1
|
Mullon PJ, Maldonado-Luevano E, Mehta KPM, Mohni KN. The herpes simplex virus alkaline nuclease is required to maintain replication fork progression. J Virol 2024; 98:e0183624. [PMID: 39508568 PMCID: PMC11650972 DOI: 10.1128/jvi.01836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus is a large double-strand DNA virus that replicates in the nucleus of the host cell and interacts with host DNA replication and repair proteins. The viral 5' to 3' alkaline nuclease, UL12, is required for production of DNA that can be packaged into infectious virus. The UL12-deleted virus, AN-1, exhibits near wild-type levels of viral DNA replication, but the DNA cannot be packaged into capsids, suggesting it is structurally aberrant. To better understand the DNA replication defect observed in AN-1, we utilized isolation of proteins on nascent DNA (iPOND), a powerful tool to study all the proteins at a DNA replication fork. Combining iPOND with stable isotope labeling of amino acids in cell culture (SILAC) allows for a quantitative assessment of protein abundance when comparing wild type to mutant replication forks. We performed five replicates of iPOND-SILAC comparing AN-1 to the wild-type virus, KOS. We observed 60 proteins that were significantly lost from AN-1 forks out of over 1,000 quantified proteins. These proteins largely represent host DNA replication proteins including MCM2-7, RFC1-5, MSH2/6, MRN, and proliferating cell nuclear antigen. These observations are reminiscent of how these proteins behave at stalled human replication forks. We also observed similar protein changes when we stalled KOS forks with hydroxyurea. Additionally, we observed a decrease in the rate of AN-1 replication fork progression at the single-molecule level. These data indicate that UL12 is required for DNA replication fork progression and that forks stall in the absence of UL12. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a near-ubiquitous pathogen within the global population, causing a lifelong latent infection with sporadic reactivation throughout the life of the host. Within at-risk and immunocompromised communities, HSV-1 infection can cause serious morbidities including herpes keratitis and encephalitis. With the possibility of herpesviruses to evade established antiviral therapies and there being no approved HSV-1 vaccine, there comes a need to investigate potential targets for intervention against infection and subsequent disease. UL12 is the viral 5'-3' exonuclease, which is required for the production of infectious progeny. In this study, we show that in the absence of UL12, viral replication fork progression is abrogated. These data point to UL12 as an attractive target for intervention, which could lead to better clinical outcomes of HSV-1-associated disease in the future.
Collapse
Affiliation(s)
- Patrick J. Mullon
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kavi P. M. Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Kareem N. Mohni
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Zheng J, Zeng J, Long H, Chen J, Liu K, Chen Y, Du X. Recombination and selection trajectory of the monkeypox virus during its adaptation in the human population. J Med Virol 2024; 96:e29825. [PMID: 39049554 DOI: 10.1002/jmv.29825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), was historically confined to West and Central Africa but has now spread globally. Recombination and selection play crucial roles in the evolutionary adaptation of MPXV; however, the evolution of MPXV and its relationship with the recent, ground-breaking monkeypox epidemic remains poorly understood. To gain insights into the evolutionary dynamics of MPXV, comprehensive in silico recombination and selection analyses were conducted based on MPXV whole genome sequence data. Three types of recombination were identified: five ancestor-sharing interspecies recombination events, six specific interspecies recombination events and four intraspecies recombination events. The results highlight the prevalent occurrence of recombination in MPXV, with 73.3% occurring in variable regions of the genome. Selection analysis was performed from three dimensions: proteins around recombination regions, proteins from recombinant ancestors and MPXV branches, and whole-genome gene analysis. Results revealed 2 and 7 proteins under positive selection in the first two dimensions, respectively. These proteins are mainly involved in infection immunity, apoptosis regulation and viral virulence. Whole-genome analysis detected 25 genes under positive selection, mainly associated with immune response and viral regulation. Understanding their evolutionary patterns will help predict and prevent cross-species transmission, zoonotic outbreaks and potential human epidemics.
Collapse
Affiliation(s)
- Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kaijie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yixiong Chen
- Department of Infectious Disease Prevention, Bao'an Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sjodin AR, Willig MR, Rodríguez‐Durán A, Anthony SJ. Rapid taxonomic categorization of short, abundant virus sequences for ecological analyses. Ecol Evol 2024; 14:e11501. [PMID: 38895563 PMCID: PMC11183940 DOI: 10.1002/ece3.11501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Public health concerns about recent viral epidemics have motivated researchers to seek novel ways to understand pathogen infection in native, wildlife hosts. With its deep history of tools and perspectives for understanding the abundance and distribution of organisms, ecology can shed new light on viral infection dynamics. However, datasets allowing deep explorations of viral communities from an ecological perspective are lacking. We sampled 1086 bats from two, adjacent Puerto Rican caves and tested them for infection by herpesviruses, resulting in 3131 short, viral sequences. Using percent identity of nucleotides and a machine learning algorithm (affinity propagation), we categorized herpesviruses into 43 operational taxonomic units (OTUs) to be used in place of species in subsequent ecological analyses. Herpesvirus metacommunities demonstrated long-tailed rank frequency distributions at all analyzed levels of host organization (i.e., individual, population, and community). Although 13 herpesvirus OTUs were detected in more than one host species, OTUs generally exhibited host specificity by infecting a single core host species at a significantly higher prevalence than in all satellite species combined. We describe the natural history of herpesvirus metacommunities in Puerto Rican bats and suggest that viruses follow the general law that communities comprise few common and many rare species. To guide future efforts in the field of viral ecology, hypotheses are presented regarding mechanisms that contribute to these patterns.
