1
|
Ruple HK, Haasis E, Bettenburg A, Maier C, Fritz C, Schüle L, Löcker S, Soltow Y, Schintgen L, Schmidt NS, Schneider C, Lorentz A, Fricke WF. The gut microbiota predicts and time-restricted feeding delays experimental colitis. Gut Microbes 2025; 17:2453019. [PMID: 39843997 PMCID: PMC11758946 DOI: 10.1080/19490976.2025.2453019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient (IL-10-/-) mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity. We show that while altered light/dark cycles disrupted the intestinal clock in wild type (WT) mice, IL-10-/- mice were characterized by altered microbiota composition, impaired intestinal clock, and microbiota rhythmicity irrespective of external clock disruption, which had no consistent colitis-promoting effect on IL-10-/- mice. TRF delayed colitis onset reduced the expression of inflammatory markers and increased the expression of clock genes in the intestine, and increased gut microbiota rhythmicity in IL-10-/- mice. Compositional changes and reduced rhythmicity of the fecal microbiota preceded colitis and could predict colitis symptoms for individual IL-10-/- mice across different experiments. Our findings provide perspectives for new diagnostic and TRF-based, therapeutic applications in IBD that should be further explored.
Collapse
Affiliation(s)
- Hannah K. Ruple
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Eva Haasis
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Anna Bettenburg
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Carina Maier
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Carolin Fritz
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Laura Schüle
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Sarah Löcker
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Yvonne Soltow
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Lynn Schintgen
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Nina S. Schmidt
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Celine Schneider
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - W. Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Ntiri ES, Chun Nin Wong A. Microbial metabolites as engines of behavioral variation across animals. Gut Microbes 2025; 17:2501191. [PMID: 40357979 PMCID: PMC12077453 DOI: 10.1080/19490976.2025.2501191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The microbiome, especially that present in the gut, has emerged as a key modulator of animal behavior. However, the extent of its influence across species and behavioral repertoires, as well as the underlying mechanisms, remains poorly understood. Increasing evidence suggests that microbial metabolites play an important role in driving behavioral variation. In this review, we synthesize findings from vertebrates to invertebrates, spanning both model and non-model organisms, to define key groups of microbial-derived metabolites involved in modulating seven distinct behaviors: nutrition, olfaction, circadian rhythms, reproduction, locomotion, aggression, and social interactions. We discuss how these microbial metabolites interact with host chemosensory systems, neurotransmitter signaling, and epigenetic modifications to shape behavior. Additionally, we highlight critical gaps in mechanistic understanding, including the need to map additional host receptors and signaling pathways, as well as the untapped potential of microbial biosynthetic gene clusters as sources for novel bioactive compounds. Advancing these areas will enhance understanding of the microbiome's role in behavioral modulation and open new avenues for microbiome-based interventions for behavioral disorders.
Collapse
Affiliation(s)
- Eric Siaw Ntiri
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Adam Chun Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Li C, Cao P, Li Y, Zhang S, Zhang Y, Xu Z, An B, Yong R. Circadian antidepressant treatments in depression: A systematic review and meta-analysis. Chronobiol Int 2025; 42:452-462. [PMID: 40162662 DOI: 10.1080/07420528.2025.2478127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The purpose of the present study was to explore whether maximum efficacy treatments would be dependent on the time of day at which antidepressants were taken. Databases were searched for randomized experiments or randomized controlled trials involving interventions of any antidepressants taken at a particular time of the day. Out of 10 348 screened articles, 10 studies were included in the meta-analyses. The optimal time of maximum efficacies in 5 out of 15 drugs in the 10 studies was at zeitgeber time (ZT) 2, including fluoxetine, sertraline, citalopram, doxepin, and agomelatine. The best therapeutic effects of mirtazapine, trazodone, and agomelatine were at ZT10, while maximum efficacies of venlafaxine and fluvoxamine were at ZT6 and ZT13, respectively. The optimal time of melatonin administration was the period of treatment dependence. We found antidepressants with different mechanisms might have same or different optimal administration times. These findings may guide evidence-based antidepressant treatment choices with optimal dosing time. More prospective randomized trials or randomized experiments are demanded to establish recommendations for optimal circadian timing of depression based on zeitgeber time. It would be of interest to further evaluate this time-selection as a potential viable novel therapeutic in future research.
