1
|
Wu H, Dong L, Jin S, Zhao Y, Zhu L. Innovative gene delivery systems for retinal disease therapy. Neural Regen Res 2026; 21:542-552. [PMID: 39665817 DOI: 10.4103/nrr.nrr-d-24-00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
The human retina, a complex and highly specialized structure, includes multiple cell types that work synergistically to generate and transmit visual signals. However, genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness. Treatment options for retinal diseases are limited, and there is an urgent need for innovative therapeutic strategies. Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells. Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration, potentially restoring vision. This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases: viral and non-viral systems. Viral vectors, including lentiviruses and adeno-associated viruses, exploit the innate ability of viruses to infiltrate cells, which is followed by the introduction of therapeutic genetic material into target cells for gene correction. Lentiviruses can accommodate exogenous genes up to 8 kb in length, but their mechanism of integration into the host genome presents insertion mutation risks. Conversely, adeno-associated viruses are safer, as they exist as episomes in the nucleus, yet their limited packaging capacity constrains their application to a narrower spectrum of diseases, which necessitates the exploration of alternative delivery methods. In parallel, progress has also occurred in the development of novel non-viral delivery systems, particularly those based on liposomal technology. Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors. These innovative systems include solid lipid nanoparticles, polymer nanoparticles, dendrimers, polymeric micelles, and polymeric nanoparticles. Compared with their viral counterparts, non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids, mRNA, or protein molecules into cells. This bypasses the need for DNA transcription and processing, which significantly enhances therapeutic efficiency. Nevertheless, the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo . This review explores the various delivery systems for retinal therapies and retinal nerve regeneration, and details the characteristics, advantages, limitations, and clinical applications of each vector type. By systematically outlining these factors, our goal is to guide the selection of the optimal delivery tool for a specific retinal disease, which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Hongguang Wu
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
2
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2025; 38:143-170. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Zerti D, Dorgau B, Sernagor E, Armstrong L, Lako M, Hilgen G. Evaluating the outcomes of pluripotent stem-cell-derived photoreceptor transplantation in retinal repair. FEBS J 2025. [PMID: 40347492 DOI: 10.1111/febs.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
In recent decades, numerous research groups have focused on restoring visual function through the transplantation of stem cells into animal models of retinal neurodegeneration. Significant advancements in surgical techniques, the maturation of donor cells, and the production of cell suspensions, along with ensuring proper synaptic connectivity with the host environment, are key considerations for the potential implementation of this strategy in clinical practice. In this review, we summarize the latest progress in the transplantation of stem cell-derived photoreceptors, emphasizing the outcomes related to visual function observed in the used animal models. Additionally, we analyze the various methods of stem cell differentiation and the surgical techniques selected for transplanting these photoreceptor precursors. Finally, we report on functional assessments from recent studies to highlight the considerable potential of stem cell-derived photoreceptor transplants as a therapeutic approach for retinal degenerative diseases.
Collapse
Affiliation(s)
- Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Cheng SY, Giguere D, Silverstein I, Conza A, Seddon JM, Kim S, Iwata T, Mueller C, Punzo C. Role of alpha-1 antitrypsin in Bruch's membrane integrity. Sci Rep 2025; 15:12223. [PMID: 40210893 PMCID: PMC11985914 DOI: 10.1038/s41598-025-96570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor that plays a crucial role in maintaining extracellular matrix integrity. Studies suggest that AAT augmentation therapy may benefit multiple eye diseases, including age-related macular degeneration (AMD). However, the function of endogenous AAT in the eye remains unclear. Here we used genetic knockout mice to study the role of AAT in eye health. We show that loss of AAT results in Bruch's membrane (BrM) thickening driven in part by increased laminin deposition with a concomitant decrease in collagen and elastin, which are two other critical BrM components. Interestingly, BrM remodeling due to excess extracellular protease activity reduced the age-related deposition at the BrM of apolipoprotein E, while increasing complement factor H and lowering secretion of the proangiogenic vascular endothelial growth factor. Despite these changes, the phagocytic function of the retinal pigment epithelium was not affected nor was the expression of genes that partake in photoreceptor cell metabolism. Consistent with loss of AAT resulting in changes that should alleviate AMD pathologies, human AMD donor eyes exhibited lower AAT expression levels in the BrM/choroid layer when compared to healthy donor eyes. Together, the study provides insight into AAT's function and its potential involvement in AMD.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Delaney Giguere
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ilana Silverstein
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Adrienne Conza
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Johanna M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - San Kim
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Takeshi Iwata
- Divivion of Molecular and Cellular Biology, National Institute of Sensory Organ, NHO Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | | | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Genetics and Cellular Medicine and Horae Gene Therapy Center, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Boberg-Ans S, Arnold-Vangsted F, Scheel-Bech AB, Boberg-Ans LC, Arnold-Vangsted A, Jakobsen C, Stokbro K, Subhi Y. A Systematic Review and Meta-Analysis Association Between Periodontitis and Age-Related Macular Degeneration: Potential for Personalized Approach. J Pers Med 2025; 15:145. [PMID: 40278325 PMCID: PMC12028726 DOI: 10.3390/jpm15040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Periodontitis is a chronic inflammatory disease that leads to systemic low-grade inflammation. Systemic low-grade inflammation has been found in patients with age-related macular degeneration (AMD). In this systematic review and meta-analysis, we evaluated the association between periodontitis and AMD. Methods: We searched 11 scientific literature databases on 16th December 2024 for studies of a diagnosis of periodontitis and prevalent or incident AMD. Eligible studies underwent a qualitative review and meta-analysis of the association. Study selection, data extraction, and risk of bias within studies were made in duplicate by two authors and conferred with a senior author. Results: Seven studies eligible for review included in total 149,217 individuals. Across the seven studies, different study designs, diagnoses and definitions of periodontitis, and diagnosis and definitions of AMD were employed. Our meta-analysis showed an association between periodontitis and AMD with an odds ratio of 1.42 (95% CI: 1.12 to 1.78; p = 0.003). Conclusions: Periodontitis is significantly associated with AMD. Unlike genetic predisposition and high age, which are important risk factors of AMD that cannot be modified, periodontitis is a risk factor that can be treated and potentially eliminated, thus allowing for a personalized approach for risk elimination in AMD. Attention should be given to the dental health of patients at risk of AMD.
Collapse
Affiliation(s)
| | | | - Anna Bonde Scheel-Bech
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark; (A.B.S.-B.); (A.A.-V.)
| | - Lars Christian Boberg-Ans
- Department of Ophthalmology, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Ophthalmology, Innlandet Hospital Trust, 2406 Elverum, Norway
| | - Andreas Arnold-Vangsted
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark; (A.B.S.-B.); (A.A.-V.)
- Department of Ophthalmology, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Christian Jakobsen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, 5200 Odense, Denmark; (C.J.); (K.S.)
| | - Kasper Stokbro
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, 5200 Odense, Denmark; (C.J.); (K.S.)
- Department of Clinical Research, University of Southern Denmark, 5200 Odense, Denmark
| | - Yousif Subhi
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark; (A.B.S.-B.); (A.A.-V.)
- Department of Clinical Research, University of Southern Denmark, 5200 Odense, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Wang W, Ren R, Liu Y, Ye X, Zhang R, Xi L, Wang L, Zhang Y, Zhang Y, Wang D. Life's Essential 8, Genetic Susceptibility, and the Risk of Age-Related Macular Degeneration: A Prospective Cohort Study. Invest Ophthalmol Vis Sci 2025; 66:54. [PMID: 40257787 PMCID: PMC12020978 DOI: 10.1167/iovs.66.4.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
Purpose We determined the association between Life's Essential 8 (LE8) scores and AMD incidence and ascertained whether genetic susceptibility modifies it. Methods This prospective cohort study included 268,634 UK Biobank study participants with high, moderate, or low cardiovascular health based on LE8 scores. High and low cardiovascular health corresponded to the lowest and highest cardiovascular disease risks, respectively. The hazard ratios (HRs) and 95% confidence intervals (CIs) for AMD were estimated using Cox proportional hazards models. The dose-response relationships were evaluated using restricted cubic spline analysis. Stratified analyses using the AMD-polygenic risk score categories were used to assess potential modification. A composite variable combined LE8 and AMD-polygenic risk to examine their joint effects. Results Over an average of 13.76 years, 5253 participants developed AMD. Compared with the lowest cardiovascular health, moderate and high cardiovascular health had adjusted HRs of 0.86 (95% CI, 0.76, 0.97) and 0.79 (0.69, 0.91), respectively. Each standard deviation increase in the LE8 score corresponded to an HR of 0.93 (0.91, 0.96). The LE8 behavior (HR = 0.94 [0.91, 0.96]) and biological (HR = 0.97 [0.95, 1.00]) subscale scores were inversely associated with AMD, whereas the blood lipids component was positively associated (HR = 1.07 [1.04, 1.10]). The AMD-polygenic risk and LE8 scores showed no significant interaction. The HR for having low AMD-polygenic risk and high cardiovascular health relative to having high AMD-polygenic risk and low cardiovascular health was 0.47 (0.37, 0.58). Conclusions Maintaining good cardiovascular health can reduce AMD incidence regardless of genetic background.