Collapse
Affiliation(s)
- Anna R. Sjodin
- Department of Ecology & Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Michael R. Willig
- Department of Ecology & Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Center for Environmental Sciences & Engineering and Institute of the EnvironmentUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Simon J. Anthony
- Center for Infection and ImmunityColumbia UniversityNew YorkNew YorkUSA
- Department of Pathology, Microbiology, and ImmunologyUC Davis School of Veterinary MedicineDavisCaliforniaUSA
| |
Collapse
|
4
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Cui Y, Li J, Guo J, Pan Y, Tong X, Liu C, Wang D, Xu W, Shi Y, Ji Y, Qiu Y, Yang X, Hou L, Zhou J, Feng X, Wang Y, Liu J. Evolutionary Origin, Genetic Recombination, and Phylogeography of Porcine Kobuvirus. Viruses 2023; 15:240. [PMID: 36680281 PMCID: PMC9867129 DOI: 10.3390/v15010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The newly identified porcine Kobuvirus (PKV) has raised concerns owing to its association with diarrheal symptom in pigs worldwide. The process involving the emergence and global spread of PKV remains largely unknown. Here, the origin, genetic diversity, and geographic distribution of PKV were determined based on the available PKV sequence information. PKV might be derived from the rabbit Kobuvirus and sheep were an important intermediate host. The most recent ancestor of PKV could be traced back to 1975. Two major clades are identified, PKVa and PKVb, and recombination events increase PKV genetic diversity. Cross-species transmission of PKV might be linked to interspecies conserved amino acids at 13-17 and 25-40 residue motifs of Kobuvirus VP1 proteins. Phylogeographic analysis showed that Spain was the most likely location of PKV origin, which then spread to pig-rearing countries in Asia, Africa, and Europe. Within China, the Hubei province was identified as a primary hub of PKV, transmitting to the east, southwest, and northeast regions of the country. Taken together, our findings have important implications for understanding the evolutionary origin, genetic recombination, and geographic distribution of PKV thereby facilitating the design of preventive and containment measures to combat PKV infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
8
|
Newing TP, Brewster JL, Fitschen LJ, Bouwer JC, Johnston NP, Yu H, Tolun G. Redβ 177 annealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination. Nat Commun 2022; 13:5649. [PMID: 36163171 PMCID: PMC9512822 DOI: 10.1038/s41467-022-33090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The Redβ protein of the bacteriophage λ red recombination system is a model annealase which catalyzes single-strand annealing homologous DNA recombination. Here we present the structure of a helical oligomeric annealing intermediate of Redβ, consisting of N-terminal residues 1-177 bound to two complementary 27mer oligonucleotides, determined via cryogenic electron microscopy (cryo-EM) to a final resolution of 3.3 Å. The structure reveals a continuous binding groove which positions and stabilizes complementary DNA strands in a planar orientation to facilitate base pairing via a network of hydrogen bonding. Definition of the inter-subunit interface provides a structural basis for the propensity of Redβ to oligomerize into functionally significant long helical filaments, a trait shared by most annealases. Our cryo-EM structure and molecular dynamics simulations suggest that residues 133-138 form a flexible loop which modulates access to the binding groove. More than half a century after its discovery, this combination of structural and computational observations has allowed us to propose molecular mechanisms for the actions of the model annealase Redβ, a defining member of the Redβ/RecT protein family. Redβ annealase catalyses single-strand annealing homologous DNA recombination. Here, the authors present a cryo-EM structure of a Redβ annealing intermediate bound to two complementary 27mer oligonucleotides.
Collapse
Affiliation(s)
- Timothy P Newing
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jodi L Brewster
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Lucy J Fitschen
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - James C Bouwer
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Nikolas P Johnston
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Gökhan Tolun
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia. .,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Abstract
Genetic recombination is used as a tool for modifying the composition of poxvirus genomes in both discovery and applied research. This review documents the history behind the development of these tools as well as what has been learned about the processes that catalyze virus recombination and the links between it and DNA replication and repair. The study of poxvirus recombination extends back to the 1930s with the discovery that one virus can reactivate another by a process later shown to generate recombinants. In the years that followed it was shown that recombinants can be produced in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce recombination-based genetic maps with modest success. The marker rescue mapping method proved more useful and led to methods for making genetically engineered viruses. Many further insights into the mechanism of recombination have been provided by transfection studies which have shown that this is a high-frequency process associated with hybrid DNA formation and inextricably linked to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the 3'-to-5' proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding protein. These reactions have shaped the composition of virus genomes and are modulated by constraints imposed on virus-virus interactions by viral replication in cytoplasmic factories. As recombination reactions are used for replication fork assembly and repair in many biological systems, further study of these reactions may provide new insights into still poorly understood features of poxvirus DNA replication.
