1
|
Liu JJ, Mei HW, Jing YY, Li ZL, Wu SG, Yuan HX, Zhang XB. Yinchenhao decoction alleviates obstructive jaundice liver injury by modulating epidermal growth factor receptor and constitutive androstane receptor signaling. World J Hepatol 2025; 17:101724. [PMID: 40177192 PMCID: PMC11959654 DOI: 10.4254/wjh.v17.i3.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Yinchenhao decoction (YCHD) is a traditional Chinese medicine widely used to treat liver damage caused by obstructive jaundice (OJ). Although YCHD has demonstrated protective effects against liver damage, reduced apoptosis, and mitigated oxidative stress in OJ, the precise molecular mechanisms involved remain poorly understood. AIM To investigate the beneficial effects of YCHD on OJ and elucidate the underlying mechanisms. METHODS The active constituents of YCHD were identified using liquid chromatography-tandem mass spectrometry, and their potential targets for OJ treatment were predicted through network pharmacology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. An OJ rat model was established by common bile duct ligation. Rats were divided into three groups: Sham surgery (S Group), model (O Group), and YCHD (Y Group). YCHD was administered to Group Y for one week. Bilirubin levels, liver function parameters, and bile acid concentrations in blood and urine were measured by enzyme-linked immunosorbent assay. The bile acid renal clearance rate (Clr) was calculated. Histopathological evaluation of liver and kidney tissues was performed using hematoxylin-eosin staining. Western blotting was utilized to assess the expression of key bile acid metabolism and transport proteins in both liver and kidney tissues. The expression of the constitutive androstane receptor (CAR) and its nuclear localization were evaluated by immunohistochemistry. Molecular docking studies identified the epidermal growth factor receptor (EGFR) as a potential target of YCHD's active components. An OJ cell model was created using human liver (L02) and renal tubular epithelial (HK-2) cells, which were treated with YCHD-containing serum. Western blotting and immunofluorescence assays were employed to evaluate CAR expression and its nuclear localization in relation to EGFR activation. RESULTS Network analysis identified the EGFR signaling pathway as a key mechanism through which YCHD exerts its effects on OJ. In vivo experiments showed that YCHD improved liver function, reduced OJ-induced pathology in liver and kidney tissues, and decreased serum bile acid content by enhancing bile acid Clr and urine output. YCHD also increased CAR expression and nuclear heterotopy, upregulating proteins involved in bile acid metabolism and transport, including CYP3A4, UGT1A1, MRP3, and MRP4 in the liver, and MRP2 and MRP4 in the kidneys. In vitro, YCHD increased CAR expression and nuclear heterotopy in L02 and HK-2 cells, an effect that was reversed by EGFR agonists. CONCLUSION YCHD enhances bile acid metabolism in the liver and promotes bile acid excretion in the kidneys, ameliorating liver damage caused by OJ. These effects are likely mediated by the upregulation of CAR and its nuclear translocation.
Collapse
Affiliation(s)
- Jun-Jian Liu
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
- Tianjin Key Laboratory, Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300102, China
| | - Han-Wei Mei
- Department of Gastrointestinal Surgery 3, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 301617, China
| | - Yan-Yan Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhong-Lian Li
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Su-Guo Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong-Xia Yuan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi-Bo Zhang
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China.
| |
Collapse
|
2
|
Li Z, Li Q, Peng Q, Smagghe G, Li G. RNAi of nuclear receptor E78 inhibits the cuticle formation in the molting process of spider mite, Tetranychus urticae. PEST MANAGEMENT SCIENCE 2025; 81:809-818. [PMID: 39400455 DOI: 10.1002/ps.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The two-spotted spider mite, Tetranychus urticae, is an important pest mite in agriculture worldwide. E78, as a member of the nuclear receptor superfamily and a downstream responsive gene of ecdysteroids, plays a crucial role in regulating physiological behaviors such as development and reproduction in insects. However, its function in mites remains unclear. The aim of this study was to explore how E78 functions in the molting process of spider mites. RESULTS In this study, reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments to analyze the expression pattern of TuE78 during the development of Tetranychus urticae, demonstrated that the expression level of TuE78 was higher during the molting state than that after the completion of molting, and it reached a peak expression level when the deutonymph mites entered the molting stage. RNA interference (RNAi)-mediated gene-silencing of TuE78 resulted in 95% deutonymph mite molt failure. A series of analysis under a light microscope, and scanning and transmission electron microscopy revealed that RNAi mites died within the exuvium without ecdysis, and that apolysis had started but the new cuticle was thin and the typical cuticular lamellae were absent, indicating blockage of the post-apolysial processes and explaining molt failure. Hence, transcriptome sequencing confirmed that the expression of cuticle protein and lipid metabolism-related genes was significantly affected after TuE78 silencing. CONCLUSION This study demonstrated that TuE78 participates in the molting process of Tetranychus urticae by regulating the post-apolysial processes with the formation of new cuticle and successful ecdysis. This in turn suggests the potential of TuE78 as a target for pest mite control and provides a theoretical basis for further exploration of the molecular regulatory mechanism of spider mite molting. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuo Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qingyan Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qixiang Peng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gang Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Wang K, Zhao YL, Jiang YZ, Liu W, Wang XP. Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. INSECT SCIENCE 2025. [PMID: 39822051 DOI: 10.1111/1744-7917.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Lian Zhao
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Zi Jiang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
An G, Nam G, Jung J, Na J. Increased adsorption of diflubenzuron onto polylactic acid microplastics after ultraviolet weathering can increase acute toxicity in the water flea (Daphnia magna). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177600. [PMID: 39615170 DOI: 10.1016/j.scitotenv.2024.177600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The ultraviolet (UV) weathering of microplastics (MPs) can lead to higher adsorption of harmful contaminants, thus increasing the potential risks of their combined effects. Because biodegradable MPs are more susceptible to UV weathering than conventional MPs, concerns have arisen about their ecological toxicity and environmental impact. Therefore, this study investigated the mechanisms associated with the adsorption of the pesticide diflubenzuron (DFB) onto polylactic acid (PLA) MP particles after UV weathering and the acute effects (48 h) of their combination on the water flea Daphnia magna. These effects were also compared with those of the conventional MP polyethylene terephthalate (PET). UV weathering led to a greater number of cracks and pores in the PLA particles compared to PET, as well as a higher number of oxygen-based functional groups and a larger surface area. These surface changes in UV-weathered PLA particles promoted higher DFB adsorption, which in turn led to stronger acute toxicity for D. magna compared to UV-weathered PET particles. Combined exposure to 25 ng L-1 DFB and both UV-weathered and non-UV-weathered MPs significantly reduced the chitin content in D. magna, while combined exposure to 12.5 ng L-1 DFB and the MPs increased the chitin content. This effect was more pronounced for UV-weathered PLA exposure than UV-weathered PET exposure. The expression of the genes for chitinase and endocrine glycoprotein, both of which are closely associated with the toxic mechanisms of DFB, showed no significant changes with the combination of 25 ng L-1 DFB and non-UV-weathered MPs but were significantly downregulated after UV weathering. Overall, the UV weathering of PLA promoted the adsorption of DFB, thus increasing its toxic effects. Our findings demonstrate the importance of considering the effects of UV weathering and interactions with environmental pollutants when assessing the ecological risks associated with biodegradable MPs.