Collapse
Affiliation(s)
- Wenxu Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Rui Ren
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yue Liu
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xingyue Ye
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ru Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Linze Xi
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Liying Wang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yao Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Nahar A, Eliott D, Avery RL, Pulido J, Eagle RC, Carrasco JR, Crawford C, Milman T, Stagner AM. Retinal Vasculopathy and Choroiditis after Pegcetacoplan Injection: Clinicopathologic Support for a Drug Hypersensitivity Reaction. Ophthalmol Retina 2025; 9:352-366. [PMID: 39419297 DOI: 10.1016/j.oret.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE To report the detailed histopathology of 2 enucleated eyes from 2 patients who developed severe visual loss associated with retinal hemorrhages, vessel sheathing, and vascular nonperfusion after administration of an initial dose of intravitreal pegcetacoplan, and propose, with supportive histopathology, the pathogenesis of the clinical syndrome previously termed hemorrhagic occlusive retinal vasculitis. DESIGN Case series. SUBJECTS Two enucleated eyes from 2 patients treated with intravitreal pegcetacoplan. METHODS Retrospective, multicenter, consecutive clinical-pathologic analysis. MAIN OUTCOME MEASURES Histopathologic review and immunophenotypic characterization. RESULTS Both patients presented with inflammation and significant vision loss 9 days after the initial injection of pegcetacoplan with no subsequent improvement and underwent enucleation for pain control. Histologic examination of the enucleated eyes (patient 1 at 4 months postinjection and patient 2 at 40 days) revealed extensive vascular thrombosis, retinal hemorrhages and necrosis, and a dense inflammatory infiltrate in the uvea and, variably, the optic nerve, episclera, and muscle tendons composed of predominantly of T cells, macrophages, and eosinophils. Notably, the inflammatory infiltrate was absent from the retina. In addition, 1 eye demonstrated multiple foci of glomerular-like vascular proliferations in the uveal tract and thrombosis with focal recanalization of vessels in the optic nerve. CONCLUSIONS Drug-induced, immune-mediated, retinal vasculopathy and choroiditis (DIRVAC) is a rare complication after pegcetacoplan injection. Although some limitations arise in interpretation of histopathologic findings because of compensatory changes in the eyes over time (before enucleation), the authors propose that the combined clinical, histopathologic, and immunohistochemical findings suggest a mixed-type, delayed hypersensitivity reaction as the mechanism of initial injury. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Ankur Nahar
- Department of Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dean Eliott
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Robert L Avery
- California Retina Consultants, Santa Barbara, California
| | - Jose Pulido
- Department of Translational Ophthalmology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Department of Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Translational Ophthalmology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jacqueline R Carrasco
- Department of Oculoplastic and Orbital Surgery, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Tatyana Milman
- Department of Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Translational Ophthalmology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anna M Stagner
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Tang C, Zhou QQ, Huang XF, Ju YY, Rao BL, Liu ZC, Jia YA, Bai ZP, Lin QY, Liu L, Qu J, Zhang J, Gao ML. Integration and functionality of human iPSC-derived microglia in a chimeric mouse retinal model. J Neuroinflammation 2025; 22:53. [PMID: 40016767 PMCID: PMC11869422 DOI: 10.1186/s12974-025-03393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Microglia, the resident immune cells of the central nervous system, play a pivotal role in maintaining homeostasis, responding to injury, and modulating neuroinflammation. However, the limitations of rodent models in accurately representing human microglia have posed significant challenges in the study of retinal diseases. METHODS PLX5622 was used to eliminate endogenous microglia in mice through oral and intraperitoneal administration, followed by transplantation of human induced pluripotent stem cell-derived microglia (hiPSC-microglia, iMG) into retinal explants to create a novel ex vivo chimeric model containing xenotransplanted microglia (xMG). The number and proportion of xMG in the retina were quantified using retinal flat-mounting and immunostaining. To evaluate the proliferative capacity and synaptic pruning ability of xMG, the expression of Ki-67 and the phagocytosis of synaptic proteins SV2 and PSD95 was assessed. The chimeric model was stimulated with LPS, and single-cell RNA sequencing (scRNA-seq) was used to analyze transcriptomic changes in iMG and xMG. Mouse IL-34 antibody neutralization experiments were performed, and the behavior of xMG in retinal degenerative Pde6b-/- mice was examined. RESULTS We demonstrated that xenotransplanted microglia (xMG) successfully migrated to and localized within the mouse retina, adopting homeostatic morphologies. Our approach achieved over 86% integration of human microglia, which maintained key functions including proliferation, immune responsiveness, and synaptic pruning over a 14-day culture period. scRNA-seq of xMG revealed a shift in microglial signatures compared to monoculture iMG, indicating a transition to a more in vivo-like phenotype. In retinal degenerative Pde6b-/- mice, xMG exhibited activation and migrated toward degenerated photoreceptors. CONCLUSION This model provides a powerful platform for studying human microglia in the retinal context, offering significant insights for advancing research into retinal degenerative diseases and developing potential therapeutic strategies. Future applications of this model include using patient-derived iPSCs to investigate disease-specific microglial behaviors, thereby enhancing our understanding of microglia-related pathogenesis.
Collapse
Affiliation(s)
- Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qi-Qi Zhou
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya-Yi Ju
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi-Lin Rao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-An Jia
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing-Yang Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lin Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Lead Contact, Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
9
|
Armento A, Sonntag I, Almansa-Garcia AC, Sen M, Bolz S, Arango-Gonzalez B, Kilger E, Sharma R, Bharti K, Fernandez-Godino R, de la Cerda B, Clark SJ, Ueffing M. The AMD-associated genetic polymorphism CFH Y402H confers vulnerability to Hydroquinone-induced stress in iPSC-RPE cells. Front Immunol 2025; 16:1527018. [PMID: 39981241 PMCID: PMC11839594 DOI: 10.3389/fimmu.2025.1527018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Age-related macular degeneration (AMD), a degenerative disease of the macula, is caused by an interplay of diverse risk factors (genetic predisposition, age and lifestyle habits). One of the main genetic risks includes the Y402H polymorphism in complement Factor H (FH), an inhibitor of complement system activation. There has been, and continues to be, much discussion around the functional consequences of this Y402H polymorphism, whether the soluble FH protein confers its risk association, or if the cells expressing the protein themselves are affected by the genetic alteration. In our study, we examined the cell characteristics of the retinal pigment epithelium (RPE) cells, which play a major role in retinal homeostasis and stability and which are synonymously linked to AMD. Methods Here, we employ RPE cells derived from induced pluripotent stem cells (iPSC) generated from donors, carrying either homozygous 402Y (low risk) or 402H (high risk) variants of the CFH gene. RPE cells were treated with Hydroquinone (HQ), a component of cigarette smoke, to induce oxidative damage. Results Intriguingly, RPE cells carrying high genetic risk proved more vulnerable to oxidative insult when exposed to HQ, as demonstrated by increased cytotoxicity and caspase activation, compared to the low-risk RPE cells. The exposure of RPE cells to RPE conditioned medium, normal human serum (NHS) and inactivated NHS (iNHS) had minimal impact on cell cytotoxicity and caspase activation, nor did the presence of purified soluble FH rescue the observed effects. Considering the known connection of oxidative stress to proteotoxic stress and degrading processes, we investigated the unfolded protein response (UPR) and autophagy. When exposed to HQ, RPE cells showed an increase in autophagy markers; however, iPSC-RPE cells carrying high genetic risk showed an overall reduced autophagic flux. Discussion Our findings suggest that the degree of cellular susceptibility to oxidative stress is not conferred by soluble FH protein and other complement sources, but intercellularly because of the corresponding genetic risk predisposition. Our data support the hypothesis that RPE cells carrying high genetic risk are less resilient to oxidative stress.
Collapse
Affiliation(s)
- Angela Armento
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Inga Sonntag
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Merve Sen
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ellen Kilger
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ruchi Sharma
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kapil Bharti
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Berta de la Cerda
- Retinal Neurodegeneration and Advanced Therapies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Simon J. Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Gotfredsen K, Abou-Taha A, Liisborg C, Krogh Nielsen M, Larsen MK, Skov V, Kjær L, Hasselbalch HK, Sørensen TL. High Levels of C5a Are Associated With Reduced Macular Sensitivity in Patients With Myeloproliferative Neoplasms. Invest Ophthalmol Vis Sci 2025; 66:41. [PMID: 39946135 PMCID: PMC11827620 DOI: 10.1167/iovs.66.2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Purpose Previous findings indicate that patients with myeloproliferative neoplasms (MPN) exhibit elevated levels of inflammatory biomarkers and have a high prevalence of AMD. In this study, we aim to determine whether drusen and systemic inflammation in patients with MPN affect macular sensitivity in the same manner as in patients with AMD. Methods The study was conducted as a prospective cross-sectional study. A total of 139 study eyes of 71 patients were included in this study. We measured macular sensitivity using microperimetry and extracted blood samples to evaluate systemic inflammation markers. Results Multilevel linear mixed-effect analysis did not show any difference in macular sensitivity when comparing eyes of MPN patients with AMD to those without drusen (β = -0.254, P = 0.657). However, higher levels of the complement system fragment C5a were significantly correlated with decreased total macular sensitivity (β = -0.561, P = 0.027), irrespective of the presence of drusen. Conclusions We found that high levels of the systemic inflammation marker C5a are associated with reduced macular sensitivity, regardless of the presence of visible degenerative changes in the macular area. These findings suggest an early contribution of the complement system to macular sensitivity.
Collapse
Affiliation(s)
| | - Andreas Abou-Taha
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Charlotte Liisborg
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | |
Collapse
|
11
|
Wang D, Tang T, Wang Y, Zhao J, Shen B, Zhang M. Integrative analysis and knowledgebase construction of key candidate genes and pathways in age-related macular degeneration. Exp Eye Res 2025; 251:110177. [PMID: 39615827 DOI: 10.1016/j.exer.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Age-related macular degeneration is a retinal disease that severely impacts vision in the older population. Its gene-related heterogeneity has not been fully studied, increasing the burden of precise treatment, prevention and prognosis. Genetic variation and related information were collected, annotated and expanded from multiple related websites, and all the data were integrated into the online platform AMDGKB. Users can visit this database via the following link: http://amdgd.bioinf.org.cn/for their personalized applications knowledge-guided modeling and applications. This study also explored the heterogeneity of ethnicity and AMD subtypes via genetic variation, functional enrichment analysis and protein‒protein interactions. These results suggest that VEGFA, MT2A, CCL2 and SERPINF1 play different roles in the development of AMD in different ethnic groups. The enrichment analysis also revealed differences in the pathogenesis pathways of different ethnic groups and AMD subtypes. This study highlights that genetic heterogeneity needs to be considered in the process of diagnosis and treatment. AMDGKB provides information for investigating the transformation of genetic variation during AMD progression, as well as for future personalized applications in the diagnosis and prognosis of AMD.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, China
| | - Tong Tang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
| | - Yayi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, China
| | - Jing Zhao
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, China.
| |
Collapse
|
12
|
Zhong Y, Zhou Y, Jing Z, Liu X, Yang K, Ren G, Chen H, Jiang S, Shen X, Du X, Liu H, Pan Y, Ma X. The effect of molecular chaperone mediated autophagy on ApoE expression in retinal pigment epithelial cells: Molecular structure and protein action mechanism. Int J Biol Macromol 2025; 291:139077. [PMID: 39719232 DOI: 10.1016/j.ijbiomac.2024.139077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Chaperone mediated autophagy (CMA) represents a specialized mechanism of lysosomal protein breakdown, playing a crucial role as a metabolic pathway that helps to regulate and sustain cellular and systemic physiological equilibrium. Within the CMA process, proteins that contain sequences similar to KFERQ are specifically identified by the heat shock cognate protein 70. These proteins are then chaperoned to the lysosomes for subsequent degradation, a process facilitated by the lysosome associated membrane protein 2A. This particular research employed bioinformatics techniques to systematically screen for potential substrates of CMA. ApoE has a KFERQ like motif, which may be a substrate for CMA. Under conditions of starvation, hypoxia, H2O2, PA, and NaIO3, the expression of the rate limiting factor LAMP2A in CMA and ApoE increased significantly (P < 0.05). Under conditions of NaIO3, the expression of CMA related gene mRNA increased significantly (P < 0.05). When we use lysosomal blocker CQ to inhibit CMA activity, the expression level of ApoE in retinal pigment epithelial cells increased, and the difference was statistically significant (P < 0.05). When we inhibit CMA, the accumulation of ApoE in retinal pigment epithelial cells increases and cell viability decreases. When we activate CMA, the accumulation of ApoE decreases and cell viability increases. In retinal pigment epithelial cells, the drusen associated protein ApoE can be degraded through the CMA pathway.
