1
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Drago P, Bookey N, Leung K, Henry M, Meleady P, Greene NDE, Parle‐McDermott A. DHFR2 RNA directly regulates dihydrofolate reductase and its expression level impacts folate one carbon metabolism. FASEB J 2025; 39:e70391. [PMID: 39957677 PMCID: PMC11831416 DOI: 10.1096/fj.202401039rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Dihydrofolate reductase activity is required in One Carbon Metabolism to ensure that the biologically active form of folate, tetrahydrofolate, is replenished and available as an enzyme cofactor for numerous cellular reactions, including purine and pyrimidine synthesis. Most cellular enzyme activity was thought to arise from the product of the DHFR gene on chromosome 5, with its paralogue DHFR2 (formerly known as DHFRL1; [chromosome 3]), believed to be responsible for mitochondrial dihydrofolate activity based on recombinant versions of the enzyme. In this paper, we confirm our earlier findings that dihydrofolate reductase activity in mitochondria is derived from the DHFR gene rather than DHFR2 and that endogenous DHFR2 protein is not detectable in most cells and tissues. Using HepG2 cell lines with modulated expression of either DHFR or DHFR2, we observed an impact of DHFR2 RNA on One Carbon Metabolism mediated through an influence on DHFR expression and activity. Knockout of DHFR2 results in a drop in dihydrofolate reductase activity, lowered 10-formyltetrahydrofolate abundance, downregulation of DHFR mRNA, and diminished DHFR protein abundance. We also observed downregulation of Serine Hydroxymethyltransferase and Thymidylate Synthase, two One Carbon Metabolism enzymes that work with DHFR to support de novo thymidylate synthesis. The expression of recombinant DHFR2 resulted in restoration of DHFR mRNA and protein levels while a DHFR knockdown cell line showed upregulation of DHFR2 RNA. We propose that the DHFR2 gene encodes an RNA molecule that regulates cellular dihydrofolate reductase activity through its impact on DHFR mRNA and protein.
Collapse
Affiliation(s)
- Paola Drago
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Niamh Bookey
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Kit‐Yi Leung
- Developmental Biology and Cancer DepartmentUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Michael Henry
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Paula Meleady
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer DepartmentUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Anne Parle‐McDermott
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| |
Collapse
|
3
|
Christensen KE, Faquette ML, Leclerc D, Keser V, Luan Y, Bennett-Firmin JL, Malysheva OV, Reagan AM, Howell GR, Caudill MA, Bottiglieri T, Rozen R. Folic Acid and Methyltetrahydrofolate Supplementation in the Mthfr677C>T Mouse Model with Hepatic Steatosis. Nutrients 2024; 17:82. [PMID: 39796516 PMCID: PMC11723006 DOI: 10.3390/nu17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES The MTHFR677C>T gene variant results in a thermolabile MTHFR enzyme associated with elevated plasma homocysteine in TT individuals. Health risks associated with the TT genotype may be modified by dietary and supplemental folate intake. Supplementation with methyltetrahydrofolate (methylTHF) may be preferable to folic acid because it is the MTHFR product, and does not require reduction by DHFR to enter one-carbon folate metabolism. In the Mthfr677C>T mouse model for this variant, female 677TT (TT) mice have an increased incidence of hepatic steatosis. The objective of this study was to compare the effects of methylTHF and folic acid supplementation on hepatic steatosis and one-carbon metabolism in this model. METHODS Male and female C57BL/6J 677CC (CC) and TT mice were fed control (CD), 5xmethylTHF-supplemented (MFSD), or 5xfolic-acid-supplemented (FASD) diets for 4 months. Liver sections were assessed for steatosis by Oil Red O staining. One-carbon metabolites were measured in the liver and plasma. MTHFR protein expression was evaluated in the liver. RESULTS MFSD had no significant effect on plasma homocysteine, liver SAM/SAH ratios, or hepatic steatosis in males or females as compared to CD. MTHFR protein increased in MFSD TT female liver, but remained <50% of the CC. FASD had no effect on plasma homocysteine but it decreased the liver MTHFR protein and SAM/SAH ratios, and increased hepatic steatosis in CC females. CONCLUSIONS MethylTHF and folic acid supplementation had limited benefits for TT mice, while folic acid supplementation had negative effects on CC females. Further investigation is required to determine if these effects are relevant in humans.
