of MlorDES2 significantly reduced the titer of pheromone components by 58.6-85.9%, while knockdown of MlorDES9 specifically reduced the production of (Z)-9-tetradecenyl acetate. Functional verification in yeast revealed that MlorDES2 and MlorDES9 exhibited Δ11 and Δ9 desaturase activities, respectively. Taken together, these results collectively demonstrate that MlorDES2 and MlorDES9 are involved in sex pheromone biosynthesis of M. loreyi, suggesting that DESs could be used as potential targets for pest management.
Collapse
Affiliation(s)
- Liuyang Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Guo
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China
| | - Xiaofang Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China
| | - Yun Duan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Ombuya A, Guo J, Liu W. Insect Mating Behaviors: A Review of the Regulatory Role of Neuropeptides. INSECTS 2025; 16:506. [PMID: 40429219 PMCID: PMC12112582 DOI: 10.3390/insects16050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Insect mating behaviors are complex, diverse, and primarily regulated by neuropeptides and their receptors. Neuropeptides are peptide signaling molecules mainly secreted by insects' central nervous system (CNS) to reach target organs. A substantial body of research on the role of neuropeptides in regulating mating behaviors in insects has been undertaken. This review aims to (1) synthesize existing knowledge on insect mating behaviors, (2) elucidate the neuropeptidergic mechanisms governing these behaviors, and (3) identify knowledge gaps and propose future research directions. The mating process, covering mate attraction, courtship rituals, copulation, and post-mating behaviors, was elucidated with appropriate examples. Additionally, specific neuropeptides involved at each stage of the mating process, their functions, and mechanistic aspects were discussed as demonstrated in research. The review highlights that insects display behavioral dimorphism in the mating process driven by a complex underlying neuropeptidergic mechanism. While previous publications have generally addressed the role of neuropeptides in insect behavior, none has intensively and methodically examined their role in mating behaviors. In this review, we synthesized 18 neuropeptides that we found to regulate mating behaviors in insects. We note that some of the neuropeptides are malfunctional in their regulatory roles, while others are specific. We also note that these neuropeptides execute their regulatory functions through the G protein-coupled receptor (GPCR) signaling pathway but may take different routes and messengers downstream to effect behavioral change. Neuropeptides also interact with other regulatory systems, such as the endocrine system, to discharge their functions. Given their significance in mediating mating and reproduction, targeted manipulation of the signaling system of neuropeptides could serve as viable targets in the production of ecologically friendly pest management tools. Tools that could disrupt the mating process would be applied in crop production systems to reduce the population pressure of destructive pests, consequently reducing the urge to use chemical pesticides that are ecologically unfriendly. Our findings not only advance the understanding of neuropeptide-mediated mating regulation but also highlight their potential as eco-friendly pest control targets.
Collapse
Affiliation(s)
- Alfayo Ombuya
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Kenya Plant Health Inspectorate Service (KEPHIS), Mombasa Regional Office, Mombasa P.O. Box 80126-80100, Kenya
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Li HF, Dong B, Peng YY, Luo HY, Ou XL, Ren ZL, Park Y, Wang JJ, Jiang HB. The neuropeptide sulfakinin is a peripheral regulator of insect behavioral switch between mating and foraging. eLife 2025; 13:RP100870. [PMID: 40314230 PMCID: PMC12048153 DOI: 10.7554/elife.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Behavioral strategies for foraging and reproduction in the oriental fruit fly (Bactrocera dorsalis) are alternative options for resource allocation and are controlled by neuropeptides. Here, we show that the behavioral switch between foraging and reproduction is associated with changes in antennal sensitivity. Starved flies became more sensitive to food odors while suppressing their response to opposite-sex pheromones. The gene encoding sulfakinin receptor 1 (SkR1) was significantly upregulated in the antennae of starved flies, so we tested the behavioral phenotypes of null mutants for the genes encoding the receptor (skr1-/-) and its ligand sulfakinin (sk-/-). In both knockout lines, the antennal responses shifted to mating mode even when flies were starved. This suggests that sulfakinin signaling via SkR1 promotes foraging while suppressing mating. Further analysis of the mutant flies revealed that sets of odorant receptor (OR) genes were differentially expressed. Functional characterization of the differentially expressed ORs suggested that sulfakinin directly suppresses the expression of ORs that respond to opposite-sex hormones while enhancing the expression of ORs that detect food volatiles. We conclude that sulfakinin signaling via SkR1, modulating OR expressions and leading to altered antenna sensitivities, is an important component in starvation-dependent behavioral change.
Collapse
Affiliation(s)
- Hong-Fei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hao-Yue Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Xiao-Lan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Zheng-Lin Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yoonseong Park
- Department of Entomology, Kansas State UniversityManhattan KSUnited States
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
8
|
Pang XD, Li YS, Lu RH, Smagghe G, Liu TX, Gui SH. miR-7977 regulates the locomotor behavior by targeting diuretic hormone and SIFamide receptors in Tribolium castaneum. Int J Biol Macromol 2025; 307:141929. [PMID: 40074118 DOI: 10.1016/j.ijbiomac.2025.141929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Insect neuropeptides are crucial for chemical communication, influencing growth, metabolism, and behavior. MicroRNAs (miRNAs), as non-coding RNAs, primarily regulate target gene expression. However, the co-regulation between miRNAs and neuropeptides in modulating locomotor behavior remains poorly understood. In this study, we found that miR-7977 inhibited the expression of DHR and decreased the locomotor activity in adults of Tribolium castaneum. Moreover, the over-expression of miR-7977 lead to a decline in both respiratory rate and heart rate, an effect not observed upon DHR knockdown, thus prompting our speculation about the existence of additional target genes. Further investigations validated this hypothesis. Ultimately, we confirmed that miR-7977 can target DHR and SIFR to modulate locomotor behavior. Our research unveils the regulatory network of miR-7977-DHR/SIFR, offering novel perspectives on the intricate regulation of insect physiological behavior by small RNAs and neuropeptides.