Collapse
Affiliation(s)
- Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xianjie Liu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Guijie Ren
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Haijie Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Siyu Jiang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xue Shen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xinying Du
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Hongzhe Liu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Yunping Pan
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoli Ma
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Li S, Su D, Hu S, Hu Q, Sun D. Epigallocatechin gallate ameliorates retinal pigment epithelial cell damage via the CYFIP2 /AKT pathway. Toxicol Appl Pharmacol 2025; 495:117124. [PMID: 39667565 DOI: 10.1016/j.taap.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/14/2024]
Abstract
Age-related macular degeneration (AMD) is a representative age-related ophthalmic disease, and the pathogenesis of AMD remains unclear. This research intended to determine whether epigallocatechin gallate (EGCG) could alleviate the progression of AMD and the possible mechanism. We constructed three groups of mice (young, aged, and EGCG), and HE and TUNEL staining of retinal tissues was performed to observe the structural changes in the retinal pigment epithelial (RPE) layer and the level of apoptosis, respectively. Through RNA-Sequencing analysis of retinal tissues and by RT-qPCR, GO, KEGG, and literature analyses, we identified cytoplasmic fragile X mental retardation 1-interacting protein 2 (CYFIP2) as a possible effector gene for EGCG action and validated its role by immunofluorescent and western blotting experiments. The CCK-8 and Hoechst 33342 apoptosis assays, and western blotting and qRT-PCR assays showed that EGCG reduced hydrogen peroxide (H2O2)-induced apoptosis in adult human RPE (ARPE-19) cells, and the expression of Cyfip2 was changed accordingly. RNA interference analysis indicated that Cyfip2 knockdown alleviated H2O2-induced ARPE apoptosis, while its overexpression weakened EGCG's protective effect. Western blot analysis showed that Cyfip2 mediated the anti-apoptotic effect of EGCG by modulating the level of protein kinase B (Akt) phosphorylation in ARPE cells, and the activation level of phosphorylated AKT (p-AKT Ser473) in retinal tissue of the EGCG-fed group was higher than that of the aged group. Taken together, this study suggests that EGCG plays a protective role in the development of AMD and the apoptosis of ARPE cells through the Cyfip2/AKT pathway.
Collapse
Affiliation(s)
- Sijia Li
- Harbin Medical University, Harbin 150086, China; Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Qiang Hu
- Harbin Medical University, Harbin 150086, China
| | - Dawei Sun
- Department of Ophthalmology, the second affiliated hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
14
|
Schmidt-Erfurth U, Mai J, Reiter GS, Riedl S, Vogl WD, Sadeghipour A, McKeown A, Foos E, Scheibler L, Bogunovic H. Disease Activity and Therapeutic Response to Pegcetacoplan for Geographic Atrophy Identified by Deep Learning-Based Analysis of OCT. Ophthalmology 2025; 132:181-193. [PMID: 39151755 DOI: 10.1016/j.ophtha.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
PURPOSE To quantify morphological changes of the photoreceptors (PRs) and retinal pigment epithelium (RPE) layers under pegcetacoplan therapy in geographic atrophy (GA) using deep learning-based analysis of OCT images. DESIGN Post hoc longitudinal image analysis. PARTICIPANTS Patients with GA due to age-related macular degeneration from 2 prospective randomized phase III clinical trials (OAKS and DERBY). METHODS Deep learning-based segmentation of RPE loss and PR degeneration, defined as loss of the ellipsoid zone (EZ) layer on OCT, over 24 months. MAIN OUTCOME MEASURES Change in the mean area of RPE loss and EZ loss over time in the pooled sham arms and the pegcetacoplan monthly (PM)/pegcetacoplan every other month (PEOM) treatment arms. RESULTS A total of 897 eyes of 897 patients were included. There was a therapeutic reduction of RPE loss growth by 22% and 20% in OAKS and 27% and 21% in DERBY for PM and PEOM compared with sham, respectively, at 24 months. The reduction on the EZ level was significantly higher with 53% and 46% in OAKS and 47% and 46% in DERBY for PM and PEOM compared with sham at 24 months. The baseline EZ-RPE difference had an impact on disease activity and therapeutic response. The therapeutic benefit for RPE loss increased with larger EZ-RPE difference quartiles from 21.9%, 23.1%, and 23.9% to 33.6% for PM versus sham (all P < 0.01) and from 13.6% (P = 0.11), 23.8%, and 23.8% to 20.0% for PEOM versus sham (P < 0.01) in quartiles 1, 2, 3, and 4, respectively, at 24 months. The therapeutic reduction of EZ loss increased from 14.8% (P = 0.09), 33.3%, and 46.6% to 77.8% (P < 0.0001) between PM and sham and from 15.9% (P = 0.08), 33.8%, and 52.0% to 64.9% (P < 0.0001) between PEOM and sham for quartiles 1 to 4 at 24 months. CONCLUSIONS Deep learning-based OCT analysis objectively identifies and quantifies PR and RPE degeneration in GA. Reductions in further EZ loss on OCT are even higher than the effect on RPE loss in phase 3 trials of pegcetacoplan treatment. The EZ-RPE difference has a strong impact on disease progression and therapeutic response. Identification of patients with higher EZ-RPE loss difference may become an important criterion for the management of GA secondary to AMD. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Ursula Schmidt-Erfurth
- OPTIMA - Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
| | - Julia Mai
- OPTIMA - Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Gregor S Reiter
- OPTIMA - Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Sophie Riedl
- OPTIMA - Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Emma Foos
- Apellis Pharmaceuticals, Boston, Massachusetts
| | | | - Hrvoje Bogunovic
- OPTIMA - Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Dey PN, Singh N, Zelinger L, Batz Z, Nellissery J, White Carreiro ND, Qian H, Li T, Fariss RN, Dong L, Swaroop A. Loss of paired immunoglobin-like type 2 receptor B gene associated with age-related macular degeneration impairs photoreceptor function in mouse retina. Hum Mol Genet 2025; 34:64-76. [PMID: 39532089 PMCID: PMC12034095 DOI: 10.1093/hmg/ddae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Genome-wide association studies have uncovered mostly non-coding variants at over 60 genetic loci linked to susceptibility for age-related macular degeneration (AMD). To ascertain the causal gene at the PILRB/PILRA locus, we used a CRISPR strategy to produce germline deletions in the mouse paired immunoglobin-like type 2 receptor (Pilr) genes that encode highly related activating (PILRB) and inhibitory (PILRA) receptors. We show that a combined loss of Pilrb1 and Pilrb2, but not Pilra, leads to an early but relatively stationary defect as the electroretinography (ERG) amplitudes of Pilrb1/2-/- mice exhibit a marked reduction as early as postnatal day 15 and do not show additional significant decrease at 3 and 12-months. No alterations are evident in Müller glia, microglia, bipolar, amacrine and horizontal cells based on immunohistochemistry using cell-type specific markers. PILRB immunostaining is specifically detected at the proximal part of photoreceptor outer segment. Reduced expression of select calcium-regulated phototransduction and synapse-associated proteins, including GCAP1 and 2, PDE6b, AIPL1, PSD95, and CTBP1 indicates dysregulation of calcium homeostasis as a possible mechanism of retinal phenotype in Pilrb1/2-/- mice. Our studies suggest a novel function of PILRB in retinal photoreceptors and an association of PILRB, but not PILRA, with AMD pathogenesis.
Collapse
Affiliation(s)
- Partha Narayan Dey
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Nivedita Singh
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lina Zelinger
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Zachary Batz
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Noor D White Carreiro
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Haohua Qian
- Visual Function Core Facility, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| |
Collapse
|
16
|
Camacho P, Ribeiro E, Pereira B, Nascimento J, Caldeira Rosa P, Henriques J, Barrão S, Sadio S, Quendera B, Delgadinho M, Ginete C, Silva C, Brito M. DNA Methyltransferase Expression (DNMT1, DNMT3a, and DNMT3b) as a Potential Biomarker in Age-Related Macular Degeneration. J Clin Med 2025; 14:559. [PMID: 39860565 PMCID: PMC11765804 DOI: 10.3390/jcm14020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) is a global cause of vision loss, with limited therapeutic options highlighting the need for effective biomarkers. This study aimed to characterize plasma DNA methyltransferase expression (DNMT1, DNMT3A, and DNMT3B) in AMD patients and explore divergent expression patterns across different stages of AMD. Methods: Thirty-eight AMD patients were prospectively enrolled and stratified by disease severity: eAMD, iAMD, nAMD, and aAMD. Comprehensive ophthalmological assessments were performed, including best-corrected visual acuity, digital color fundus photographs, and Spectral Domain Optical Coherence Tomography. Peripheral blood samples were collected for RNA extraction and qRT-PCR to access epigenetic effectors' transcriptional expression, namely DNMT1, DNMT3A, and DNMT3B genes. The collected data were analyzed using IBM SPSS 29. Results:DNMT1 expression was significantly downregulated in late AMD (-0.186 ± 0.341) compared to early/intermediate AMD (0.026 ± 0.246). Within late AMD, aAMD exhibited a marked downregulation of DNMT1 (-0.375 ± 0.047) compared to nAMD (0.129 ± 0.392). DNMT3A and DNMT3B showed similar divergent expression patterns, correlating with disease stage. Conclusions: This study identified stage-specific transcriptional differences in DNMT expression, emphasizing its potential as a biomarker for AMD progression and a target for future research into personalized therapeutic strategies.
Collapse
Affiliation(s)
- Pedro Camacho
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| | - Edna Ribeiro
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| | - Bruno Pereira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
- Retina Institute of Lisbon, 1150085 Lisbon, Portugal; (J.N.); (P.C.R.); (J.H.); (S.S.)
- iNOVA4Health, NOVA Medical School, NMS, Faculdade de Ciências Médicas, FCM, Universidade NOVA de Lisboa, 1169056 Lisboa, Portugal
| | - João Nascimento
- Retina Institute of Lisbon, 1150085 Lisbon, Portugal; (J.N.); (P.C.R.); (J.H.); (S.S.)
- Beatriz Ângelo Hospital, 2674514 Lisbon, Portugal
| | - Paulo Caldeira Rosa
- Retina Institute of Lisbon, 1150085 Lisbon, Portugal; (J.N.); (P.C.R.); (J.H.); (S.S.)
| | - José Henriques
- Retina Institute of Lisbon, 1150085 Lisbon, Portugal; (J.N.); (P.C.R.); (J.H.); (S.S.)
| | - Sandra Barrão
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, 1150199 Lisbon, Portugal; (S.B.); (B.Q.)
| | - Silvia Sadio
- Retina Institute of Lisbon, 1150085 Lisbon, Portugal; (J.N.); (P.C.R.); (J.H.); (S.S.)
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, 1150199 Lisbon, Portugal; (S.B.); (B.Q.)
| | - Bruno Quendera
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, 1150199 Lisbon, Portugal; (S.B.); (B.Q.)
| | - Mariana Delgadinho
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| | - Catarina Ginete
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| | - Carina Silva
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| | - Miguel Brito
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal; (E.R.); (B.P.); (M.D.); (C.S.); (M.B.)
| |
Collapse
|
17
|
Toto R, Soltau CP, Rayner CL, Bottle SE, Barnett NL. Steroid-Nitroxide Hybrid Compound Protects the Retina in a Model of CNV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:497-501. [PMID: 39930244 DOI: 10.1007/978-3-031-76550-6_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Nitroxide-based drugs have proven effective in modulating radical-induced oxidative stress by modulating antioxidant enzymes and genes that control distinct immune and anti-inflammatory responses. Due to their reasonable chemical stability and ability to shuttle between oxidized and reduced forms at physiologically relevant redox potentials, nitroxide-based radicals have also proven effective as biological probes of redox status. Herein, we investigated the potential of a unique nitroxide-based antioxidant and anti-inflammatory agent to protect the retina from experimentally induced degeneration. An established rat model of retinal degeneration was used viz. laser-induced choroidal neovascularization (CNV) to study the effects of the hybrid steroidal anti-inflammatory-antioxidant prednisolone 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) nitroxide compound. Vascular endothelial cell distribution at the CNV lesion site was investigated using isolectin B4 fluorescence histology, and the inflammatory response of microglia was investigated using IBA-1 immunohistochemistry. The prednisolone-TEMPO (Pred-TEMPO) hybrid reduced the laser-induced CNV lesion area compared to untreated control rats. These findings demonstrate that nitroxide-based compounds are potential therapeutics for retinal degenerative diseases involving inflammatory and oxidative stress-mediated components, including age-related macular degeneration.
