1
|
Ahamed MA, Hasan M, Kabir ME, Zhang Z. Microfluidic hydraulic oscillators: A comprehensive review of emerging biochemical and biomedical applications. Anal Chim Acta 2025; 1350:343793. [PMID: 40155155 DOI: 10.1016/j.aca.2025.343793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/01/2025]
Abstract
Microfluidics provides microenvironments for drug delivery, transport, mixing, chemical reaction, cell culture, and tissue engineering. Developing microfluidic circuit networks comparable to electronic circuits is beneficial because they can significantly reduce the need for dynamic off-chip controllers and reagent volume. A microfluidic hydraulic oscillator (MHO) is a fluidic circuit network analogous to a hydraulic-electric system that converts constant input into a pulsatile output. The challenge lies in integrating the MHO with an on-chip controller for biochemical applications and precise fluid control. Herein, we present fundamental working principles and components of multiple types of MHO to produce pulsatile pressure and review the current biochemical applications of MHO. First, we present fundamental working principles of multiple types of MHO and components to build the MHO to produce pulsatile pressure. The coupling of the MHO with various on-chip controllers, such as a diode pump, reset valve, droplet generator, filter, etc., will then be explored. Next, current applications are discussed, including their employment in chemistry for mixing, crystallization, coating, biomedical for cellular biology, filtration, staining, and amplification of targets. Finally, we explore the potential future application of MHO to show its versatility. The adaptive nature of MHO highlights their potential to transform biochemical and biomedical applications, from precise fluid control in point-of-care (POC) and lab-on-chip devices to innovative diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Department of Industrial and Production Engineering, Bangladesh University of Textiles, Dhaka, 1608, Bangladesh; Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, 47408, Indiana, USA.
| | - Mahmudul Hasan
- Institute of Environment and Power Technology, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Emamul Kabir
- SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, University at Buffalo, The State University of New York at Buffalo (SUNY-Buffalo), New York, 14260, USA
| | - Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Park C, Baek KI, Hung RC, Choi L, Jeong K, Kim P, Jahng AK, Kim JH, Meselhe M, Kannan A, Chou CL, Kang DW, Song EJ, Kim Y, Bowman-Kirigin JA, Clark MD, van der Laan SW, Pasterkamp G, Villa-Roel N, Panitch A, Jo H. Disturbed Flow Induces Reprogramming of Endothelial Cells to Immune-like and Foam Cells under Hypercholesterolemia during Atherogenesis. RESEARCH SQUARE 2025:rs.3.rs-4397799. [PMID: 40092444 PMCID: PMC11908347 DOI: 10.21203/rs.3.rs-4397799/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Atherosclerosis occurs preferentially in the arteries exposed to disturbed flow (d-flow), while the stable flow (s-flow) regions are protected even under hypercholesterolemic conditions. We recently showed that d-flow alone initiates flow-induced reprogramming of endothelial cells (FIRE), including the novel concept of partial endothelial-to-immune-cell-like transition (partial EndIT), but was not validated using a genetic lineage-tracing model. Here, we tested and validated the two-hit hypothesis that d-flow is an initial instigator of partial FIRE but requires hypercholesterolemia to induce a full-blown FIRE and atherosclerotic plaque development. Methods Mice were treated with adeno-associated virus expressing proprotein convertase subtilisin/kexin type 9 and a Western diet to induce hypercholesterolemia and/or partial carotid ligation (PCL) surgery to expose the left common carotid artery (LCA) to d-flow. Single-cell RNA sequencing (scRNA-seq) analysis was performed using cells obtained from the intima and leftover LCAs and the control right common carotid arteries at 2 and 4 weeks post-PCL. Comprehensive immunohistochemical staining was performed on EC-specific confetti mice treated with PCL and hypercholesterolemic conditions at 4 weeks post-PCL to validate endothelial reprogramming. Results Atherosclerotic plaques developed by d-flow under hypercholesterolemia at 2 and 4 weeks post-PCL, but not by d-flow or hypercholesterolemia alone, as expected. The scRNA-seq results of 98,553 single cells from 95 mice revealed 25 cell clusters; 5 EC, 3 vascular smooth muscle cell (SMC), 5 macrophage (MΦ), and additional fibroblast, T cell, natural killer cell, dendritic cell, neutrophil, and B cell clusters. Our scRNA-seq analyses showed that d-flow under hypercholesterolemia transitioned healthy ECs to full immune-like (EndIT) and, more surprisingly, foam cells (EndFT), in addition to inflammatory and mesenchymal cells (EndMT). Further, EC-derived foam cells shared remarkably similar transcriptomic profiles with foam cells derived from SMCs and MΦs. Comprehensive lineage-tracing studies using immunohistochemical staining of canonical protein and lipid markers in the EC-specific confetti mice clearly demonstrated direct evidence supporting the novel FIRE hypothesis, including EndIT and EndFT, when d-flow was combined with hypercholesterolemia. Further, reanalysis of the publicly available human carotid plaque scRNA-seq and Perturb-seq datasets supported the FIRE hypothesis and a potential mechanistic link between the genes and FIRE. Conclusion We provide evidence supporting the two-hit hypothesis: ECs in d-flow regions, such as the branching points, are partially reprogrammed, while hypercholesterolemia alone has minimal endothelial reprogramming effects. Under hypercholesterolemia, d-flow fully reprograms arterial ECs, including the novel EndIT and EndFT, in addition to inflammation and EndMT, during atherogenesis. This single-cell atlas provides a crucial roadmap for developing novel mechanistic understanding and therapeutics targeting flow-sensitive genes, proteins, and pathways of atherosclerosis.
Collapse
Affiliation(s)
- Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ruei-Chun Hung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Leandro Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kiyoung Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Paul Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Andrew Keunho Jahng
- Department of Neuroscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jung Hyun Kim
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mostafa Meselhe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ashwin Kannan
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Chien-Ling Chou
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Dong Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Eun Ju Song
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | | | - Michael David Clark
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Park C, Baek KI, Hung RC, Choi L, Jeong K, Kim P, Jahng AK, Kim JH, Meselhe M, Kannan A, Chou CL, Kang DW, Song EJ, Kim Y, Bowman-Kirigin JA, Clark MD, van der Laan SW, Pasterkamp G, Villa-Roel N, Panitch A, Jo H. Disturbed Flow Induces Reprogramming of Endothelial Cells to Immune-like and Foam Cells under Hypercholesterolemia during Atherogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641843. [PMID: 40093090 PMCID: PMC11908265 DOI: 10.1101/2025.03.06.641843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Atherosclerosis occurs preferentially in the arteries exposed to disturbed flow (d-flow), while the stable flow (s-flow) regions are protected even under hypercholesterolemic conditions. We recently showed that d-flow alone initiates flow-induced reprogramming of endothelial cells (FIRE), including the novel concept of partial endothelial-to-immune-cell-like transition (partial EndIT), but was not validated using a genetic lineage-tracing model. Here, we tested and validated the two-hit hypothesis that d-flow is an initial instigator of partial FIRE but requires hypercholesterolemia to induce a full-blown FIRE and atherosclerotic plaque development. Methods Mice were treated with adeno-associated virus expressing proprotein convertase subtilisin/kexin type 9 and a Western diet to induce hypercholesterolemia and/or partial carotid ligation (PCL) surgery to expose the left common carotid artery (LCA) to d-flow. Single-cell RNA sequencing (scRNA-seq) analysis was performed using cells obtained from the intima and leftover LCAs and the control right common carotid arteries at 2 and 4 weeks post-PCL. Comprehensive immunohistochemical staining was performed on EC-specific confetti mice treated with PCL and hypercholesterolemic conditions at 4 weeks post-PCL to validate endothelial reprogramming. Results Atherosclerotic plaques developed by d-flow under hypercholesterolemia at 2 and 4 weeks post-PCL, but not by d-flow or hypercholesterolemia alone, as expected. The scRNA-seq results of 98,553 single cells from 95 mice revealed 25 cell clusters; 5 EC, 3 vascular smooth muscle cell (SMC), 5 macrophage (MΦ), and additional fibroblast, T cell, natural killer cell, dendritic cell, neutrophil, and B cell clusters. Our scRNA-seq analyses showed that d-flow under hypercholesterolemia transitioned healthy ECs to full immune-like (EndIT) and, more surprisingly, foam cells (EndFT), in addition to inflammatory and mesenchymal cells (EndMT). Further, EC-derived foam cells shared remarkably similar transcriptomic profiles with foam cells derived from SMCs and MΦs. Comprehensive lineage-tracing studies using immunohistochemical staining of canonical protein and lipid markers in the EC-specific confetti mice clearly demonstrated direct evidence supporting the novel FIRE hypothesis, including EndIT and EndFT, when d-flow was combined with hypercholesterolemia. Further, reanalysis of the publicly available human carotid plaque scRNA-seq and Perturb-seq datasets supported the FIRE hypothesis and a potential mechanistic link between the genes and FIRE. Conclusion We provide evidence supporting the two-hit hypothesis: ECs in d-flow regions, such as the branching points, are partially reprogrammed, while hypercholesterolemia alone has minimal endothelial reprogramming effects. Under hypercholesterolemia, d-flow fully reprograms arterial ECs, including the novel EndIT and EndFT, in addition to inflammation and EndMT, during atherogenesis. This single-cell atlas provides a crucial roadmap for developing novel mechanistic understanding and therapeutics targeting flow-sensitive genes, proteins, and pathways of atherosclerosis.