Collapse
Affiliation(s)
- Xu-Dong Pang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yang-Shuanglong Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Rui-Han Lu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China; Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China; Institute of Plant Health and Medicine, Guizhou University, Guiyang, China.
| |
Collapse
|
9
|
Johnson MG, Barrett M. Review: Exploring correctness, usefulness, and feasibility of potential physiological operational welfare indicators for farmed insects to establish research priorities. Animal 2025:101501. [PMID: 40288947 DOI: 10.1016/j.animal.2025.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
While insects are already the largest group of terrestrial food and feed livestock animals in terms of absolute number of individuals, the insect farming industry is expected to continue growing rapidly in order to meet the nutritional demands of the human population during the 21st century. Accordingly, consumers, producers, legislators, and industry-adjacent researchers have expressed interest in further research and assessment of farmed insect welfare. Operational indicators of animal welfare are those that can be used to putatively assess the welfare of animals in the absence of true indicators of affective state (e.g., valenced/emotional state) and are commonly used for farmed vertebrate livestock species; however, significant behavioral and physiological differences between vertebrates and insects means these indicators must be examined for their correctness, usefulness, and feasibility prior to use with insect livestock. The most valuable operational welfare indicators would (1) correctly correspond to the insect's putative welfare state; (2) provide useful information about what is affecting the insect's welfare; and (3) be feasible for deployment at a large scale on farms. As there are many possible indicators that could be further researched in insects, evaluating the likely correctness, feasibility, and usefulness of these indicators in insects will allow researchers to prioritize which indicators to investigate first for use on farms. Thus, in this review, we explore whether physiological or somatic indicators of farmed vertebrate welfare, including whole-body, immune, neurobiological, and respiratory/cardiac indicators, may be correct, feasible, and useful for assessing farmed insect welfare. We review insect physiological systems, as well as any existing, welfare-relevant data from farmed or closely related insects. We end by proposing a priority list for physiological, operational welfare indicators that are most likely to correctly, usefully, and feasibly assess farmed insect welfare, which may guide indicator validation research priorities for insect welfare scientists.
Collapse
Affiliation(s)
- M G Johnson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - M Barrett
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202 USA.
| |
Collapse
|
10
|
Huang W, Zhong X, Zampronio CG, Bottrill AR, Jones KGE, Tinoco AB, Guo L, Egertová M, Mirabeau O, Elphick MR. Discovery and functional characterization of a bombesin-type neuropeptide signaling system in an invertebrate. Proc Natl Acad Sci U S A 2025; 122:e2420966122. [PMID: 40153458 PMCID: PMC12002301 DOI: 10.1073/pnas.2420966122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
Neuropeptide signaling systems are key regulators of physiological and behavioral processes in animals. However, the evolutionary history of some neuropeptides originally discovered in vertebrates is unknown. The peptide bombesin (BN) was first isolated from the skin of the toad Bombina bombina and subsequently BN-related neuropeptides have been identified in other chordates, including gastrin-releasing peptide (GRP) and neuromedin B (NMB) in mammals, and a GRP-like peptide in the cephalochordate Branchiostoma japonicum. However, BN-type neuropeptides have hitherto not been identified in any nonchordate animals. Here, we report the discovery and functional characterization of a BN-type neuropeptide signaling system in an echinoderm-the starfish Asterias rubens. BN-type precursor proteins were identified in several echinoderm species based on their amino acid sequences and gene structures, and the mature structure of the A. rubens BN-type neuropeptide ArBN was determined using mass spectrometry. A protein related to vertebrate GRP/NMB-type G protein-coupled receptors was identified experimentally as the receptor for ArBN in A. rubens. Analysis of the distribution of the ArBN precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression in the central nervous system, digestive system, and locomotory organs. Moreover, effects of ArBN in A. rubens included contraction and retraction of the evertible stomach and inhibition of feeding behavior. Our findings show that the evolutionary history of BN-type neuropeptide signaling can be traced back to the deuterostome common ancestor of echinoderms and chordates. Furthermore, an ancient role of BN-type neuropeptides as regulators of feeding behavior has been revealed.
Collapse
Affiliation(s)
- Weiling Huang
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Xingxing Zhong
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Cleidiane G. Zampronio
- Proteomics Facility Research Technology Platform, School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Andrew R. Bottrill
- Proteomics Facility Research Technology Platform, School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Kite G. E. Jones
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Ana B. Tinoco
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou510642, China
| | - Michaela Egertová
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Olivier Mirabeau
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Paris75015, France
| | - Maurice R. Elphick
- Centre for Evolutionary and Functional Genomics, School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| |
Collapse
|
11
|
Nässel DR. What Drosophila can tell us about state-dependent peptidergic signaling in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104275. [PMID: 39956367 DOI: 10.1016/j.ibmb.2025.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Plasticity in animal behavior and physiology is largely due to modulatory and regulatory signaling with neuropeptides and peptide hormones (collectively abbreviated NPHs). The NPHs constitute a very large and versatile group of signaling substances that partake at different regulatory levels in most daily activities of an organism. This review summarizes key principles in NPH actions in the brain and in interorgan signaling, with focus on Drosophila. NPHs are produced by neurons, neurosecretory cells (NSCs) and other endocrine cells in NPH-specific and stereotypic patterns. Most of the NPHs have multiple (pleiotropic) functions and target several different neuronal circuits and/or peripheral tissues. Such divergent NPH signaling ensures orchestration of behavior and physiology in state-dependent manners. Conversely, many neurons, circuits, NSCs, or other cells, are targeted by multiple NPHs. This convergent signaling commonly conveys various signals reporting changes in the external and internal environment to central neurons/circuits. As an example of wider functional convergence, 26 different Drosophila NPHs act at many different levels to regulate food search and feeding. Convergence is also seen in hormonal regulation of peripheral functions. For instance, multiple NPHs target renal tubules to ensure osmotic homeostasis. Interestingly, several of the same osmoregulatory NPHs also regulate feeding, metabolism and stress. However, for some NPHs the cellular distribution and functions suggests multiple unrelated functions that are restricted to specific circuits. Thus, NPH signaling follows distinct patterns for each specific NPH, but taken together they form overlapping networks that modulate behavior and physiology.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
12
|
Epiney D, Morales Chaya GN, Dillon NR, Lai SL, Doe CQ. Transcriptional complexity in the insect central complex: single nuclei RNA-sequencing of adult brain neurons derived from type 2 neuroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.10.571022. [PMID: 40093129 PMCID: PMC11908175 DOI: 10.1101/2023.12.10.571022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In both invertebrates such as Drosophila and vertebrates such as mouse or human, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In Drosophila, there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. In contrast to T1 neuroblasts, T2 neuroblasts generate intermediate neural progenitors (INPs) that expand the number and diversity of cell types. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of neurons derived from T2 neuroblasts is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster (presumptive neuron subtype). This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
Collapse
Affiliation(s)
| | | | | | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
13
|
Nässel DR. A brief history of insect neuropeptide and peptide hormone research. Cell Tissue Res 2025; 399:129-159. [PMID: 39653844 PMCID: PMC11787221 DOI: 10.1007/s00441-024-03936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025]
Abstract
This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic "networks" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
14
|
Hafeez A, Wang K, Liu W, Wang XP. Juvenile hormone regulates reproductive diapause through both canonical and noncanonical pathways in the bean bug Riptortus pedestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104233. [PMID: 39622304 DOI: 10.1016/j.ibmb.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Diapause is an adaptive developmental arrest commonly utilized by animals to cope with seasonal changes. Central to this process are hormonal events that bridge photoperiodic cues and physiological changes. In insect reproductive diapause, the absence of juvenile hormone (JH) serves as the primary endocrine event that governs key diapause traits, including ovarian developmental arrest and lipid accumulation. Conventionally, it is believed that the effects of JH are conveyed through the receptor Methoprene-tolerant (Met) and its transcriptional factor Krüppel homolog 1 (Kr-h1). However, our study with the bean bug Riptortus pedestris reveals that JH independently regulates lipid accumulation, bypassing Met and Kr-h1 pathways. R. pedestris enters reproduction under long-day (LD) conditions, while diapause occurs under short-day (SD) conditions. Treatment of SD females with the JH mimic methoprene stimulated reproductive activities, enhancing ovary development and reducing lipid accumulation. In contrast, silencing genes essential for JH biosynthesis in LD females led to pronounced diapause characteristics, including ovarian developmental arrest and substantial lipid accumulation. Interestingly, disruptions in the JH action genes, either Met or Kr-h1, solely affected ovary development, leaving lipid accumulation unchanged, indicating an independent pathway for regulating JH in lipid accumulation. This was further confirmed by RNA interference experiments in SD females, where knockdown of Met or Kr-h1 did not alter the effects of methoprene on lipid reduction. Collectively, these results suggest that JH controls ovary development through the established Met-Kr-h1 pathway, while it modulates lipid accumulation through an alternative, yet to be identified noncanonical pathway during reproductive diapause in R. pedestris.