Collapse
Affiliation(s)
- Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gwiwoong Nam
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Benrabaa SAM, Chang SA, Chang ES, Mykles DL. Effects of molting on the expression of ecdysteroid responsive genes in the crustacean molting gland (Y-organ). Gen Comp Endocrinol 2024; 355:114548. [PMID: 38761872 DOI: 10.1016/j.ygcen.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.
Collapse
Affiliation(s)
| | - Sharon A Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Donald L Mykles
- Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA.
| |
Collapse
|
6
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Li SC, Cheng LY, Yang QQ, Huang ZH, Shao BB, Yu SJ, Ding LL, Pan Q, Lei S, Liu L, Cong L, Ran C. Overexpression of a nuclear receptor HR96 contributes to spirodiclofen susceptibility in Panonychus citri (McGregor). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105952. [PMID: 38879306 DOI: 10.1016/j.pestbp.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.
Collapse
Affiliation(s)
- Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China; Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Qi-Qi Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin-Bin Shao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
8
|
Le ZJ, Ma LX, Zhou YF, Xu KK, Li C, Yang WJ. Functional analysis of nuclear receptor genes in molting and metamorphosis of the cigarette beetle, Lasioderma serricorne. Int J Biol Macromol 2024; 270:132459. [PMID: 38763254 DOI: 10.1016/j.ijbiomac.2024.132459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.
Collapse
Affiliation(s)
- Zhi-Jun Le
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Li-Xin Ma
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Yang-Fan Zhou
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Kang-Kang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Jia Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
9
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
10
|
Zhang Y, Li H, Liu X, Li H, Lan Q, Wu H, Wang Y, Zhang J, Zhao X. Nuclear Receptor FTZ-F1 Controls Locust Molt by Regulating the Molting Process of Locusta migratoria. INSECTS 2024; 15:237. [PMID: 38667367 PMCID: PMC11050008 DOI: 10.3390/insects15040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.
Collapse
Affiliation(s)
- Yichao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Hongjing Li
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaoman Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hongli Li
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qiuyan Lan
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| |
Collapse
|
11
|
Park WR, Choi HS, Moon JH, Kim IS, Kim DK. 3-Methylcatechol mediates anti-fecundity effect by inhibiting estrogen-related receptor-induced glycolytic gene expression in Myzus persicae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105802. [PMID: 38582605 DOI: 10.1016/j.pestbp.2024.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 04/08/2024]
Abstract
Aphids are a major problem in agriculture, horticulture, and forestry by feeding on leaves and stems, causing discoloration, leaf curling, yellowing, and stunted growth. Although urushiol, a phenolic compound containing a catechol structure, is known for its antioxidant and anticancer properties, using small molecules to control aphids via catechol-mediated mechanisms is poorly understood. In this study, we investigated the effects of 3-methylcatechol (3-MC) on Myzus persicae fecundity. Our results showed that treatment with 3-MC significantly reduced the intrinsic transcriptional activity of the aphid estrogen-related receptor (MpERR), which regulates the expression of glycolytic genes. Additionally, 3-MC treatment suppressed the promoter activity of MpERR-induced rate-limiting enzymes in glycolysis, such as phosphofructokinase and pyruvate kinase, by inhibiting MpERR binding. Finally, 3-MC also suppressed MpERR-induced glycolytic gene expression and reduced the number of offspring produced by viviparous female aphids. Overall, our findings suggest that 3-MC has the potential to be used as a new strategy for managing aphid populations by controlling their offspring production.
Collapse
Affiliation(s)
- Woo-Ram Park
- Host-Directed Antiviral Research Center, Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jae-Hak Moon
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - In-Seon Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Don-Kyu Kim
- Host-Directed Antiviral Research Center, Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
12
|
Xu X, Pu S, Jiang M, Hu X, Wang Q, Yu J, Chu J, Wei G, Wang L. Knockout of nuclear receptor HR38 gene impairs pupal-adult development in silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:29-40. [PMID: 37738573 DOI: 10.1111/imb.12876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.
Collapse
Affiliation(s)
- Xinyue Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shangkun Pu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mouzhen Jiang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoxuan Hu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jun Yu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jianghong Chu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Shu B, Lin Y, Huang Y, Liu L, Cai X, Lin J, Zhang J. Characterization and transcriptomic analyses of the toxicity induced by toosendanin in Spodoptera frugipreda. Gene 2024; 893:147928. [PMID: 37898452 DOI: 10.1016/j.gene.2023.147928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest that seriously threatens global food security. Insecticide resistance of this pest has gradually formed in recent years due to improper usage, and alternative methods are badly needed. Toosendanin (TSN) is a botanical compound with broad-spectrum insecticidal activities against many pests. However, the effects of TSN on S. frugiperda are still unclear. In this study, the growth inhibition phenomenon, including weight loss and prolonged developmental duration, in the larvae with TSN exposure was clearly observed. Compared to the control group, a total of 450 and 3314 differentially expressed genes (DEGs) were identified by RNA-Seq in the larvae groups treated with 10 and 20 mg/kg TSN, respectively. Furthermore, the DEGs involved in the juvenile hormone and ecdysone signal pathways and downstream processes, including detoxifying enzyme genes, chitin synthesis and metabolism genes, and cuticular protein genes, were found. Our findings suggest that TSN regulates the expression of key genes in juvenile hormone and ecdysone signal pathways and a series of downstream processes to alter the hormone balance and cuticle formation and eventually inhibit larval growth, which laid the foundation for the molecular toxicological mechanism research of TSN on S. frugiperda larvae.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Shaoguan University.