Collapse
|
4
|
Hou Z, Deng L, Fang F, Zhao T, Zhang Y, Li G, Miao MZ, Zhang Y, Yu H, Liu X. Endothelial cells under disturbed flow release extracellular vesicles to promote inflammatory polarization of macrophages and accelerate atherosclerosis. BMC Biol 2025; 23:20. [PMID: 39838385 PMCID: PMC11753076 DOI: 10.1186/s12915-025-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear. This study aims to assess the role of disturbed flow in the secretion of EVs from ECs and to evaluate their proatherogenic function. RESULTS Our comprehensive experiments revealed that disturbed flow facilitated the secretion of ECs-derived EVs both in vivo and in vitro. Mechanistically, the MAPK pathway transduces mechanical cues from disturbed flow in ECs, leading to increased secretion of EVs. Pharmacological inhibition of the MAPK pathway reduced the secretion of EVs even under disturbed flow conditions. Interestingly, under disturbed flow stimulation, ECs-derived EVs promoted monocyte accumulation and enhanced their invasion of the endothelium. More important, these EVs initiated the inflammatory polarization of macrophages from the M2 to the M1 phenotype. However, the phenotypic switching of vascular smooth muscle cells was not affected by exposure to these EVs. CONCLUSIONS Taken together, targeting the MAPK signaling pathway holds potential as a novel therapeutic strategy for inhibiting the secretion of EC-derived EVs and mitigating the inflammatory polarization of macrophages, ultimately ameliorating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhe Hou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15 Ave NE, Seattle, 98195, USA
| | - Michael Z Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, 27599, USA
| | | | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
6
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
7
|
Elblová P, Lunova M, Dejneka A, Jirsa M, Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. DISCOVER NANO 2024; 19:106. [PMID: 38907808 PMCID: PMC11193707 DOI: 10.1186/s11671-024-04052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic.
| |
Collapse
|
8
|
Gao W, Gu K, Ma L, Yang F, Deng L, Zhang Y, Miao MZ, Li W, Li G, Qian H, Zhang Z, Wang G, Yu H, Liu X. Interstitial Fluid Shear Stress Induces the Synthetic Phenotype Switching of VSMCs to Release Pro-calcified Extracellular Vesicles via EGFR-MAPK-KLF5 Pathway. Int J Biol Sci 2024; 20:2727-2747. [PMID: 38725857 PMCID: PMC11077359 DOI: 10.7150/ijbs.90725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wenbo Gao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kaiyun Gu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lunjie Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fan Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Michael Z. Miao
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Wenjun Li
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle 98195, USA
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
10
|
Zhou HL, Jiang XZ, Ventikos Y. Role of blood flow in endothelial functionality: a review. Front Cell Dev Biol 2023; 11:1259280. [PMID: 37905167 PMCID: PMC10613523 DOI: 10.3389/fcell.2023.1259280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
Endothelial cells, located on the surface of blood vessel walls, are constantly stimulated by mechanical forces from the blood flow. The mechanical forces, i.e., fluid shear stress, induced by the blood flow play a pivotal role in controlling multiple physiological processes at the endothelium and in regulating various pathways that maintain homeostasis and vascular function. In this review, research looking at different blood fluid patterns and fluid shear stress in the circulation system is summarized, together with the interactions between the blood flow and the endothelial cells. This review also highlights the flow profile as a response to the configurational changes of the endothelial glycocalyx, which is less revisited in previous reviews. The role of endothelial glycocalyx in maintaining endothelium health and the strategies for the restoration of damaged endothelial glycocalyx are discussed from the perspective of the fluid shear stress. This review provides a new perspective regarding our understanding of the role that blood flow plays in regulating endothelial functionality.
Collapse
Affiliation(s)
- Hui Lin Zhou
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xi Zhuo Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yiannis Ventikos
- Department of Mechanical Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Tang C, Chen G, Wu F, Cao Y, Yang F, You T, Liu C, Li M, Hu S, Ren L, Lu Q, Deng W, Xu Y, Wang G, Jo H, Zhang Y, Wu Y, Zabel BA, Zhu L. Endothelial CCRL2 induced by disturbed flow promotes atherosclerosis via chemerin-dependent β2 integrin activation in monocytes. Cardiovasc Res 2023; 119:1811-1824. [PMID: 37279540 PMCID: PMC10405567 DOI: 10.1093/cvr/cvad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 06/08/2023] Open
Abstract
AIMS Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate β2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with β2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-β2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| | - Guona Chen
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fan Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yiren Cao
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fei Yang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Tao You
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chu Liu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Menglu Li
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Shuhong Hu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Lijie Ren
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Qiongyu Lu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Wei Deng
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Ying Xu
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Guixue Wang
- JinFeng Laboratory, Chongqing, China
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yonghong Zhang
- Department of Epidemiology School of Public Health, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yi Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Li Zhu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- The Ninth Affiliated Hospital, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
12
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
13
|
Deng Z, Sun K, Sha D, Zhang Y, Guo J, Yan G, Zhang W, Liu M, Deng X, Kang H, Sun A. The counterbalance of endothelial glycocalyx and high wall shear stress to low-density lipoprotein concentration polarization in mouse ear skin arterioles. Atherosclerosis 2023; 377:24-33. [PMID: 37379795 DOI: 10.1016/j.atherosclerosis.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis preferentially occurs at regions in arterial branching, curvature, and stenosis, which may be explained by the geometric predilection of low-density lipoprotein (LDL) concentration polarization that has been investigated in major arteries in previous studies. Whether this also happens in arterioles remains unknown. METHODS Herein, a radially non-uniform distribution of LDL particles and a heterogeneous endothelial glycocalyx layer in the mouse ear arterioles, as shown by fluorescein isothiocyanate labeled wheat germ agglutinin (WGA-FITC), were successfully observed by a non-invasive two-photon laser-scanning microscopy (TPLSM) technique. The stagnant film theory was applied as the fitting function to evaluate LDL concentration polarization in arterioles. RESULTS The concentration polarization rate (CPR, the ratio of the number of polarized cases to that of total cases) in the inner walls of curved and branched arterioles was 22% and 31% higher than the outer counterparts, respectively. Results from the binary logistic regression and multiple linear regression analysis showed that endothelial glycocalyx thickness increases CPR and the thickness of the concentration polarization layer (CPL). Flow field computation indicates no obvious disturbances or vortex in modeled arterioles with different geometries and the mean wall shear stress is about 7.7-9.0 Pa. CONCLUSIONS These findings suggest a geometric predilection of LDL concentration polarization in arterioles for the first time, and the existence of an endothelial glycocalyx, acting together with a relatively high wall shear stress in arterioles, may explain to some extent why atherosclerosis rarely occurs in these regions.