Collapse
Affiliation(s)
- Rimaz Toto
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Carl P Soltau
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Cassie L Rayner
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nigel L Barnett
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia.
| |
Collapse
|
18
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Wagh V, Damodaren N, Mittal SK, Cardenas-Diaz FL, Sun H, Loktev AV, Peterson VM, Saini JS. Cellular Senescence: An Emerging Player in the Pathogenesis of AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:33-37. [PMID: 39930169 DOI: 10.1007/978-3-031-76550-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the aged population. The accumulation of abnormal extracellular drusen deposits between the retinal pigment epithelium (RPE) and Bruch's membrane is a significant driver of AMD pathology. Drusen deposition leads to the degeneration of RPE cells and, subsequently, photoreceptors, driving the disease to its advanced stages and ultimately resulting in complete vision loss. Although the exact mechanisms underlying the AMD pathogenesis are not fully understood, it is hypothesized that the disease begins with the dysfunction of the RPE, triggering the complement and pro-inflammatory cascade. Over the last decade, new findings have implicated the involvement of cellular senescence (CS) in the pathology of age-related disorders. Specifically for AMD, evidence suggests that the senescence of RPE cells may play a role in the pathogenesis of the disease. In this review, we discuss the potential role of senescence in the onset and progression of AMD and propose potential therapeutic interventions that could be developed by targeting senescence.
Collapse
Affiliation(s)
- Vilas Wagh
- Data AI and Genome Sciences, Merck & Co., Inc., Cambridge, MA, USA
| | | | - Sharad K Mittal
- Data AI and Genome Sciences, Merck & Co., Inc., Cambridge, MA, USA
| | | | - Hong Sun
- Data AI and Genome Sciences, Merck & Co., Inc., Cambridge, MA, USA
| | - Alexander V Loktev
- Retinal and Vascular Biology, Cardiometabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | | | - Janmeet S Saini
- Data AI and Genome Sciences, Merck & Co., Inc., Cambridge, MA, USA.
| |
Collapse
|
20
|
Armento A, Almansa-Garcia AC, Sen M, Merle DA, Arango-Gonzalez B, Ueffing M. Signaling Pathways in Retinal Pigment Epithelium (RPE) Cells in Response to Stress Conditions of Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:345-349. [PMID: 39930220 DOI: 10.1007/978-3-031-76550-6_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Age-related macular degeneration (AMD), affecting circa 200 million people worldwide, is a debilitating disease leading to visual loss in the elderly population. The main risk for AMD is advanced age. Genetic predisposition as well as modern lifestyle habits, such as smoking or unhealthy diets, increase this risk. On the molecular level, these risks convert into complex systemic changes at the interface of the choriocapillaris, Bruch's membrane, RPE, and neuroretina, affecting the functional integrity and survival of RPE and photoreceptors cells. To date, therapeutic options for AMD patients are limited. Pathway identification and a detailed understanding of the molecular mechanisms driving AMD are prerequisites to defining potential novel druggable targets. This review aims to give a short overview of the known cell signaling pathways focusing on RPE cells in response to stress conditions occurring in AMD.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Tübingen, Germany.
| | - Ana C Almansa-Garcia
- Institute for Ophthalmic Research, Department for Ophthalmology, Tübingen, Germany
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Tübingen, Germany
| | - David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Tübingen, Germany
| | | | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Tübingen, Germany
| |
Collapse
|
21
|
Yan A, Hasan N, Chhablani J. Dry and neovascular "wet" age-related macular degeneration: Upcoming therapies. Indian J Ophthalmol 2025; 73:S55-S65. [PMID: 39446815 PMCID: PMC11834902 DOI: 10.4103/ijo.ijo_1120_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
The age-related macular degeneration (AMD) field is witnessing promising advancements in therapeutic options. Breakthrough drugs such as pegcetacoplan and avacincaptad have been FDA-approved for dry AMD, marking a significant development as there were no treatment options until August 2023. While several antivascular endothelial growth factor (VEGF) inhibitors have been approved for wet AMD, challenges persist with the need for frequent dosing. New treatments such as gene therapy, cell therapy, WNT pathway agonists, complement inhibitors, and anti-VEGF combination drugs are under development to address these issues. These developments are exciting and hold promise for transforming the field of medicine, offering hope for improved outcomes and enhanced patient care in managing AMD.
Collapse
Affiliation(s)
- Audrey Yan
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Nasiq Hasan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| |
Collapse
|
22
|
Cickusic A, Pavljasevic S, Jusufovic V, Sefic-Kasumovic S, Hasic AP, Halilbasic M. C-reactive Protein Levels in Prediction of the Development or the Progression of Agerelated Macular Degeneration in Patients Examined at Tuzla Canton. Med Arch 2025; 79:47-51. [PMID: 40322303 PMCID: PMC12045587 DOI: 10.5455/medarh.2025.79.47-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Background Age-related macular degeneration (ARMD) is a chronic, incurable, progressive, multifactorial, neurodegenerative disease, which is one of the leading causes of visual impairment, among individuals above 60 years of age in developed countries. Over the past decades, the role of inflammation and CRP in the pathogenesis of ARMD has been investigated. Objective The study aimed to investigate the association between inflammation or CRP levels in prediction the development or the progression of ARMD. Methods This retrospective-prospective, case-control study, was conducted at the Clinic for Eye Diseases, University Clinical Center Tuzla, from 2020. to 2024. Two group of participants were included in this study. The first group (n=100 patients) consisted of patients diagnosed with different stages of ARMD, and second, control group (n=100 patients) consisted of patients without ARMD. The study included subjects of both sexes, divided into three age categories (≤55; 56-66; ≥67 years). Detailed ocular and systemic evaluations were performed, including fundus examination and OCT angiography. A 5mL sample of venous blood was colected to determine serum CRP levels, for the both group of patients, using latex immunoassay method. Statistical analysis, including Student's t-test, Chi square test and posthoc (Turkey) tests, was conducted using SPSS 26 for Windows, with p<0,05 considered significant. Results Out of 100 patients, 34 were having early, 18 intermediate and 48 were having advanced stages of ARMD. The mean serum CRP levels in the ARMD group (8.39±27.22mg/L) were significantly higher compared to the control group, (2.52±5.35mg/L), p=0,000. Also, serum CRP values by age category, between ARMD subjects and the control group, showed statistically significant differences in all age groups: ≤55 p=0.032; 56-66 p=0.019; ≥67 p=0.000. The mean serum CRP levels was 6.6±6.9 mg/L, 10±13.3 mg/L and 16±22.7 mg/L, in early, intermediate and advanced ARMD, respectively. Comparing these CRP values and different stages of ARMD, there were found statistically significant differences between the three stages. Furthermore, these results showed that mean CRP values increase with disease severity. Conclusion Based on the obtained results serum CRP levels are significant risk factor in predicting the development and the progression of ARMD. Also, these results emphasize the role of systemic inflammation in the development and progression of ARMD.
Collapse
Affiliation(s)
- Alma Cickusic
- Clinic for Eye Diseases, University Clinical Centre Tuzla; Tuzla, Bosnia and Herzegovina
| | - Suzana Pavljasevic
- Polyclinic for Eye Disease, Health Centre, Tuzla; Tuzla, Bosnia and Herzegovina
| | - Vahid Jusufovic
- Clinic for Eye Diseases, University Clinical Centre Tuzla; Tuzla, Bosnia and Herzegovina
| | | | - Adisa Pilavdzic Hasic
- Clinic for Eye Diseases, University Clinical Centre Tuzla; Tuzla, Bosnia and Herzegovina
| | - Meliha Halilbasic
- Clinic for Eye Diseases, University Clinical Centre Tuzla; Tuzla, Bosnia and Herzegovina
| |
Collapse
|
23
|
Yadav A, Phogat J, Yadav M, Bhardwaj A, Yadav R, Nada M, Bhati M, Goel S, Thakur R, Kumar R, Tanwar M. Analysis of interleukin-6 gene polymorphism and its serum levels in Indian age-related macular degeneration patients. Mol Vis 2024; 30:434-446. [PMID: 39959178 PMCID: PMC11829794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/26/2024] [Indexed: 02/18/2025] Open
Abstract
Background Age-related macular degeneration (AMD) is a complex condition involving multiple factors. The condition is associated with numerous inflammatory indicators, including cytokines. Single-nucleotide polymorphisms in cytokine genes can also modify gene expression, perhaps contributing to the development of the disease. The objective of the present study was to examine the correlation among IL-6 SNPs (rs1800795, rs1800796, and rs1800797) and the serum levels of IL-6 in AMD patients treated at the Regional Institute of Ophthalmology of Pt. B.D. Sharma PGIMS, Rohtak (Haryana), India. Methods This case-control study included 131 patients diagnosed with AMD using precise ophthalmic examinations, such as slit lamp examination, fundoscopy, and ocular coherence tomography. To provide a basis for comparison, we also enlisted 100 healthy individuals as controls. Serum IL-6 protein levels were measured in both patients and controls using an enzyme-linked immunosorbent assay kit (ELISA). Genotyping IL-6 SNPs was performed using the PCR and DNA Sanger sequencing technique. Results IL-6 serum levels were considerably elevated in individuals with AMD compared to the control group (p < 0.05). Statistically significant differences were seen in the genotype frequencies of rs1800795 (p = 0.027) and rs1800797 (p = 0.0011) among the AMD patients and the healthy controls. Furthermore, strong correlations were observed between rs1800795 and the likelihood of developing AMD based on the heterozygous (OR = 2.04; p = 0.025), dominant (OR = 1.80; p = 0.035), and over-dominant models (OR = 2.10; p = 0.0094). Additionally, there were notable associations between rs1800797 and vulnerability to AMD through heterozygous (OR = 3.21; p = 0.009), dominant (OR = 2.74; p = 0.004), and over-dominant (OR = 3.11; p = 0.002) models. The rs1800795, rs1800796, and rs1800797 haplotypes C-G-A and G-G-A were linked to an elevated risk of AMD (p = 0.005, p = 0.024. respectively). Conclusions Our findings indicated a significant elevation in IL-6 serum levels among the AMD patient group compared to the control group. The interleukin-6 gene polymorphisms rs1800795 and rs1800797 were linked to an elevated risk of AMD in our study population.
