1
|
Greene CL, Traeger G, Venkatesh A, Han D, Majesky MW. Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model. J Dev Biol 2025; 13:13. [PMID: 40265371 PMCID: PMC12015864 DOI: 10.3390/jdb13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial-venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development.
Collapse
Affiliation(s)
- Christina L. Greene
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Geoffrey Traeger
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Akshay Venkatesh
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - David Han
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Cell Biology & Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark W. Majesky
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. eLife 2025; 13:RP101114. [PMID: 40042383 PMCID: PMC11882144 DOI: 10.7554/elife.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here, we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
|
3
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
4
|
Qin X, Tape CJ. Functional analysis of cell plasticity using single-cell technologies. Trends Cell Biol 2024; 34:854-864. [PMID: 38355348 DOI: 10.1016/j.tcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.
Collapse
Affiliation(s)
- Xiao Qin
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
5
|
Huang X, Su Z, Xie XJ. The Enigmas of Tissue Closure: Inspiration from Drosophila. Curr Issues Mol Biol 2024; 46:8710-8725. [PMID: 39194731 DOI: 10.3390/cimb46080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hollow structures are essential for development and physiological activity. The construction and maintenance of hollow structures never cease throughout the lives of multicellular animals. Epithelial tissue closure is the main strategy used by living organisms to build hollow structures. The high diversity of hollow structures and the simplicity of their development in Drosophila make it an excellent model for the study of hollow structure morphogenesis. In this review, we summarize the tissue closure processes in Drosophila that give rise to or maintain hollow structures and highlight the molecular mechanisms and distinct cell biology involved in these processes.
Collapse
Affiliation(s)
- Xiaoying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Jun Xie
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Li M, Ding W, Deng Y, Zhao Y, Liu Q, Zhou Z. The AAA-ATPase Ter94 regulates wing size in Drosophila by suppressing the Hippo pathway. Commun Biol 2024; 7:533. [PMID: 38710747 PMCID: PMC11074327 DOI: 10.1038/s42003-024-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.
Collapse
Affiliation(s)
- Mingming Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
8
|
Snir O, Elgart M, Gnainsky Y, Goldsmith M, Ciabrelli F, Dagan S, Aviezer I, Stoops E, Cavalli G, Soen Y. Organ transformation by environmental disruption of protein integrity and epigenetic memory in Drosophila. PLoS Biol 2024; 22:e3002629. [PMID: 38805504 PMCID: PMC11161060 DOI: 10.1371/journal.pbio.3002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/07/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
Collapse
Affiliation(s)
- Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elgart
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Filippo Ciabrelli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Li S, Tao G. Perish in the Attempt: Regulated Cell Death in Regenerative and Nonregenerative Tissue. Antioxid Redox Signal 2023; 39:1053-1069. [PMID: 37218435 PMCID: PMC10715443 DOI: 10.1089/ars.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Significance: A cell plays its roles throughout its life span, even during its demise. Regulated cell death (RCD) is one of the key topics in modern biomedical studies. It is considered the main approach for removing stressed and/or damaged cells. Research during the past two decades revealed more roles of RCD, such as coordinating tissue development and driving compensatory proliferation during tissue repair. Recent Advances: Compensatory proliferation, initially identified in primitive organisms during the regeneration of lost tissue, is an evolutionarily conserved process that also functions in mammals. Among various types of RCD, apoptosis is considered the top candidate to induce compensatory proliferation in damaged tissue. Critical Issues: The roles of apoptosis in the recovery of nonregenerative tissue are still vague. The roles of other types of RCD, such as necroptosis and ferroptosis, have not been well characterized in the context of tissue regeneration. Future Directions: In this review article, we attempt to summarize the recent insights on the role of RCD in tissue repair. We focus on apoptosis, with expansion to ferroptosis and necroptosis, in primitive organisms with significant regenerative capacity as well as common mammalian research models. After gathering hints from regenerative tissue, in the second half of the review, we take a notoriously nonregenerative tissue, the myocardium, as an example to discuss the role of RCD in terminally differentiated quiescent cells. Antioxid. Redox Signal. 39, 1053-1069.