Collapse
Affiliation(s)
- David Hugh Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, AB T6G 2J7, Canada
| |
Collapse
|
10
|
Wright LR, Wright DL, Weller SK. Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses 2022; 14:1557. [PMID: 35891537 PMCID: PMC9324378 DOI: 10.3390/v14071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore recombination in two very different virus families that have become major threats to human health. The Herpesviridae are a large family of pathogenic double-stranded DNA viruses involved in a range of diseases affecting both people and animals. Coronaviridae are positive-strand RNA viruses (CoVs) that have also become major threats to global health and economic stability, especially in the last two decades. Despite many differences, such as the make-up of their genetic material (DNA vs. RNA) and overall mechanisms of genome replication, both human herpes viruses (HHVs) and CoVs have evolved to rely heavily on recombination for viral genome replication, adaptation to new hosts and evasion of host immune regulation. In this review, we will focus on the roles of three viral exonucleases: two HHV exonucleases (alkaline nuclease and PolExo) and one CoV exonuclease (ExoN). We will review the roles of these three nucleases in their respective life cycles and discuss the state of drug discovery efforts against these targets.
Collapse
Affiliation(s)
- Lee R. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
11
|
Hunter M, Fusco D. Superinfection exclusion: A viral strategy with short-term benefits and long-term drawbacks. PLoS Comput Biol 2022; 18:e1010125. [PMID: 35536864 PMCID: PMC9122224 DOI: 10.1371/journal.pcbi.1010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/20/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Viral superinfection occurs when multiple viral particles subsequently infect the same host. In nature, several viral species are found to have evolved diverse mechanisms to prevent superinfection (superinfection exclusion) but how this strategic choice impacts the fate of mutations in the viral population remains unclear. Using stochastic simulations, we find that genetic drift is suppressed when superinfection occurs, thus facilitating the fixation of beneficial mutations and the removal of deleterious ones. Interestingly, we also find that the competitive (dis)advantage associated with variations in life history parameters is not necessarily captured by the viral growth rate for either infection strategy. Putting these together, we then show that a mutant with superinfection exclusion will easily overtake a superinfecting population even if the latter has a much higher growth rate. Our findings suggest that while superinfection exclusion can negatively impact the long-term adaptation of a viral population, in the short-term it is ultimately a winning strategy.
Collapse
Affiliation(s)
- Michael Hunter
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Diana Fusco
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Abstract
The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis. Compounds that target TMID enzymes, such as HIV integrase and influenza endoribonuclease, have been successfully developed for clinical use. HIV integrase inhibitors have been reported to inhibit replication of herpes simplex virus (HSV) and other herpesviruses; however, the molecular targets of their antiviral activities have not been identified. We employed a candidate-based approach utilizing several two-metal-directed chemotypes and the potential viral TMID enzymatic targets in an effort to correlate target-based activity with antiviral potency. The panel of compounds tested included integrase inhibitors, the anti-influenza agent baloxavir, three natural products previously shown to exhibit anti-HSV activity, and two 8-hydroxyquinolines (8-HQs), AK-157 and AK-166, from our in-house program. The integrase inhibitors exhibited weak overall anti-HSV-1 activity, while the 8-HQs were shown to inhibit both HSV-1 and cytomegalovirus (CMV). Target-based analysis demonstrated that none of the antiviral compounds acted by inhibiting ICP8, contradicting previous reports. On the other hand, baloxavir inhibited the proofreading exonuclease of HSV polymerase, while AK-157 and AK-166 inhibited the alkaline exonuclease UL12. In addition, AK-157 also inhibited the catalytic activity of the HSV polymerase, which provides an opportunity to potentially develop dual-targeting agents against herpesviruses. IMPORTANCE Human herpesviruses (HHVs) establish lifelong latent infections, which undergo periodic reactivation and remain a major cause of morbidity and mortality, especially in immunocompromised individuals. Currently, HHV infections are treated primarily with agents that target viral DNA polymerase, including nucleoside analogs; however, long-term treatment can be complicated by the development of drug resistance. New therapies with novel modes of action would be important not only for the treatment of resistant viruses but also for use in combination therapy to reduce dose-limiting toxicities and potentially eliminate infection. Since many essential HHV proteins are well conserved, inhibitors of novel targets would ideally exhibit broad-spectrum activity against multiple HHVs.
Collapse
|
13
|
Packard JE, Dembowski JA. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses 2021; 13:v13102015. [PMID: 34696446 PMCID: PMC8539067 DOI: 10.3390/v13102015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
DNA replication is an integral step in the herpes simplex virus type 1 (HSV-1) life cycle that is coordinated with the cellular DNA damage response, repair and recombination of the viral genome, and viral gene transcription. HSV-1 encodes its own DNA replication machinery, including an origin binding protein (UL9), single-stranded DNA binding protein (ICP8), DNA polymerase (UL30), processivity factor (UL42), and a helicase/primase complex (UL5/UL8/UL52). In addition, HSV-1 utilizes a combination of accessory viral and cellular factors to coordinate viral DNA replication with other viral and cellular processes. The purpose of this review is to outline the roles of viral and cellular proteins in HSV-1 DNA replication and replication-coupled processes, and to highlight how HSV-1 may modify and adapt cellular proteins to facilitate productive infection.