| |
Collapse
|
14
|
Orchard I, Lange AB. The neuroendocrine and endocrine systems in insect - Historical perspective and overview. Mol Cell Endocrinol 2024; 580:112108. [PMID: 37956790 DOI: 10.1016/j.mce.2023.112108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
A complex cascade of events leads to the initiation and maintenance of a behavioral act in response to both internally and externally derived stimuli. These events are part of a transition of the animal into a new behavioral state, coordinated by chemicals that bias tissues and organs towards a new functional state of the animal. This form of integration is defined by the neuroendocrine (or neurosecretory) system and the endocrine system that release neurohormones or hormones, respectively. Here we describe the classical neuroendocrine and endocrine systems in insects to provide an historic perspective and overview of how neurohormones and hormones support plasticity in behavioral expression. Additionally, we describe peripheral tissues such as the midgut, epitracheal glands, and ovaries, which, whilst not necessarily being endocrine glands in the pure sense of the term, do produce and release hormones, thereby providing even more flexibility for inter-organ communication and regulation.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
15
|
Li Z, Wang L, Yi T, Liu D, Li G, Jin DC. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:1-11. [PMID: 38112881 DOI: 10.1007/s10493-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Liang Wang
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| |
Collapse
|
16
|
Alborzi Z, Piulachs MD. Dual function of the transcription factor Ftz-f1 on oviposition in the cockroach Blattella germanica. INSECT MOLECULAR BIOLOGY 2023; 32:689-702. [PMID: 37498010 DOI: 10.1111/imb.12866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The transcription factor Ftz-f1 has multiple functions in insect development in a spatial-temporal line. One of these roles is in the insect ovaries, specifically in the regulation of steroidogenic enzymes production. We studied the function of F in Blattella germanica oogenesis, as it shows two moments of high expression in ovaries: before the imaginal moult, and just before ovulation in the adult. Injecting dsftz-f1 into adult females, either just after the imaginal moult or just prior to choriogenesis, prevented oviposition, with differences between the two approaches. In 3-day-old adult females treated with dsftz-f1 just after the emergence, the expression of ftz-f1 was not modified, but the steroidogenic genes increased their expression. ftz-f1 transcript levels in the ovaries of 5-day-old dsftz-f1-treated females were significantly depleted, and the expression levels of the same steroidogenic genes began to decrease. These results suggest that Ftz-f1 regulates the expression of steroidogenic genes in B. germanica, with phm possibly being a key target. Ftz-f1 has a different temporal function in the cytoskeleton of follicular cells of the basal ovarian follicles. Early in the gonadotrophic cycle, Ftz-f1 promotes the expression of genes related to the cytoskeleton and muscle proteins, while at the end of the cycle it maintains the expression levels of these genes, thus ensuring correct ovulation.
Collapse
Affiliation(s)
- Zeynab Alborzi
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Agricultural Entomology, Insect Physiology, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
17
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
18
|
Wen X, Feng K, Qin J, Wei P, Cao P, Zhang Y, Yuchi Z, He L. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 2023; 19:e1010911. [PMID: 37708138 PMCID: PMC10501649 DOI: 10.1371/journal.pgen.1010911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.
Collapse
Affiliation(s)
- Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjun Zhang
- Department of Plants and Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Corrêa EJA, Carvalho FC, de Castro Oliveira JA, Bertolucci SKV, Scotti MT, Silveira CH, Guedes FC, Melo JOF, de Melo-Minardi RC, de Lima LHF. Elucidating the molecular mechanisms of essential oils' insecticidal action using a novel cheminformatics protocol. Sci Rep 2023; 13:4598. [PMID: 36944648 PMCID: PMC10028760 DOI: 10.1038/s41598-023-29981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Essential oils (EOs) are a promising source for novel environmentally safe insecticides. However, the structural diversity of their compounds poses challenges to accurately elucidate their biological mechanisms of action. We present a new chemoinformatics methodology aimed at predicting the impact of essential oil (EO) compounds on the molecular targets of commercial insecticides. Our approach merges virtual screening, chemoinformatics, and machine learning to identify custom signatures and reference molecule clusters. By assigning a molecule to a cluster, we can determine its most likely interaction targets. Our findings reveal that the main targets of EOs are juvenile hormone-specific proteins (JHBP and MET) and octopamine receptor agonists (OctpRago). Three of the twenty clusters show strong similarities to the juvenile hormone, steroids, and biogenic amines. For instance, the methodology successfully identified E-Nerolidol, for which literature points indications of disrupting insect metamorphosis and neurochemistry, as a potential insecticide in these pathways. We validated the predictions through experimental bioassays, observing symptoms in blowflies that were consistent with the computational results. This new approach sheds a higher light on the ways of action of EO compounds in nature and biotechnology. It also opens new possibilities for understanding how molecules can interfere with biological systems and has broad implications for areas such as drug design.
Collapse
Affiliation(s)
- Eduardo José Azevedo Corrêa
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Pitangui, MG, Brazil
| | - Frederico Chaves Carvalho
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Suzan Kelly Vilela Bertolucci
- Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brazil
| | - Marcus Tullius Scotti
- Chemistry Department, Exact and Nature Sciences Center, Federal University of Paraiba, Campus I, João Pessoa, PB, Brazil
| | | | - Fabiana Costa Guedes
- Technological Sciences Institute, Federal University of Itajubá, Itabira, MG, Brazil
| | - Júlio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Leonardo Henrique França de Lima
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil.
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil.
| |
Collapse
|
20
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
21
|
Yang ZM, Yan YY, Wu Y, Yu N, Liu ZW, Yu N, Liu ZW. EcR/USP-1-mediated ecdysteroid signaling regulates wolf spider ( Pardosa pseudoannulata) development and reproduction. Zool Res 2023; 44:43-52. [PMID: 36266934 PMCID: PMC9841194 DOI: 10.24272/j.issn.2095-8137.2022.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lycosidae females demonstrate meticulous maternal care of offspring by carrying egg sacs and juvenile spiderlings during the reproductive stage. Nuclear receptors (NRs), especially the ecdysone receptor (EcR) and ultraspiracle (USP), have attracted considerable attention in the regulation of arthropod development and reproduction due to their pivotal roles in ecdysteroid signaling cascades. In the present study, 23 NRs, including one EcR and two USPs, were identified in the genome of the predatory wolf spider Pardosa pseudoannulata. RNA interference (RNAi) targeting EcR and USP-1 inhibited spiderling development and resulted in non-viable eggs in the egg sacs. EcR and USP-1 responded to changes in ecdysteroid levels, and interference in ecdysteroid biosynthesis led to similar phenotypes as dsEcR and dsUSP-1 treatments. These findings suggest that EcR/USP-1-mediated ecdysteroid signaling regulates P. pseudoannulata development and reproduction. The P. pseudoannulata females with suppressed ecdysteroid signaling proactively consumed their non-viable egg sacs, resulting in a 7.19 d shorter first reproductive cycle than the controls. Termination of the failed reproductive cycle enabled the spiders to produce a new egg sac more rapidly. This reproductive strategy may partially rescue the reduction in population growth due to non-viable eggs and compensate for the physiological expenditure of wasted maternal care, which would be beneficial for the conservation of P. pseudoannulata populations and their natural control of insect pests.