Collapse
Affiliation(s)
- Chuying Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Pengpeng Cao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yuhao Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Shuo Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Ye Zhang
- School of Clinical Medicine, The First hospital of Lanzhou University, Lanzhou, PR China
| | - Zheng Xu
- Evidence-Based Medicine Center, The Centre of Evidence-based Social Science, School of Basic Medicine, Lanzhou University, Lanzhou, PR China
- Department of Sociology, School of Philosophy and Sociology, Lanzhou University, Lanzhou, PR China
| | - Bei An
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Ruixin Yong
- School of Clinical Medicine, The First hospital of Lanzhou University, Lanzhou, PR China
| |
Collapse
|
4
|
Cryan JF. Gut microbiota: our fellow travellers in health & disease. FEBS J 2025; 292:1223-1227. [PMID: 39994842 DOI: 10.1111/febs.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
The last two decades have seen a major increase in our understanding of the role of the microbiome in health and disease. We now realise that these fellow travellers are really important regulators of various systems in the body across the lifespan. In this Special Issue, we bring together a collection of articles from leading authors who summarise the current state of the art of host-microbe interactions. While we celebrate the breakthroughs in microbiome science, we also acknowledge the challenges-variability in microbiota composition, the complexities of host-microbe interactions and the need for standardised methodologies. As research progresses, harnessing the power of the microbiome may pave the way for novel diagnostic and therapeutic strategies, reaffirming the notion that we are never alone-our microbial fellow travellers accompany us through life, for better or worse.
Collapse
Affiliation(s)
- John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| |
Collapse
|
5
|
Zhao C, Lei S, Zhao H, Li Z, Miao Y, Peng C, Gong J. Theabrownin remodels the circadian rhythm disorder of intestinal microbiota induced by a high-fat diet to alleviate obesity in mice. Food Funct 2025; 16:1310-1329. [PMID: 39866149 DOI: 10.1039/d4fo05947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (i.e., Lachnospiraceae_NK4A136_group, Alistipes, etc.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, etc.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Zelin Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
6
|
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, Galvano F, Castellano S, Grosso G. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025; 17:529. [PMID: 39940387 PMCID: PMC11819666 DOI: 10.3390/nu17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting-feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Stefanía Carvajal Altamiranda
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Soliz-Rueda JR, Cuesta-Marti C, O'Mahony SM, Clarke G, Schellekens H, Muguerza B. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol Metab 2025; 36:15-28. [PMID: 39095231 DOI: 10.1016/j.tem.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| |
Collapse
|
9
|
Jakubowicz D, Matz Y, Landau Z, Rosenblum RC, Twito O, Wainstein J, Tsameret S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:12355. [PMID: 39596418 PMCID: PMC11594859 DOI: 10.3390/ijms252212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light-dark cycle and the eating-fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Yael Matz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Landau
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Rachel Chava Rosenblum
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Orit Twito
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Julio Wainstein