Collapse
Affiliation(s)
- Abdul Hafeez
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kou Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biological Sciences, University of Alberta, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Zhu Z, Nagata S. Allatotropin, DH31, and proctolin reduce chill tolerance in the two-spotted cricket, Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104222. [PMID: 39608734 DOI: 10.1016/j.ibmb.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The ability of insects to tolerate low temperatures, known as chill tolerance, contributes to their global distribution. However, the mechanisms underlying insect chill tolerance remain poorly understood. At low temperatures, insects enter chill coma, a reversible state of paralysis, owing to disrupted ion and water homeostasis. Upon returning to normal temperatures, insects reestablish ion and water homeostasis and recover the ability to move. In this study, we used the two-spotted cricket, Gryllus bimaculatus, as an experimental model and unveiled the roles of neuropeptides in regulating chill tolerance, typically evaluated by the time taken to recover from chill coma. Screening of 37 neuropeptides revealed that Allatotropin, DH31, and Proctolin inhibited chill coma recovery and decreased the survival rate under cold stress. RT-qPCR analyses revealed that the receptors for Allatotropin and DH31 were predominantly expressed in the hindgut. Injection of the three neuropeptides decreased both hemolymph mass and gut water content at low temperatures, most likely by increasing water excretion from the hindgut due to their effects on the rectum contraction. Additionally, Allatotropin and DH31 were produced by the terminal abdominal ganglion (TAG) innervating the hindgut since they were partly co-localized in the TAG, and their mature peptides were detected in the TAG-hindgut nerves. Moreover, the transcriptional levels of the neuropeptides in the TAG and receptors in the hindgut changed with cold exposure and rewarming. Based on these findings, we propose that Allatotropin, DH31, and Proctolin affect the physiological activities of the gut, probably the hindgut, to disrupt water homeostasis at low temperatures, thereby reducing chill tolerance in crickets.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
16
|
Gong W, Lubawy J, Marciniak P, Smagghe G, Słocińska M, Liu D, Liu T, Gui S. Transcriptome and Neuroendocrinome Responses to Environmental Stress in the Model and Pest Insect Spodoptera frugiperda. Int J Mol Sci 2025; 26:691. [PMID: 39859404 PMCID: PMC11766081 DOI: 10.3390/ijms26020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The fall armyworm, Spodoptera frugiperda, is one of the most notorious pest insects, causing damage to more than 350 plant species, and is feared worldwide as an invasive pest species since it exhibits high adaptivity against environmental stress. Here, we therefore investigated its transcriptome responses to four different types of stresses, namely cold, heat, no water and no food. We used brain samples as our interest was in the neuroendocrine responses, while previous studies used whole bodies of larvae or moths. In general, the responses were complex and encompassed a vast array of neuropeptides (NPs) and biogenic amines (BAs). The NPs were mainly involved in ion homeostasis regulation (ITP and ITPL) and metabolic pathways (AKH, ILP), and this was accompanied by changes in BA (DA, OA) biosynthesis. Cold and no-water stress changed the NP gene expression with the same patterns of expression but clearly separated from each other, and the most divergent pattern of expression was shown after no-food stress. In conclusion, our data provide a foundation in an important model and pest insect with candidate NPs and BAs and other marker candidate genes in response to environmental stress, and also potential new targets to manage pest insects.
Collapse
Affiliation(s)
- Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
| | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Dongdong Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
| | - Tongxian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Shunhua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Nishimura EO, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. PLoS Pathog 2025; 21:e1012855. [PMID: 39869679 PMCID: PMC11793825 DOI: 10.1371/journal.ppat.1012855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/04/2025] [Accepted: 12/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells (EE), suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L. Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
18
|
Choi MY, Price B, Hafeez M, Martin R, Richart C, Donnell RM. Bioactive peptides inhibit feeding activity in the grey garden slug, Deroceras reticulatum. PEST MANAGEMENT SCIENCE 2024; 80:6493-6500. [PMID: 39193860 DOI: 10.1002/ps.8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The grey garden slug (Deroceras reticulatum) is considered the most damaging slug pest in global agriculture. Control methods primarily rely on chemical pesticides, which pose environmental risks and potential hazards to human health. There is a need for sustainable management alternatives such as biologically-based slug control options. However, the efficacy of nonchemical measures for controlling pest slug populations remains limited, particularly in the context of variable outdoor conditions. Neuropeptides and their corresponding receptors have been proposed as promising biological targets for the development of new pest management strategies. RESULTS A total of 23 bioactive peptides belonging to the PRX family, previously identified from the grey garden slug, D. reticulatum, were injected into or fed to this species. The detrimental effects of these peptides, including a reduction in body weight and an inhibition of feeding activity, were evaluated in feeding choice tests with D. reticulatum. Furthermore, the bioactive peptide formulated with a lipid particle demonstrated a feeding deterrent effect. One of the myomodulin (MM) peptides, APPLPRY, demonstrated a significant reduction in feeding activity, resulting in a reduction in slug weight or mortality in just 30 min. CONCLUSION The results represent the first evidence of a bioactive peptide having detrimental effects on D. reticulatum including causing feeding deterrent for this slug pest. The in vivo results provide insights into the potential development of active ingredients for managing slugs in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Ruth Martin
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Casey Richart
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
19
|
da Silva RC, Bestea L, de Brito Sanchez G, Giurfa M. When the society dictates food search - Neural signalling underlying appetitive motivation in honey bees. Curr Opin Neurobiol 2024; 89:102930. [PMID: 39490303 DOI: 10.1016/j.conb.2024.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
In honey bees, appetitive motivation is primarily driven by the needs of the colony rather than individual needs. The regulation of appetitive behavior is achieved through the coordinated action of neuropeptides, hormones and biogenic amines, which integrate multiple signals to ensure appropriate appetitive responses. Dopamine signalling underpins a food-related wanting system that is sensitive to aversive experiences. The short neuropeptide F (sNPF) enhances appetitive responsiveness, food intake and behavioral and neural responsiveness to food-related odorants. Additionally, it facilitates appetitive learning and memory. On the contrary, tachykinin-related peptides (TRPs) inhibit appetitive responses. Physiological changes during the transition to the foraging state lead to distinct patterns of insulin and adipokinetic hormone (AKH) signaling, different from those seen in solitary insects, indicating that social life had significant consequences on the systems controlling appetitive motivation. Overall, studying the neural bases of appetitive behavior in bees reveals unique aspects that arise from their social lifestyle.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, F-75005 Paris, France
| | - Louise Bestea
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Gabriela de Brito Sanchez
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, F-75005 Paris, France.