Collapse
Affiliation(s)
- Zhi-Ming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China,E-mail:
| | | | | |
Collapse
|
22
|
Yuan H, Zhang W, Qiao H, Jin S, Jiang S, Xiong Y, Gong Y, Fu H. MnHR4 Functions during Molting of Macrobrachium nipponense by Regulating 20E Synthesis and Mediating 20E Signaling. Int J Mol Sci 2022; 23:ijms232012528. [PMID: 36293382 PMCID: PMC9604295 DOI: 10.3390/ijms232012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
HR4, a member of the nuclear receptor family, has been extensively studied in insect molting and development, but reports on crustaceans are still lacking. In the current study, the MnHR4 gene was identified in Macrobrachium nipponense. To further improve the molting molecular mechanism of M. nipponense, this study investigated whether MnHR4 functions during the molting process of M. nipponense. The domain, phylogenetic relationship and 3D structure of MnHR4 were analyzed by bioinformatics. Quantitative real-time PCR (qRT-PCR) analysis showed that MnHR4 was highly expressed in the ovary. In different embryo stages, the highest mRNA expression was observed in the cleavage stage (CS). At different individual stages, the mRNA expression of MnHR4 reached its peak on the fifteenth day after hatching (L15). The in vivo injection of 20-hydroxyecdysone (20E) can effectively promote the expression of the MnHR4 gene, and the silencing of the MnHR4 gene increased the content of 20E in M. nipponense. The regulatory role of MnHR4 in 20E synthesis and 20E signaling was further investigated by RNAi. Finally, the function of the MnHR4 gene in the molting process of M. nipponense was studied by counting the molting frequency. After knocking down MnHR4, the molting frequency of M. nipponense decreased significantly. It was proved that MnHR4 plays a pivotal role in the molting process of M. nipponense.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-510-8555-8835
| |
Collapse
|
23
|
Liu T, Xu X, An F, Zhu W, Luo D, Liu S, Wei G, Wang L. Functional analysis of nuclear receptor HR96 gene in Bombyx mori exposed to phoxim. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21910. [PMID: 35470488 DOI: 10.1002/arch.21910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The nuclear receptor (NRs) gene family functions as ligand-dependent transcription factors in a variety of animals, which participates in a variety of biological processes, such as cell differentiation, metabolic regulation, reproduction, development, insect metamorphosis. In this study, a nuclear receptor HR96 gene in silkworm Bombyx mori (BmHR96) was identified, and the responses of BmHR96 gene to 20-hydroxyecdysone (20E), three insecticides, and two disinfectants were analyzed and its function in phoxim exposure was explored. Quantitative real-time polymerase chain reaction indicated that the expression of BmHR96 mRNA was the highest in ovary of 5th instar Day 3 silkworm larvae and in silk gland of the wandering stage. The expression patterns of BmHR96 gene in ovary, head, testis, and midgut of different stages were different. After injecting 20E into B. mori, the expression of BmHR96 mRNA had no significant difference compared with control. Three insecticides and two disinfectants were used to treat B. mori, respectively, and it was found that they had different influence patterns on the expression level of BmHR96. siRNA of BmHR96 was injected into silkworm larvae and the expression of BmHR96 was decreased significantly after injecting 72 h. After silencing of BmHR96, B. mori was fed with phoxim-treated leaves. The results showed that the mortality of B. mori after silencing of BmHR96 was significantly higher than the control. Our results indicated that HR96 plays an important role in regulating the stress response of phoxim.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xinyue Xu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Fudong An
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Weihao Zhu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dongling Luo
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Shuo Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
24
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
25
|
Liu X, Li J, Sun Y, Liang X, Zhang R, Zhao X, Zhang M, Zhang J. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103740. [PMID: 35183732 DOI: 10.1016/j.ibmb.2022.103740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nuclear receptors (NRs) function as key factors in diverse signaling and metabolic pathways. Previous studies have focused on the roles of a nuclear receptor, hormone receptor 4 (HR4), mainly in holometabolous insects, while current knowledge of its function in hemimetabolous insects is still limited. In this study, we identified a HR4 gene in the orthopteran species Locusta migratoria. The full-length open reading frame of LmHR4 comprises 2694-nucleotides encoding a polypeptide of 897 amino acids, which contained a DNA-binding and a ligand-binding domain. Analyzing LmHR4 expression by quantitative reverse-transcription PCR (RT-qPCR) revealed that LmHR4 was highly expressed in integument, hindgut and fat body. During development from 3rd and 5th nymphal instars, the expression of LmHR4 reached maximal levels before ecdysis. We further demonstrated that LmHR4 expression is induced by 20-hydroxyecdysone (20E) and suppressed by silencing LmEcR, suggesting that LmHR4 expression is controlled by 20E signaling. The dsLmHR4-injected nymphs failed to molt and remained in the nymphal stage until death. Hematoxylin and eosin staining of the integument indicated that apolysis in the dsLmHR4-injected insects was delayed compared to that in control insects. Chitin staining and ultra-structural analysis showed that both the synthesis of the new cuticle and the degradation of the old cuticle were blocked in dsLmHR4-injected insects. Silencing LmHR4 decreased 20E titer and down-regulated the transcript levels of genes involved in chitin synthesis and degradation. Taken together, these results suggest that LmHR4 is essential for the formation of epidermal cuticle by mediating the 20E signaling to regulate the expression of chitin synthesis and degradation genes.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Juan Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yawen Sun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoyu Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
26
|
Tan YA, Zhao XD, Zhao J, Zhu-Salzman K, Ji QQ, Xiao LB, Hao DJ. iTRAQ Proteomic Analysis of Interactions Between 20E and Phospholipase C in Apolygus lucorum (Meyer-Dür). Front Physiol 2022; 13:845087. [PMID: 35250643 PMCID: PMC8894726 DOI: 10.3389/fphys.2022.845087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.