Collapse
Affiliation(s)
- Zhilan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
14
|
Liu W, Wang X, Feng Y. Restoring endothelial function: shedding light on cardiovascular stent development. Biomater Sci 2023. [PMID: 37161519 DOI: 10.1039/d3bm00390f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Complete endothelialization is highly important for maintaining long-term patency and avoiding subsequent complications in implanting cardiovascular stents. It not only refers to endothelial cells (ECs) fully covering the inserted stents, but also includes the newly formed endothelium, which could exert physiological functions, such as anti-thrombosis and anti-stenosis. Clinical outcomes have indicated that endothelial dysfunction, especially the insufficiency of antithrombotic and barrier functions, is responsible for stent failure. Learning from vascular pathophysiology, endothelial dysfunction on stents is closely linked to the microenvironment of ECs. Evidence points to inflammatory responses, oxidative stress, altered hemodynamic shear stress, and impaired endothelial barrier affecting the normal growth of ECs, which are the four major causes of endothelial dysfunction. The related molecular mechanisms and efforts dedicated to improving the endothelial function are emphasized in this review. From the perspective of endothelial function, the design principles, advantages, and disadvantages behind current stents are introduced to enlighten the development of new-generation stents, aiming to offer new alternatives for restoring endothelial function.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
15
|
Boster KAS, Cai S, Ladrón-de-Guevara A, Sun J, Zheng X, Du T, Thomas JH, Nedergaard M, Karniadakis GE, Kelley DH. Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proc Natl Acad Sci U S A 2023; 120:e2217744120. [PMID: 36989300 PMCID: PMC10083563 DOI: 10.1073/pnas.2217744120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.
Collapse
Affiliation(s)
| | - Shengze Cai
- Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou310027, Zhejiang, China
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
| | - Jiatong Sun
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| | - Xiaoning Zheng
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou510632, China
| | - Ting Du
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
- School of Pharmacy, China Medical University, Shenyang, Liaoning110122, China
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI02912
- School of Engineering, Brown University, Providence, RI02912
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| |
Collapse
|
16
|
Chen F, Luo JF, Wan R. High shear stress attenuated arterial neointimal hyperplasia accompanied by changes in yes-associated protein/jun N-terminal kinase/vascular cell adhesion protein 1 expression. Vascular 2023; 31:163-173. [PMID: 35038282 DOI: 10.1177/17085381211058335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Abnormal neointimal hyperplasia (NIH) is known as the predominant mechanism in the pathogenesis of arterial restenosis after balloon angioplasty. Low shear stress (SS) is known to augment balloon injury-induced NIH. The aim of this study is to study the effect and mechanisms of an increase of shear stress caused by arteriovenous fistula could alleviate arterial NIH caused by balloon injury. METHODS AND RESULTS Eighteen male rabbits were randomly divided into three groups: BI-the rabbits received a balloon injury to right common carotid artery (CCA). BI+AVF-the rabbits received a balloon injury to right CCA and a carotid-jugular AVF. Control-the animals received no surgery. After 21 days, CCA samples were harvested for histological staining, immunohistochemistry, and western blot analysis. The luminal shear stress of the BI+AVF group increased from 13.8 ± 1.0 dyn/cm2 before surgery to 30.9 ± 1.7 dyn/cm2 right after surgery (p < 0.01). This value was higher than that of the BI or Control groups at any timepoint. The neointimal area and neointima/media area ratio in the BI+AVF group were significantly lower than those in the BI group. In the BI group, the cellular proliferation, the protein levels of yes-associated protein (YAP), connective tissue growth factor (CTGF), phospho-c-Jun N-terminal kinase (pJNK), and vascular cell adhesion protein 1 (VCAM1) increased, whereas the protein levels of SMCs specific genes decreased. In the BI+AVF group, the opposite effect was observed as cellular proliferation and the protein levels of YAP, CTGF, pJNK, and VCAM1 decreased, the protein levels of SMCs specific genes increased. CONCLUSION The arteriovenous fistula alleviated the balloon injury-induced arterial NIH. It elevated the luminal shear stress and inhibited SMCs phenotypic modulation to the synthetic state, as well as suppressing the over-activation of YAP, JNK, and VCAM1.
Collapse
Affiliation(s)
- Feng Chen
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| | - Jun Fu Luo
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| | - Rong Wan
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Fang W, Xiong T, Pak OS, Zhu L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205382. [PMID: 36538743 PMCID: PMC9929134 DOI: 10.1002/advs.202205382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Indexed: 05/30/2023]
Abstract
Automated manipulation of small particles using external (e.g., magnetic, electric and acoustic) fields has been an emerging technique widely used in different areas. The manipulation typically necessitates a reduced-order physical model characterizing the field-driven motion of particles in a complex environment. Such models are available only for highly idealized settings but are absent for a general scenario of particle manipulation typically involving complex nonlinear processes, which has limited its application. In this work, the authors present a data-driven architecture for controlling particles in microfluidics based on hydrodynamic manipulation. The architecture replaces the difficult-to-derive model by a generally trainable artificial neural network to describe the kinematics of particles, and subsequently identifies the optimal operations to manipulate particles. The authors successfully demonstrate a diverse set of particle manipulations in a numerically emulated microfluidic chamber, including targeted assembly of particles and subsequent navigation of the assembled cluster, simultaneous path planning for multiple particles, and steering one particle through obstacles. The approach achieves both spatial and temporal controllability of high precision for these settings. This achievement revolutionizes automated particle manipulation, showing the potential of data-driven approaches and machine learning in improving microfluidic technologies for enhanced flexibility and intelligence.
Collapse
Affiliation(s)
- Wen‐Zhen Fang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
- Key Laboratory of Thermo‐Fluid Science and EngineeringMOE, Xi'an Jiaotong UniversityXi'an710049China
| | - Tongzhao Xiong
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - On Shun Pak
- Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraCA95053USA
| | - Lailai Zhu
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
18
|
Bonacci F, Chakrabarti B, Saintillan D, du Roure O, Lindner A. Dynamics of flexible filaments in oscillatory shear flows. JOURNAL OF FLUID MECHANICS 2023; 955:jfm.2022.1040. [PMID: 36936351 PMCID: PMC7614318 DOI: 10.1017/jfm.2022.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fluid-structure interactions between flexible fibers and viscous flows play an essential role in various biological phenomena, medical problems, and industrial processes. Of particular interest is the case of particles freely transported in time-dependent flows. This work elucidates the dynamics and morphologies of actin filaments under oscillatory shear flows by combining microfluidic experiments, numerical simulations, and theoretical modeling. Our work reveals that, in contrast to steady shear flows, in which small orientational fluctuations from a flow-aligned state initiate tumbling and deformations, the periodic flow reversal allows the filament to explore many different configurations at the beginning of each cycle. Investigation of filament motion during half time periods of oscillation highlights the critical role of the initial filament orientation on the emergent dynamics. This strong coupling between orientation and deformation results in new deformation regimes and novel higher-order buckling modes absent in steady shear flows. The primary outcome of our analysis is the possibility of suppression of buckling instabilities for certain combinations of the oscillation frequency and initial filament orientation, even in very strong flows. We explain this unusual behavior through a weakly nonlinear Landau theory of buckling, in which we treat the filaments as inextensible Brownian Euler-Bernoulli rods whose hydrodynamics are described by local slender-body theory.
Collapse
Affiliation(s)
- Francesco Bonacci
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Brato Chakrabarti
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Olivia du Roure
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Anke Lindner
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| |
Collapse
|
19
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
20
|
Demos C, Johnson J, Andueza A, Park C, Kim Y, Villa-Roel N, Kang DW, Kumar S, Jo H. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med 2022; 9:979745. [PMID: 36247423 PMCID: PMC9561411 DOI: 10.3389/fcvm.2022.979745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPβ, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.