| | - Martin Giurfa
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, F-75005 Paris, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
20
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Osborne Nishimura E, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.603613. [PMID: 39091762 PMCID: PMC11291174 DOI: 10.1101/2024.07.23.603613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis - an extremely efficient vector of West Nile virus (WNV) - nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells, suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L. Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Agricola H, Bräunig P. The complex neurochemistry of the cockroach antennal heart. Cell Tissue Res 2024; 398:139-160. [PMID: 39240336 PMCID: PMC11525290 DOI: 10.1007/s00441-024-03915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin. These fibers most likely originate from paired neurons located in the suboesophageal ganglion. In the second system, we found octopamine co-localized with the short neuropeptide F. The source of this second system is dorsal unpaired median (DUM) neurons, also located in the suboesophageal ganglion. The possible effects of these neuromediators on different targets are discussed.
Collapse
Affiliation(s)
- Hans Agricola
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany.
| | - Peter Bräunig
- Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
22
|
Al-Dailami AN, Orchard I, Lange AB. RhoprCAPA-2 acts as a gonadotropin regulating reproduction in adult female, Rhodnius prolixus. Gen Comp Endocrinol 2024; 358:114611. [PMID: 39260593 DOI: 10.1016/j.ygcen.2024.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
CAPA peptides play diverse roles in insects, modulating muscle contraction, regulating fluid balance, and reproduction. In Rhodnius prolixus, a hematophagous insect and a vector for human Chagas disease, three CAPA peptides are encoded by the capability gene, including RhoprCAPA-1, RhoprCAPA-2, and RhoprCAPA-PK-1. RhoprCAPA-2 is an anti-diuretic hormone in R. prolixus. Here, we explore the involvement of RhoprCAPA-2 in reproduction in adult female R. prolixus. Double-label immunohistochemistry reveals co-localization of RhoprCAPA-2-like and the glycoprotein hormone (GPA2/GPB5) subunit GPB5-like immunoreactivity in neurosecretory cells in the mesothoracic ganglionic mass and in their neurohemal sites, suggesting these peptides can be co-released to regulate physiological processes. qPCR analysis reveals changes in transcript expression levels of the RhoprCAPA receptor (CAPAR) in the fat body and reproductive tissues after feeding in adult female R. prolixus. RNA interference-mediated knockdown of CAPAR transcript decreases egg production and reduces hatching rate and survival rate in female R. prolixus. Downregulation of CAPAR decreases vitellogenin RhoprVg1 transcript expression in the fat body and deceases its receptor RhoprVgR transcript level in the ovaries; accompanied by a reduction in vitellogenin content in the fat body and hemolymph. Incubation of fat body and ovaries in vitro with RhoprCAPA-2 increases RhoprVg1 transcript expression in the fat body, vitellogenin content in the fat body culture medium, and increases RhoprVgR transcript in the ovaries. These findings implicate the CAPA signaling pathway in reproduction, with RhoprCAPA-2 acting as a gonadotropin in adult female R. prolixus.
Collapse
Affiliation(s)
- Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
23
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 PMCID: PMC11574354 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Han S, Chen J, Liu Z, Zhang M, Guo P, Liu X, Wang L, Shen Z, Zhang L. Identification and expression profiling of neuropeptides and neuropeptide receptor genes in a natural enemy, Coccinella septempunctata. Front Physiol 2024; 15:1464989. [PMID: 39444755 PMCID: PMC11496152 DOI: 10.3389/fphys.2024.1464989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Neuropeptides and their receptors constitute diverse and abundant signal molecules in insects, primarily synthesized and released primarily from neurosecretory cells within the central nervous system Neuropeptides act as neurohormones and euromodulators, regulating insect behavior, lifecycle, and physiology by binding to receptors on cell surface. As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-cultured and widely employed in pest management. Insect diapause is a physiological and ecological adaptative strategy acquired in adverse environments. In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. However, little is known about the function of neuropeptides and their receptors in controlling reproductive diapause of C. septempunctata. It is unclear which neuropeptides affect diapause of C. septempunctata. Methods In this study, RNA-seq technology and bioinformatics were utilized to investigate genes encoding neuropeptides and their receptors in female adults of C. septempunctata. Quantitative real-time PCR (qRT-PCR) analysis was employed to examine gene expression across different development/diapause stages. Results A total of 17 neuropeptide precursor genes and 9 neuropeptide receptor genes were identified, implicated in regulating various behaviors such as feeding, reproduction, and diapause. Prediction of partial mature neuropeptides from precursor sequences was also performed using available information about these peptides from other species, conserved domains and motifs. During diapause induction, the mRNA abundance of AKH was notably higher on the 10th day compared to non-diapause females, but decreased by the 20th day. In contrast, GPHA showed lower expression levels on the 5th day of diapause induction compared to non-diapause females, but increased significantly by the 15th and 20th days. NPF was higher expressed in head and midgut while DH showed higher expression in the fat body and midgut. Additionally, NPF expression remained consistently lower throughout all stages of diapause induction compared to non-diapause conditions in females. Discussion This study represents the first sequencing, identification, and expression analysis of neuropeptides and neuropeptide receptor genes in C. septempunctata. Our results could provide a foundational framework for further investigations into the presence, functions, and potential targets of neuropeptides and their receptors, particularly in devising novel strategies for diapause regulation in C. septempunctata.