Collapse
Affiliation(s)
- Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu-Dong Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Qin-Qin Ji
- Taizhou Customs of the People’s Republic of China, Taizhou, China
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Liu-Bin Xiao,
| | - De-Jun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China
- De-Jun Hao,
| |
Collapse
|
27
|
Dai ML, Ye WT, Jiang XJ, Feng P, Zhu QY, Sun HN, Li FC, Wei J, Li B. Effect of Tachinid Parasitoid Exorista japonica on the Larval Development and Pupation of the Host Silkworm Bombyx mori. Front Physiol 2022; 13:824203. [PMID: 35250625 PMCID: PMC8889078 DOI: 10.3389/fphys.2022.824203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.
Collapse
Affiliation(s)
- Min-Li Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Wen-Tao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | | | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qing-Yu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hai-Na Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- *Correspondence: Jing Wei,
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- Bing Li,
| |
Collapse
|
28
|
Role of NR4A family members in myeloid cells and leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:23-36. [PMID: 35496823 PMCID: PMC9040138 DOI: 10.1016/j.crimmu.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia. NR4A1-3 have important roles in the different cells of the myeloid compartment. These orphan receptors homeostasis, differentiation, and activation. NR4A family is important in suppressing the development of myeloid leukemias. NR4As have been linked to several diseases and could be pharmacological targets.
Collapse
|
29
|
Cuesta-Astroz Y, Gischkow Rucatti G, Murgas L, SanMartín CD, Sanhueza M, Martin AJM. Filtering of Data-Driven Gene Regulatory Networks Using Drosophila melanogaster as a Case Study. Front Genet 2021; 12:649764. [PMID: 34394179 PMCID: PMC8355599 DOI: 10.3389/fgene.2021.649764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gene Regulatory Networks (GRNs) allow the study of regulation of gene expression of whole genomes. Among the most relevant advantages of using networks to depict this key process, there is the visual representation of large amounts of information and the application of graph theory to generate new knowledge. Nonetheless, despite the many uses of GRNs, it is still difficult and expensive to assign Transcription Factors (TFs) to the regulation of specific genes. ChIP-Seq allows the determination of TF Binding Sites (TFBSs) over whole genomes, but it is still an expensive technique that can only be applied one TF at a time and requires replicates to reduce its noise. Once TFBSs are determined, the assignment of each TF and its binding sites to the regulation of specific genes is not trivial, and it is often performed by carrying out site-specific experiments that are unfeasible to perform in all possible binding sites. Here, we addressed these relevant issues with a two-step methodology using Drosophila melanogaster as a case study. First, our protocol starts by gathering all transcription factor binding sites (TFBSs) determined with ChIP-Seq experiments available at ENCODE and FlyBase. Then each TFBS is used to assign TFs to the regulation of likely target genes based on the TFBS proximity to the transcription start site of all genes. In the final step, to try to select the most likely regulatory TF from those previously assigned to each gene, we employ GENIE3, a random forest-based method, and more than 9,000 RNA-seq experiments from D. melanogaster. Following, we employed known TF protein-protein interactions to estimate the feasibility of regulatory events in our filtered networks. Finally, we show how known interactions between co-regulatory TFs of each gene increase after the second step of our approach, and thus, the consistency of the TF-gene assignment. Also, we employed our methodology to create a network centered on the Drosophila melanogaster gene Hr96 to demonstrate the role of this transcription factor on mitochondrial gene regulation.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Colombian Institute of Tropical Medicine, CES University, Medellin, Colombia
| | | | - Leandro Murgas
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Carol D SanMartín
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigacíon Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Nascimento PVP, Almeida-Oliveira F, Macedo-Silva A, Ausina P, Motinha C, Sola-Penna M, Majerowicz D. Gene annotation of nuclear receptor superfamily genes in the kissing bug Rhodnius prolixus and the effects of 20-hydroxyecdysone on lipid metabolism. INSECT MOLECULAR BIOLOGY 2021; 30:297-314. [PMID: 33455040 DOI: 10.1111/imb.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.
Collapse
Affiliation(s)
- P V P Nascimento
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Macedo-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Ausina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Motinha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sola-Penna
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Hamaidia K, Soltani N. Methoxyfenozide, a Molting Hormone Agonist, Affects Autogeny Capacity, Oviposition, Fecundity, and Fertility in Culex pipiens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1004-1011. [PMID: 33247298 DOI: 10.1093/jme/tjaa260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/12/2023]
Abstract
The current study aimed to evaluate the effects of methoxyfenozide (RH-2485), an insect growth disrupter (IGD) belonging to molting hormone agonist class, against female adults of Culex pipiens L. under laboratory conditions. Lethal concentrations (LC50 = 24.54 µg/liter and LC90 = 70.79 µg/liter), previously determined against fourth instar larvae, were tested for adult female fertility, fecundity and oviposition after tarsal contact before mating and any bloodmeal. Methoxyfenozide was found to alter negatively their autogeny capacity and oviposition. A strong reduction of 56% and 72% (P < 0.001) in females' autogeny capacity was observed in both treated series, respectively. Alteration in oviposition were found to be higher with LC90 (OAI-LC90 = -0.62) than with the LC50 (OAI-LC50 = -0.42). Also fecundity and hatching rate (fertility) were significantly reduced in treated series as compared to controls. A significant reduction of 37.65 and 28.23% in fecundity and decrease of 56.85 and 71.87% in fertility were found, respectively in LC50 and LC90 treated series. Obtained data clearly demonstrated that methoxyfenozide have significant depressive effect on reproductive potential against medically important vector with minimizing ecotoxicological risks in mosquitoes management.