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Lou X, Li P, Luo X, Lei Z, Liu X, Liu Y, Gao L, Xu W, Liu X. Dietary patterns interfere with gut microbiota to combat obesity. Front Nutr 2024; 11:1387394. [PMID: 38953044 PMCID: PMC11215203 DOI: 10.3389/fnut.2024.1387394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity and obesity-related metabolic disorders are global epidemics that occur when there is chronic energy intake exceeding energy expenditure. Growing evidence suggests that healthy dietary patterns not only decrease the risk of obesity but also influence the composition and function of the gut microbiota. Numerous studies manifest that the development of obesity is associated with gut microbiota. One promising supplementation strategy is modulating gut microbiota composition by dietary patterns to combat obesity. In this review, we discuss the changes of gut microbiota in obesity and obesity-related metabolic disorders, with a particular emphasis on the impact of dietary components on gut microbiota and how common food patterns can intervene in gut microbiota to prevent obesity. While there is promise in intervening with the gut microbiota to combat obesity through the regulation of dietary patterns, numerous key questions remain unanswered. In this review, we critically review the associations between dietary patterns, gut microbes, and obesity, aiming to contribute to the further development and application of dietary patterns against obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaomeng Liu
- Nutrition and Food Hygiene Laboratory, School of Public Health, Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
11
|
Wang X, Ye G, Wang Z, Wang Z, Gong L, Wang J, Liu J. Dietary Oat β-Glucan Alleviates High-Fat Induced Insulin Resistance through Regulating Circadian Clock and Gut Microbiome. Mol Nutr Food Res 2024; 68:e2300917. [PMID: 38778506 DOI: 10.1002/mnfr.202300917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Indexed: 05/25/2024]
Abstract
SCOPE High-fat diet induced circadian rhythm disorders (CRD) are associated with metabolic diseases. As the main functional bioactive component in oat, β-glucan (GLU) can improve metabolic disorders, however its regulatory effect on CRD remains unclear. In this research, the effects of GLU on high-fat diet induced insulin resistance and its mechanisms are investigated, especially focusing on circadian rhythm-related process. METHODS AND RESULTS Male C57BL/6 mice are fed a low fat diet, a high-fat diet (HFD), and HFD supplemented 3% GLU for 13 weeks. The results show that GLU treatment alleviates HFD-induced insulin resistance and intestinal barrier dysfunction in obese mice. The rhythmic expressions of circadian clock genes (Bmal1, Clock, and Cry1) in the colon impaired by HFD diet are also restored by GLU. Further analysis shows that GLU treatment restores the oscillatory nature of gut microbiome, which can enhance glucagon-like peptide (GLP-1) secretion via short-chain fatty acids (SCFAs) mediated activation of G protein-coupled receptors (GPCRs). Meanwhile, GLU consumption significantly relieves colonic inflammation and insulin resistance through modulating HDAC3/NF-κB signaling pathway. CONCLUSION GLU can ameliorate insulin resistance due to its regulation of colonic circadian clock and gut microbiome.
Collapse
Affiliation(s)
- Xingyu Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Gaoqi Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Zongwei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
12
|
Moreno-Cortés ML, Meza-Alvarado JE, García-Mena J, Hernández-Rodríguez A. Chronodisruption and Gut Microbiota: Triggering Glycemic Imbalance in People with Type 2 Diabetes. Nutrients 2024; 16:616. [PMID: 38474745 PMCID: PMC10934040 DOI: 10.3390/nu16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
The desynchronization of physiological and behavioral mechanisms influences the gut microbiota and eating behavior in mammals, as shown in both rodents and humans, leading to the development of pathologies such as Type 2 diabetes (T2D), obesity, and metabolic syndrome. Recent studies propose resynchronization as a key input controlling metabolic cycles and contributing to reducing the risk of suffering some chronic diseases such as diabetes, obesity, or metabolic syndrome. In this analytical review, we present an overview of how desynchronization and its implications for the gut microbiome make people vulnerable to intestinal dysbiosis and consequent chronic diseases. In particular, we explore the eubiosis-dysbiosis phenomenon and, finally, propose some topics aimed at addressing chronotherapy as a key strategy in the prevention of chronic diseases.