Collapse
Affiliation(s)
- ShunDa Han
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JunJie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - ZhaoHan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - MaoSen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - PengHui Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - XiaoXiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LongRui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - ZhongJian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiSheng Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
25
|
Zhu Z, Nagata S. Ion transport peptide and ion transport peptide-like regulate ecdysis behavior and water transport during ecdysis in Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104178. [PMID: 39187166 DOI: 10.1016/j.ibmb.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Ion transport peptide (ITP) and ITP-like (ITPLs) are pleiotropic bioactive peptides in insects. Although the contribution of these peptides to ecdysis has been studied, the precise regulatory mechanisms remain poorly understood. Here, we characterized the functions of itp and itpl variants in the two-spotted cricket, Gryllus bimaculatus. Reverse transcription-quantitative PCR and whole-mount in situ hybridization revealed that itp was expressed in the brain and terminal abdominal ganglion, whereas itpl variants were expressed in all ganglia of the central nervous system. Simultaneous knockdown of itp and itpls disrupted ecdysis behavior and water transport from the gut into the hemolymph during molting. Nevertheless, knockdown of itpls without influencing itp expression did not significantly affect ecdysis behavior but caused a reduction in hemolymph mass. Although water transport into the hemolymph is considered necessary for the swelling required to split the old cuticle layers during molting, a rescue experiment by injection of water or cricket Ringer's solution into the hemolymph of knockdown crickets did not recover the normal phenotype. Therefore, we propose that ITP/ITPL control ecdysis behavior probably not by regulating water transport from the gut into the hemolymph in crickets.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
26
|
McKim TH, Gera J, Gayban AJ, Reinhard N, Manoli G, Hilpert S, Helfrich-Förster C, Zandawala M. Synaptic connectome of a neurosecretory network in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609616. [PMID: 39257829 PMCID: PMC11384003 DOI: 10.1101/2024.08.28.609616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult Drosophila brain. Identification of neurons providing inputs to multiple NSC subtypes implicates diuretic hormone 44-expressing NSC as a major coordinator of physiology and behavior. Surprisingly, despite most NSC having dendrites in the subesophageal zone (primary taste processing center), gustatory inputs to NSC are largely indirect. We also deciphered pathways via which diverse olfactory inputs are relayed to NSC. Further, our analyses revealed substantial inputs from descending neurons to NSC, suggesting that descending neurons regulate both endocrine and motor output to synchronize physiological changes with appropriate behaviors. In contrast to NSC inputs, synaptic output from NSC is sparse and mostly mediated by corazonin NSC. Therefore, we additionally determine putative paracrine interconnectivity between NSC subtypes and hormonal pathways from NSC to peripheral tissues by analyzing single-cell transcriptomic datasets. Our comprehensive characterization of the Drosophila neurosecretory network connectome provides a platform to understand complex hormonal networks and how they orchestrate animal behaviors and physiology.
Collapse
Affiliation(s)
- Theresa H. McKim
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ariana J. Gayban
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hilpert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Meet Zandawala
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| |
Collapse
|
27
|
Price BE, Jang HS, Parks RK, Choi MY. Functional expression and characterization of CAPA receptor in the digestive tract and life stages of Drosophila suzukii, and differential activities with insect PRXamide peptides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22080. [PMID: 39148444 DOI: 10.1002/arch.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 08/17/2024]
Abstract
Spotted-wing drosophila, Drosophila suzukii (Matsumura), is an invasive vinegar fly that is a major threat to the small fruits industries globally. Insect capa genes encode multiple neuropeptides, including CAPA-periviscerokinin (CAPA-PVK) peptides, that are specifically known to cause diuresis or anti-diuresis in various organisms. Here we identified and characterized a corresponding G protein-coupled receptor (GPCR) of the D. suzukii CAPA-PVK peptides: CAPA receptor (CAPA-R). To better characterize the behavior of D. suzukii CAPA-R, we used insect cell-based functional expression assays to evaluate responses of CAPA-R against D. suzukii CAPA-PVKs, CAPA-PVKs from five species in Insecta, one species from Mollusca, modified CAPA-PVK peptides, and some PRXamide family peptides: pyrokinin (PK), diapause hormone (DH), and ecdysis-triggering hormone (ETH). Functional studies revealed that the D. suzukii CAPA-R is strongly activated by both of its own natural D. suzukii CAPA-PVKs, and interestingly, it was strongly activated by other CAPA-PVK peptides from Frankliniella occidentallis (Thysanoptera), Solenopsis invicta (Hymenoptera), Helicoverpa zea (Lepidoptera) and Plutella xylostella (Lepidoptera). However, D. suzukii CAPA-R was not activated by Mollusca CAPA-PVK or the other PRXamide peptides. Gene expression analyses showed that the CAPA-R was highly expressed in the Malpighian tubules and moderately in hindgut compared to other digestive organs or the rest of body, supporting diuretic/antidiuretic functionality. When compared across life stages of D. suzukii, expression of CAPA-R was approximately 1.5x greater in the third instar than the other stages and minimally detected in the eggs, 4-day old pupae and 3-day old adults. Our results functionally characterized the D. suzukii CAPA-R and a few short peptides were identified as potential biological targets to exploit the CAPA-R for D. suzukii management.
Collapse
Affiliation(s)
- Briana E Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
28
|
Wulff JP, Hickner PV, Watson DW, Denning SS, Belikoff EJ, Scott MJ. Antennal transcriptome analysis reveals sensory receptors potentially associated with host detection in the livestock pest Lucilia cuprina. Parasit Vectors 2024; 17:308. [PMID: 39026238 PMCID: PMC11256703 DOI: 10.1186/s13071-024-06391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) is the main causative agent of flystrike of sheep in Australia and New Zealand. Female flies lay eggs in an open wound or natural orifice, and the developing larvae eat the host's tissues, a condition called myiasis. To improve our understanding of host-seeking behavior, we quantified gene expression in male and female antennae based on their behavior. METHODS A spatial olfactometer was used to evaluate the olfactory response of L. cuprina mated males and gravid females to fresh or rotting beef. Antennal RNA-Seq analysis was used to identify sensory receptors differentially expressed between groups. RESULTS Lucilia cuprina females were more attracted to rotten compared to fresh beef (> fivefold increase). However, males and some females did not respond to either type of beef. RNA-Seq analysis was performed on antennae dissected from attracted females, non-attracted females and males. Transcripts encoding sensory receptors from 11 gene families were identified above a threshold (≥ 5 transcript per million) including 49 ATP-binding cassette transporters (ABCs), two ammonium transporters (AMTs), 37 odorant receptors (ORs), 16 ionotropic receptors (IRs), 5 gustatory receptors (GRs), 22 odorant-binding proteins (OBPs), 9 CD36-sensory neuron membrane proteins (CD36/SNMPs), 4 chemosensory proteins (CSPs), 4 myeloid lipid-recognition (ML) and Niemann-Pick C2 disease proteins (ML/NPC2), 2 pickpocket receptors (PPKs) and 3 transient receptor potential channels (TRPs). Differential expression analyses identified sex-biased sensory receptors. CONCLUSIONS We identified sensory receptors that were differentially expressed between the antennae of both sexes and hence may be associated with host detection by female flies. The most promising for future investigations were as follows: an odorant receptor (LcupOR46) which is female-biased in L. cuprina and Cochliomyia hominivorax Coquerel, 1858; an ABC transporter (ABC G23.1) that was the sole sensory receptor upregulated in the antennae of females attracted to rotting beef compared to non-attracted females; a female-biased ammonia transporter (AMT_Rh50), which was previously associated with ammonium detection in Drosophila melanogaster Meigen, 1830. This is the first report suggesting a possible role for ABC transporters in L. cuprina olfaction and potentially in other insects.