Collapse
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
21
|
Cabiati M, Giacomarra M, Fontanini M, Cecchettini A, Pelosi G, Vozzi F, Del Ry S. Bone morphogenetic protein-4 system expression in human coronary artery endothelial and smooth muscle cells under dynamic flow: effect of medicated bioresorbable vascular scaffolds at low and normal shear stress. Heart Vessels 2022; 37:2137-2149. [PMID: 35857064 DOI: 10.1007/s00380-022-02140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
Endothelial and smooth muscle cell dysfunction is an early event at the onset of atherosclerosis, a heterogeneous and multifactorial pathology of the vascular wall. Bone morphogenetic protein (BMP)-4, a mechanosensitive autocrine cytokine, and BMPR-1a, BMPR-1b, BMPR-2 specific receptors play a key role in atherosclerotic plaque formation and vascular calcification and BMP4 is regarded as a biomarker of endothelial cell activation. The study aimed to examine the BMP4 system expression by Real-Time PCR in Human Coronary Artery Endothelial (HCAECs) and Smooth Muscle Cells (HCASMCs) under different flow rates determining low or physiological shear stress in the presence/absence of medicated Bioresorbable Vascular Scaffold (BVS). The HCAEC and HCASMC were subjected to 1-10-20 dyne/cm2 shear stress in a laminar flow bioreactor system, with/without BVS+ Everolimus (600 nM). In HCAECs without BVS the BMP4 expression was similar at 1, 20 dyne/cm2 decreasing at 10 dyne/cm2, while adding BVS+ Everolimus, it decreased both at 1, 10 compared to 20 dyne/cm2. In HCASMCs without BVS + Everolimus, the BMP4 system mRNA expression was significantly reduced at 1, 10 dyne/cm2 compared to 20 dyne/cm2, while in the presence of BVS+ Everolimus, higher BMP4 mRNA levels were observed at 10 compared to 1, 20 dyne/cm2. In HCAECs and HCASMCs BMPRs were expressed in all experimental conditions except for BMPR-1a at 1 dyne/cm2 in HCAEC. Significant correlations were found between BMP4 and BMPRs. The more negligible on BMP4 expression due to low shear stress in HCAEC compared to HCASMC and its reduction in the presence of BVS+ Everolimus at low shear stress highlighted the protection of BMP4-mediated against endothelial dysfunction and neoatherogenesis.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
| | - Manuel Giacomarra
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Martina Fontanini
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Antonella Cecchettini
- Laboratory of Proteomics, Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.,Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| | - Gualtiero Pelosi
- Laboratory of Biomimetic Materials and Tissue Engineering, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Federico Vozzi
- Laboratory of Biomimetic Materials and Tissue Engineering, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
22
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Li X, Liu X, Liang Y, Deng X, Fan Y. Spatiotemporal changes of local hemodynamics and plaque components during atherosclerotic progression in rabbit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106814. [PMID: 35523025 DOI: 10.1016/j.cmpb.2022.106814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent evidence demonstrates that the atherogenic process is discontinuous. Our goal is to study changes of plaque components and local hemodynamics during atherosclerotic progression. METHODS The histological and immunohistochemical staining of high-fat diet rabbit aorta were evaluated at 0, 8, 10 and 12 weeks, respectively. In addition, the blood flow and LDL transport were simulated at the above four time points. RESULTS The plaque thickness at different characteristic regions increased at different rates. The collagen continued to increase, while the elastin, fibronectin, macrophages and smooth muscle cells increased first and then decreased. The relative surface LDL concentration decreased at 8 weeks, and then it increased first and decreased slightly. Meanwhile, the hemodynamic environment became better firstly at 8 weeks, then got slightly worse and lastly improved again. CONCLUSIONS The local hemodynamics and plaque components vary nonlinearly during atherosclerotic progression in rabbit aorta.
Collapse
Affiliation(s)
- Xiaoyin Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Ye Liang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyan Deng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
24
|
Zhang Y, Guan Q, Wang Z. PTP1B inhibition ameliorates inflammatory injury and dysfunction in ox‑LDL‑induced HUVECs by activating the AMPK/SIRT1 signaling pathway via negative regulation of KLF2. Exp Ther Med 2022; 24:467. [PMID: 35747159 PMCID: PMC9204542 DOI: 10.3892/etm.2022.11394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a key pathogenic factor of cardiovascular diseases. However, the role of protein tyrosine phosphatase 1B (PTP1B) in oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells remains unclear. The aim of the present study was to explore the possible physiological roles and mechanism of PTP1B in atherosclerosis using HUVECs as an in vitro model. PTP1B expression was assessed by reverse transcription-quantitative PCR. Cell viability was measured using the Cell Counting Kit-8 and lactate dehydrogenase activity assays. Levels of inflammatory factors, including IL-1β, IL-6 and TNF-α, and oxidative stress factors, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were assessed using ELISA and commercially available kits, respectively. Furthermore, TUNEL assay and western blotting were performed to assess the extent of apoptosis-related factors, including Bcl-2, Bax, Cleaved caspase-3 and Caspase-3. Tube formation assay was used to assess tubule formation ability and western blotting was to analyze VEGFA protein level. Binding sites for the transcription factor Kruppel-like factor 2 (KLF2) on the PTP1B promoter were predicted using the JASPAR database and verified using luciferase reporter assays and chromatin immunoprecipitation. The protein levels of phosphorylated 5'AMP-activated protein kinase (p-AMPK), AMPK and SIRT1 were measured using western blotting. The results demonstrated that the PTP1B mRNA and protein expression levels were significantly upregulated in oxidized low-density lipoprotein (ox-LDL)-induced HUVECs. In addition, ox-LDL-induced HUVECs transfected with short hairpin RNA against PTP1B exhibited a significant increase in cell viability, reduced inflammatory factor levels, apoptosis and oxidative stress, as well as increased tubule formation ability. KLF2 was found to negatively regulate the transcriptional activity of PTP1B. KLF2 knockdown reversed the protective effects of PTP1B knockdown on ox-LDL-induced HUVECs. KLF2 knockdown also abolished PTP1B knockdown-triggered AMPK/SIRT1 signaling pathway activation in ox-LDL-induced HUVECs. To conclude, the results of the present study suggested that PTP1B knockdown can prevent ox-LDL-induced inflammatory injury and dysfunction in HUVECs, which is regulated at least in part by the AMPK/SIRT1 signaling pathway through KLF2.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zhenfeng Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
25
|
Hypoxia inducible factor 1α inhibitor PX-478 reduces atherosclerosis in mice. Atherosclerosis 2022; 344:20-30. [PMID: 35121387 PMCID: PMC8885973 DOI: 10.1016/j.atherosclerosis.2022.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Hypoxia inducible factor 1α (HIF1α) plays a critical role in atherosclerosis as demonstrated in endothelial-targeted HIF1α -deficient mice. However, it has not been shown if specific pharmacological inhibitors of HIF1α can be used as potential drugs for atherosclerosis. PX-478 is a selective inhibitor of HIF1α, which was used to reduce cancer and obesity in animal models. Here, we tested whether PX-478 can be used to inhibit atherosclerosis. METHODS We first tested PX-478 in human aortic endothelial cells (HAEC) and found that it significantly inhibited expression of HIF1α and its targets, including Collagen I. Next, two independent atherosclerosis models, C57BL/6 mice treated with AAV-PCSK9 and ApoE-/- mice, were used to test the efficacy of PX-478. Both mouse models were fed a Western diet for 3 months with bi-weekly treatment with PX-478 (40 mg/kg) or saline. RESULTS PX-478 treatment reduced atherosclerotic plaque burden in the aortic trees in both mouse models, while plaque burden in the aortic sinus was reduced in the AAV-PCSK9 mouse model, but not in the ApoE-/- mice. Russell-Movat's Pentachrome and Picrosirius Red staining showed a significant reduction in extracellular matrix remodeling and collagen maturation, respectively, in the PX-478-treated mice. As expected, PX-478 treatment reduced diet-induced weight-gain and abdominal adipocyte hypertrophy. Interestingly, PX-478 reduced plasma LDL cholesterol by 69% and 30% in AAV-PCSK9 and ApoE-/- mice, respectively. To explore the cholesterol-lowering mechanisms, we carried out an RNA sequencing study using the liver tissues from the ApoE-/- mouse study. We found 450 genes upregulated and 381 genes downregulated by PX-478 treatment in the liver. Further, gene ontology analysis showed that PX-478 treatment upregulated fatty acid and lipid catabolic pathways, while downregulating lipid biosynthesis and plasma lipoprotein particle remodeling processes. Of interest, Cfd, Elovl3, and Insig2 were some of the most downregulated genes by PX-478, and have been implicated in fat storage, fatty acid elongation, and cholesterol metabolism. The downregulation of Cfd, Elovl3, and Insig2 was further validated by qPCR in the liver tissues of ApoE-/- mice treated with PX-478. CONCLUSIONS These results suggest that PX-478 is a potential anti-atherogenic drug, which targets vascular endothelium and hepatic cholesterol pathways.