Collapse
Affiliation(s)
- María Luisa Moreno-Cortés
- Laboratorio de Biomedicina, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX 07360, Mexico;
| | - Azucena Hernández-Rodríguez
- Laboratorio de Biomedicina, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
- Facultad de Bioanálisis, Universidad Veracruzana, Xalapa 91010, Veracruz, Mexico
| |
Collapse
|
13
|
Sun Y, Wang X, Li L, Zhong C, Zhang Y, Yang X, Li M, Yang C. The role of gut microbiota in intestinal disease: from an oxidative stress perspective. Front Microbiol 2024; 15:1328324. [PMID: 38419631 PMCID: PMC10899708 DOI: 10.3389/fmicb.2024.1328324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Recent studies have indicated that gut microbiota-mediated oxidative stress is significantly associated with intestinal diseases such as colorectal cancer, ulcerative colitis, and Crohn's disease. The level of reactive oxygen species (ROS) has been reported to increase when the gut microbiota is dysregulated, especially when several gut bacterial metabolites are present. Although healthy gut microbiota plays a vital role in defending against excessive oxidative stress, intestinal disease is significantly influenced by excessive ROS, and this process is controlled by gut microbiota-mediated immunological responses, DNA damage, and intestinal inflammation. In this review, we discuss the relationship between gut microbiota and intestinal disease from an oxidative stress perspective. In addition, we also provide a summary of the most recent therapeutic approaches for preventing or treating intestinal diseases by modifying gut microbiota.
Collapse
Affiliation(s)
- Yiqi Sun
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xurui Wang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Zhong
- Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Yang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
16
|
Kara N, Iweka CA, Blacher E. Chrono-Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Adv Biol (Weinh) 2023; 7:e2300048. [PMID: 37409422 DOI: 10.1002/adbi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a significant public health concern for elderly individuals. However, the majority of pre-clinical studies utilize young and healthy rodents, which may result in failure of candidate therapies in clinical trials. In this brief review/perspective, the complex link between circadian rhythms, aging, innate immunity, and the gut microbiome to ischemic injury onset, progression, and recovery is discussed. Short-chain fatty acids and nicotinamide adenine dinucleotide+ (NAD+ ) production by the gut microbiome are highlighted as key mechanisms with profound rhythmic behavior, and it is suggested to boost them as prophylactic/therapeutic approaches. Integrating aging, its associated comorbidities, and circadian regulation of physiological processes into stroke research may increase the translational value of pre-clinical studies and help to schedule the optimal time window for existing practices to improve stroke outcome and recovery.
Collapse
Affiliation(s)
- Nirit Kara
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| | - Chinyere Agbaegbu Iweka
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Eran Blacher
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
17
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
18
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
19
|
Weger M, Weger BD, Gachon F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin Drug Discov 2023. [PMID: 37300813 DOI: 10.1080/17460441.2023.2224554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology. AREAS COVERED In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development. They also discuss the factors influencing rhythmic drug pharmacokinetic including sex, metabolic diseases, feeding rhythms, and microbiota, that are often overlooked in the context of chronopharmacology. This article summarizes the involved molecular mechanisms and functions and explains why these parameters should be considered in the process of drug discovery. EXPERT OPINION Although chronomodulated treatments have shown promising results, particularly for cancer, the practice is still underdeveloped due to the associated high cost and time investments. However, implementing this strategy at the preclinical stage could offer a new opportunity to translate preclinical discoveries into successful clinical treatments.