Collapse
Affiliation(s)
- Kaouther Hamaidia
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| |
Collapse
|
33
|
Lu K, Li Y, Cheng Y, Li W, Song Y, Zeng R, Sun Z. Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104800. [PMID: 33771269 DOI: 10.1016/j.pestbp.2021.104800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Increased production of detoxification enzymes appears to be the primary route for insecticide resistance in many crop pests. However, the mechanisms employed by resistant insects for overexpression of detoxification genes involved in insecticide resistance remain obscure. We report here that the NR2E nuclear receptor HR83 plays a critical role in chlorpyrifos resistance by regulating the expression of detoxification genes in the brown planthopper (BPH), Nilaparvata lugens. HR83 was highly expressed in the fat body and ovary of adult females in chlorpyrifos-resistant BPHs. Knockdown of HR83 by RNA interference showed no effect on female fecundity, whereas caused a decrease of resistance to chlorpyrifos. This treatment also led to a dramatic reduction in the expression of multiple detoxification genes, including four UDP-glycosyltransferases (UGTs), three cytochrome P450 monooxygenases (P450s) and four carboxylesterases (CarEs). Among these HR83-regulated genes, UGT-1-3, UGT-2B10, CYP6CW1, CYP4CE1, CarE and Esterase E4-1 were over-expressed both in the fat body and ovary of the resistant BPHs. Functional analyses revealed that UGT-2B10, CYP4CE1, CarE and Esterase E4-1 are essential for the resistance of BPH to chlorpyrifos. Generally, this study implicates HR83 in the metabolic detoxification-mediated chlorpyrifos resistance and suggests that the regulation of detoxification genes may be an ancestral function of the NR2E nuclear receptor subfamily.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yimin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibei Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenru Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Browning C, McEwen AG, Mori K, Yokoi T, Moras D, Nakagawa Y, Billas IML. Nonsteroidal ecdysone receptor agonists use a water channel for binding to the ecdysone receptor complex EcR/USP. JOURNAL OF PESTICIDE SCIENCE 2021; 46:88-100. [PMID: 33746550 PMCID: PMC7953031 DOI: 10.1584/jpestics.d20-095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 05/27/2023]
Abstract
The ecdysone receptor (EcR) possesses the remarkable capacity to adapt structurally to different types of ligands. EcR binds ecdysteroids, including 20-hydroxyecdysone (20E), as well as nonsteroidal synthetic agonists such as insecticidal dibenzoylhydrazines (DBHs). Here, we report the crystal structures of the ligand-binding domains of Heliothis virescens EcR/USP bound to the DBH agonist BYI09181 and to the imidazole-type compound BYI08346. The region delineated by helices H7 and H10 opens up to tightly fit a phenyl ring of the ligands to an extent that depends on the bulkiness of ring substituent. In the structure of 20E-bound EcR, this part of the ligand-binding pocket (LBP) contains a channel filled by water molecules that form an intricate hydrogen bond network between 20E and LBP. The water channel present in the nuclear receptor bound to its natural hormone acts as a critical molecular adaptation spring used to accommodate synthetic agonists inside its binding cavity.
Collapse
Affiliation(s)
- Christopher Browning
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Alastair G. McEwen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Kotaro Mori
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Taiyo Yokoi
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Dino Moras
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Isabelle M. L. Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Shi Y, Lin GL, Fu XL, Keller M, Smagghe G, Liu TX. Cocoon-Spinning Behavior and 20-Hydroxyecdysone Regulation of Fibroin Genes in Plutella xylostella. Front Physiol 2021; 11:574800. [PMID: 33384607 PMCID: PMC7770130 DOI: 10.3389/fphys.2020.574800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
The diamondback moth Plutella xylostella is a serious pest of crucifers. It has high reproductive potential and is resistant to many insecticides. Typically, the last-instar larvae of P. xylostella, before pupation, move to the lower or outer plant leaves to make a loose silk cocoon and pupate inside for adult formation. To better understand this pivotal stage we studied the cocoon-spinning behavior of P. xylostella and measured three successive phases by video-recording, namely the selection of a pupation site, spinning a loose cocoon and padding the scaffold cocoon. Subsequently, we cloned three fibroin genes related to cocoon production, i.e., fibroin light chain (Fib-L), fibroin heavy chain (Fib-H), and glycoprotein P25. A spatio-temporal study of these three fibroin genes confirmed a high expression in the silk glands during the final larval instar silk-producing stage. In parallel, we did an exogenous treatment of the insect molting hormone 20-hydroxyecdysone (20E), and this suppressed fibroin gene expression, reduced the normal time needed for cocoon spinning, and we also observed a looser cocoon structure under the scanning electron microscope. Hence, we demonstrated that the expression levels of key genes related to the synthesis of 20E [the three Halloween genes Spook (Spo), Shadow (Sad), and Shade (Shd)] decreased significantly during spinning, the expression of the 20E receptor (EcR and USP) was significantly lower during spinning than before spinning, and that the expression levels of CYP18-A1 related to 20E degradation were significantly up-regulated during spinning. The significance of the cocoon and the effects of 20E on the cocoon-spinning behavior of P. xylostella are discussed.
Collapse
Affiliation(s)
- Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Gan-Lin Lin
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiu-Lian Fu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mike Keller
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
36
|
Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K. Effect of hepatocyte nuclear factor 4 on the fecundity of Nilaparvata lugens: Insights from RNA interference combined with transcriptomic analysis. Genomics 2020; 112:4585-4594. [DOI: 10.1016/j.ygeno.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022]
|
37
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
He C, Liu S, Liang J, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Genome-wide identification and analysis of nuclear receptors genes for lethal screening against Bemisia tabaci Q. PEST MANAGEMENT SCIENCE 2020; 76:2040-2048. [PMID: 31943718 DOI: 10.1002/ps.5738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play an essential role in diverse biological processes, such as insect metamorphosis. Here, transcriptome analysis and functional studies were used to determine whether NRs are involved in metamorphosis of whitefly Bemisia tabaci Q, a serious pest to crops, and to find some potential insecticide targets. RESULTS Twenty NRs were identified in the Bemisia tabaci Q genome and categorized into the NR0-NR6 subfamilies. The phylogenetic tree of NRs from Bemisia tabaci Q and other representative species was constructed, which provided evolutionary insight into their genetic distances. The results of spatiotemporal gene expression indicated that the majority of NR gene expression was higher in the head than the abdomen and higher in eggs than adults. Further functional analysis using RNA interference (RNAi) showed that NR genes play an important role in Bemisia tabaci Q pupation and eclosion. With respect to high mortality and effects on growth, this was reflected in the unable to become pupa when the third-stage nymph treated with double-stranded RNA (dsRNA) and the developmental time delay (4-7 days) when pupae were treated with dsRNA for the 12 NR genes during molting compared with the development time in the control. CONCLUSION This study provides insight into NR functions during the metamorphosis stages of Bemisia tabaci Q. Several candidate genes could be potential insecticide targets for whitefly pest control due to their important roles in insect development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, P. R. China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
41
|
Jing X, Behmer ST. Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:251-271. [PMID: 31600456 DOI: 10.1146/annurev-ento-011019-025017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insects, like all eukaryotes, require sterols for structural and metabolic purposes. However, insects, like all arthropods, cannot make sterols. Cholesterol is the dominant tissue sterol for most insects; insect herbivores produce cholesterol by metabolizing phytosterols, but not always with high efficiency. Many insects grow on a mixed-sterol diet, but this ability varies depending on the types and ratio of dietary sterols. Dietary sterol uptake, transport, and metabolism are regulated by several proteins and processes that are relatively conserved across eukaryotes. Sterol requirements also impact insect ecology and behavior. There is potential to exploit insect sterol requirements to (a) control insect pests in agricultural systems and (b) better understand sterol biology, including in humans. We suggest that future studies focus on the genetic mechanism of sterol metabolism and reverse transportation, characterizing sterol distribution and function at the cellular level, the role of bacterial symbionts in sterol metabolism, and interrupting sterol trafficking for pest control.