Collapse
Affiliation(s)
- Juan P Wulff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paul V Hickner
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX, 78028-9184, USA
| | - David W Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Steven S Denning
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
29
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
30
|
Leyria J, Orchard I, Lange AB. Octopamine is required for successful reproduction in the classical insect model, Rhodnius prolixus. PLoS One 2024; 19:e0306611. [PMID: 38995904 PMCID: PMC11244822 DOI: 10.1371/journal.pone.0306611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In insects, biogenic amines function as neurotransmitters, neuromodulators, and neurohormones, influencing various behaviors, including those related to reproduction such as response to sex pheromones, oogenesis, oviposition, courtship, and mating. Octopamine (OA), an analog of the vertebrate norepinephrine, is synthesized from the biogenic amine tyramine by the enzyme tyramine β-hydroxylase (TβH). Here, we investigate the mechanisms and target genes underlying the role of OA in successful reproduction in females of Rhodnius prolixus, a vector of Chagas disease, by downregulating TβH mRNA expression (thereby reducing OA content) using RNA interference (RNAi), and in vivo and ex vivo application of OA. Injection of females with dsTβH impairs successful reproduction at least in part, by decreasing the transcript expression of enzymes involved in juvenile hormone biosynthesis, the primary hormone for oogenesis in R. prolixus, thereby interfering with oogenesis, ovulation and oviposition. This study offers valuable insights into the involvement of OA for successful reproduction in R. prolixus females. Understanding the reproductive biology of R. prolixus is crucial in a medical context for controlling the spread of the disease.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
31
|
Gong W, Linghu JH, Xu HM, Luo LL, Smagghe G, Liu TX, Gui SH. Neuropeptide natalisin regulates reproductive behaviors in Spodoptera frugiperda. Sci Rep 2024; 14:15122. [PMID: 38956289 PMCID: PMC11220091 DOI: 10.1038/s41598-024-66031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.
Collapse
Affiliation(s)
- Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hui-Min Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China.
| |
Collapse
|
32
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
33
|
Tu S, Yu G, Ge F, Xu R, Jin Z, Xie X, Zhu D. Comparative transcriptomic characterization of the ovary in the spawning process of the mud crab Scylla paramamosain. Dev Growth Differ 2024; 66:274-284. [PMID: 38501505 DOI: 10.1111/dgd.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of Scylla paramamosain. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of S. paramamosain for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of S. paramamosain focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in S. paramamosain and provide information for oviposition studies in other crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Guohong Yu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Fuqiang Ge
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhongwen Jin
- Ningbo Ocean and Fisheries Research Institute of Zhejiang Province, Ningbo, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
34
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
35
|
Sajadi F, Paluzzi JPV. Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito, Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2024; 4:1374325. [PMID: 38654748 PMCID: PMC11035804 DOI: 10.3389/finsc.2024.1374325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate Itp and Itp-l expression profiles in the mosquito, Aedes aegypti, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both AedaeItp and AedaeItp-l revealed distinct enrichment patterns in adults, with AedaeItp expressed in the brain and AedaeItp-l expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of AedaeITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, AedaeITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of AedaeItp and AedaeItp-l levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of AedaeItp caused an increase in urine excretion, while knockdown of both AedaeItp and AedaeItp-l reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies AedaeITP and AedaeITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, A. aegypti.
Collapse
|
36
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
37
|
Wang J, Chai Y, Yang J, Chen K, Liu G, Luo J, Guan G, Ren Q, Yin H. Insight into Hyalomma anatolicum biology by comparative genomics analyses. Int J Parasitol 2024; 54:157-170. [PMID: 37858900 DOI: 10.1016/j.ijpara.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Hyalomma anatolicum is an obligatory blood-sucking ectoparasite and contributes to the transmission of Crimean-Congo haemorrhagic fever (CCHF) virus, Theileria spp. and Babesia spp. Progress in exploring the adaptive strategy of this ectoparasite and developing tools to fight it has been hindered by the lack of a complete genome. Herein, we assembled the genome using diverse sources of data from multiple sequencing platforms and annotated the 1.96 Gb genome of Hy. anatolicum. Comparative genome analyses and the predicted protein encoding genes reveal unique facets of this genome, including gene family expansion associated with blood feeding and digestion, multi-gene families involved in detoxification, a great number of neuropeptides and corresponding receptors regulating tick growth, development, and reproduction, and glutathione S-transferase genes playing roles in insecticide resistance and detoxification of multiple xenobiotic factors. This high quality reference genome provides fundamental data for obtaining insights into a variety of aspects of tick biology and developing novel strategies to fight notorious tick vectors of human and animal pathogens.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yijun Chai
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Sharma M, Verma S, Angurana SL, Tufail Z, Bhagat V, Nagyal S, Jamwal RS, Sharma B, Shah R, Bhat A, Chander G, Kumar R. Exome sequencing identifies ADGRG4 G-protein-coupled receptors gene as a novel cancer biomarker in ovarian cancer patients from North India. J Biochem Mol Toxicol 2024; 38:e23672. [PMID: 38462741 DOI: 10.1002/jbt.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Adhesion G protein-coupled receptor G4 (ADGRG4) is a G protein-coupled receptor (GPCR) that belongs to the adhesion family. Participation of ADGRG4 in cell adhesion and migration, signaling pathway activation, influence on angiogenesis, and modulation of immune responses are some of the possible ways through which it may contribute to oncogenesis. Conducting extensive omics studies poses budgetary challenges to small labs in peripheral areas, primarily due to restricted research funding and resource limitations. Here we propose a low-budget model for biomarker screening. A total of 11 ovarian cancer samples were sent for exome sequencing. Among various genes, ADGRG4 variants were present in all 11 samples and thus were chosen as a potential biomarker in the present population. However, the precise role of ADGRG4 in cancer is not fully understood. The present study aims to look at the association between the ADGRG4 gene variants and their risk of ovarian cancer in the North Indian region of Jammu and Kashmir, India. Overall, 235 individuals (115 cases and 120 healthy controls) were genotyped for the selected biomarker using Sanger sequencing. Logistic regression was used to assess the relationship between the variant and ovarian cancer. A statistically significant association was identified between the ADGRG4 variant rs5930932 polymorphism and the incidence of ovarian cancer among the study population. When corrected for age and BMI, the dominating OR of variant rs5930932 was 1.035 (1.003-1.069) under HWE patients (0.95) and controls (0.18), with a p-value of (0.03). According to the findings of the current investigation, the ADGRG4 gene variant rs5930932 increases the chance of developing ovarian cancer in the studied population.