Collapse
Affiliation(s)
- Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jitender Phogat
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Manisha Nada
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Manish Bhati
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Supreme Goel
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Rahul Thakur
- Department of Statistics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
24
|
Wu J, Zhang M, Sun X. Analysis of biofluid metabolomic profiles to the discovery of biomarkers in age-related macular degeneration. BMJ Open Ophthalmol 2024; 9:e001573. [PMID: 39719382 PMCID: PMC11683933 DOI: 10.1136/bmjophth-2023-001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVE Age-related macular degeneration (AMD) is one of the leading causes of irreversible visual impairment and blindness in the elderly. As AMD is a multifactorial disease, it is critical to explore useful biomarkers and pathological pathways underlying it. The purpose of this study is to summarise current metabolic profiles and further identify potential metabolic biomarkers and therapeutic targets in AMD, which could facilitate clinical diagnosis and treatment. METHODS AND ANALYSIS Relevant metabolomics studies published before 10 December 2021 were generally reviewed from online resources by two investigators. Studies with sufficient information and data were included in this systematic review and repeatedly identified metabolites were extracted. Pathway and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed. The public Gene Expression Omnibus (GEO) database was used for coanalysis with differential metabolites to construct a pathway network via MetaboAnalyst V.5.0. RESULTS 16 studies were included in our analysis. 24 metabolites were repeatedly detected and regarded as potential biomarkers for AMD. Pathway analysis implied a major role of phenylalanine, tyrosine and tryptophan pathways in AMD pathology. 11 KEGG pathways were enriched, meanwhile, 11 metabolic pathway clusters were identified by coanalysing the differential metabolites and gene profiles using the GEO database. CONCLUSION In this study, we summarised 16 metabolomic studies on AMD, and 24 metabolites were identified as potential biofluid biomarkers. This provided novel insights into the pathogenic mechanisms underlying AMD. Further studies are warranted to validate and expand an effective pattern for AMD diagnosis and treatment.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Lee Y, Seo JH. The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study. Biomedicines 2024; 12:2828. [PMID: 39767734 PMCID: PMC11673427 DOI: 10.3390/biomedicines12122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Research has suggested a potential relationship between apolipoproteins A (ApoA) and B (ApoB) and age-related macular degeneration (AMD). This study explored the potential causal relationship between ApoA/ApoB levels and AMD/AMD subtypes using two-sample Mendelian randomisation (MR). METHODS We selected 308 single nucleotide polymorphisms (SNPs) for ApoA and 198 SNPs for ApoB from the UK Biobank data. Summary statistics for AMD were collected from the genome-wide association study of the FinnGen project. We performed two-sample MR to assess the causal effects of ApoA/ApoB on AMD and its subtypes. Potential confounders, including body mass index, C-reactive protein level, and smoking status, were assessed using a multivariable MR analysis. RESULTS ApoA showed a significant causal association with AMD (odds ratio [OR] = 1.14, 95% confidence interval [CI] = 1.05-1.25, p = 0.003) and was linked to both dry (p = 0.004) and wet (p = 0.025) AMD. ApoB showed a decreasing trend in dry AMD risk (p = 0.074), though not significant, and was not associated with overall or wet AMD. The multivariable MR analysis showed no significant association of ApoA with any AMD subtype (p > 0.05). ApoB decreased dry AMD risk (OR = 0.89, 95% CI = 0.80-0.99, p = 0.039), with trends for overall and wet AMD that were not significant (p = 0.070 and p = 0.091, respectively). CONCLUSIONS These findings suggest that ApoB is associated with lower AMD risk, particularly for dry AMD. Further research is needed to clarify lipid biomarker's role as AMD risk factors.
Collapse
Affiliation(s)
- Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| |
Collapse
|
26
|
Anitua E, Muruzabal F, Recalde S, Fernandez-Robredo P, Alkhraisat MH. Potential Use of Plasma Rich in Growth Factors in Age-Related Macular Degeneration: Evidence from a Mouse Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2036. [PMID: 39768916 PMCID: PMC11727663 DOI: 10.3390/medicina60122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate. Materials and Methods: Intravitreal application of PRGF (experimental group) and saline (control group) was performed immediately after intraperitoneal injection of sodium iodate. Retinographies were performed at 2 and 7 days after treatment administration. The eyes were retrieved for histological and immunohistological analysis. Statistical analysis was performed to compare the outcomes between the study groups. Results: In comparison to saline solution, PRGF significantly decreased the depigmentation of the RPE, showing a more reddened retina. PRGF intravitreal treatment significantly reduced the glial fibrillary acidic protein (GFAP) stained processes, suggesting a significant reduction in the risk of scar formation. Moreover, the myofibroblast invasion into the RPE cell layer was significantly reduced in the PRGF-treated group of mice. There was a tendency for better preservation of the photoreceptors in the PRGF group. Conclusions: Within the limitations of this study, intravitreal injection of PRGF provided significant protection against the degeneration of the photoreceptors and the RPE induced by the systemic administration of NaIO3.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Francisco Muruzabal
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
27
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
28
|
Sendecki A, Ledwoń D, Nycz J, Wąsowska A, Boguszewska-Chachulska A, Mitas AW, Wylęgała E, Teper S. A deep learning approach to explore the association of age-related macular degeneration polygenic risk score with retinal optical coherence tomography: A preliminary study. Acta Ophthalmol 2024; 102:e1029-e1039. [PMID: 38761033 DOI: 10.1111/aos.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Age-related macular degeneration (AMD) is a complex eye disorder affecting millions worldwide. This article uses deep learning techniques to investigate the relationship between AMD, genetics and optical coherence tomography (OCT) scans. METHODS The cohort consisted of 332 patients, of which 235 were diagnosed with AMD and 97 were controls with no signs of AMD. The genome-wide association studies summary statistics utilized to establish the polygenic risk score (PRS) in relation to AMD were derived from the GERA European study. A PRS estimation based on OCT volumes for both eyes was performed using a proprietary convolutional neural network (CNN) model supported by machine learning models. The method's performance was assessed using numerical evaluation metrics, and the Grad-CAM technique was used to evaluate the results by visualizing the features learned by the model. RESULTS The best results were obtained with the CNN and the Extra Tree regressor (MAE = 0.55, MSE = 0.49, RMSE = 0.70, R2 = 0.34). Extending the feature vector with additional information on AMD diagnosis, age and smoking history improved the results slightly, with mainly AMD diagnosis used by the model (MAE = 0.54, MSE = 0.44, RMSE = 0.66, R2 = 0.42). Grad-CAM heatmap evaluation showed that the model decisions rely on retinal morphology factors relevant to AMD diagnosis. CONCLUSION The developed method allows an efficient PRS estimation from OCT images. A new technique for analysing the association of OCT images with PRS of AMD, using a deep learning approach, may provide an opportunity to discover new associations between genotype-based AMD risk and retinal morphology.
Collapse
Affiliation(s)
- Adam Sendecki
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Julia Nycz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Anna Wąsowska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- Genomed S.A., Warszawa, Poland
| | | | - Andrzej W Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
29
|
Vujosevic S, Lupidi M, Donati S, Astarita C, Gallinaro V, Pilotto E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv Ophthalmol 2024; 69:870-881. [PMID: 39029747 DOI: 10.1016/j.survophthal.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the consequence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors have changed the treatment of both diseases, however, many patients with DME fail to achieve the established therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflammation in the development of nAMD and DME and its therapeutical relevance.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Donati
- Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
| | - Carlo Astarita
- AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Altankhuyag A, Ganbold C, Byambadorj B, Tumurbaatar S, Sodnomtseren P, Davaatseren U, Jav S. The interactions between ARMS2, CFH, VEGF-A and environmental factors on the risk of age-related macular degeneration. Mol Vis 2024; 30:320-335. [PMID: 39959171 PMCID: PMC11829785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/03/2024] [Indexed: 02/18/2025] Open
Abstract
Background Age related macular degeneration (AMD) is a multifactorial disease caused by a combination of environmental and genetic factors. The prevalence of allele and genotypeof AMD-related genes is varied throughout the world due to racial and ethnic differences. Number of previous studies have shown that the polymorphisms in the ARMS2, CFH and VEGF-A genes are associated with AMD. In Mongolia, there is a lack of sufficient data on AMD development in its population and thus needs more studies on the topic. Therefore, it needs more studies about AMD development in the population. For this reason, we have investigated several specified polymorphisms in CFH, VEGF-A and ARMS2 genes to reveal a relationship with AMD and determine the prevalence of alleles and genotypes of the genes in Mongolian population. Methods Totally 161 AMD patients and 223 controls were enrolled in this case-control study. The polymorphisms in CFH, ARMS2 and VEGF-A were detected by using the methods of allele-specific polymerase chain reaction (ASPCR) and PCR based restriction fragment length polymorphism (RFLP). Statistical analysis were performed by STATA 13.0, SNPAlyze 9.0 and MDR 3.0.2. Results According to the study result, the characteristics of hypertension, constant-wearing sunglasses and anticoagulant medications in AMD group were significantly different from those in the control group. As for the dominant model, T allele of ARMS2 rs10490924 (cOR=4.45; 95% CI, 2.44-8.13, p<0.001, aOR=5.08; 95% CI, 2.70-9.59, p<0.001) was more frequent among patients with AMD in comparison with the control group. Also, G/G genotype of CFH rs800292 (cOR=11.61; 95% CI, 3.41-39.51, p<0.001, aOR=12.49; 95% CI, 3.47-44.91, p<0.001) and G/G genotype of CFH rs1065489 (cOR=4.19; 95% CI, 2.53-6.93, p<0.001, aOR=4.67; 95% CI, 2.71-8.05, p<0.001) were significantly higher in AMD group after Bonferroni correction. This result suggests that people who carrying the risk genotypes of these polymorphisms had an increased risk for AMD development. As for the models of three or more SNP interactions, the participants with any combinations of risk genotypes have 6 to 106-fold higher risk for AMD development. This result suggests that there is some positive-additive interaction existing between the genetic variants of ARMS2, CFH and VEGF-A genes for AMD development. Our study also revealed that the participants with hypertension and carrying G/G for rs1065489 in CFH gene or non G/G for rs10490924 in ARMS2 gene genotypes had 9 to 14 times higher risk for AMD development (cOR=9.05; 95% CI, 4.38-18.68, p<0.001, RERI=4.546; AP=0.502, S=2.298, cOR=13.98; 95% CI, 3.19-61.1, p<0.001, RERI=5.85; AP=0.419, S=1.821) with high level of significance. Moreover, it was found that the participants who avoided wearing sunglasses and had the G/G genotype of ARMS2 rs10490924 or G/G genotype of CFH rs800292 had an extremely higher risk for AMD development (p<.001). Conclusions In conclusion, it was observed that the combination of SNPs in ARMS2, CFH and VEGF-A genes increase the risk for AMD with 6 to 106-fold. Moreover, we found that the participants with hypertension and carrying the non G/G genotype of ARMS2 rs10490924 or the G/G genotype of CFH rs800292 had an extremely higher risk of AMD development.
Collapse
Affiliation(s)
| | | | - Bayarlakh Byambadorj
- Department of Molecular biology and genetics, Mongolian National University of Medical Sciences
| | - Suvd Tumurbaatar
- Department of Molecular biology and genetics, Mongolian National University of Medical Sciences
- Molecular sector, Institute of Biomedicine, Mongolian National University of Medical Sciences
| | | | | | - Sarantuya Jav
- Department of Molecular biology and genetics, Mongolian National University of Medical Sciences
- Molecular sector, Institute of Biomedicine, Mongolian National University of Medical Sciences
| |
Collapse
|
31
|
Pan Y, Iwata T. Role of ARMS2/HTRA1 risk alleles in the pathogenesis of neovascular age-related macular degeneration. Taiwan J Ophthalmol 2024; 14:531-539. [PMID: 39803407 PMCID: PMC11717327 DOI: 10.4103/tjo.tjo-d-23-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2025] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of severe irreversible blindness worldwide in the elderly population. AMD is a multifactorial disease mainly caused by advanced age, environmental factors, and genetic variations. Genome-wide association studies (GWAS) have strongly supported the link between ARMS2/HTRA1 locus on chromosome 10q26 and AMD development, encompassing multiple variants, rs10490924 (c.205G > T, p.A69S in ARMS2), insertion/deletion (del443/ins54 in ARMS2), and rs11200638 (in HTRA1 promoter region). In this comprehensive review, we provide an overview of the role played by ARMS2/HTRA1 risk alleles in neovascular AMD pathogenesis, covering GWAS, in vitro studies, and animal models, shedding light on their underlying molecular genetic mechanisms. Further extensive research is also imperative, including confirmation of these findings, identifying novel treatment targets, and advancing primary and secondary prevention strategies for AMD.