Collapse
|
14
|
Vallée G, Norris P, Paszkowski P, Noyce RS, Evans DH. Vaccinia Virus Gene Acquisition through Nonhomologous Recombination. J Virol 2021; 95:e0031821. [PMID: 33910949 PMCID: PMC8223923 DOI: 10.1128/jvi.00318-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Many of the genes encoded by poxviruses are orthologs of cellular genes. These virus genes serve different purposes, but perhaps of most interest is the way some have been repurposed to inhibit the antiviral pathways that their cellular homologs still regulate. What is unclear is how these virus genes were acquired, although it is presumed to have been catalyzed by some form(s) of nonhomologous recombination (NHR). We used transfection assays and substrates encoding a fluorescent and drug-selectable marker to examine the NHR frequency in vaccinia virus (VAC)-infected cells. These studies showed that when cells were transfected with linear duplex DNAs bearing VAC N2L gene homology, it yielded a recombinant frequency (RF) of 6.7 × 10-4. In contrast, DNA lacking any VAC homology reduced the yield of recombinants ∼400-fold (RF = 1.6 × 10-6). DNA-RNA hybrids were also substrates, although homologous molecules yielded fewer recombinants (RF = 2.1 × 10-5), and nonhomologous substrates yielded only rare recombinants (RF ≤ 3 × 10-8). NHR was associated with genome rearrangements ranging from simple insertions with flanking sequence duplications to large-scale indels that produced helper-dependent viruses. The insert was often also partially duplicated and would rapidly rearrange through homologous recombination. Most of the virus-insert junctions exhibited little or no preexiting microhomology, although a few encoded VAC topoisomerase recognition sites (C/T·CCTT). These studies show that VAC can catalyze NHR through a process that may reflect a form of aberrant replication fork repair. Although it is less efficient than classical homologous recombination, the rates of NHR may still be high enough to drive virus evolution. IMPORTANCE Large DNA viruses sometimes interfere in antiviral defenses using repurposed and mutant forms of the cellular proteins that mediate these same reactions. Such virus orthologs of cellular genes were presumably captured through nonhomologous recombination, perhaps in the distant past, but nothing is known about the processes that might promote "gene capture" or even how often these events occur over the course of an infectious cycle. This study shows that nonhomologous recombination in vaccinia virus-infected cells is frequent enough to seed a small but still significant portion of novel recombinants into large populations of newly replicated virus particles. This offers a route by which a pool of virus might survey the host genome for sequences that offer a selective growth advantage and potentially drive discontinuous virus evolution (saltation) through the acquisition of adventitious traits.
Collapse
Affiliation(s)
- Greg Vallée
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Norris
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Paszkowski
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Abstract
Population genetic diversity plays a prominent role in viral evolution, pathogenesis, immune escape, and drug resistance. Different mechanisms are responsible for creating and maintaining genetic diversity in viruses, including error-prone replication, repair avoidance, and genome editing, among others. This diversity is subsequently modulated by natural selection and random genetic drift, whose action in turn depends on multiple factors including viral genetic architecture, viral demography, and ecology. Understanding these processes should contribute to the development of more efficient control and treatment strategies against viral pathogens.
Collapse
|
16
|
Abstract
Treatment of HSV-1-infected cells with SP-2509 blocked viral DNA replication, gene expression after the onset of DNA replication, and virus production. These data support a potential new role for LSD1 in the regulation of viral DNA replication and successive steps in the virus life cycle, and further highlight the promising potential to utilize LSD1 inhibition as an antiviral approach. Lysine-specific demethylase 1 (LSD1) targets cellular proteins, including histone H3, p53, E2F, and Dnmt1, and is involved in the regulation of gene expression, DNA replication, the cell cycle, and the DNA damage response. LSD1 catalyzes demethylation of histone H3K9 associated with herpes simplex virus 1 (HSV-1) immediate early (IE) promoters and is necessary for IE gene expression, viral DNA replication, and reactivation from latency. We previously found that LSD1 associates with HSV-1 replication forks and replicating viral DNA, suggesting that it may play a direct role in viral replication or coupled processes. We investigated the effects of the LSD1 inhibitor SP-2509 on the HSV-1 life cycle. Unlike previously investigated LSD1 inhibitors tranylcypromine (TCP) and OG-L002, which covalently attach to the LSD1 cofactor flavin adenine dinucleotide (FAD) to inhibit demethylase activity, SP-2509 has previously been shown to inhibit LSD1 protein-protein interactions. We found that SP-2509 does not inhibit HSV-1 IE gene expression or transcription factor and RNA polymerase II (Pol II) association with viral DNA prior to the onset of replication. However, SP-2509 does inhibit viral DNA replication, late gene expression, and virus production. We used EdC labeling of nascent viral DNA to image aberrant viral replication compartments that form in the presence of SP-2509. Treatment resulted in the formation of small replication foci that colocalize with replication proteins but are defective for Pol II recruitment. Taken together, these data highlight a potential new role for LSD1 in the regulation of HSV-1 DNA replication and gene expression after the onset of DNA replication. IMPORTANCE Treatment of HSV-1-infected cells with SP-2509 blocked viral DNA replication, gene expression after the onset of DNA replication, and virus production. These data support a potential new role for LSD1 in the regulation of viral DNA replication and successive steps in the virus life cycle, and further highlight the promising potential to utilize LSD1 inhibition as an antiviral approach.