Collapse
Affiliation(s)
- Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
10
|
Nemoto K, Masuko K, Fuse N, Kurata S. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc. Genes Cells 2023; 28:857-867. [PMID: 37817293 DOI: 10.1111/gtc.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Drosophila imaginal disc cells can change their identity under stress conditions through transdetermination (TD). Research on TD can help elucidate the in vivo process of cell fate conversion. We previously showed that the overexpression of winged eye (wge) induces eye-to-wing TD in the eye disc and that an insulin-like peptide, Dilp8, is then highly expressed in the disc. Although Dilp8 is known to mediate systemic developmental delay via the Lgr3 receptor, its role in TD remains unknown. This study showed that Dilp8 is expressed in specific cells that do not express eye or wing fate markers during Wge-mediated TD and that the loss of Dilp8 impairs the process of eye-to-wing transition. Thus, Dilp8 plays a pivotal role in the cell fate conversion under wge overexpression. Furthermore, we found that instead of Lgr3, another candidate receptor, Drl, is involved in Wge-mediated TD and acts locally in the eye disc cells. We propose a model in which Dilp8-Drl signaling organizes cell fate conversion in the imaginal disc during TD.
Collapse
Grants
- Japan Science Society
- Tohoku University Advanced Graduate School Pioneering Research Support Project
- 15J03403 JSPS KAKENHI
- 22J10423 JSPS KAKENHI
- 22KJ0220 JSPS KAKENHI
- 18016001 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 18055003 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20052004 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 25670019 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Kazuya Nemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Harris RE. Investigating Tissue Regeneration Using the DUAL Control Genetic Ablation System. Methods Mol Biol 2023; 2599:255-270. [PMID: 36427155 DOI: 10.1007/978-1-0716-2847-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genetic ablation is a highly efficient method to study regeneration in vivo by stimulating tissue-specific cell death that subsequently induces regrowth and repair in a developing organism. This approach has been particularly successful in Drosophila, for which various temperature-based genetic ablation tools have been developed to explore the complexities of regeneration in larval imaginal discs. Here, we describe the use of a recently established ablation system called DUAL Control, which can be used to both characterize the damage response and genetically manipulate blastema cells to identify novel regulators of regeneration.
Collapse
Affiliation(s)
- R E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Moore SL, Adamini FC, Coopes ES, Godoy D, Northington SJ, Stewart JM, Tillett RL, Bieser KL, Kagey JD. Patched and Costal-2 mutations lead to differences in tissue overgrowth autonomy. Fly (Austin) 2022; 16:176-189. [PMID: 35468034 PMCID: PMC9045829 DOI: 10.1080/19336934.2022.2062991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/03/2023] Open
Abstract
Genetic screens are used in Drosophila melanogaster to identify genes key in the regulation of organismal development and growth. These screens have defined signalling pathways necessary for tissue and organismal development, which are evolutionarily conserved across species, including Drosophila. Here, we have used an FLP/FRT mosaic system to screen for conditional regulators of cell growth and cell division in the Drosophila eye. The conditional nature of this screen utilizes a block in the apoptotic pathway to prohibit the mosaic mutant cells from dying via apoptosis. From this screen, we identified two different mutants that mapped to the Hedgehog signalling pathway. Previously, we described a novel Ptc mutation and here we add to the understanding of disrupting the Hh pathway with a novel allele of Cos2. Both of these Hh components are negative regulators of the pathway, yet they depict mutant differences in the type of overgrowth created. Ptc mutations lead to overgrowth consisting of almost entirely wild-type tissue (non-autonomous overgrowth), while the Cos2 mutation results in tissue that is overgrown in both the mutant and wild-type clones (both autonomous and non-autonomous). These differences in tissue overgrowth are consistent in the Drosophila eye and wing. The observed difference is correlated with different deregulation patterns of pMad, the downstream effector of DPP signalling. This finding provides insight into pathway-specific differences that help to better understand intricacies of developmental processes and human diseases that result from deregulated Hedgehog signalling, such as basal cell carcinoma.
Collapse
Affiliation(s)
- Shannon L. Moore
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
| | - Frank C. Adamini
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
| | - Erik S. Coopes
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
| | - Dustin Godoy
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Shyra J. Northington
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
- ReBUILDetroit, University of Detroit Mercy, Detroit, Michigan, USA
| | - Jordan M. Stewart
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada, USA
| | - Kayla L. Bieser
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jacob D. Kagey
- Biology Department, University of Detroit Mercy, Detroit, Michigan, USA
| |
Collapse
|
14
|
Milán M. Wing regeneration: Single-cell analysis sheds new light. Curr Biol 2022; 32:R842-R844. [PMID: 35944485 DOI: 10.1016/j.cub.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The developing wing primordium of Drosophila displays a remarkable capacity to regenerate in response to different types of damage. A new study shows that this capacity relies on the activation of a pro-regenerative gene regulatory network in two distinct cell populations within the blastema.