Collapse
Affiliation(s)
- Yang Pan
- NHO Tokyo Medical Center, National Institute of Sensory Organs, Tokyo, Japan
| | - Takeshi Iwata
- NHO Tokyo Medical Center, National Institute of Sensory Organs, Tokyo, Japan
| |
Collapse
|
32
|
Gao ML, Wang TY, Lin X, Tang C, Li M, Bai ZP, Liu ZC, Chen LJ, Kong QR, Pan SH, Zeng SS, Guo Y, Cai JQ, Huang XF, Zhang J. Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39392440 PMCID: PMC11472886 DOI: 10.1167/iovs.65.12.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Microglia-like cells derived from stem cells (iMG) provide a plentiful cell source for studying the functions of microglia in both normal and pathological conditions. Our goal is to establish a simplified and effective method for generating iMG in a precisely defined system. Additionally, we aim to achieve functional maturation of iMG through coculture with retinal organoids. Methods In this study, iMG were produced under precisely defined conditions. They were subjected to LPS and poly IC stimulation. Additionally, we examined distinct phenotypic and functional variances between iMG and HMC3, a commonly used human microglia cell line. To investigate how the retinal cell interaction enhances microglial properties, iMG were cocultured with retinal organoids, producing CC-iMG. We performed RNA sequencing, electrophysiological analysis, and transmission electron microscope (TEM) to examine the maturation of CC-iMG compared to iMG. Results Our results demonstrated that iMG performed immune-responsive profiles closely resembling those of primary human microglia. Compared to HMC3, iMG expressed a higher level of typical microglial markers and exhibited enhanced phagocytic activity. The transcriptomic analysis uncovered notable alterations in the ion channel profile of CC-iMG compared to iMG. Electrophysiological examination demonstrated a heightened intensity of inward- and outward-rectifying K+ currents in CC-iMG. Furthermore, CC-iMG displayed elevated numbers of lysosomes and mitochondria, coupled with increased phagocytic activity. Conclusions These findings contribute to advancing our understanding of human microglial biology, specifically in characterizing and elucidating the functions of CC-iMG, thereby offering an in vitro microglial model for future scientific research and potential clinical applications in cell therapy.
Collapse
Affiliation(s)
- Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Tong-Yu Wang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xin Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing-Ran Kong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Pan
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
| | - Shan-Shan Zeng
- China National Institute of Standardization, Beijing, China
| | - Ya Guo
- China National Institute of Standardization, Beijing, China
| | - Jian-Qi Cai
- China National Institute of Standardization, Beijing, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
34
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Sendecki A, Ledwoń D, Tuszy A, Nycz J, Wąsowska A, Boguszewska-Chachulska A, Mitas AW, Wylęgała E, Teper S. Fundus Image Deep Learning Study to Explore the Association of Retinal Morphology with Age-Related Macular Degeneration Polygenic Risk Score. Biomedicines 2024; 12:2092. [PMID: 39335605 PMCID: PMC11429376 DOI: 10.3390/biomedicines12092092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a complex eye disorder with an environmental and genetic origin, affecting millions worldwide. The study aims to explore the association between retinal morphology and the polygenic risk score (PRS) for AMD using fundus images and deep learning techniques. METHODS The study used and pre-processed 23,654 fundus images from 332 subjects (235 patients with AMD and 97 controls), ultimately selecting 558 high-quality images for analysis. The fine-tuned DenseNet121 deep learning model was employed to estimate PRS from single fundus images. After training, deep features were extracted, fused, and used in machine learning regression models to estimate PRS for each subject. The Grad-CAM technique was applied to examine the relationship between areas of increased model activity and the retina's morphological features specific to AMD. RESULTS Using the hybrid approach improved the results obtained by DenseNet121 in 5-fold cross-validation. The final evaluation metrics for all predictions from the best model from each fold are MAE = 0.74, MSE = 0.85, RMSE = 0.92, R2 = 0.18, MAPE = 2.41. Grad-CAM heatmap evaluation showed that the model decisions rely on lesion area, focusing mostly on the presence of drusen. The proposed approach was also shown to be sensitive to artifacts present in the image. CONCLUSIONS The findings indicate an association between fundus images and AMD PRS, suggesting that deep learning models may effectively estimate genetic risk for AMD from retinal images, potentially aiding in early detection and personalized treatment strategies.
Collapse
Affiliation(s)
- Adam Sendecki
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (E.W.); (S.T.)
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Aleksandra Tuszy
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Julia Nycz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Anna Wąsowska
- Department of Bioinformatics, Polish-Japanese Academy of Information Technology, 02-008 Warszawa, Poland
| | | | - Andrzej W. Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (E.W.); (S.T.)
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (E.W.); (S.T.)
- Department of Scientific Research, Branch in Bielsko-Biala, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
36
|
Finzi A, Ottoboni S, Cellini M, Corcioni B, Gaudiano C, Fontana L. Color Doppler Imaging, Endothelin-1, Corneal Biomechanics and Scleral Rigidity in Asymmetric Age-Related Macular Degeneration. Clin Ophthalmol 2024; 18:2583-2591. [PMID: 39281979 PMCID: PMC11401527 DOI: 10.2147/opth.s479225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.
Collapse
Affiliation(s)
- Alessandro Finzi
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ottoboni
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Cellini
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Fontana
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
37
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
38
|
Nusinovici S, Zhou L, Wang X, Tham YC, Wang X, Wong TY, Chakravarthy U, Cheng CY. Contributions of Lipid-Related Metabolites and Complement Proteins to Early and Intermediate Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100538. [PMID: 39051044 PMCID: PMC11268342 DOI: 10.1016/j.xops.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 07/27/2024]
Abstract
Objective Our objective was to determine the effects of lipids and complement proteins on early and intermediate age-related macular degeneration (AMD) stages using machine learning models by integrating metabolomics and proteomic data. Design Nested case-control study. Subjects and Controls The analyses were performed in a subset of the Singapore Indian Chinese Cohort (SICC) Eye Study. Among the 6753 participants, we randomly selected 155 Indian and 155 Chinese cases of AMD and matched them with 310 controls on age, sex, and ethnicity. Methods We measured 35 complement proteins and 56 lipids using mass spectrometry and nuclear magnetic resonance, respectively. We first selected the most contributing lipids and complement proteins to early and intermediate AMD using random forest models. Then, we estimated their effects using a multinomial model adjusted for potential confounders. Main Outcome Measures Age-related macular degeneration was classified using the Beckman classification system. Results Among the 310 individuals with AMD, 166 (53.5%) had early AMD, and 144 (46.5%) had intermediate AMD. First, high-density lipoprotein (HDL) particle diameter was positively associated with both early and intermediate AMD (odds ratio [OR]early = 1.69; 95% confidence interval [CI],1.11-2.55 and ORintermediate = 1.72; 95% CI, 1.11-2.66 per 1-standard deviation increase in HDL diameter). Second, complement protein 2 (C2), complement C1 inhibitor (IC1), complement protein 6 (C6), complement protein 1QC (C1QC) and complement factor H-related protein 1 (FHR1), were associated with AMD. C2 was positively associated with both early and intermediate AMD (ORearly = 1.58; 95% CI, 1.08-2.30 and ORintermediate = 1.56; 95% CI, 1.04-2.34). C6 was positively (ORearly = 1.41; 95% CI, 1.03-1.93) associated with early AMD. However, IC1 was negatively associated with early AMD (ORearly = 0.62; 95% CI, 0.38-0.99), whereas C1QC (ORintermediate = 0.63; 95% CI, 0.42-0.93) and FHR1 (ORintermediate = 0.73; 95% CI, 0.54-0.98) were both negatively associated with intermediate AMD. Conclusions Although both HDL diameter and C2 levels show associations with both early and intermediate AMD, dysregulations of IC1, C6, C1QC, and FHR1 are only observed at specific stages of AMD. These findings underscore the complexity of complement system dysregulation in AMD, which appears to vary depending on the disease severity. Financial Disclosures The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Lei Zhou
- School of Optometry; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Xinyue Wang
- School of Optometry; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Xiaomeng Wang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | | | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
39
|
Farashi S, Bonelli R, Jackson VE, Ansell BR, Guymer RH, Bahlo M. Decreased Circulating Very Small Low-Density Lipoprotein is Likely Causal for Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100535. [PMID: 39091897 PMCID: PMC11292535 DOI: 10.1016/j.xops.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 08/04/2024]
Abstract
Objective Abnormal changes in metabolite levels in serum or plasma have been highlighted in several studies in age-related macular degeneration (AMD), the leading cause of irreversible vision loss. Specific changes in lipid profiles are associated with an increased risk of AMD. Metabolites could thus be used to investigate AMD disease mechanisms or incorporated into AMD risk prediction models. However, whether particular metabolites causally affect the disease has yet to be established. Design A 3-tiered analysis of blood metabolites in the United Kingdom (UK) Biobank cohort to identify metabolites that differ in AMD patients with evidence for a putatively causal role in AMD. Participants A total of 72 376 donors from the UK Biobank cohort including participants with AMD (N = 1353) and non-AMD controls (N = 71 023). Methods We analyzed 325 directly measured or derived blood metabolites from the UK Biobank for 72 376 donors to identify AMD-associated metabolites. Genome-wide association studies for 325 metabolites in 98 316 European participants from the UK Biobank were performed. The causal effects of these metabolites in AMD were tested using a 2-sample Mendelian randomization approach. The predictive value of these measurements together with sex and age was assessed by developing a machine learning classifier. Main Outcome Measures Evaluating metabolic biomarkers associated with AMD susceptibility and investigating their potential causal contribution to the development of the disease. Results This study noted age to be the prominent risk factor associated with AMD development. While accounting for age and sex, we identified 84 metabolic markers as significantly (false discovery rate-adjusted P value < 0.05) associated with AMD. Lipoprotein subclasses comprised the majority of the AMD-associated metabolites (39%) followed by several lipoprotein to lipid ratios. Nineteen metabolites showed a likely causative role in AMD etiology. Of these, 6 lipoproteins contain very small, very low-density lipoprotein (VLDL), and phospholipids to total lipid ratio in medium VLDL. Based on this we postulate that depletion of circulating very small VLDLs is likely causal for AMD. The risk prediction model constructed from the metabolites, age and sex, identified age as the primary predictive factor with a much smaller contribution by metabolites to AMD risk prediction. Conclusions This study underscores the pronounced role of lipids in AMD susceptibility and the likely causal contribution of particular subclasses of lipoproteins to AMD. Our study provides valuable insights into the metabopathological mechanisms of AMD disease development and progression.