Collapse
Affiliation(s)
- Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Benjamin D Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| |
Collapse
|
20
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
21
|
Hao J, Li Y, Yu Y, Zheng L, Feng F. Gut microbiota characteristics of Mongolian and Han populations in anti-tuberculosis drug-induced liver injury: a population-based case-control study. BMC Microbiol 2023; 23:74. [PMID: 36927469 PMCID: PMC10018964 DOI: 10.1186/s12866-023-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The pathogenesis of anti-tuberculosis (TB) drug-induced liver injury (ADLI) is complicated and remains unclear. We aimed to analyse the relationship between the characteristics of gut microbiota and ADLI in Mongolian and Han patients with pulmonary TB and identify the most notable bacteria related to the occurrence of liver injury in those populations. METHODS Patients with concurrent liver injury (LI) and no liver injury (ULI) before receiving first-line anti-TB drug treatment (T1) from the Han population in Tangshan and the Mongolian population in Inner Mongolia were selected as research subjects. At the time of liver injury (T2), stool samples were measured by bacterial 16S rRNA gene high-throughput sequencing to analyse and compare the differences in the gut microbiota of the LI and ULI Mongolian and Han patients at T1 and T2 and identify the differences between those patients. RESULTS A total of 45 Mongolian and 37 Han patients were enrolled in our study. A dynamic comparison from T1 to T2 showed that the microbiota of the LI and ULI groups changed significantly from T1 to T2 in both the Mongolian and Han populations. However, there were commonalities and personality changes in the microbiota of the two ethnic groups. CONCLUSION Differences in gut microbes in ADLI were found among the Han and Mongolian patients in our study. Ekmania and Stenotrophomonas were related to the occurrence of ADLI in Mongolian patients, while Ekmania and Ruminococcus__gnavus_group were related to the occurrence of ADLI in the Han population.
Collapse
Affiliation(s)
- Jinqi Hao
- School of Public Health, North China University of Science and Technology, Hebei Province, 063210, Tangshan, China
- School of Public Health, Baotou Medical College, Inner Mongolia, 014030, Baotou, China
| | - Yuhong Li
- School of Public Health, North China University of Science and Technology, Hebei Province, 063210, Tangshan, China
| | - Yanqin Yu
- School of Public Health, Baotou Medical College, Inner Mongolia, 014030, Baotou, China
| | - Limin Zheng
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, 014010, Baotou, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Hebei Province, 063210, Tangshan, China.
| |
Collapse
|
22
|
Desmet L, Thijs T, Segers A, Depoortere I. Chronic jetlag reprograms gene expression in the colonic smooth muscle layer inducing diurnal rhythmicity in the effect of bile acids on colonic contractility. Neurogastroenterol Motil 2023; 35:e14487. [PMID: 36264144 DOI: 10.1111/nmo.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Secondary bile acids entrain peripheral circadian clocks and inhibit colonic motility via the bile acid receptor GPBAR1. We aimed to investigate whether chronodisruption affected the rhythm in serum bile acid levels and whether this was associated with alterations in clock gene and Gpbar1 mRNA expression in the colonic smooth muscle layer. We hypothesized that this in turn may affect the rhythm in the inhibitory effect of secondary bile acids on colonic contractility. METHODS Mice were exposed to 4 weeks of chronic jetlag induction. The expression of Gpbar1 and clock genes was measured in colonic smooth muscle tissue using RT-qPCR over 24 h (4 h time interval). The effect of secondary bile acids on electrical field-induced neural contractions was measured isometrically in colonic smooth muscle strips. KEY RESULTS Chronic jetlag abolished the rhythmicity in serum bile acid levels. This was associated with a phase-shift in diurnal clock gene mRNA fluctuations in smooth muscle tissue. Chronic jetlag induced a rhythm in Gpbar1 expression in the colonic smooth muscle layer. In parallel, a rhythm was induced in the inhibitory effect of taurodeoxycholic acid (TDCA), but not deoxycholic acid, on neural colonic contractions that peaked together with Gpbar1 expression. CONCLUSIONS & INFERENCES Chronodisruption abolished the rhythm in bile acid levels which might contribute to a shift in smooth muscle clock gene expression. Our findings suggest that chronodisruption caused a transcriptional reprogramming in the colonic smooth layer thereby inducing a rhythm in the expression of Gpbar1 and in the inhibitory effect of TDCA on colonic contractility.
Collapse
Affiliation(s)
- Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Anneleen Segers
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Abstract
The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.
Collapse
Affiliation(s)
- Timothy O Cox
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirti Nath
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|