Collapse
Affiliation(s)
- Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
15
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
16
|
Ledru M, Clark CA, Brown J, Verghese S, Ferrara S, Goodspeed A, Su TT. Differential gene expression analysis identified determinants of cell fate plasticity during radiation-induced regeneration in Drosophila. PLoS Genet 2022; 18:e1009989. [PMID: 34990447 PMCID: PMC8769364 DOI: 10.1371/journal.pgen.1009989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Ionizing radiation (IR) is used to treat half of all cancer patients because of its ability to kill cells. IR, however, can induce stem cell-like properties in non-stem cancer cells, potentiating tumor regrowth and reduced therapeutic success. We identified previously a subpopulation of cells in Drosophila larval wing discs that exhibit IR-induced stem cell-like properties. These cells reside in the future wing hinge, are resistant to IR-induced apoptosis, and are capable of translocating, changing fate, and participating in regenerating the pouch that suffers more IR-induced apoptosis. We used here a combination of lineage tracing, FACS-sorting of cells that change fate, genome-wide RNAseq, and functional testing of 42 genes, to identify two key changes that are required cell-autonomously for IR-induced hinge-to-pouch fate change: (1) repression of hinge determinants Wg (Drosophila Wnt1) and conserved zinc-finger transcription factor Zfh2 and (2) upregulation of three ribosome biogenesis factors. Additional data indicate a role for Myc, a transcriptional activator of ribosome biogenesis genes, in the process. These results provide a molecular understanding of IR-induced cell fate plasticity that may be leveraged to improve radiation therapy. Ionizing radiation (IR) is used to treat half of all cancer patients because of its ability to kill cells but treatment failures are common because tumors grow back (regenerate). Here, we asked which changes in the properties of cells facilitate regeneration in Drosophila (fruit flies) after exposure to radiation. We identified six genes whose products increase or decrease the regenerative potential of cells. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Caitlin A. Clark
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Sarah Ferrara
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew Goodspeed
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abrams MJ, Tan FH, Li Y, Basinger T, Heithe ML, Sarma A, Lee IT, Condiotte ZJ, Raffiee M, Dabiri JO, Gold DA, Goentoro L. A conserved strategy for inducing appendage regeneration in moon jellyfish, Drosophila, and mice. eLife 2021; 10:65092. [PMID: 34874003 PMCID: PMC8782573 DOI: 10.7554/elife.65092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.
Collapse
Affiliation(s)
- Michael J Abrams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yutian Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ty Basinger
- Department of Biology and Allied Health Sciences, Bloomsburg University, Bloomsburg, United States
| | - Martin L Heithe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anish Sarma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Iris T Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Zevin J Condiotte
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Misha Raffiee
- Department of Bioengineering, Stanford University, Paolo Alto, United States
| | - John O Dabiri
- Graduate Aerospace Laboratories and Mechanical Engineering, California Institute of Technology, Pasadena, United States
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, United States
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
18
|
Klemm J, Stinchfield MJ, Harris RE. Necrosis-induced apoptosis promotes regeneration in Drosophila wing imaginal discs. Genetics 2021; 219:6365941. [PMID: 34740246 PMCID: PMC8570793 DOI: 10.1093/genetics/iyab144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Abstract
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.
Collapse
Affiliation(s)
- Jacob Klemm
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| | | | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| |
Collapse
|
19
|
Ma X. Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractBoth Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.
Collapse
Affiliation(s)
- Xianjue Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021; 144:111-159. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.