Collapse
Affiliation(s)
- Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA;
- Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
42
|
Czimmerer Z, Halasz L, Nagy L. Unorthodox Transcriptional Mechanisms of Lipid-Sensing Nuclear Receptors in Macrophages: Are We Opening a New Chapter? Front Endocrinol (Lausanne) 2020; 11:609099. [PMID: 33362723 PMCID: PMC7758493 DOI: 10.3389/fendo.2020.609099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Work over the past 30 years has shown that lipid-activated nuclear receptors form a bridge between metabolism and immunity integrating metabolic and inflammatory signaling in innate immune cells. Ligand-induced direct transcriptional activation and protein-protein interaction-based transrepression were identified as the most common mechanisms of liganded-nuclear receptor-mediated transcriptional regulation. However, the integration of different next-generation sequencing-based methodologies including chromatin immunoprecipitation followed by sequencing and global run-on sequencing allowed to investigate the DNA binding and ligand responsiveness of nuclear receptors at the whole-genome level. Surprisingly, these studies have raised the notion that a major portion of lipid-sensing nuclear receptor cistromes are not necessarily responsive to ligand activation. Although the biological role of the ligand insensitive portion of nuclear receptor cistromes is largely unknown, recent findings indicate that they may play roles in the organization of chromatin structure, in the regulation of transcriptional memory, and the epigenomic modification of responsiveness to other microenvironmental signals in macrophages. In this review, we will provide an overview and discuss recent advances of our understanding of lipid-activated nuclear receptor-mediated non-classical or unorthodox actions in macrophages.
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- *Correspondence: Laszlo Nagy,
| |
Collapse
|
43
|
Peng L, Wang L, Zou MM, Vasseur L, Chu LN, Qin YD, Zhai YL, You MS. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front Physiol 2019; 10:1120. [PMID: 31555150 PMCID: PMC6724230 DOI: 10.3389/fphys.2019.01120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids play an essential role in controlling insect development and reproduction. Their pathway is regulated by a group of enzymes called Halloween gene proteins. The relationship between the Halloween genes and ecdysteroid synthesis has yet to be clearly understood in diamondback moth, Plutella xylostella (L.), a worldwide Lepidoptera pest attacking cruciferous crops and wild plants. In this study, complete sequences for six Halloween genes, neverland (nvd), shroud (sro), spook (spo), phantom (phm), disembodied (dib), shadow (sad), and shade (shd), were identified. Phylogenetic analysis revealed a strong conservation in insects, including Halloween genes of P. xylostella that was clustered with all other Lepidoptera species. Three Halloween genes, dib, sad, and shd were highly expressed in the adult stage, while nvd and spo were highly expressed in the egg and pupal stages, respectively. Five Halloween genes were highly expressed specifically in the prothorax, which is the major site of ecdysone production. However, shd was expressed predominantly in the fat body to convert ecdysone into 20-hydroxyecdysone. RNAi-based knockdown of sad, which is involved in the last step of ecdysone biosynthesis, significantly reduced the 20E titer and resulted in a longer developmental duration and lower pupation of fourth-instar larvae, as well as caused shorter ovarioles and fewer fully developed eggs of P. xylostella. Furthermore, after the knockdown of sad, the expression levels of Vg and VgR genes were significantly decreased by 77.1 and 53.0%. Meanwhile, the number of eggs laid after 3 days was significantly reduced in sad knockdown females. These results suggest that Halloween genes may play a critical role in the biosynthesis of ecdysteroids and be involved in the development and reproduction of P. xylostella. Our work provides a solid basis for understanding the functional importance of these genes, which will help to screening potential genes for pest management of P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
45
|
Snoeck S, Kurlovs AH, Bajda S, Feyereisen R, Greenhalgh R, Villacis-Perez E, Kosterlitz O, Dermauw W, Clark RM, Van Leeuwen T. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:19-33. [PMID: 31022513 DOI: 10.1016/j.ibmb.2019.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Andre H Kurlovs
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Sabina Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Copenhagen, Denmark.
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| | - Olivia Kosterlitz
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Present address: Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA, 98195, USA.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Richard M Clark
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Center for Cell and Genome Science, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Sun L, Liu P, Zhang C, Du H, Wang Z, Moural TW, Zhu F, Cao C. Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria dispar and Drosophila melanogaster. Front Physiol 2019; 10:766. [PMID: 31275171 PMCID: PMC6594220 DOI: 10.3389/fphys.2019.00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
The ocular albinism type 1 (OA1), a pigment cell-specific integral membrane glycoprotein, is a member of the G-protein-coupled receptor (GPCR) superfamily that binds to heterotrimeric G proteins in mammalian cells. We aimed to characterize the physiological functions an insect OA1 from Lymantria dispar (LdOA1) employs in the regulation of insecticide tolerance. In the present study, we investigated the roles of LdOA1 in response to deltamethrin exposure in both L. dispar and Drosophila melanogaster. LdOA1 was expressed at the lowest level during the 4th instar stage, while LdOA1 was significantly upregulated in the 5th instar and male stages. Knockdown of LdOA1 by injecting dsRNA of LdOA1 into gypsy moth larvae caused a 4.80-fold higher mortality than in control larvae microinjected with dsRNA of GFP under deltamethrin stress. Nine out of 11 L. dispar CYP genes were significantly downregulated under deltamethrin stress in LdOA1 silenced larvae as compared to control larvae. Moreover, the LdOA1 gene was successfully overexpressed in D. melanogaster using transgenic technique. The deltamethrin contact assay showed that the LdOA1 overexpression in flies significantly enhanced the tolerance to deltamethrin compared to the control flies. Furthermore, the downstream Drosophila CYP genes were upregulated in the LdOA1 overexpression flies, suggesting LdOA1 may play a master switch role in P450-mediated metabolic detoxification. This study is the first report of an insect OA1 gene regulating insecticide tolerance and potentially playing a role in the regulation of downstream cytochrome P450 expression. These results contribute to the future development of novel insecticides targeting insect GPCRs.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiying Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
47
|
Wang L, Zhou L, Fan D, Wang Z, Gu W, Shi L, Liu J, Yang J. Bisphenol P activates hormonal genes and introduces developmental outcomes in Chironomus tentans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:675-682. [PMID: 30878007 DOI: 10.1016/j.ecoenv.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 05/26/2023]