Collapse
|
26
|
Jiao Y, Zhang Y, Xiao Y, Xing Y, Cai Z, Wang C, Zhou Z, Feng Z, Gu Y. The crescendo pulse frequency of shear stress stimulates the endothelialization of bone marrow mesenchymal stem cells on the luminal surface of decellularized scaffold in the bioreactor. Bioengineered 2022; 13:7925-7938. [PMID: 35358008 PMCID: PMC9278976 DOI: 10.1080/21655979.2022.2039502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A completely confluent endothelial cell (EC) monolayer is required to maintain proper vascular function in small diameter tissue-engineered vascular graft (TEVG). However, the most effective method for EC attachment to the luminal surface and formation of an entire endothelium layer that works in vitro remains a complicated challenge that requires urgent resolution. Although pulsatile flow has been shown to be better suited for the generation of functional endothelium, the optimal frequency setting is unknown. Several pulsatile flow frequencies were used to implant rat bone mesenchymal stem cells (MSC) into the lumen of decellularized porcine carotid arteries. The endothelium's integrity and cell activity were investigated in order to determine the best pulse frequency settings. The results showed that MSC were maximally preserved and exhibited maximal morphological changes with improved endothelialization performance in response to increased pulse stimulation frequency. Increased pulse frequency stimulation stimulates the expression of mechanoreceptor markers, cytoskeleton reorganization in the direction of blood flow, denser skeletal proteins fibronectin, and stronger intercellular connections when compared to constant pulse frequency stimulation. MSC eventually develops an intact endothelial layer with anti-thrombotic properties on the inner wall of the decellularized tubular lumen. Conclusion: The decellularized vessels retain the three-dimensional structure of the vasculature, have a surface topography suitable for MSC growth, and have good mechanical properties. By increasing the frequency of pulsed stimulation, MSC endothelialize the lumen of the decellularized vasculature. It is expected to have anti-thrombotic and anti-neointimal hyperplasia properties after implantation, ultimately improving the patency of TEVG.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanguo Zhang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhengtong Zhou
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Effect of Ulinastatin on Syndecan-2-Mediated Vascular Damage in IDH2-Deficient Endothelial Cells. Biomedicines 2022; 10:biomedicines10010187. [PMID: 35052866 PMCID: PMC8774120 DOI: 10.3390/biomedicines10010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/07/2022] Open
Abstract
Syndecan-2 (SDC2), a cell-surface heparin sulfate proteoglycan of the glycocalyx, is mainly expressed in endothelial cells. Although oxidative stress and inflammatory mediators have been shown to mediate dysfunction of the glycocalyx, little is known about their role in vascular endothelial cells. In this study, we aimed to identify the mechanism that regulates SDC2 expression in isocitrate dehydrogenase 2 (IDH2)-deficient endothelial cells, and to investigate the effect of ulinastatin (UTI) on this mechanism. We showed that knockdown of IDH2 induced SDC2 expression in human umbilical vein endothelial cells (HUVECs). Matrix metalloproteinase 7 (MMP7) influences SDC2 expression. When IDH2 was downregulated, MMP7 expression was increased, as was TGF-β signaling, which regulates MMP7. Inhibition of MMP7 activity using MMP inhibitor II significantly reduced SDC2, suggesting that IDH2 mediated SDC2 expression via MMP7. Moreover, expression of SDC2 and MMP7, as well as TGF-β signaling, increased in response to IDH2 deficiency, and treatment with UTI reversed this increase. Similarly, the increase in SDC2, MMP7, and TGF-β signaling in the aorta of IDH2 knockout mice was reversed by UTI treatment. These findings suggest that IDH2 deficiency induces SDC2 expression via TGF-β and MMP7 signaling in endothelial cells.
Collapse
|
28
|
Wang H, Uhlmann K, Vedula V, Balzani D, Varnik F. Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomech Model Mechanobiol 2022; 21:671-683. [PMID: 35025011 PMCID: PMC8940862 DOI: 10.1007/s10237-022-01556-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022]
Abstract
Tissue degradation plays a crucial role in vascular diseases such as atherosclerosis and aneurysms. Computational modeling of vascular hemodynamics incorporating both arterial wall mechanics and tissue degradation has been a challenging task. In this study, we propose a novel finite element method-based approach to model the microscopic degradation of arterial walls and its interaction with blood flow. The model is applied to study the combined effects of pulsatile flow and tissue degradation on the deformation and intra-aneurysm hemodynamics. Our computational analysis reveals that tissue degradation leads to a weakening of the aneurysmal wall, which manifests itself in a larger deformation and a smaller von Mises stress. Moreover, simulation results for different heart rates, blood pressures and aneurysm geometries indicate consistently that, upon tissue degradation, wall shear stress increases near the flow-impingement region and decreases away from it. These findings are discussed in the context of recent reports regarding the role of both high and low wall shear stress for the progression and rupture of aneurysms.
Collapse
|
29
|
Williams D, Mahmoud M, Liu R, Andueza A, Kumar S, Kang DW, Zhang J, Tamargo I, Villa-Roel N, Baek KI, Lee H, An Y, Zhang L, Tate EW, Bagchi P, Pohl J, Mosnier LO, Diamandis EP, Mihara K, Hollenberg MD, Dai Z, Jo H. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife 2022; 11:e72579. [PMID: 35014606 PMCID: PMC8806187 DOI: 10.7554/elife.72579] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell (EC) gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified kallikrein-related peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial ECs, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo mouse models and in vitro studies with cultured ECs. Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs, as determined by NFκB activation, expression of vascular cell adhesion molecule 1 and intracellular adhesion molecule 1, and monocyte adhesion. Furthermore, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.
Collapse
Affiliation(s)
- Darian Williams
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Marwa Mahmoud
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Renfa Liu
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Aitor Andueza
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Sandeep Kumar
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Dong-Won Kang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Jiahui Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Ian Tamargo
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Nicolas Villa-Roel
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Kyung-In Baek
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | | | | | - Leran Zhang
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory UniversityAtlantaUnited States
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Laurent O Mosnier
- Department of Molecular Medicine, Scripps Research InstituteSan DiegoUnited States
| | | | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Zhifei Dai
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
- Department of Medicine, Emory UniversityAtlantaUnited States
| |
Collapse
|
30
|
Ho H, Ji X. Multiscale Modeling Is Required for the Patent Ductus Arteriosus in Preterm Infants. Front Pediatr 2022; 10:857434. [PMID: 35402366 PMCID: PMC8984113 DOI: 10.3389/fped.2022.857434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
31
|
Wang H, Balzani D, Vedula V, Uhlmann K, Varnik F. On the Potential Self-Amplification of Aneurysms Due to Tissue Degradation and Blood Flow Revealed From FSI Simulations. Front Physiol 2021; 12:785780. [PMID: 34955893 PMCID: PMC8709128 DOI: 10.3389/fphys.2021.785780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue degradation plays a crucial role in the formation and rupture of aneurysms. Using numerical computer simulations, we study the combined effects of blood flow and tissue degradation on intra-aneurysm hemodynamics. Our computational analysis reveals that the degradation-induced changes of the time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) within the aneurysm dome are inversely correlated. Importantly, their correlation is enhanced in the process of tissue degradation. Regions with a low TAWSS and a high OSI experience still lower TAWSS and higher OSI during degradation. Furthermore, we observed that degradation leads to an increase of the endothelial cell activation potential index, in particular, at places experiencing low wall shear stress. These findings are robust and occur for different geometries, degradation intensities, heart rates and pressures. We interpret these findings in the context of recent literature and argue that the degradation-induced hemodynamic changes may lead to a self-amplification of the flow-induced progressive damage of the aneurysmal wall.