Collapse
|
17
|
Casto AM, Huang MLW, Xie H, Jerome KR, Wald A, Johnston CM, Greninger AL. Herpes Simplex Virus Mistyping due to HSV-1 × HSV-2 Interspecies Recombination in Viral Gene Encoding Glycoprotein B. Viruses 2020; 12:E860. [PMID: 32781734 PMCID: PMC7472045 DOI: 10.3390/v12080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Human herpes simplex viruses (HSV) 1 and 2 are extremely common human pathogens with overlapping disease spectra. Infections due to HSV-1 and HSV-2 are distinguished in clinical settings using sequence-based "typing" assays. Here we describe a case of HSV mistyping caused by a previously undescribed HSV-1 × HSV-2 recombination event in UL27, the HSV gene that encodes glycoprotein B. This is the first documented case of HSV mistyping caused by an HSV-1 × HSV-2 recombination event and the first description of an HSV interspecies recombination event in UL27, which is frequently used as a target for diagnostics and experimental therapeutics. We also review the primer and probe target sequences for a commonly used HSV typing assay from nearly 700 HSV-1 and HSV-2 samples and find that about 4% of HSV-1 samples have a single nucleotide change in at least one of these loci, which could impact assay performance. Our findings illustrate how knowledge of naturally occurring genomic variation in HSV-1 and HSV-2 is essential for the design and interpretation of molecular diagnostics for these viruses.
Collapse
Affiliation(s)
- Amanda M. Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Meei-Li W. Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Christine M. Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| |
Collapse
|
18
|
Brewster JL, Tolun G. Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red-beta annealase. IUBMB Life 2020; 72:1622-1633. [PMID: 32621393 PMCID: PMC7496540 DOI: 10.1002/iub.2343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
Abstract
DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.
Collapse
Affiliation(s)
- Jodi L Brewster
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Keiraville, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Keiraville, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
19
|
Current Understanding of RAD52 Functions: Fundamental and Therapeutic Insights. Cancers (Basel) 2020; 12:cancers12030705. [PMID: 32192055 PMCID: PMC7140074 DOI: 10.3390/cancers12030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52—both in S and M phase—that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.
Collapse
|
20
|
RAD52: Viral Friend or Foe? Cancers (Basel) 2020; 12:cancers12020399. [PMID: 32046320 PMCID: PMC7072633 DOI: 10.3390/cancers12020399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian Radiation Sensitive 52 (RAD52) is a gene whose scientific reputation has recently seen a strong resurgence. In the past decade, RAD52, which was thought to be dispensable for most DNA repair and recombination reactions in mammals, has been shown to be important for a bevy of DNA metabolic pathways. One of these processes is termed break-induced replication (BIR), a mechanism that can be used to re-start broken replication forks and to elongate the ends of chromosomes in telomerase-negative cells. Viruses have historically evolved a myriad of mechanisms in which they either conscript cellular factors or, more frequently, inactivate them as a means to enable their own replication and survival. Recent data suggests that Adeno-Associated Virus (AAV) may replicate its DNA in a BIR-like fashion and/or utilize RAD52 to facilitate viral transduction and, as such, likely conscripts/requires the host RAD52 protein to promote its perpetuation.
Collapse
|
21
|
Wang H, Li Z, Jia R, Yin J, Li A, Xia L, Yin Y, Müller R, Fu J, Stewart AF, Zhang Y. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res 2019; 46:e28. [PMID: 29240926 PMCID: PMC5861427 DOI: 10.1093/nar/gkx1249] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/02/2017] [Indexed: 12/29/2022] Open
Abstract
The exponentially increasing volumes of DNA sequence data highlight the need for new DNA cloning methods to explore the new information. Here, we describe ‘ExoCET’ (Exonuclease Combined with RecET recombination) to directly clone any chosen region from bacterial and mammalian genomes with nucleotide precision into operational plasmids. ExoCET combines in vitro exonuclease and annealing with the remarkable capacity of full length RecET homologous recombination (HR) to retrieve specified regions from genomic DNA preparations. Using T4 polymerase (T4pol) as the in vitro exonuclease for ExoCET, we directly cloned large regions (>50 kb) from bacterial and mammalian genomes, including DNA isolated from blood. Employing RecET HR or Cas9 cleavage in vitro, the directly cloned region can be chosen with nucleotide precision to position, for example, a gene into an expression vector without the need for further subcloning. In addition to its utility for bioprospecting in bacterial genomes, ExoCET presents straightforward access to mammalian genomes for various applications such as region-specific DNA sequencing that retains haplotype phasing, the rapid construction of optimal, haplotypic, isogenic targeting constructs or a new way to genotype that presents advantages over Southern blotting or polymerase chain reaction. The direct cloning capacities of ExoCET present new freedoms in recombinant DNA technology.
Collapse
Affiliation(s)
- Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Zhen Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Ruonan Jia
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Jia Yin
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China
| | - Yulong Yin
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China.,Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan Province 410125, People's Republic of China
| | - Rolf Müller
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.,Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
22
|
Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 2018; 116:1033-1042. [PMID: 30598436 DOI: 10.1073/pnas.1817642116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.