Collapse
Affiliation(s)
- Samaneh Farashi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Victoria, Australia
| | - Roberto Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Victoria, Australia
- The Lowy Medical Research Institute, La Jolla, California
| | - Victoria E. Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Victoria, Australia
| | - Brendan R.E. Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Victoria, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
- Department of Surgery, (Ophthalmology), University of Melbourne, East Melbourne, Victoria 3002, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Chang FY, Huang CH, Yang CH, Chang JT, Yang CM, Ho TC, Hsieh YT, Lai TT, Lin CW, Lin CP, Chen YC, Lai YJ, Chen PL, Hsu JS, Chen TC. Genetics in neovascular age-related macular degeneration susceptibility and treatment response to anti-VEGF intravitreal injection: A case series study. Clin Exp Ophthalmol 2024; 52:655-664. [PMID: 38757252 DOI: 10.1111/ceo.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND To identify genotypes associated with neovascular age-related macular degeneration (nAMD) and investigate the associations between genotype variations and anti-vascular endothelial growth factor (VEGF) treatment response. METHODS This observational, retrospective, case series study enrolled patients diagnosed with nAMD who received anti-VEGF treatment in National Taiwan University Hospital with at least one-year follow-up between 2012 and 2020. A genome-wide association study (GWAS) was conducted on enrolled patients and controls. Correlations between the genotypes identified from GWAS and the treatment response of functional/anatomical biomarkers, including visual acuity (VA), presence of intraretinal or subretinal fluid (SRF), serous or fibrovascular pigmented epithelium detachment (PED), and disruption of the ellipsoid zone (EZ), were analysed. RESULTS In total, 182 patients with nAMD and 1748 controls were enrolled. GWAS revealed 16 single nucleotide polymorphisms (SNPs) as risk loci for nAMD, including seven loci in CFH and ARMS2/HTRA1 and nine novel loci, including rs117517872 and rs79835234(COPB2-DT), rs7525578(RAP1A), rs2123738(LOC105376755), rs1374879(CNTN3), rs3812692(SAR1A), rs117501587(PRKCA), rs9965945(CNDP1), and rs189769231(MATK). Our study revealed rs800292(CFH), rs11200638(HTRA1), and rs2123738(LOC105376755) correlated with poor treatment response in VA (P = 0.005), SRF (P = 0.044), and fibrovascular PED (P = 0.007), respectively. Rs9965945(CNDP1) was correlated with poor response in disruption of EZ (P = 0.046) and serous PED (P = 0.049). CONCLUSIONS Among the 16 SNPs found in the GWAS, four loci-CFH, ARMS2/HTRA1, and two novel loci-were correlated with the susceptibility of nAMD and anatomical/functional responses after anti-VEGF treatment.
Collapse
Affiliation(s)
- Fang-Yu Chang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Tzu Chang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzzy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Pin Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chieh Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Ju Lai
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Bhumika, Bora NS, Bora PS. Genetic Insights into Age-Related Macular Degeneration. Biomedicines 2024; 12:1479. [PMID: 39062052 PMCID: PMC11274963 DOI: 10.3390/biomedicines12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
One of the major causes of vision impairment among elderly people in developed nations is age-related macular degeneration (AMD). The distinctive features of AMD are the accumulation of extracellular deposits called drusen and the gradual deterioration of photoreceptors and nearby tissues in the macula. AMD is a complex and multifaceted disease influenced by several factors such as aging, environmental risk factors, and a person's genetic susceptibility to the condition. The interaction among these factors leads to the initiation and advancement of AMD, where genetic predisposition plays a crucial role. With the advent of high-throughput genotyping technologies, many novel genetic loci associated with AMD have been identified, enhancing our knowledge of its genetic architecture. The common genetic variants linked to AMD are found on chromosome 1q32 (in the complement factor H gene) and 10q26 (age-related maculopathy susceptibility 2 and high-temperature requirement A serine peptidase 1 genes) loci, along with several other risk variants. This review summarizes the common genetic variants of complement pathways, lipid metabolism, and extracellular matrix proteins associated with AMD risk, highlighting the intricate pathways contributing to AMD pathogenesis. Knowledge of the genetic underpinnings of AMD will allow for the future development of personalized diagnostics and targeted therapeutic interventions, paving the way for more effective management of AMD and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Bhumika
- Department of Zoology, Sunderwati Mahila College, Tilka Manjhi Bhagalpur University, Bihar 812007, India;
| | - Nalini S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
42
|
Csaky KG, Miller JML, Martin DF, Johnson MW. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am J Ophthalmol 2024; 263:231-239. [PMID: 38387826 PMCID: PMC11162935 DOI: 10.1016/j.ajo.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To discuss the clinical trial results leading to the US Food and Drug Administration (FDA) approval of anti-complement therapies for geographic atrophy (GA), perspectives on functional data from the GA clinical trials, and how lessons from the FDA approval may guide future directions for basic and clinical research in AMD. DESIGN Selected literature review with analysis and perspective METHODS: We performed a targeted review of publicly available data from the clinical trials of pegcetacoplan and avacincaptad for the treatment of GA, as well as scientific literature on the natural history of GA and the genetics and basic science of complement in AMD. RESULTS The approval of pegcetacoplan and avacincaptad was based on an anatomic endpoint of a reduction in the rate of GA expansion over time. However, functional data from 2 phase 3 clinical trials for each drug demonstrated no visual benefit to patients in the treatment groups. Review of the genetics of AMD and the basic science of the role for complement in AMD provides only modest support for targeting complement as treatment for GA expansion, and alternative molecular targets for GA treatment are therefore discussed. Reasons for the disconnect between anatomic and functional outcomes in the clinical trials of anti-complement therapies are discussed, providing insight to guide the configuration of future clinical studies for GA. CONCLUSION Although avacincaptad and pegcetacoplan are our first FDA-approved treatments for GA, results from the clinical trials failed to show any functional improvement after 1 and 2 years, respectively, calling into question whether the drugs represent a "clinically relevant outcome." To improve the chances of more impactful therapies in the future, we provide basic-science rationale for pursuing non-complement targets; emphasize the importance of ongoing clinical research that more closely pins anatomic features of GA to functional outcomes; and provide suggestions for clinical endpoints for future clinical trials on GA.
Collapse
Affiliation(s)
- Karl G Csaky
- From the Retina Foundation of the Southwest (K.G.C.), Dallas, Texas, USA.
| | - Jason M L Miller
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program (J.M.L.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Martin
- Cole Eye Institute (D.F.M.), Cleveland Clinic, Cleveland Ohio, USA
| | - Mark W Johnson
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Jiang B, Wei X, Cai D, Wang X, Zhou X, Chen F, Shen X, Cao X, Zheng C. Association between dietary consumption of fatty acids and age-related macular degeneration in the National Health and Nutrition Examination Survey. Sci Rep 2024; 14:11016. [PMID: 38745035 PMCID: PMC11094158 DOI: 10.1038/s41598-024-61833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study is to assess the relationship between dietary intake of fatty acids and the age-related macular degeneration (AMD) in the United States population. Adult participants of the 2005-2008 National Health and Nutrition Examination Survey (NHANES) were included in this nationwide cross-sectional study. Dietary fatty acid intake was obtained from two 24-h dietary recall interviews. The intake of dietary fatty acids was analyzed as a continuous and categorical variable. AMD status was assessed using nonmydriatic fundus photographs. Univariate and multivariate logistic regression analyses were used to assess the association between dietary fatty acid intake and AMD. The unweighted population included 4702 individuals of whom 374 had AMD. After adjusting for relevant variables, each 1 unit increase (1 mg/1000 kcal) intake of EPA (OR: 0.996, 95% CI: 0.993-0.996, P = 0.018), DPA (OR: 0.976, 95% CI: 0.962-0.990, P = 0.002), and DHA (OR: 0.996, 95% CI: 0.994-0.999, P = 0.003) were significantly decreased odds of any AMD. The highest versus lowest quartile of EPA (OR: 0.476, P for trend < 0.001), DPA (OR: 0.467, P for trend = 0.005) and DHA (OR: 0.586, P for trend = 0.008) were negatively associated with the odds of any AMD. Subgroup analysis showed that higher quartiles of EPA (OR: 0.461, P for trend < 0.002), DPA (OR: 0.467, P for trend = 0.006) and DHA (OR: 0.578, P for trend = 0.007) exhibited a negative association with early AMD. The study found no significant association between the intake of dietary fatty acids, including n-3 PUFA, and the odds of late AMD. In the 2005-2008 NHANES population, higher dietary DHA, DPA and EPA intake associated with decreased odds of early AMD. However, no clear association was found between specific types of FAs and late AMD.
Collapse
Affiliation(s)
- Bingcai Jiang
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xin Wei
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Dongmei Cai
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiaoqin Wang
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiaobo Zhou
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Feng Chen
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiaopeng Shen
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiaochuan Cao
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China
| | - Changwei Zheng
- Department of Ophthalmology, The People's Hospital of Tongliang District, Chongqing, China.
| |
Collapse
|
44
|
Farinha C, Barreto P, Coimbra R, Machado MB, Figueiredo I, Cachulo ML, Cunha-Vaz J, Silva R. Age-Related Macular Degeneration and Extramacular Drusen: Genetic Associations in the Coimbra Eye Study. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38776116 PMCID: PMC11127495 DOI: 10.1167/iovs.65.5.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024] Open
Abstract
Purpose To explore the association between the genetics of age-related macular degeneration (AMD) and extramacular drusen (EMD) in patients with and without AMD. Methods We included 1753 eyes (912 subjects) with phenotypic characterization regarding AMD and EMD. Genetic sequencing and the genetic risk score (GRS) for AMD were performed according to the EYE-RISK consortium methodology. To test for differences in the GRS from EMD cases, AMD cases, and controls, a clustered Wilcoxon rank-sum test was used. The association of AMD, EMD, and the GRS was evaluated using logistic regression models adjusted for age and sex. Individual associations of common risk variants for AMD with EMD were explored. Results EMD were found in 755 eyes: 252 (14.4%) with AMD and 503 (28.7%) without. In total, 122 eyes (7.0%) had only AMD, and 876 (50.0%) were controls. EMD were strongly associated with AMD (odds ratio [OR], 3.333; 95% confidence interval [CI], 2.356-4.623; P < 0.001). The GRS was associated with an increased risk of AMD (OR, 1.416; 95% CI, 1.218-1.646; P < 0.001) but not with EMD. Individually, the common risk variants ARMS2 rs10490924 (P = 0.042), C3 rs2230199 (P = 0.042), and CETP rs5817082 (P = 0.042) were associated with EMD, after adjustment for AMD, sex, and age. Conclusions We found a strong association between EMD and AMD, suggesting a common pathogenesis. The GRS for AMD was not associated with EMD, but a partially overlapping genetic basis was suggested when assessing individual risk variants. We propose that EMD per se do not represent an increase in the global genetic risk for AMD.