Collapse
Affiliation(s)
- Haifeng Wang
- Theory and Simulation of Complex Fluids, Department of Scale-Bridging Thermodynamic and Kinetic Simulation, Interdisciplinary Center for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany
| | - Daniel Balzani
- Department of Civil and Environmental Engineering, Chair of Continuum Mechanics, Ruhr-Universität Bochum, Bochum, Germany
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University in the City of New York, New York, NY, United States
| | - Klemens Uhlmann
- Department of Civil and Environmental Engineering, Chair of Continuum Mechanics, Ruhr-Universität Bochum, Bochum, Germany
| | - Fathollah Varnik
- Theory and Simulation of Complex Fluids, Department of Scale-Bridging Thermodynamic and Kinetic Simulation, Interdisciplinary Center for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
32
|
Geometry and Flow Properties Affect the Phase Shift between Pressure and Shear Stress Waves in Blood Vessels. FLUIDS 2021. [DOI: 10.3390/fluids6110378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The phase shift between pressure and wall shear stress (WSS) has been associated with vascular diseases such as atherosclerosis and aneurysms. The present study aims to understand the effects of geometry and flow properties on the phase shift under the stiff wall assumption, using an immersed-boundary-lattice-Boltzmann method. For pulsatile flow in a straight pipe, the phase shift is known to increase with the Womersley number, but is independent of the flow speed (or the Reynolds number). For a complex geometry, such as a curved pipe, however, we find that the phase shift develops a strong dependence on the geometry and Reynolds number. We observed that the phase shift at the inner bend of the curved vessel and in the aneurysm dome is larger than that in a straight pipe. Moreover, the geometry affects the connection between the phase shift and other WSS-related metrics, such as time-averaged WSS (TAWSS). For straight and curved blood vessels, the phase shift behaves qualitatively similarly to and can thus be represented by the TAWSS, which is a widely used hemodynamic index. However, these observables significantly differ in other geometries, such as in aneurysms. In such cases, one needs to consider the phase shift as an independent quantity that may carry additional valuable information compared to well-established metrics.
Collapse
|
33
|
Huang S, Sigovan M, Sixou B. Reconstruction of vascular blood flow in a vessel from tomographic projections. Biomed Phys Eng Express 2021; 7. [PMID: 34619663 DOI: 10.1088/2057-1976/ac2dd6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
In this work, we study the measurement of blood velocity with contrast enhanced computed tomography. The reconstruction is based on CT projections perpendicular to the main axis of the vessel and on a partial differential equation describing the propagation of the contrast agent. The inverse problem is formulated as an optimal control problem with the transport equation as constraint. The velocity field is obtained with stationary and unstationary Navier-Stokes equations and it is reconstructed with the adjoint method. The velocity and the density of the contrast agent are well reconstructed. The reconstruction results obtained are better for the axial component of the velocity than for transverse components.
Collapse
Affiliation(s)
- S Huang
- CREATIS, CNRS UMR 5220, Inserm U630, INSA de Lyon, Universite de Lyon, F-69621, France
| | - M Sigovan
- CREATIS, CNRS UMR 5220, Inserm U630, INSA de Lyon, Universite de Lyon, F-69621, France
| | - B Sixou
- CREATIS, CNRS UMR 5220, Inserm U630, INSA de Lyon, Universite de Lyon, F-69621, France
| |
Collapse
|
34
|
Kumar S, Sur S, Perez J, Demos C, Kang DW, Kim CW, Hu S, Xu K, Yang J, Jo H. Atorvastatin and blood flow regulate expression of distinctive sets of genes in mouse carotid artery endothelium. CURRENT TOPICS IN MEMBRANES 2021; 87:97-130. [PMID: 34696890 DOI: 10.1016/bs.ctm.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Hypercholesterolemia is a well-known pro-atherogenic risk factor and statin is the most effective anti-atherogenic drug that lowers blood cholesterol levels. However, despite systemic hypercholesterolemia, atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while the stable flow (s-flow) regions are spared. Given their predominant effects on endothelial function and atherosclerosis, we tested whether (1) statin and flow regulate the same or independent sets of genes and (2) statin can rescue d-flow-regulated genes in mouse artery endothelial cells in vivo. To test the hypotheses, C57BL/6 J mice (8-week-old male, n=5 per group) were pre-treated with atorvastatin (10mg/kg/day, Orally) or vehicle for 5 days. Thereafter, partial carotid ligation (PCL) surgery to induce d-flow in the left carotid artery (LCA) was performed, and statin or vehicle treatment was continued. The contralateral right carotid artery (RCA) remained exposed to s-flow to be used as the control. Two days or 2 weeks post-PCL surgery, endothelial-enriched RNAs from the LCAs and RCAs were collected and subjected to microarray gene expression analysis. Statin treatment in the s-flow condition (RCA+statin versus RCA+vehicle) altered the expression of 667 genes at 2-day and 187 genes at 2-week timepoint, respectively (P<0.05, fold change (FC)≥±1.5). Interestingly, statin treatment in the d-flow condition (LCA+statin versus LCA+vehicle) affected a limited number of genes: 113 and 75 differentially expressed genes at 2-day and 2-week timepoint, respectively (P<0.05, FC≥±1.5). In contrast, d-flow in the vehicle groups (LCA+vehicle versus RCA+vehicle) differentially regulated 4061 genes at 2-day and 3169 genes at 2-week timepoint, respectively (P<0.05, FC≥±1.5). Moreover, statin treatment did not reduce the number of flow-sensitive genes (LCA+statin versus RCA+statin) compared to the vehicle groups: 1825 genes at 2-day and 3788 genes at 2-week, respectively, were differentially regulated (P<0.05, FC≥±1.5). These results revealed that both statin and d-flow regulate expression of hundreds or thousands of arterial endothelial genes, respectively, in vivo. Further, statin and d-flow regulate independent sets of endothelial genes. Importantly, statin treatment did not reverse d-flow-regulated genes except for a small number of genes. These results suggest that both statin and flow play important independent roles in atherosclerosis development and highlight the need to consider their therapeutic implications for both.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sanjoli Sur
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Julian Perez
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sarah Hu
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Ke Xu
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Jing Yang
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States; Division of Cardiology, Emory University, Atlanta, GA, United States.
| |
Collapse
|
35
|
Zebhi B, Lazkani M, Bark D. Calcific Aortic Stenosis-A Review on Acquired Mechanisms of the Disease and Treatments. Front Cardiovasc Med 2021; 8:734175. [PMID: 34604358 PMCID: PMC8486019 DOI: 10.3389/fcvm.2021.734175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Calcific aortic stenosis is a progressive disease that has become more prevalent in recent decades. Despite advances in research to uncover underlying biomechanisms, and development of new generations of prosthetic valves and replacement techniques, management of calcific aortic stenosis still comes with unresolved complications. In this review, we highlight underlying molecular mechanisms of acquired aortic stenosis calcification in relation to hemodynamics, complications related to the disease, diagnostic methods, and evolving treatment practices for calcific aortic stenosis.
Collapse
Affiliation(s)
- Banafsheh Zebhi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Mohamad Lazkani
- Medical Center of the Rockies, University of Colorado Health, Loveland, CO, United States
| | - David Bark
- Department of Pediatrics, Washington University in Saint Louis, Saint Louis, MO, United States.,Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
36
|
Chen ZB, Liu X, Chen AT. "Enhancing" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow. CURRENT TOPICS IN MEMBRANES 2021; 87:153-169. [PMID: 34696884 DOI: 10.1016/bs.ctm.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Duarte, CA, United States; Irell and Manella Graduate School of Biological Sciences, Duarte, CA, United States.