Abstract
The endocrine disrupting properties of bisphenol A (BPA) discharged to the environment have been newly identified by the European Chemicals Agency, increasing the need to assess the environmental endocrine disrupting potentials of its alternatives with which it shares close structural features. However, few investigations of the environmental endocrine disrupting functions of BPA analogs have been conducted to date. In this study, the endocrine disrupting effects of a BPA analog of bisphenol P (BPP) were investigated in the nonbiting midge (Chironomus tentans), a model organism in ecotoxicology. An initial ex vivo test using salivary gland cells explanted from the larvae and a subsequent in vivo test using embryos and larvae revealed the upregulatory effects of BPP on ecdysone receptor genes encoding the ecdysone receptor (EcR) and the early responsive gene E74, with a similar temporal pattern of gene activation. Partial life cycle and full life cycle toxicity tests demonstrated BPP altered embryo hatching, larval emergence, and adult sex ratio at concentrations close to the effective concentrations for hormonal genetic endpoints in embryos and larvae after 48 h of exposure. Although embryos appeared to be more sensitive to BPP than the fourth instar larvae, the impact on neither life stage seemed enough to estimate the developmental impairment of the insects. These results demonstrate the ecdysone pathway is a target of BPP, and that long-term exposure could cause apical effects on the development of C. tentans. The endocrine disrupting effects towards aquatic organisms, as well as the high persistence and bioconcentration potential, indicate an urgent need to assess the environmental risks associated with BPP.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Wen Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jiaxin Yang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
48
|
Li X, Shan C, Li F, Liang P, Smagghe G, Gao X. Transcription factor FTZ-F1 and cis-acting elements mediate expression of CYP6BG1 conferring resistance to chlorantraniliprole in Plutella xylostella. PEST MANAGEMENT SCIENCE 2019; 75:1172-1180. [PMID: 30471186 DOI: 10.1002/ps.5279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cytochrome P450-mediated detoxification plays an important role in the development of insecticide resistance. Previous studies have demonstrated that overexpression of CYP6BG1 was responsible for permethrin resistance in Plutella xylostella, and our experiments also showed that upregulation of this gene is associated with chlorantraniliprole resistance in P. xylostella. However, the transcriptional regulation involved in the expression of CYP6BG1 remains unknown. To further investigate the regulation of CYP6BG1 expression, the promoters of this gene were cloned and analyzed from one susceptible and four different resistant populations of P. xylostella. RESULTS First, the promoter region of P. xylostella CYP6BG1 was compared in five populations, and three types of 5'-flanking region were found. Second, the region between -562 and +49 of CYP6BG1 in a field population (TH) of P. xylostella showed the highest promoter activity and could be induced by chlorantraniliprole. Third, the transcriptional factor FTZ-F1, which is an orphan nuclear receptor and binds to the fushi tarazu (ftz) gene, was predicted by the online software Alggen and Jaspar. It was proved to regulate the expression of CYP6BG1 by RNAi. The expression levels of FTZ-F1 and CYP6BG1 could be induced by chlorantraniliprole and were significantly higher in the resistant populations. CONCLUSIONS These data give a better understanding of the transcriptional regulation of an important insecticide detoxification enzyme gene, and therefore will help in understanding the molecular mechanisms of insecticide resistance in P. xylostella. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Entomology, Anhui Agricultural University, Hefei, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Chunyang Shan
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Smagghe G, Zotti M, Retnakaran A. Targeting female reproduction in insects with biorational insecticides for pest management: a critical review with suggestions for future research. CURRENT OPINION IN INSECT SCIENCE 2019; 31:65-69. [PMID: 31109675 DOI: 10.1016/j.cois.2018.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Of the different approaches to pest control, use of juvenile hormone analogs (e.g. methoprene), molting hormone (20-hydroxyecdysone) analogs (e.g. tebufenozide) and chitin synthesis inhibitors (e.g. diflubenzuron) has dominated this field. Since they adversely interfere with the normal growth and development in one way or another, they have been collectively called as 'insect growth regulators' or IGRs. A lesser known fact is that they all have deleterious effects on reproduction as well as act as ovicides. The raison d'être for this review is to summarize what we have learnt during the last 3-4 decades in the use of these IGRs, how they affect insect reproduction and how we can apply this knowledge to control pest insects. Finally, we present, information on the state of the art use of molecular technologies such as RNAi and CRISPR/Cas9 applications for pest management targeting insect reproduction.
Collapse
Affiliation(s)
- Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium.
| | - Moises Zotti
- Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Arthur Retnakaran
- Great Lakes Forestry Centre, Canadian Forestry Service, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
50
|
Xie Z, Tang J, Wu X, Li X, Hua R. Bioconcentration, metabolism and the effects of tetracycline on multiple biomarkers in Chironomus riparius larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1590-1598. [PMID: 30308927 DOI: 10.1016/j.scitotenv.2018.08.371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The antibiotic tetracycline (TC) is widespread in surface waters, but few data are available regarding its adverse effects on aquatic insects. In this study, we investigated the bioconcentration, metabolism, and effects of TC on Chironomus riparius larvae exposed to different concentrations of TC (1.83, 18.5 and 174 μg L-1) for 48 h. The bioconcentration factors were 3.65, 0.74 and 0.23 in larvae with exposure to 1.83, 18.5 and 174 μg L-1 TC, respectively. High concentration ratios of the metabolites anhydrotetracycline (0.56-0.60), 4-epitetracycline (0.43-0.69), and 4-epianhydrotetracycline (0.50-0.55) to the unmetabolized compound were found. Additionally, the activities of superoxide dismutase and glutathione S-transferase were markedly inhibited with a significant increase in malondialdehyde contents at high exposure concentrations of TC (18.5 and 174 μg L-1). Moreover, significant up-regulation of heat shock genes (hsp70 and hsp27), the ecdysone receptor gene, and the E74 early ecdysone responsive gene was observed at all exposure concentrations except for hsp70 at 1.83 μg L-1. Collectively, these results suggested that TC was quickly absorbed and metabolized by C. riparius and resulted in molecular and biochemical disturbances.
Collapse
Affiliation(s)
- Zhengxin Xie
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xuede Li
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|