Collapse
Affiliation(s)
- Cláudia Farinha
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research. Faculty of Medicine (iCBR-FMUC), Coimbra, Portugal
| | - Patrícia Barreto
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Rita Coimbra
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Department of Mathematics, University of Aveiro, Aveiro, Portugal
| | | | - Inês Figueiredo
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Maria Luz Cachulo
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research. Faculty of Medicine (iCBR-FMUC), Coimbra, Portugal
| | - José Cunha-Vaz
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research. Faculty of Medicine (iCBR-FMUC), Coimbra, Portugal
| | - Rufino Silva
- AIBILI—Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research. Faculty of Medicine (iCBR-FMUC), Coimbra, Portugal
| |
Collapse
|
45
|
Hector M, Langmann T, Wolf A. Translocator protein (18 kDa) (Tspo) in the retina and implications for ocular diseases. Prog Retin Eye Res 2024; 100:101249. [PMID: 38430990 DOI: 10.1016/j.preteyeres.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Translocator protein (18 kDa) (Tspo), formerly known as peripheral benzodiazepine receptor is a highly conserved transmembrane protein primarily located in the outer mitochondrial membrane. In the central nervous system (CNS), especially in glia cells, Tspo is upregulated upon inflammation. Consequently, Tspo was used as a tool for diagnostic in vivo imaging of neuroinflammation in the brain and as a potential therapeutic target. Several synthetic Tspo ligands have been explored as immunomodulatory and neuroprotective therapy approaches. Although the function of Tspo and how its ligands exert these beneficial effects is not fully clear, it became a research topic of interest, especially in ocular diseases in the past few years. This review summarizes state-of-the-art knowledge of Tspo expression and its proposed functions in different cells of the retina including microglia, retinal pigment epithelium and Müller cells. Tspo is involved in cytokine signaling, oxidative stress and reactive oxygen species production, calcium signaling, neurosteroid synthesis, energy metabolism, and cholesterol efflux. We also highlight recent developments in preclinical models targeting Tspo and summarize the relevance of Tspo biology for ocular and retinal diseases. We conclude that glial upregulation of Tspo in different ocular pathologies and the use of Tspo ligands as promising therapeutic approaches in preclinical studies underline the importance of Tspo as a potential disease-modifying protein.
Collapse
Affiliation(s)
- Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Yoon BW, Lee Y, Seo JH. Potential Causal Association between C-Reactive Protein Levels in Age-Related Macular Degeneration: A Two-Sample Mendelian Randomization Study. Biomedicines 2024; 12:807. [PMID: 38672162 PMCID: PMC11047998 DOI: 10.3390/biomedicines12040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Researchers have proposed a possible correlation between age-related macular degeneration (AMD) and inflammation or C-reactive protein (CRP) levels. We investigated the potential causal relationship between CRP levels and AMD. Single-nucleotide polymorphisms (SNPs) associated with CRP exposure were selected as the instrumental variables (IVs) with significance (p < 5 × 10-8) from the genome-wide association study (GWAS) meta-analysis data of Biobank Japan and the UK Biobank. GWAS data for AMD were obtained from 11 International AMD Genomics Consortium studies. An evaluation of causal estimates, utilizing the inverse-variance-weighted (IVW), weighted-median, MR-Egger, MR-Pleiotropy-Residual-Sum, and Outlier tests, was conducted in a two-sample Mendelian randomization (MR) study. We observed significant causal associations between CRP levels and AMD (odds ratio [OR] = 1.13, 95% CI = [1.02-1.24], and p = 0.014 in IVW; OR = 1.18, 95% CI = [1.00-1.38], and p = 0.044 in weight median; OR = 1.31, 95% CI = [1.13-1.52], and p < 0.001 in MR-Egger). The causal relationship between CRP and AMD warrants further research to address the significance of inflammation as a risk factor for AMD.
Collapse
Affiliation(s)
- Byung Woo Yoon
- Department of Internal Medicine, Chung-Ang University Gwangmyung Hospital, Gwangmyung 14353, Republic of Korea;
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young Lee
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea;
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| |
Collapse
|
47
|
Williams BL, Zouache MA, Seager NA, Pappas CM, Liu J, Anstadt RA, Hubbard WC, Thomas J, Hageman JL, Mohler J, Richards BT, Hageman GS. Levels of the HtrA1 Protein in Serum and Vitreous Humor Are Independent of Genetic Risk for Age-Related Macular Degeneration at the 10q26 Locus. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38648039 PMCID: PMC11044837 DOI: 10.1167/iovs.65.4.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose The purpose of this study was to determine if levels of the HtrA1 protein in serum or vitreous humor are influenced by genetic risk for age-related macular degeneration (AMD) at the 10q26 locus, age, sex, AMD status, and/or AMD disease severity, and, therefore, to determine the contribution of systemic and ocular HtrA1 to the AMD disease process. Methods A custom-made sandwich ELISA assay (SCTM ELISA) for detection of the HtrA1 protein was designed and compared with three commercial assays (R&D Systems, MyBiosource 1 and MyBiosource 2) using 65 serum samples. Concentrations of HtrA1 were thereafter determined in serum and vitreous samples collected from 248 individuals and 145 human donor eyes, respectively. Results The SCTM ELISA demonstrated high specificity, good recovery, and parallelism within its linear detection range and performed comparably to the R&D Systems assay. In contrast, we were unable to demonstrate the specificity of the two assays from MyBioSource using either recombinant or native HtrA1. Analyses of concentrations obtained using the validated SCTM assay revealed that genetic risk at the 10q26 locus, age, sex, or AMD status are not significantly associated with altered levels of the HtrA1 protein in serum or in vitreous humor (P > 0.05). Conclusions HtrA1 levels in serum and vitreous do not reflect the risk for AMD associated with the 10q26 locus or disease status. Localized alteration in HTRA1 expression in the retinal pigment epithelium, rather than systemic changes in HtrA1, is the most likely driver of elevated risk for developing AMD among individuals with risk variants at the 10q26 locus.
Collapse
Affiliation(s)
- Brandi L. Williams
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Moussa A. Zouache
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nathan A. Seager
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Chris M. Pappas
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Jin Liu
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Robert A. Anstadt
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - William C. Hubbard
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Julie Thomas
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Jill L. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Jennifer Mohler
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Burt T. Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
48
|
Sha F, Li H, Zhang L, Liang F. Evidence for Genetic Causal Relationships Between Multiple Immune-Mediated Inflammatory Diseases and Age-Related Macular Degeneration: A Univariable and Multivariable Mendelian Randomization Study. Ophthalmol Ther 2024; 13:955-967. [PMID: 38315350 PMCID: PMC10912070 DOI: 10.1007/s40123-024-00895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION With the global aging population on the rise, age-related macular degeneration (AMD) poses a growing healthcare burden. Prior research hints at immune-mediated inflammatory diseases (IMIDs) potentially elevating AMD risk via diverse mechanisms. However, causality remains disputed as a result of confounding factors. Hence, our Mendelian randomization (MR) study aims to untangle this link, mitigating confounding effects to explore the IMID-AMD causal relationship. This study aims to investigate the causal relationship between IMIDs and AMD, providing new strategies for the prevention and treatment of AMD in clinical practice. METHODS This study was registered with PROSPERO, CRD42023469815. We obtained data on IMIDs and AMD from Genome-Wide Association Studies (GWAS) summary statistics and the FinnGen consortium. Rigorous selection steps were applied to screen for eligible instrumental single nucleotide polymorphisms (SNPs). We conducted univariate Mendelian randomization, inverse variance-weighted (IVW), weighted median, Mendelian randomization-Egger (MR-Egger), and multivariate Mendelian randomization (MVMR) analyses. Various sensitivity analysis methods were employed to assess pleiotropy and heterogeneity. The aim was to explore the causal relationships between IMIDs and AMD. RESULTS The MR analysis revealed that Crohn's disease (CD) (IVW: odd ratios (OR) 1.05, 95% CI (confidence interval) 1.01-1.10, p = 0.007), rheumatoid arthritis (RA) (IVW: OR 1.09, 95% CI 1.04-1.15, p = 0.0001), and type 1 diabetes (T1D) (IVW: OR 1.05, 95% CI 1.02-1.09, p = 0.001) were correlated with an elevated risk of AMD, while multiple sclerosis (MS) (IVW: OR 2.78E-18, 95% CI 2.23E-31 to 3.48E-05, p = 0.008) appeared to be protective against AMD. These findings were supported by an array of MR analysis methodologies and the MVMR approach. CONCLUSION Our study results, based on MR, provide genetic evidence indicating a causal relationship between specific IMIDs and AMD. CD, RA, and T1D are factors increasing the risk of AMD, while MS may have a protective effect.
Collapse
Affiliation(s)
- Fuhui Sha
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongmei Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longyao Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fengming Liang
- Eye School of Chengdu, University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention and Cure and Visual Function Protection with Traditional Chinese Medicine Laboratory, Chengdu, Sichuan Province, China.
- Retinal Image Technology and Chronic Vascular Disease Prevention and Control and Collaborative Innovation Center, Chengdu, Sichuan Province, China.
- Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
- Sichuan Integrated Traditional Chinese and Western Medicine Myopia Prevention and Treatment Center, Sichuan Vision Protection Science Popularization Base, Chengdu, Sichuan Province, China.
| |
Collapse
|
49
|
Seo JH, Lee Y. Causal Associations of Glaucoma and Age-Related Macular Degeneration with Cataract: A Bidirectional Two-Sample Mendelian Randomisation Study. Genes (Basel) 2024; 15:413. [PMID: 38674349 PMCID: PMC11049509 DOI: 10.3390/genes15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Common age-related eye disorders include glaucoma, cataract, and age-related macular degeneration (AMD); however, little is known about their relationship with age. This study investigated the potential causal relationship between glaucoma and AMD with cataract using genetic data from multi-ethnic populations. Single-nucleotide polymorphisms (SNPs) associated with exposure to cataract were selected as instrumental variables (IVs) from genome-wide association studies using meta-analysis data from BioBank Japan and UK Biobank. A bidirectional two-sample Mendelian randomisation (MR) study was conducted to assess the causal estimates using inverse variance weighted, MR-Egger, and MR pleiotropy residual sum and outlier tests. SNPs with (p < 5.0 × 10-8) were selected as IVs for cataract, primary open-angle glaucoma, and AMD. We found no causal effects of cataract on glaucoma or AMD (all p > 0.05). Furthermore, there were no causal effects of AMD on cataract (odds ratio [OR] = 1.02, p = 0.400). However, glaucoma had a substantial causal effect on cataract (OR = 1.14, p = 0.020). Our study found no evidence for a causal relationship of cataract on glaucoma or AMD and a casual effect of AMD on cataract. Nonetheless, glaucoma demonstrates a causal link with cataract formation, indicating the need for future investigations of age-related eye diseases.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
50
|
Advani J, Mehta PA, Hamel AR, Mehrotra S, Kiel C, Strunz T, Corso-Díaz X, Kwicklis M, van Asten F, Ratnapriya R, Chew EY, Hernandez DG, Montezuma SR, Ferrington DA, Weber BHF, Segrè AV, Swaroop A. QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration. Nat Commun 2024; 15:1972. [PMID: 38438351 PMCID: PMC10912779 DOI: 10.1038/s41467-024-46063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation provides a crucial epigenetic mark linking genetic variations to environmental influence. We have analyzed array-based DNA methylation profiles of 160 human retinas with co-measured RNA-seq and >8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 methylation quantitative trait loci and 12,505 expression quantitative trait loci) and 13,747 DNA methylation loci affecting gene expression, with over one-third specific to the retina. Methylation and expression quantitative trait loci show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration. Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of macular degeneration pathology by genotype-environment interaction in retina.
Collapse
Affiliation(s)
- Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Puja A Mehta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R Hamel
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Kwicklis
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freekje van Asten
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ayellet V Segrè
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|