Collapse
Affiliation(s)
- Julien Lambert
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucie Laplane
- CNRS UMR 8590, University Paris I Panthéon-Sorbonne, IHPST, Paris, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | - Sophie Jarriault
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
21
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
Kashio S, Miura M. Kynurenine Metabolism in the Fat Body Non-autonomously Regulates Imaginal Disc Repair in Drosophila. iScience 2020; 23:101738. [PMID: 33376969 PMCID: PMC7756137 DOI: 10.1016/j.isci.2020.101738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/07/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Tissue interactions are critical for maintaining homeostasis; however, little is known about how remote tissue regulates regeneration. Previously, we established a genetic dual system that induces cell ablation in Drosophila larval imaginal discs and simultaneously manipulates genes in non-damaged tissues. Using humoral metabolome analysis and a genetic damage system, we found that the Tryptophan (Trp)-Kynurenine (Kyn) pathway in the fat body is required for disc repair. Genetic manipulation of Trp-Kyn metabolism in the fat body impaired disc regeneration without affecting wing development. In particular, the fat body-derived humoral kynurenic acid (KynA) was required for disc repair. The impairment of S-adenosylmethionine (SAM) synthesis from methionine (Met) in the fat body hampers the maintenance of KynA levels in hemolymph at the early stage of disc repair, suggesting a connection between Met-SAM and Trp-Kyn metabolisms. Our data indicate KynA from the fat body acts as a permissive metabolite for tissue repair and regeneration. Trp-Kyn pathway in Drosophila larval fat body is remotely required for disc repair The fat body-derived humoral KynA is required for disc repair SAM synthesis in the fat body affects KynA levels in hemolymph during disc repair
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Sun G, Ding XA, Argaw Y, Guo X, Montell DJ. Akt1 and dCIZ1 promote cell survival from apoptotic caspase activation during regeneration and oncogenic overgrowth. Nat Commun 2020; 11:5726. [PMID: 33184261 PMCID: PMC7664998 DOI: 10.1038/s41467-020-19068-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
Apoptosis is an ancient and evolutionarily conserved cell suicide program. During apoptosis, executioner caspase enzyme activation has been considered a point of no return. However, emerging evidence suggests that some cells can survive caspase activation following exposure to apoptosis-inducing stresses, raising questions as to the physiological significance and underlying molecular mechanisms of this unexpected phenomenon. Here, we show that, following severe tissue injury, Drosophila wing disc cells that survive executioner caspase activation contribute to tissue regeneration. Through RNAi screening, we identify akt1 and a previously uncharacterized Drosophila gene CG8108, which is homologous to the human gene CIZ1, as essential for survival from the executioner caspase activation. We also show that cells expressing activated oncogenes experience apoptotic caspase activation, and that Akt1 and dCIZ1 are required for their survival and overgrowth. Thus, survival following executioner caspase activation is a normal tissue repair mechanism usurped to promote oncogene-driven overgrowth.
Collapse
Affiliation(s)
- Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA.
| | - Xun Austin Ding
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Yewubdar Argaw
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
24
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Chromatin dynamics in regeneration epithelia: Lessons from Drosophila imaginal discs. Semin Cell Dev Biol 2020; 97:55-62. [DOI: 10.1016/j.semcdb.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
26
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
27
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
28
|
Bageritz J, Willnow P, Valentini E, Leible S, Boutros M, Teleman AA. Gene expression atlas of a developing tissue by single cell expression correlation analysis. Nat Methods 2019; 16:750-756. [PMID: 31363221 PMCID: PMC6675608 DOI: 10.1038/s41592-019-0492-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/13/2019] [Indexed: 01/27/2023]
Abstract
The Drosophila wing disc has been a fundamental model system for the discovery of key signaling pathways and for our understanding of developmental processes. However, a complete map of gene expression in this tissue is lacking. To obtain a complete gene expression atlas in the wing disc, we employed single-cell sequencing (scRNA-seq) and developed a new method for analyzing scRNA-seq data based on gene expression correlations rather than cell mapping. This enables us to compute expression maps for all detected genes in the wing disc and to discover 824 genes with spatially restricted expression patterns. This approach identifies both known and new clusters of genes with similar expression patterns and functional relevance. As proof of concept, we characterize the previously unstudied gene CG5151 and show that it regulates Wnt signaling. This novel method will enable the leveraging of scRNA-seq data for generating expression atlases of undifferentiated tissues during development.