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Duarte, CA, United States
| | - Aleysha T Chen
- Department of Bioengineering, University of California, Berkeley, CA, United States
| |
Collapse
|
37
|
Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021; 178:113007. [PMID: 33556807 PMCID: PMC8112193 DOI: 10.1016/j.bios.2021.113007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in biosensors have quantitively expanded current capabilities in exploratory research tools, diagnostics and therapeutics. This rapid pace in sensor development has been accentuated by vast improvements in data analysis methods in the form of machine learning and artificial intelligence that, together, promise fantastic opportunities in chronic sensing of biosignals to enable preventative screening, automated diagnosis, and tools for personalized treatment strategies. At the same time, the importance of widely accessible personal monitoring has become evident by recent events such as the COVID-19 pandemic. Progress in fully integrated and chronic sensing solutions is therefore increasingly important. Chronic operation, however, is not truly possible with tethered approaches or bulky, battery-powered systems that require frequent user interaction. A solution for this integration challenge is offered by wireless and battery-free platforms that enable continuous collection of biosignals. This review summarizes current approaches to realize such device architectures and discusses their building blocks. Specifically, power supplies, wireless communication methods and compatible sensing modalities in the context of most prevalent implementations in target organ systems. Additionally, we highlight examples of current embodiments that quantitively expand sensing capabilities because of their use of wireless and battery-free architectures.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Electrical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Neuroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
38
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
39
|
Rivera-Rivera LA, Cody KA, Eisenmenger L, Cary P, Rowley HA, Carlsson CM, Johnson SC, Johnson KM. Assessment of vascular stiffness in the internal carotid artery proximal to the carotid canal in Alzheimer's disease using pulse wave velocity from low rank reconstructed 4D flow MRI. J Cereb Blood Flow Metab 2021; 41:298-311. [PMID: 32169012 PMCID: PMC8370001 DOI: 10.1177/0271678x20910302] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical evidence shows vascular factors may co-occur and complicate the expression of Alzheimer's disease (AD); yet, the pathologic mechanisms and involvement of different compartments of the vascular network are not well understood. Diseases such as arteriosclerosis diminish vascular compliance and will lead to arterial stiffness, a well-established risk factor for cardiovascular morbidity. Arterial stiffness can be assessed using pulse wave velocity (PWV); however, this is usually done from carotid-to-femoral artery ratios. To probe the brain vasculature, intracranial PWV measures would be ideal. In this study, high temporal resolution 4D flow MRI was used to assess transcranial PWV in 160 subjects including AD, mild cognitive impairment (MCI), healthy controls, and healthy subjects with apolipoprotein ɛ4 positivity (APOE4+) and parental history of AD dementia (FH+). High temporal resolution imaging was achieved by high temporal binning of retrospectively gated data using a local-low rank approach. Significantly higher transcranial PWV in AD dementia and MCI subjects was found when compared to old-age-matched controls (AD vs. old-age-matched controls: P <0.001, AD vs. MCI: P = 0.029, MCI vs. old-age-matched controls P = 0.013). Furthermore, vascular changes were found in clinically healthy middle-age adults with APOE4+ and FH+ indicating significantly higher transcranial PWV compared to controls (P <0.001).
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
| | - Karly A Cody
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Paul Cary
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| |
Collapse
|
40
|
Ye H, Shen Z, Wei M, Li Y. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. SOFT MATTER 2021; 17:40-56. [PMID: 33285555 DOI: 10.1039/d0sm01637c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the circulation of nano- and micro-particles, including spherical particles and filamentous nanoworms, with red blood cells (RBCs) suspension in a constricted channel that mimics a stenosed microvessel. Through three-dimensional simulations using the immersed boundary-based Lattice Boltzmann method, the influence of channel geometries, such as the length and ratio of the constriction, on the accumulation of particles is systematically studied. Firstly, we find that the accumulation of spherical particles with 1 μm diameter in the constriction increases with the increases of both the length and ratio of the constriction. This is attributed to the interaction between spheres and RBCs. The RBCs "carry" the spheres and they accumulate inside the constriction together, due to the altered local hydrodynamics induced by the existence of the constriction. Secondly, nanoworms demonstrate higher accumulation than that of spheres inside the constriction, which is associated with the escape of nanoworms from RBC clusters and their accumulation near the wall of main channel. The accumulated near-wall nanoworms will eventually enter the constriction, thus enhancing their concentration inside the constriction. However, an exceptional case occurs in the case of constrictions with large ratio and long length. In such circumstances, the RBCs aggregate together tightly and concentrate at the center of the channel, which makes the nanoworms hardly able to escape from RBC clusters, leading to a similar accumulation of nanoworms and spheres inside the constriction. This study may provide theoretical guidance for the design of nano- and micro-particles for biomedical engineering applications, such as drug delivery systems for patients with stenosed microvessels.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, USA.
| | | | | | | |
Collapse
|
41
|
Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H. Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. Cell Rep 2020; 33:108491. [PMID: 33326796 PMCID: PMC7801938 DOI: 10.1016/j.celrep.2020.108491] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Disturbed flow (d-flow) induces atherosclerosis by regulating gene expression in endothelial cells (ECs). For further mechanistic understanding, we carried out a single-cell RNA sequencing (scRNA-seq) and scATAC-seq study using endothelial-enriched single cells from the left- and right carotid artery exposed to d-flow (LCA) and stable-flow (s-flow in RCA) using the mouse partial carotid ligation (PCL) model. We find eight EC clusters along with immune cells, fibroblasts, and smooth muscle cells. Analyses of marker genes, pathways, and pseudotime reveal that ECs are highly heterogeneous and plastic. D-flow induces a dramatic transition of ECs from atheroprotective phenotypes to pro-inflammatory cells, mesenchymal (EndMT) cells, hematopoietic stem cells, endothelial stem/progenitor cells, and an unexpected immune cell-like (EndICLT) phenotypes. While confirming KLF4/KLF2 as an s-flow-sensitive transcription factor binding site, we also find those sensitive to d-flow (RELA, AP1, STAT1, and TEAD1). D-flow reprograms ECs from atheroprotective to proatherogenic phenotypes, including EndMT and potentially EndICLT.
Collapse
Affiliation(s)
- Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Juyoung Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Hope L Mumme
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Julian I Perez
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Wang L, Xu P, Xie X, Hu F, Jiang L, Hu R, Ding F, Xiao H, Zhang H. Down Regulation of SIRT2 Reduced ASS Induced NSCLC Apoptosis Through the Release of Autophagy Components via Exosomes. Front Cell Dev Biol 2020; 8:601953. [PMID: 33344455 PMCID: PMC7744594 DOI: 10.3389/fcell.2020.601953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis of cancer is the main cause of death in many types of cancer. Acute shear stress (ASS) is an important part of tumor micro-environment, it plays a crucial role in tumor invasion and spread. However, less is known about the role of ASS in tumorigenesis and metastasis of NSCLC. In this study, NSCLC cells were exposed to ASS (10 dyn/cm2) to explore the effect of ASS in regulation of autophagy and exosome mediated cell survival. Finally, the influence of SIRT2 on NSCLC cell metastasis was verified in vivo. Our data demonstrates that ASS promotes exosome and autophagy components releasing in a time dependent manner, inhibition of exosome release exacerbates ASS induced NSCLC cell apoptosis. Furthermore, we identified that this function was regulated by sirtuin 2 (SIRT2). And, RNA immunoprecipitation (RIP) assay suggested SIRT2 directly bound to the 3′UTR of transcription factor EB (TFEB) and facilitated its mRNA stability. TFEB is a key transcription factor involved in the regulation of many lysosome related genes and plays a critical role in the fusion of autophagosome and lysosome. Altogether, this data revealed that SIRT2 is a mechanical sensitive protein, and it regulates ASS induced cell apoptosis by modulating the release of exosomes and autophagy components, which provides a promising strategy for the treatment of NSCLCs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
43
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
44
|
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology (C.D., D.W., H.J.), Emory University, Atlanta
| | - Darian Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology (C.D., D.W., H.J.), Emory University, Atlanta
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology (C.D., D.W., H.J.), Emory University, Atlanta
- Department of Medicine (H.J.), Emory University, Atlanta
| |
Collapse
|
45
|
McGurk KA, Owen B, Watson WD, Nethononda RM, Cordell HJ, Farrall M, Rider OJ, Watkins H, Revell A, Keavney BD. Heritability of haemodynamics in the ascending aorta. Sci Rep 2020; 10:14356. [PMID: 32873833 PMCID: PMC7463029 DOI: 10.1038/s41598-020-71354-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 01/27/2023] Open
Abstract