Collapse
|
23
|
Evilevitch A. The mobility of packaged phage genome controls ejection dynamics. eLife 2018; 7:37345. [PMID: 30178745 PMCID: PMC6122950 DOI: 10.7554/elife.37345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/29/2018] [Indexed: 12/31/2022] Open
Abstract
The cell decision between lytic and lysogenic infection is strongly influenced by dynamics of DNA injection into a cell from a phage population, as phages compete for limited resources and progeny. However, what controls the timing of viral DNA ejection events was not understood. This in vitro study reveals that DNA ejection dynamics for phages can be synchronized (occurring within seconds) or desynchronized (displaying minutes-long delays in initiation) based on mobility of encapsidated DNA, which in turn is regulated by environmental factors, such as temperature and extra-cellular ionic conditions. This mechano-regulation of ejection dynamics is suggested to influence viral replication where the cell’s decision between lytic and latent infection is associated with synchronized or desynchronized delayed ejection events from phage population adsorbed to a cell. Our findings are of significant importance for understanding regulatory mechanisms of latency in phage and Herpesviruses, where encapsidated DNA undergoes a similar mechanical transition. Viruses are tiny ‘parasites’ that smuggle their genetic material inside a cell and then hijack its resources for their own benefit. A viral infection can either be lytic or latent. In a lytic cycle, viruses make their host produce many copies of themselves, ultimately killing the cell. In contrast, during a latent infection, the viruses go ‘dormant’: for instance, some of them can insert their genetic material into the DNA of their host, which then gets passed on as the cell divides. Certain viruses are capable of both lytic and latent infections. One example is the lambda phage, which targets Escherichia coli bacteria. In the first stage of infection, the genetic material ‘shoots out’ of the virus and gets injected inside the bacterium. The dynamics of the ejection process determine the type of infection that will follow. If multiple phages release their genomes quickly and within seconds of each other into the same cell, the bacterium tends to incorporate the viral DNA into its own genome, leading to a latent cycle. If the infections take place more slowly and not all at the same time, the cell is more likely to go through a lytic phase. However, the mechanism behind the different injection behaviors is still unknown; in particular, it is unclear which factors control the specificities of the ejection process in the first place. Here, Alex Evilevitch demonstrates that the mechanical state of the phage DNA just before ejection dictates how the genetic material will then be injected in the bacteria. The experiments measured the stiffness of the DNA and the amount of heat given off during infection. Like fluid toothpaste, if the DNA is more liquid and flexible, it gets ejected quickly and simultaneously from several phages. Then, the genetic information of these viruses can be incorporated in the genome of the bacteria. On the other hand, if the DNA is more solid, it is likely to ‘stick’ and take time before it can be squeezed out: the injections become unsynchronised, which leads to a lytic phase. Evilevitch then shows that the environment can influence the properties of the phages’ genome. A little more heat, or certain chemicals, can make the DNA more fluid inside the viruses, and change the way it can be injected inside the bacteria. Many viruses that cause diseases in humans – from cold sores to glandular fever – can switch between the lytic and latent cycles. For the first time, these results show that the mechanical properties of the DNA inside a virus influence the ‘decision’ between the two types of infection. This knowledge could help us prevent infections from becoming lytic and ultimately allow us to control the spread of disease.
Collapse
Affiliation(s)
- Alex Evilevitch
- Department of Pathobiology, Division of Microbiology and Immunology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Experimental Medical Sciences, Virus Biophysics Group, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Loncoman CA, Hartley CA, Coppo MJC, Browning GF, Quinteros JA, Diaz-Méndez A, Thilakarathne D, Fakhri O, Vaz PK, Devlin JM. Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine. Vaccine 2018; 36:5709-5716. [PMID: 30104116 DOI: 10.1016/j.vaccine.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.
Collapse
Affiliation(s)
- Carlos A Loncoman
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - José A Quinteros
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dulari Thilakarathne
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Omid Fakhri
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Investigation of recombination-intense viral groups and their genes in the Earth's virome. Sci Rep 2018; 8:11496. [PMID: 30065291 PMCID: PMC6068154 DOI: 10.1038/s41598-018-29272-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Bacteriophages (phages), or bacterial viruses, are the most abundant and diverse biological entities that impact the global ecosystem. Recent advances in metagenomics have revealed their rampant abundance in the biosphere. A fundamental aspect of bacteriophages that remains unexplored in metagenomic data is the process of recombination as a driving force in evolution that occurs among different viruses within the same bacterial host. Here, we systematically examined signatures of recombination in every gene from 211 species-level viral groups in a recently obtained dataset of the Earth’s virome that contain corresponding information on the host bacterial species. Our study revealed that signatures of recombination are widespread (84%) among the diverse viral groups. We identified 25 recombination-intense viral groups, widely distributed across the viral taxonomy, and present in bacterial species living in the human oral cavity. We also revealed a significant inverse association between the recombination-intense viral groups and Type II restriction endonucleases, that could be effective in reducing recombination among phages in a cell. Furthermore, we identified recombination-intense genes that are significantly enriched for encoding phage morphogenesis proteins. Changes in the viral genomic sequence by recombination may be important to escape cleavage by the host bacterial immune systems.
Collapse
|
26
|
The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. J Virol 2017; 91:JVI.01380-17. [PMID: 28956767 DOI: 10.1128/jvi.01380-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.
Collapse
|
27
|
Castelhano N, Araujo NM, Arenas M. Heterogeneous recombination among Hepatitis B virus genotypes. INFECTION GENETICS AND EVOLUTION 2017; 54:486-490. [PMID: 28827173 DOI: 10.1016/j.meegid.2017.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic.