Collapse
Affiliation(s)
- Minerva Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Sonali Verma
- Indian Council of Medical Research-Centre for Advance Research, Shri Mata Vaishno Devi University, Katra, India
| | | | - Ziya Tufail
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Vanshika Bhagat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Sonia Nagyal
- Department of Histopathology, Shri Mata Vaishno Devi Narayana Multispeciality Clinic, Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, India
| | | | - Bhawani Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ruchi Shah
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India, Jammu & Kashmir, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu & Kashmir, India
| | - Gresh Chander
- Indian Council of Medical Research-Centre for Advance Research, Shri Mata Vaishno Devi University, Katra, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
- Indian Council of Medical Research-Centre for Advance Research, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
39
|
Huang C, Dong X, Yang X, Zou J, Yang M, Wang X, Li W, He Y. Identification of neuropeptides and their G protein-coupled receptors in the predatory stink bug, Arma custos (Hemiptera: Pentatomidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22094. [PMID: 38409857 DOI: 10.1002/arch.22094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.
Collapse
Affiliation(s)
- Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiangli Dong
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Huang Y, Zhang J, You D, Chen S, Lin Z, Li B, Ling M, Tong H, Li F. Mechanisms underlying palmitic acid-induced disruption of locomotor activity and sleep behavior in Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109813. [PMID: 38070757 DOI: 10.1016/j.cbpc.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The globally prevalent of sleep disorders is partly attributed to unhealthy dietary habits. This study investigated the underlying mechanisms of elevated palmitic acid (PA) intake on locomotor activity and sleep behavior in Drosophila. Our results indicate that exposure to PA significantly elevated Drosophila's daytime and nighttime locomotor activity while concurrently reducing overall sleep duration. Utilizing 16S rRNA sequencing, we observed substantial alterations in the composition of the gut microbiota induced by PA, notably, characterized by a significant reduction in Lactobacillus plantarum. Furthermore, PA significantly increased the levels of inflammatory factors Upd3 and Eiger in Drosophila intestines, and downregulated the expression of Gad and Tph, as well as 5-HT1A. Conversely, Gdh and Hdc were significantly upregulated in the PA group. Supplementation with L. plantarum or lactic acid significantly ameliorated PA-induced disruptions in both locomotor activity and sleep behavior. This supplementation also suppressed the expression of intestinal inflammatory factors, thus restoring impaired neurotransmitter-mediated sleep-wake regulation. Moreover, specific knockdown of intestinal epithelial Upd3 or Eiger similarly restored disrupted neurotransmitter expression, ultimately improving PA-induced disturbances in Drosophila locomotor activity and sleep behavior. These findings provide important insights into the intricate interplay between dietary components and essential behaviors, highlighting potential avenues for addressing health challenges associated with modern dietary habits.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China
| | - Jiaqi Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Dongdong You
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Menglai Ling
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China.
| |
Collapse
|
41
|
Kazemi Alamouti M, Majdi M, Talebi R, Dastranj M, Bandani A, Hossini Salekdeh G, Reza Ghaffari M. Transcriptome wide identification of neuropeptides and G protein-coupled receptors (GPCRs) in Sunn pest, Eurygaster integriceps Puton. Gene 2024; 893:147911. [PMID: 37863301 DOI: 10.1016/j.gene.2023.147911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Sunn pest (Eurygaster integriceps Puton) is major wheat pest causing economic damage. Neuropeptides and their receptors, G protein-coupled receptors (GPCRs), are involved in the regulation of insect physiology and behavior. Herein, a transcriptome-wide analysis was conducted in order to identify genes encoding neuropeptides, and putative GPCRs to gain insight into neuropeptide-modulated processes. De novo transcriptome assembly was undertaken using paired-end sequence reads derived from RNA samples collected from whole adults and yielded 582,398 contigs. In total, 46 neuropeptides have been identified, encompassing various known insect neuropeptide families. In addition, we discovered four previously uncharacterized neuroparsin peptides, which contributes to our understanding of the neuropeptide landscape. Furthermore, 85 putative neuropeptide GPCRs were identified, comprising three classes of GPCRs, A, B, C, and LGR, of which class C is not widely reported in insects. In addition, the identified GPCRs exhibited a remarkable 80% homology with the GPCRs found in the brown marmorated stink bug. It is noteworthy that these GPCRs displayed only a 20% homology to GPCRs from many other insect species. This information may be used to understand the neuropeptide-modulated physiology and behavior of Eurygaster integriceps, and to develop specific neuropeptide-based pest management strategies.
Collapse
Affiliation(s)
- Mehrbano Kazemi Alamouti
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Kurdistan, P. O. Box: 416, Sanandaj, Iran; Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Majdi
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Kurdistan, P. O. Box: 416, Sanandaj, Iran.
| | - Reza Talebi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Dastranj
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Alireza Bandani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
42
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Dhungana P, Wei X, Meuti M, Sim C. Identification of CYCLE targets that contribute diverse features of circadian rhythms in the mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101140. [PMID: 37690215 PMCID: PMC10841209 DOI: 10.1016/j.cbd.2023.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Culex pipiens demonstrates robust circadian rhythms in adult eclosion, flight activity, mating, and development. These rhythmic patterns are believed to be controlled by the endogenous light-entrainable circadian clock that consists of positive and negative regulators working in a transcription-translation feedback loop. Moreover, these mosquitoes undergo seasonal diapause in exposure to the short photoperiod of late summer or early fall. However, the exact genetic and cellular mechanism behind the clock gene-mediated activity pattern, seasonal time measurement, and subsequent diapause initiation still need to be unraveled. To determine the possible linkage between clock genes and downstream processes, here we employed ChIP-sequencing to identify the direct targets of one of the core clock proteins, Cycle (CYC). The nearest genes with peaks mapping to their 1Kb upstream region of the transcription start site were extracted and scanned for consensus E box sequences, resulting in a dataset comprising the target genes possibly regulated by CYC. Based on the highest fold enrichment and functional relevance, we identified genes relating to five gene categories of potential interest, including peptide/receptors, neurotransmission, olfaction, immunity, and reproductive growth. Of these, we validated fourteen genes with ChIP-qPCR and qRT-PCR. These genes showed a significantly high expression in dusk compared to dawn in concert with the activity level of the CYC transcription factor and are thus strong candidates for mediating circadian rhythmicity and possibly regulating seasonal shifts in mosquito reproductive activity.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA. https://twitter.com/@Prabin_988
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA. https://twitter.com/@MeganMeuti
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
44
|
Muñoz-Flores C, Roa FJ, Saavedra P, Fuentealba P, Starck MF, Ortega L, Montesino R, Valenzuela A, Astuya A, Parra N, González-Chavarría I, Sánchez O, Toledo JR, Acosta J. Immunomodulatory role of vasoactive intestinal peptide and ghrelin in Oncorhynchus mykiss. Heliyon 2023; 9:e23215. [PMID: 38149209 PMCID: PMC10750074 DOI: 10.1016/j.heliyon.2023.e23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Neuropeptides are a group of peptides derived from precursor proteins synthesized in neuronal and nonneuronal cells. The classical functions of neuropeptides have been extensively studied in mammals, including neuromodulation in the central nervous system, molecular signaling in the peripheral nervous system, and immunomodulation associated mainly with anti-inflammatory activity. In contrast, in teleosts, studies of the immunomodulatory function of these neuropeptides are limited. In Oncorhynchus mykiss, vasoactive intestinal peptide (VIP) mRNA sequences have not been cloned, and the role of VIP in modulating the immune system has not been studied. Furthermore, in relation to other neuropeptides with possible immunomodulatory function, such as ghrelin, there are also few studies. Therefore, in this work, we performed molecular cloning, identification, and phylogenetic analysis of three VIP precursor sequences (prepro-VIP1, VIP2 and VIP3) in rainbow trout. In addition, the immunomodulatory function of both neuropeptides was evaluated in an in vitro model using the VIP1 sequence identified in this work and a ghrelin sequence already studied in O. mykiss. The results suggest that the prepro-VIP2 sequence has the lowest percentage of identity with respect to the other homologous sequences and is more closely related to mammalian orthologous sequences. VIP1 induces significant expression of both pro-inflammatory (IFN-γ, IL-1β) and anti-inflammatory (IL-10 and TGF-β) cytokines, whereas ghrelin only induces significant expression of proinflammatory cytokines such as IL-6 and TNF-α.