Blood flow in the vasculature can be characterised by dimensionless numbers commonly used to define the level of instabilities in the flow, for example the Reynolds number, Re. Haemodynamics play a key role in cardiovascular disease (CVD) progression. Genetic studies have identified mechanosensitive genes with causal roles in CVD. Given that CVD is highly heritable and abnormal blood flow may increase risk, we investigated the heritability of fluid metrics in the ascending aorta calculated using patient-specific data from cardiac magnetic resonance (CMR) imaging. 341 participants from 108 British Caucasian families were phenotyped by CMR and genotyped for 557,124 SNPs. Flow metrics were derived from the CMR images to provide some local information about blood flow in the ascending aorta, based on maximum values at systole at a single location, denoted max, and a 'peak mean' value averaged over the area of the cross section, denoted pm. Heritability was estimated using pedigree-based (QTDT) and SNP-based (GCTA-GREML) methods. Estimates of Reynolds number based on spatially averaged local flow during systole showed substantial heritability ([Formula: see text], [Formula: see text]), while the estimated heritability for Reynolds number calculated using the absolute local maximum velocity was not statistically significant (12-13%; [Formula: see text]). Heritability estimates of the geometric quantities alone; e.g. aortic diameter ([Formula: see text], [Formula: see text]), were also substantially heritable, as described previously. These findings indicate the potential for the discovery of genetic factors influencing haemodynamic traits in large-scale genotyped and phenotyped cohorts where local spatial averaging is used, rather than instantaneous values. Future Mendelian randomisation studies of aortic haemodynamic estimates, which are swift to derive in a clinical setting, will allow for the investigation of causality of abnormal blood flow in CVD.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Benjamin Owen
- Department of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- School of Engineering, Multiscale Thermofluids Institute, University of Edinburgh, Edinburgh, UK
| | - William D Watson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard M Nethononda
- Division of Cardiology, Chris Hani Baragwanath Hospital, Soweto and the University of Witwatersrand, Johannesburg, South Africa
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair Revell
- Department of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
46
|
Karthika CL, Ahalya S, Radhakrishnan N, Kartha CC, Sumi S. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases. Mol Cell Biochem 2020; 476:125-143. [PMID: 32844345 DOI: 10.1007/s11010-020-03890-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - N Radhakrishnan
- St.Thomas Institute of Research on Venous Diseases, Changanassery, Kerala, India
| | - C C Kartha
- Society for Continuing Medical Education & Research (SOCOMER), Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
47
|
Filippini A, D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules 2020; 10:biom10091218. [PMID: 32825713 PMCID: PMC7563503 DOI: 10.3390/biom10091218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Caveolae are flask-shaped invaginations of the plasma membrane found in numerous cell types and are particularly abundant in endothelial cells and adipocytes. The lipid composition of caveolae largely matches that of lipid rafts microdomains that are particularly enriched in cholesterol, sphingomyelin, glycosphingolipids, and saturated fatty acids. Unlike lipid rafts, whose existence remains quite elusive in living cells, caveolae can be clearly distinguished by electron microscope. Despite their similar composition and the sharing of some functions, lipid rafts appear more heterogeneous in terms of size and are more dynamic than caveolae. Following the discovery of caveolin-1, the first molecular marker as well as the unique scaffolding protein of caveolae, we have witnessed a remarkable increase in studies aimed at investigating the role of these organelles in cell functions and human disease. The goal of this review is to discuss the most recent studies related to the role of caveolae and caveolins in endothelial cells. We first recapitulate the major embryological processes leading to the formation of the vascular tree. We next discuss the contribution of caveolins and cavins to membrane biogenesis and cell response to extracellular stimuli. We also address how caveolae and caveolins control endothelial cell metabolism, a central mechanism involved in migration proliferation and angiogenesis. Finally, as regards the emergency caused by COVID-19, we propose to study the caveolar platform as a potential target to block virus entry into endothelial cells.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Roma, Italy;
| | - Alessio D’Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Roma, Italia
- Correspondence:
| |
Collapse
|
48
|
Du Y, Goddi A, Bortolotto C, Shen Y, Dell'Era A, Calliada F, Zhu L. Wall Shear Stress Measurements Based on Ultrasound Vector Flow Imaging: Theoretical Studies and Clinical Examples. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1649-1664. [PMID: 32124997 PMCID: PMC7497026 DOI: 10.1002/jum.15253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 05/15/2023]
Abstract
Wall shear stress (WSS) is considered as a key factor for atherosclerosis development. Previous WSS research based on pulsed wave Doppler (PWD) showed limitations in complex flows. To improve accuracy for nonlaminar flow, a commercial ultrasound vector flow imaging (UVFI)-based WSS calculation is proposed. Errors for PWD are presented theoretically when flow is not laminar. Based on this, simulations of WSS calculations between PWD and UVFI were set up for different turbulent flows. Our simulations show that UVFI has obviously better performance than PWD in WSS calculations. Wall shear stress results in different flow conditions at carotid bifurcations are described.
Collapse
Affiliation(s)
- Yigang Du
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | | | - Chandra Bortolotto
- Radiology DepartmentFondazione Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San MatteoPaviaItaly
| | - Yingying Shen
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | - Alex Dell'Era
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | - Fabrizio Calliada
- Radiology DepartmentFondazione Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San MatteoPaviaItaly
| | - Lei Zhu
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| |
Collapse
|
49
|
Zhang C, Chau N, Ho H. Patient-Specific Blood Flow Analysis for Cerebral Arteriovenous Malformation Based on Digital Subtraction Angiography Images. Front Bioeng Biotechnol 2020; 8:775. [PMID: 32793568 PMCID: PMC7390970 DOI: 10.3389/fbioe.2020.00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/18/2020] [Indexed: 11/15/2022] Open
Abstract
Real-time digital subtraction angiography (DSA) is capable of revealing the cerebral vascular morphology and blood flow perfusion patterns of arterial venous malformations (AVMs). In this study, we analyze the DSA images of a subject-specific left posterior AVM case and customize a generic electric analog model for cerebral circulation accordingly. The generic model consists of electronic components representing 49 major cerebral arteries and veins, and yields their blood pressure and flow rate profiles. The model was adapted by incorporating the supplying and draining patterns of the AVM to simulate some typical AVM features such as the blood "steal" syndrome, where the flow rate in the left posterior artery increases by almost three times (∼300 ml/min vs 100 ml/min) compared with the healthy case. Meanwhile, the flow rate to the right posterior artery is reduced to ∼30 ml/min from 100 ml/min despite the presence of an autoregulation mechanism in the model. In addition, the blood pressure in the draining veins is increased from 9 to 22 mmHg, and the blood pressure in the feeding arteries is reduced from 85 to 30 mmHg due to the fistula effects of the AVM. In summary, a first DSA-based AVM model has been developed. More subject-specific AVM cases are required to apply the presented in silico model, and in vivo data are used to validate the simulation results.
Collapse
Affiliation(s)
- Changwei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nixon Chau
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Cheng MJ, Mitra R, Okorafor CC, Nersesyan AA, Harding IC, Bal NN, Kumar R, Jo H, Sridhar S, Ebong EE. Targeted Intravenous Nanoparticle Delivery: Role of Flow and Endothelial Glycocalyx Integrity. Ann Biomed Eng 2020; 48:1941-1954. [PMID: 32072383 PMCID: PMC8025840 DOI: 10.1007/s10439-020-02474-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Therapies for atherosclerotic cardiovascular disease should target early disease stages and specific vascular sites where disease occurs. Endothelial glycocalyx (GCX) degradation compromises endothelial barrier function and increases vascular permeability. This initiates pro-atherosclerotic lipids and inflammatory cells to penetrate vessel walls, and at the same time this can be leveraged for targeted drug delivery. In prior cell culture studies, GCX degradation significantly increased endothelial cell uptake of nanoparticle vehicles that are designed for drug delivery, compared to the effects of intact GCX. The present study assessed if the cell culture findings translate to selective nanoparticle uptake in animal vessels. In mice, the left carotid artery (LCA) was partially ligated to disturb blood flow, which induces GCX degradation, endothelial dysfunction, and atherosclerosis. After ligation, the LCA vessel wall exhibited a loss of continuity of the GCX layer on the intima. 10-nm gold nanospheres (GNS) coated with polyethylene glycol (PEG) were delivered intravenously. GCX degradation in the ligated LCA correlated to increased GNS infiltration of the ligated LCA wall. This suggests that GCX dysfunction, which coincides with atherosclerosis, can indeed be targeted for enhanced drug delivery, offering a new approach in cardiovascular disease therapy.
Collapse
Affiliation(s)
- Ming J Cheng
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Building, Boston, MA, 02115, USA
- Department of Neurology, The Massachusetts General Hospital, Boston, MA, USA
- The NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Building, Boston, MA, 02115, USA
| | - Chinedu C Okorafor
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Building, Boston, MA, 02115, USA
| | - Alina A Nersesyan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nandita N Bal
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Building, Boston, MA, 02115, USA
| | - Rajiv Kumar
- Department of Physics, Northeastern University, Boston, MA, USA
- R&D Biomedical Materials, Millipore Sigma (A Business of Merck KGaA, Darmstadt, Germany), Milwaukee, WI, USA
| | - Hanjoong Jo
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Building, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|