Collapse
Affiliation(s)
- Josephine Bageritz
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Philipp Willnow
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany.,CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Svenja Leible
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
29
|
Myat MM, Louis D, Mavrommatis A, Collins L, Mattis J, Ledru M, Verghese S, Su TT. Regulators of cell movement during development and regeneration in Drosophila. Open Biol 2019; 9:180245. [PMID: 31039676 PMCID: PMC6544984 DOI: 10.1098/rsob.180245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cell migration is a fundamental cell biological process essential both for normal development and for tissue regeneration after damage. Cells can migrate individually or as a collective. To better understand the genetic requirements for collective migration, we expressed RNA interference (RNAi) against 30 genes in the Drosophila embryonic salivary gland cells that are known to migrate collectively. The genes were selected based on their effect on cell and membrane morphology, cytoskeleton and cell adhesion in cell culture-based screens or in Drosophila tissues other than salivary glands. Of these, eight disrupted salivary gland migration, targeting: Rac2, Rab35 and Rab40 GTPases, MAP kinase-activated kinase-2 (MAPk-AK2), RdgA diacylglycerol kinase, Cdk9, the PDSW subunit of NADH dehydrogenase (ND-PDSW) and actin regulator Enabled (Ena). The same RNAi lines were used to determine their effect during regeneration of X-ray-damaged larval wing discs. Cells translocate during this process, but it remained unknown whether they do so by directed cell divisions, by cell migration or both. We found that RNAi targeting Rac2, MAPk-AK2 and RdgA disrupted cell translocation during wing disc regeneration, but RNAi against Ena and ND-PDSW had little effect. We conclude that, in Drosophila, cell movements in development and regeneration have common as well as distinct genetic requirements.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Dheveline Louis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Andreas Mavrommatis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Latoya Collins
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Jamal Mattis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Wu P, Wu F, Yan S, Liu C, Shen Z, Xiong X, Li Z, Zhang Q, Liu X. Developmental cost of leg-regenerated Coccinella septempunctata (Coleoptera: Coccinellidae). PLoS One 2019; 14:e0210615. [PMID: 30657777 PMCID: PMC6338371 DOI: 10.1371/journal.pone.0210615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022] Open
Abstract
As larval cannibalism is common under intensive rearing conditions, leg regeneration can help ladybugs adapt to the competitive environment, but whether the leg regeneration leads to side effects on development remains unclear. To analyze the potentially developmental cost of leg regeneration, the developmental period and weight of leg-regenerated Coccinella septempunctata were studied in the laboratory. The results showed that, when the time intervals between the emergency of 4th-instar larva and leg amputation increased, the developmental period of leg-regenerated 4th-instar larvae was gradually prolonged. Significantly developmental delay were also examined at prepupal and pupal stages, and various timings of leg amputation affected the periods of leg-regenerated prepupae/pupae similarly. After the leg was amputated at different larval instars, the developmental delay only occurred at the larval instar when the leg was amputated, whereas other larval instars failed to be extended, and the developmental periods of leg-regenerated prepupae/pupae were affected similarly by the instars of leg amputation. Developmental delays possibly resulted in more consumption by leg-regenerated larvae, and then weight gains at prepupal/pupal stages, but different larval instars of leg amputation affected the weight gain similarly. Both the developmental delay (at 4th-instar larval, prepupal and pupal stages) and weight gain (at pupal and adult stages) in complete/bilateral amputation were longer or greater than those in half/unilateral amputation. However, the thoracic locations of leg amputation impacted the developmental delay and weight gain similarly. Our study indicates that although leg regeneration triggers the developmental cost decreasing the competitive superiority or agility, C. septempunctata larvae still choose to completely regenerate the leg to adapt to complex environments. Thus, in order to remain competitive at adult stages, leg-impaired larvae may make an investment tradeoff between leg regeneration and developmental cost.
Collapse
Affiliation(s)
- Pengxiang Wu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Fengming Wu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaofei Xiong
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Suzuki Y, Chou J, Garvey SL, Wang VR, Yanes KO. Evolution and Regulation of Limb Regeneration in Arthropods. Results Probl Cell Differ 2019; 68:419-454. [PMID: 31598866 DOI: 10.1007/978-3-030-23459-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration has fascinated both scientists and non-scientists for centuries. Many organisms can regenerate, and arthropod limbs are no exception although their ability to regenerate is a product shaped by natural and sexual selection. Recent studies have begun to uncover cellular and molecular processes underlying limb regeneration in several arthropod species. Here we argue that an evo-devo approach to the study of arthropod limb regeneration is needed to understand aspects of limb regeneration that are conserved and divergent. In particular, we argue that limbs of different species are comprised of cells at distinct stages of differentiation at the time of limb loss and therefore provide insights into regeneration involving both stem cell-like cells/precursor cells and differentiated cells. In addition, we review recent studies that demonstrate how limb regeneration impacts the development of the whole organism and argue that studies on the link between local tissue damage and the rest of the body should provide insights into the integrative nature of development. Molecular studies on limb regeneration are only beginning to take off, but comparative studies on the mechanisms of limb regeneration across various taxa should not only yield interesting insights into development but also answer how this remarkable ability evolved across arthropods and beyond.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| | - Jacquelyn Chou
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Sarah L Garvey
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Victoria R Wang
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Katherine O Yanes
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
33
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
34
|
Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigó R, Corominas M. Damage-responsive elements in Drosophila regeneration. Genome Res 2018; 28:1852-1866. [PMID: 30459214 PMCID: PMC6280756 DOI: 10.1101/gr.233098.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.