Collapse
Affiliation(s)
- Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Francisco J. Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Paulina Saavedra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Pablo Fuentealba
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - María F. Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| |
Collapse
|
45
|
Yun SH, Jang HS, Ahn SJ, Price BE, Hasegawa DK, Choi MY. Identification and characterisation of PRXamide peptides in the western flower thrips, Frankliniella occidentalis. INSECT MOLECULAR BIOLOGY 2023; 32:603-614. [PMID: 37265417 DOI: 10.1111/imb.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.
Collapse
Affiliation(s)
- Seung-Hwan Yun
- Gyeonggi-do Agricultural Research and Extension Services, Hwaseong-si, Republic of Korea
| | - Hyo Sang Jang
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Briana E Price
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| | - Daniel K Hasegawa
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, California, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| |
Collapse
|
46
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Ahmed OM, Crocker A, Murthy M. Transcriptional profiling of Drosophila male-specific P1 (pC1) neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566045. [PMID: 37986870 PMCID: PMC10659367 DOI: 10.1101/2023.11.07.566045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In Drosophila melanogaster, the P1 (pC1) cluster of male-specific neurons both integrates sensory cues and drives or modulates behavioral programs such as courtship, in addition to contributing to a social arousal state. The behavioral function of these neurons is linked to the genes they express, which underpin their capacity for synaptic signaling, neuromodulation, and physiology. Yet, P1 (pC1) neurons have not been fully characterized at the transcriptome level. Moreover, it is unknown how the molecular landscape of P1 (pC1) neurons acutely changes after flies engage in social behaviors, where baseline P1 (pC1) neural activity is expected to increase. To address these two gaps, we use single cell-type RNA sequencing to profile and compare the transcriptomes of P1 (pC1) neurons harvested from socially paired versus solitary male flies. Compared to control transcriptome datasets, we find that P1 (pC1) neurons are enriched in 2,665 genes, including those encoding receptors, neuropeptides, and cell-adhesion molecules (dprs/DIPs). Furthermore, courtship is characterized by changes in ~300 genes, including those previously implicated in regulating behavior (e.g. DopEcR, Octβ3R, Fife, kairos, rad). Finally, we identify a suite of genes that link conspecific courtship with the innate immune system. Together, these data serve as a molecular map for future studies of an important set of higher-order and sexually-dimorphic neurons.
Collapse
Affiliation(s)
- Osama M Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
48
|
Li W, Li Z, Yang X, Wang X, Yang M, Huang C, He Y. Transcriptome analysis reveals salivary gland-specific neuropeptide signaling genes in the predatory stink bug, Picromerus lewisi. Front Physiol 2023; 14:1270751. [PMID: 37841314 PMCID: PMC10570428 DOI: 10.3389/fphys.2023.1270751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Predatory stink bugs derive from phytophagous stink bugs and evolved enhanced predation skills. Neuropeptides are a diverse class of ancient signaling molecules that regulate physiological processes and behavior in animals, including stink bugs. Neuropeptide evolution might be important for the development of predation because neuropeptides can be converted to venoms that impact prey. However, information on neuropeptide signaling genes in predatory stink bugs is lacking. In the present study, neuropeptide signaling genes of Picromerus lewisi, an important predatory stink bug and an effective biological agent, were comprehensively identified by transcriptome analysis, with a total of 59 neuropeptide precursor genes and 58 potential neuropeptide receptor genes found. In addition, several neuropeptides and their receptors enriched in salivary glands of P. lewisi were identified. The present study and subsequent functional research contribute to an in-depth understanding of the biology and behavior of the predatory bugs and can provide basic information for the development of better pest management strategies, possibly including neuropeptide receptors as insecticide targets and salivary gland derived venom toxins as novel killing moleculars.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
50
|
Wang G, Wang J, Nie L. Transcriptome sequencing of the central nervous system to identify the neuropeptides and neuropeptide receptors of Antheraea pernyi. Int J Biol Macromol 2023:125411. [PMID: 37327925 DOI: 10.1016/j.ijbiomac.2023.125411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Neuropeptides and neuropeptide receptors are crucial regulators for the behavior, lifecycle, and physiology of insects and are mainly produced and released from the neurosecretory cells of the central nervous system (CNS). In this study, RNA-seq was employed to investigate the transcriptome profile of the CNS which is composed of the brain and ventral nerve cord (VNC) of Antheraea pernyi. From the data sets, a total of 18 and 42 genes were identified, which respectively encode the neuropeptides and neuropeptide receptors involved in regulating multiple behaviors including feeding, reproductive behavior, circadian locomotor, sleep, and stress response and physiological processes such as nutrient absorption, immunity, ecdysis, diapause, and excretion. Comparison of the patterns of expression of those genes between the brain and VNC showed that most had higher levels of expression in the brain than VNC. Besides, 2760 differently expressed genes (DEGs) (1362 up-regulated and 1398 down-regulated ones between the B and VNC group) were also screened and further analyzed via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The results of this study could provide comprehensive profiles of the neuropeptides and neuropeptide receptors of A. pernyi CNS and lay the foundation for further research into their functions.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China.
| | - Jiangrun Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Lei Nie
- Shandong Sericulture Research Institute, Shandong Academy of Agricultural Sciences, Yantai 264002, China
| |
Collapse
|