Collapse
Affiliation(s)
- Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Miguel Arenas
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
| |
Collapse
|
28
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
29
|
Bermek O, Weller SK, Griffith JD. The UL8 subunit of the helicase-primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. J Biol Chem 2017; 292:15611-15621. [PMID: 28743747 DOI: 10.1074/jbc.m117.799064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) DNA is replicated by a mechanism involving DNA recombination. For instance, replication of the HSV-1 genome produces X- and Y-branched structures, reminiscent of recombination intermediates. HSV-1's replication machinery includes a trimeric helicase-primase composed of helicase (UL5) and primase (UL52) subunits and a third subunit, UL8. UL8 has been reported to stimulate the helicase and primase activities of the complex in the presence of ICP8, an HSV-1 protein that functions as an annealase, a protein that binds complementary single-stranded DNA (ssDNA) and facilitates its annealing to duplex DNA. UL8 also influences the intracellular localization of the UL5/UL52 subunits, but UL8's catalytic activities are not known. In this study we used a combination of biochemical techniques and transmission electron microscopy. First, we report that UL8 alone forms protein filaments in solution. Moreover, we also found that UL8 binds to ssDNAs >50-nucletides long and promotes the annealing of complementary ssDNA to generate highly branched duplex DNA structures. Finally, UL8 has a very high affinity for replication fork structures containing a gap in the lagging strand as short as 15 nucleotides, suggesting that UL8 may aid in directing or loading the trimeric complex onto a replication fork. The properties of UL8 uncovered here suggest that UL8 may be involved in the generation of the X- and Y-branched structures that are the hallmarks of HSV replication.
Collapse
Affiliation(s)
- Oya Bermek
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| |
Collapse
|
30
|
Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. INFECTION GENETICS AND EVOLUTION 2017; 49:174-185. [DOI: 10.1016/j.meegid.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
|
31
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
32
|
Abstract
Two therapeutic paths have been proposed to treat inherited retinal dystrophy using clustered regularly interspaced short palindromic repeats (CRISPR). One strategy is to genetically correct patient cells ex vivo for autologous transplant, whereas the second is to modify cells in vivo by delivering CRISPR effectors to the retina. The feasibility of both editing strategies has been demonstrated within three years of CRISPR's adaptation to mammalian systems. However, the functional integration of transplanted cells into host retinae has been a long-standing challenge that currently represents the 2025 moonshot of the National Eye Institute's Audacious Goals Initiative. The clinical translatability of each path is discussed with regard to current investigations and whether cell replacement can be circumvented by in vivo editing.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
33
|
Subramaniam S, Erler A, Fu J, Kranz A, Tang J, Gopalswamy M, Ramakrishnan S, Keller A, Grundmeier G, Müller D, Sattler M, Stewart AF. DNA annealing by Redβ is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions. Sci Rep 2016; 6:34525. [PMID: 27708411 PMCID: PMC5052646 DOI: 10.1038/srep34525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Single strand annealing proteins (SSAPs) like Redβ initiate homologous recombination by annealing complementary DNA strands. We show that C-terminally truncated Redβ, whilst still able to promote annealing and nucleoprotein filament formation, is unable to mediate homologous recombination. Mutations of the C-terminal domain were evaluated using both single- and double stranded (ss and ds) substrates in recombination assays. Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA recombination indicating two separable functions, one of which is critical for dsDNA recombination and the second for recombination per se. As evaluated by co-immunoprecipitation experiments, the dsDNA recombination function relates to the Redα-Redβ protein-protein interaction, which requires not only contacts in the C-terminal domain but also a region near the N-terminus. Because the nucleoprotein filament formed with C-terminally truncated Redβ has altered properties, the second C-terminal function could be due to an interaction required for functional filaments. Alternatively the second C-terminal function could indicate a requirement for a Redβ-host factor interaction. These data further advance the model for Red recombination and the proposition that Redβ and RAD52 SSAPs share ancestral and mechanistic roots.
Collapse
Affiliation(s)
| | - Axel Erler
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jing Tang
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Mohanraj Gopalswamy
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Daniel Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstraße 26, 4058 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
34
|
Smith CE, Bell CE. Domain Structure of the Redβ Single-Strand Annealing Protein: the C-terminal Domain is Required for Fine-Tuning DNA-binding Properties, Interaction with the Exonuclease Partner, and Recombination in vivo. J Mol Biol 2016; 428:561-578. [PMID: 26780547 DOI: 10.1016/j.jmb.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/19/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
Abstract
Redβ is a component of the Red recombination system of bacteriophage λ that promotes a single strand annealing (SSA) reaction to generate end-to-end concatemers of the phage genome for packaging. Redβ interacts with λ exonuclease (λexo), the other component of the Red system, to form a "synaptosome" complex that somehow integrates the end resection and annealing steps of the reaction. Previous work using limited proteolysis and chemical modification revealed that Redβ consists of an N-terminal DNA binding domain, residues 1-177, and a flexible C-terminal "tail", residues 178-261. Here, we quantitatively compare the binding of the full-length protein (Redβ(FL)) and the N-terminal domain (Redβ(177)) to different lengths of ssDNA substrate and annealed duplex product. We find that in general, Redβ(FL) binds more tightly to annealed duplex product than to ssDNA substrate, while Redβ(177) binds more tightly to ssDNA. In addition, the C-terminal region of Redβ corresponding to residues 182-261 was purified and found to fold into an α-helical domain that is required for the interaction with λexo to form the synaptosome complex. Deletion analysis of Redβ revealed that removal of just eleven residues from the C-terminus disrupts the interaction with λexo as well as ssDNA and dsDNA recombination in vivo. By contrast, the determinants for self-oligomerization of Redβ appear to reside solely within the N-terminal domain. The subtle but significant differences in the relative binding of Redβ(FL) and Redβ(177) to ssDNA substrate and annealed duplex product may be important for Redβ to function as a SSA protein in vivo.