Collapse
Affiliation(s)
- Elena Vizcaya-Molina
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Rakesh K Mishra
- The Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
35
|
Abdullah C, Duronio RJ. The many fates of tissue regeneration. PLoS Genet 2018; 14:e1007728. [PMID: 30462634 PMCID: PMC6248895 DOI: 10.1371/journal.pgen.1007728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Christopher Abdullah
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- SPIRE Postdoctoral Fellowship Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Meserve JH, Duronio RJ. Fate mapping during regeneration: Cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 2018; 444:43-49. [PMID: 30347187 DOI: 10.1016/j.ydbio.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Regeneration of tissues that have been damaged by cell loss requires new growth, often via proliferation of precursor cells followed by differentiation to replace loss of specific cell types. When regeneration occurs after normal differentiation of the tissue is complete, developmental pathways driving differentiation must be re-activated. How proliferation and differentiation are induced and balanced during regeneration is not well understood. To investigate these processes, we utilized a paradigm for tissue damage and regeneration in the developing Drosophila melanogaster eye. Previous studies have demonstrated that tissue damage resulting from extensive cell death stimulates quiescent, undifferentiated cells in the developing larval eye to re-enter the cell cycle and proliferate. Whether these cells are restricted to certain fates or can contribute to all retinal cell types and thus potentially be fully regenerative is not known. Here we found by fate mapping experiments that these cells are competent to differentiate into all accessory cell types in the retina but do not differentiate into photoreceptors, likely because cell cycle re-entry in response to damage occurs after photoreceptor differentiation has completed. We conclude that the ability to re-enter the cell cycle in response to tissue damage in the developing Drosophila eye is not restricted to precursors of a specific cell type and that cell cycle re-entry following damage does not disrupt developmental programs that control differentiation.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Masuko K, Furuhashi H, Komaba K, Numao E, Nakajima R, Fuse N, Kurata S. Nuclear Lamin is required for Winged Eye-mediated transdetermination of Drosophila imaginal disc. Genes Cells 2018; 23:724-731. [PMID: 29968323 DOI: 10.1111/gtc.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
Drosophila imaginal discs often change their cell fate under stress conditions, and this phenomenon, called transdetermination (TD), has long been a useful model for studying cell fate plasticity during regeneration. We previously identified a chromatin-associated protein, Winged Eye (Wge), which induces eye-to-wing TD upon its over-expression in eye imaginal discs. However, the molecular mechanism of Wge-mediated TD remains obscure. Here, we analyzed Wge-interacting proteins and found that several heterochromatin-related proteins, including a nuclear lamina protein, Lamin (Lam), were associated with Wge protein in cultured cells. Knockdown experiments revealed that Lam is indeed required for Wge-mediated eye-to-wing TD. Moreover, Wge over-expression altered the spatial organization of genomic DNA inside the cell nuclei. Accordingly, we suggest that Wge interacts with Lam to link some genomic regions with the nuclear periphery and regulates chromatin dynamics in imaginal disc TD.
Collapse
Affiliation(s)
- Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hirofumi Furuhashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Komaba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Eriko Numao
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rumi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Ahmed-de-Prado S, Diaz-Garcia S, Baonza A. JNK and JAK/STAT signalling are required for inducing loss of cell fate specification during imaginal wing discs regeneration in Drosophila melanogaster. Dev Biol 2018; 441:31-41. [PMID: 29870691 DOI: 10.1016/j.ydbio.2018.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
The regenerative process after tissue damage relies on a variety of cellular responses that includes compensatory cell proliferation and cell fate re-specification. The identification of the signalling networks regulating these cellular events is a central question in regenerative biology. Tissue regeneration models in Drosophila have shown that two of the signals that play a fundamental role during the early stages of regeneration are the c-Jun N-terminal kinase (JNK) and JAK/STAT signalling pathways. These pathways have been shown to be required for controlling regenerative proliferation, however their contribution to the processes of cellular reprogramming and cell fate re-specification that take place during regeneration are largely unknown. Here, we present evidence for a previously unrecognised function of the cooperative activities of JNK and JAK/STAT signalling pathways in inducing loss of cell fate specification in imaginal discs. We show that co-activation of these signalling pathways induces both the cell fate changes in injured areas, as well as in adjacent cells. We have also found that this function relies on the activity of the Caspase initiator encoded by the gene dronc.
Collapse
Affiliation(s)
- Sara Ahmed-de-Prado
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain
| | - Sandra Diaz-Garcia
- University of California, San Diego Section of Cell&Developmental Biology, La Jolla, CA 92093-0349, USA
| | - Antonio Baonza
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
39
|
Zhu J, Ordway AJ, Weber L, Buddika K, Kumar JP. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye. Development 2018; 145:dev160754. [PMID: 29530880 PMCID: PMC5963869 DOI: 10.1242/dev.160754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development.
Collapse
Affiliation(s)
- Jinjin Zhu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Lena Weber
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
40
|
Le Magnen C, Shen MM, Abate-Shen C. Lineage Plasticity in Cancer Progression and Treatment. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:271-289. [PMID: 29756093 PMCID: PMC5942183 DOI: 10.1146/annurev-cancerbio-030617-050224] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
41
|
Worley MI, Alexander LA, Hariharan IK. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 2018; 7:30391. [PMID: 29372681 PMCID: PMC5823544 DOI: 10.7554/elife.30391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Regeneration following tissue damage often necessitates a mechanism for cellular re-programming, so that surviving cells can give rise to all cell types originally found in the damaged tissue. This process, if unchecked, can also generate cell types that are inappropriate for a given location. We conducted a screen for genes that negatively regulate the frequency of notum-to-wing transformations following genetic ablation and regeneration of the wing pouch, from which we identified mutations in the transcriptional co-repressor C-terminal Binding Protein (CtBP). When CtBP function is reduced, ablation of the pouch can activate the JNK/AP-1 and JAK/STAT pathways in the notum to destabilize cell fates. Ectopic expression of Wingless and Dilp8 precede the formation of the ectopic pouch, which is subsequently generated by recruitment of both anterior and posterior cells near the compartment boundary. Thus, CtBP stabilizes cell fates following damage by opposing the destabilizing effects of the JNK/AP-1 and JAK/STAT pathways.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Larissa A Alexander
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
42
|
Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 2018; 1:8. [PMID: 30271895 PMCID: PMC6123742 DOI: 10.1038/s42003-017-0004-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Distinct female castes produced from one genotype are the trademark of a successful evolutionary invention in eusocial insects known as reproductive division of labour. In honey bees, fertile queens develop from larvae fed a complex diet called royal jelly. Recently, one protein in royal jelly, dubbed Royalactin, was deemed to be the exclusive driver of queen bee determination. However, this notion has not been universally accepted. Here I critically evaluate this line of research and argue that the sheer complexity of creating alternate phenotypes from one genotype cannot be reduced to a single dietary component. An acceptable model of environmentally driven caste differentiation should include the facets of dynamic thinking, such as the concepts of attractor states and genetic hierarchical networks. In honeybees, genotypically identical females develop into queens or sterile workers, depending on their diets. In this review, Ryszard Maleszka discusses the controversial role of the royal jelly protein Royalactin in caste determination and provides a framework for moving beyond the master inducer concept.
Collapse
|
43
|
When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 2017; 82:86-95. [PMID: 29199139 DOI: 10.1016/j.semcdb.2017.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Caspases are well known for their role as executioners of apoptosis. However, recent studies have revealed that these lethal enzymes also have important mitogenic functions. Caspases can promote proliferation through autonomous regulation of the cell cycle, as well as by induction of secreted signals, which have a profound impact in neighboring tissues. Here, I review the proliferative role of caspases during development and homeostasis, in addition to their key regenerative function during tissue repair upon injury. Furthermore, the emerging properties of apoptotic caspases as drivers of carcinogenesis are discussed, as well as their involvement in other diseases. Finally, I examine further effects of caspases regulating death and survival in a non-autonomous manner.