Collapse
Affiliation(s)
- Christopher E Smith
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
35
|
Vaz PK, Horsington J, Hartley CA, Browning GF, Ficorilli NP, Studdert MJ, Gilkerson JR, Devlin JM. Evidence of widespread natural recombination among field isolates of equine herpesvirus 4 but not among field isolates of equine herpesvirus 1. J Gen Virol 2015; 97:747-755. [PMID: 26691326 DOI: 10.1099/jgv.0.000378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombination in alphaherpesviruses allows evolution to occur in viruses that have an otherwise stable DNA genome with a low rate of nucleotide substitution. High-throughput sequencing of complete viral genomes has recently allowed natural (field) recombination to be studied in a number of different alphaherpesviruses, however, such studies have not been applied to equine herpesvirus 1 (EHV-1) or equine herpesvirus 4 (EHV-4). These two equine alphaherpesviruses are genetically similar, but differ in their pathogenesis and epidemiology. Both cause economically significant disease in horse populations worldwide. This study used high-throughput sequencing to determine the full genome sequences of EHV-1 and EHV-4 isolates (11 and 14 isolates, respectively) from Australian or New Zealand horses. These sequences were then analysed and examined for evidence of recombination. Evidence of widespread recombination was detected in the genomes of the EHV-4 isolates. Only one potential recombination event was detected in the genomes of the EHV-1 isolates, even when the genomes from an additional 11 international EHV-1 isolates were analysed. The results from this study reveal another fundamental difference between the biology of EHV-1 and EHV-4. The results may also be used to help inform the future safe use of attenuated equine herpesvirus vaccines.
Collapse
Affiliation(s)
- P K Vaz
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J Horsington
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - C A Hartley
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N P Ficorilli
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M J Studdert
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J M Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 2015; 62:431-42. [PMID: 26650613 DOI: 10.1007/s00294-015-0548-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
Abstract
The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals.
Collapse
|
37
|
Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. FRONTIERS IN PLANT SCIENCE 2015; 6:883. [PMID: 26579143 PMCID: PMC4624840 DOI: 10.3389/fpls.2015.00883] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA) in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins.
Collapse
|
38
|
Abstract
Recent advances in the development of genome editing technologies based on programmable nucleases have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress toward developing programmable nuclease-based therapies as well as future prospects and challenges.
Collapse
Affiliation(s)
- David Benjamin Turitz Cox
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Randall Jeffrey Platt
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Feng Zhang
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Abstract
Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.
Collapse
Affiliation(s)
- Samantha Smith
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sandra K Weller
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
40
|
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 30:296-307. [PMID: 25541518 PMCID: PMC7106159 DOI: 10.1016/j.meegid.2014.12.022] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023]
Abstract
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal; Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER en Epidemiología y Salud Pública, Spain
| | - Ferran Palero
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain.
| |
Collapse
|
41
|
Structure of the herpes simplex virus 1 genome: manipulation of nicks and gaps can abrogate infectivity and alter the cellular DNA damage response. J Virol 2014; 88:10146-56. [PMID: 24965466 DOI: 10.1128/jvi.01723-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) virion DNA contains nicks and gaps, and in this study a novel assay for estimating the size and number of gaps in virion DNA was developed. Consistent with previous reports, we estimate that there are approximately 15 gaps per genome, and we calculate the average gap length to be approximately 30 bases. Virion DNA was isolated and treated with DNA-modifying enzymes in order to fill in the gaps and modify the ends. Interestingly, filling in gaps, blunting the ends, or adding random sequences to the 3' ends of DNA, producing 3' flaps, did not impair the infectivity of treated DNA following transfection of Vero cells. On the other hand, the formation of 5' flaps in the DNA following treatment resulted in a dramatic reduction (95 to 100%) in infectivity. Virion DNA stimulated DNA-PKcs activity in transfected cells, and DNA with 5' flaps stimulated a higher level of DNA-PKcs activity than that observed in cells transfected with untreated virion DNA. The infectivity of 5'-flapped DNA was restored in cells that do not express DNA-PKcs and in cells cotransfected with the immediate early protein ICP0, which degrades DNA-PKcs. These results are consistent with previous reports that DNA-dependent protein kinase (DNA-PK) and the nonhomologous end joining (NHEJ) repair pathway are intrinsically antiviral and that ICP0 can counteract this effect. We suggest that HSV-1 DNA with 5' flaps may induce an antiviral state due to the induction of a DNA damage response, primarily mediated by NHEJ, that renders the HSV-1 genome less efficient for lytic infection. IMPORTANCE For productive lytic infection to occur, HSV-1 must counteract a variety of cellular intrinsic antiviral mechanisms, including the DNA damage response (DDR). DDR pathways have been associated with silencing of gene expression, cell cycle arrest, and induction of apoptosis. In addition, the fate of viral genomes is likely to play a role in whether viral genomes adopt a configuration suitable for lytic DNA replication. This study demonstrates that virion DNA activates the cellular DDR kinase, DNA-PK, and that this response is inhibitory to viral infection. Furthermore, we show that HSV-1 ubiquitin ligase, ICP0, plays an important role in counteracting the negative effects of DNA-PK activation. These findings support the notion that DNA-PK is antiviral and suggest that the fate of incoming viral DNA has important consequences for the progression of lytic infection. This study underscores the complex evolutionary relationships between HSV and its host.
Collapse
|