Collapse
|
44
|
STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila. PLoS Genet 2017; 13:e1007055. [PMID: 29028797 PMCID: PMC5656321 DOI: 10.1371/journal.pgen.1007055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Abstract
We report here a study of regeneration in Drosophila larval wing imaginal discs after damage by ionizing radiation. We detected faithful regeneration that restored a wing disc and abnormal regeneration that produced an extra wing disc. We describe a sequence of changes in cell number, location and fate that occur to produce an ectopic disc. We identified a group of cells that not only participate in ectopic disc formation but also recruit others to do so. STAT92E (Drosophila STAT3/5) and Nurf-38, which encodes a member of the Nucleosome Remodeling Factor complex, oppose each other in these cells to modulate the frequency of ectopic disc growth. The picture that emerges is one in which activities like STAT increase after radiation damage and fulfill essential roles in rebuilding the tissue. But such activities must be kept in check so that one and only one wing disc is regenerated. Accuracy in regeneration ensures that the original structures are restored, no more and no less. Prior studies in the wing primordia of Drosophila melanogaster larvae that have been damaged by high energy radiation show that regeneration occurs to restore the original structure. We report here that, in the same experimental system, abnormal regeneration can also occur to produce extra wing structures. We describe a series of cell rearrangements and fate changes that underlie abnormal regeneration, and identify genes responsible for these events. Modulation of such genes have the potential to mitigate abnormal regeneration that occurs after radiation damage to produce such side effects as ulcers and fibrosis.
Collapse
|
45
|
Hariharan IK, Serras F. Imaginal disc regeneration takes flight. Curr Opin Cell Biol 2017; 48:10-16. [PMID: 28376317 PMCID: PMC5591769 DOI: 10.1016/j.ceb.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institute de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
46
|
Martín R, Pinal N, Morata G. Distinct regenerative potential of trunk and appendages of Drosophila mediated by JNK signalling. Development 2017; 144:3946-3956. [PMID: 28935711 DOI: 10.1242/dev.155507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
The Drosophila body comprises a central part, the trunk, and outgrowths of the trunk, the appendages. Much is known about appendage regeneration, but little about the trunk. As the wing imaginal disc contains a trunk component, the notum, and a wing appendage, we have investigated the response to ablation of these two components. We find that, in contrast with the strong regenerative response of the wing, the notum does not regenerate. Nevertheless, the elimination of the wing primordium elicits a proliferative response of notum cells, but they do not regenerate wing; they form a notum duplicate. Conversely, the wing cells cannot regenerate an ablated notum; they overproliferate and generate a hinge overgrowth. These results suggest that trunk and appendages cannot be reprogrammed to generate each other. Our experiments demonstrate that the proliferative response is mediated by JNK signalling from dying cells, but JNK functions differently in the trunk and the appendages, which may explain their distinct regenerative potential.
Collapse
Affiliation(s)
- Raquel Martín
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Noelia Pinal
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
47
|
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 2017; 13:e1006937. [PMID: 28753614 PMCID: PMC5550008 DOI: 10.1371/journal.pgen.1006937] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. Regenerating tissue must initiate the signaling that drives regenerative growth, and then sustain that signaling long enough for regeneration to complete. Drosophila imaginal discs, the epithelial structures in the larva that will form the adult animal during metamorphosis, have been an important model system for tissue repair and regeneration for over 60 years. Here we show that damage-induced JNK signaling leads to the upregulation of a gene called moladietz, which encodes a co-factor for an enzyme, NADPH dual oxidase (Duox), that generates reactive oxygen species (ROS), a key tissue-damage signal. High expression of moladietz induces continuous production of ROS in the regenerating tissue. The sustained production of ROS then continues to activate JNK signaling throughout the course of regeneration, ensuring maximal tissue regrowth.
Collapse
Affiliation(s)
- Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
48
|
Strassburger K, Lorbeer FK, Lutz M, Graf F, Boutros M, Teleman AA. Oxygenation and adenosine deaminase support growth and proliferation of ex vivo cultured Drosophila wing imaginal discs. Development 2017; 144:2529-2538. [PMID: 28526754 DOI: 10.1242/dev.147538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
The Drosophila wing imaginal disc has been an important model system over past decades for discovering novel biology related to development, signaling and epithelial morphogenesis. Novel experimental approaches have been enabled using a culture setup that allows ex vivo cultures of wing discs. Current setups, however, are not able to sustain both growth and cell-cycle progression of wing discs ex vivo We discover here a setup that requires both oxygenation of the tissue and adenosine deaminase activity in the medium, and supports both growth and proliferation of wing discs for 9 h. Nonetheless, further work will be required to extend the duration of the culturing and to enable live imaging of the cultured discs in the future.
Collapse
Affiliation(s)
| | | | - Marilena Lutz
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Fabian Graf
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | |
Collapse
|
49
|
Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc. Genetics 2017; 206:1505-1520. [PMID: 28512185 DOI: 10.1534/genetics.116.196832] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar (cnc), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling.
Collapse
|
50
|
5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila. Sci Rep 2017; 7:44945. [PMID: 28322328 PMCID: PMC5359570 DOI: 10.1038/srep44945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.
Collapse
|