Collapse
Affiliation(s)
- Karen E. Christensen
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marie-Lou Faquette
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Vafa Keser
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Yan Luan
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jeanna L. Bennett-Firmin
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Marie A. Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Jacinto JGP, Letko A, Häfliger IM, Drögemüller C, Agerholm JS. Congenital syndromic Chiari-like malformation (CSCM) in Holstein cattle: towards unravelling of possible genetic causes. Acta Vet Scand 2024; 66:29. [PMID: 38965607 PMCID: PMC11229497 DOI: 10.1186/s13028-024-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Chiari malformation type II (CMII) was originally reported in humans as a rare disorder characterized by the downward herniation of the hindbrain and towering cerebellum. The congenital brain malformation is usually accompanied by spina bifida, a congenital spinal anomaly resulting from incomplete closure of the dorsal aspect of the spinal neural tube, and occasionally by other lesions. A similar disorder has been reported in several animal species, including cattle, particularly as a congenital syndrome. A cause of congenital syndromic Chiari-like malformation (CSCM) in cattle has not been reported to date. We collected a series of 14 CSCM-affected Holstein calves (13 purebred, one Red Danish Dairy F1 cross) and performed whole-genome sequencing (WGS). WGS was performed on 33 cattle, including eight cases with parents (trio-based; group 1), three cases with one parent (group 2), and three single cases (solo-based; group 3). RESULTS Sequencing-based genome-wide association study of the 13 Holstein calves with CSCM and 166 controls revealed no significantly associated genome region. Assuming a single Holstein breed-specific recessive allele, no region of shared homozygosity was detected suggesting heterogeneity. Subsequent filtering for protein-changing variants that were only homozygous in the genomes of the individual cases allowed the identification of two missense variants affecting different genes, SHC4 in case 4 in group 1 and WDR45B in case 13 in group 3. Furthermore, these two variants were only observed in Holstein cattle when querying WGS data of > 5,100 animals. Alternatively, potential de novo mutational events were assessed in each case. Filtering for heterozygous private protein-changing variants identified one DYNC1H1 frameshift variant as a candidate causal dominant acting allele in case 12 in group 3. Finally, the presence of larger structural DNA variants and chromosomal abnormalities was investigated in all cases. Depth of coverage analysis revealed two different partial monosomies of chromosome 2 segments in cases 1 and 7 in group 1 and a trisomy of chromosome 12 in the WDR45B homozygous case 13 in group 3. CONCLUSIONS This study presents for the first time a detailed genomic evaluation of CSCM in Holstein cattle and suggests an unexpected genetic and allelic heterogeneity considering the mode of inheritance, as well as the type of variant. For the first time, we propose candidate causal variants that may explain bovine CSCM in a certain proportion of affected calves. We present cattle as a large animal model for human CMII and propose new genes and genomic variants as possible causes for related diseases in both animals and humans.
Collapse
Affiliation(s)
- Joana Goncalves Pontes Jacinto
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Irene Monika Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland.
| | - Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Allé 5A, Taastrup, 2630, Denmark
| |
Collapse
|
5
|
Walsh DJ, Bernard DJ, Fiddler JL, Pangilinan F, Esposito M, Harold D, Field MS, Parle-McDermott A, Brody LC. Vitamin B12 status and folic acid supplementation influence mitochondrial heteroplasmy levels in mice. PNAS NEXUS 2024; 3:pgae116. [PMID: 38560530 PMCID: PMC10978065 DOI: 10.1093/pnasnexus/pgae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
One-carbon metabolism is a complex network of metabolic reactions that are essential for cellular function including DNA synthesis. Vitamin B12 and folate are micronutrients that are utilized in this pathway and their deficiency can result in the perturbation of one-carbon metabolism and subsequent perturbations in DNA replication and repair. This effect has been well characterized in nuclear DNA but to date, mitochondrial DNA (mtDNA) has not been investigated extensively. Mitochondrial variants have been associated with several inherited and age-related disease states; therefore, the study of factors that impact heteroplasmy are important for advancing our understanding of the mitochondrial genome's impact on human health. Heteroplasmy studies require robust and efficient mitochondrial DNA enrichment to carry out in-depth mtDNA sequencing. Many of the current methods for mtDNA enrichment can introduce biases and false-positive results. Here, we use a method that overcomes these limitations and have applied it to assess mitochondrial heteroplasmy in mouse models of altered one-carbon metabolism. Vitamin B12 deficiency was found to cause increased levels of mitochondrial DNA heteroplasmy across all tissues that were investigated. Folic acid supplementation also contributed to elevated mitochondrial DNA heteroplasmy across all mouse tissues investigated. Heteroplasmy analysis of human data from the Framingham Heart Study suggested a potential sex-specific effect of folate and vitamin B12 status on mitochondrial heteroplasmy. This is a novel relationship that may have broader consequences for our understanding of one-carbon metabolism, mitochondrial-related disease and the influence of nutrients on DNA mutation rates.
Collapse
Affiliation(s)
- Darren J Walsh
- Gene and Environment Interaction Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - David J Bernard
- Gene and Environment Interaction Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Madison Esposito
- Gene and Environment Interaction Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Denise Harold
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | | | - Lawrence C Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Tindula G, Issac B, Mukherjee SK, Ekramullah SM, Arman DM, Islam J, Suchanda HS, Sun L, Rockowitz S, Christiani DC, Warf BC, Mazumdar M. Genome-wide analysis of spina bifida risk variants in a case-control study from Bangladesh. Birth Defects Res 2024; 116:e2331. [PMID: 38526198 PMCID: PMC10963057 DOI: 10.1002/bdr2.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Human studies of genetic risk factors for neural tube defects, severe birth defects associated with long-term health consequences in surviving children, have predominantly been restricted to a subset of candidate genes in specific biological pathways including folate metabolism. METHODS In this study, we investigated the association of genetic variants spanning the genome with risk of spina bifida (i.e., myelomeningocele and meningocele) in a subset of families enrolled from December 2016 through December 2022 in a case-control study in Bangladesh, a population often underrepresented in genetic studies. Saliva DNA samples were analyzed using the Illumina Global Screening Array. We performed genetic association analyses to compare allele frequencies between 112 case and 121 control children, 272 mothers, and 128 trios. RESULTS In the transmission disequilibrium test analyses with trios only, we identified three novel exonic spina bifida risk loci, including rs140199800 (SULT1C2, p = 1.9 × 10-7), rs45580033 (ASB2, p = 4.2 × 10-10), and rs75426652 (LHPP, p = 7.2 × 10-14), after adjusting for multiple hypothesis testing. Association analyses comparing cases and controls, as well as models that included their mothers, did not identify genome-wide significant variants. CONCLUSIONS This study identified three novel single nucleotide polymorphisms involved in biological pathways not previously associated with neural tube defects. The study warrants replication in larger groups to validate findings and to inform targeted prevention strategies.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
| | - Biju Issac
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - DM Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Liang Sun
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, United States
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| |
Collapse
|
7
|
Advances in Fetal Surgical Repair of Open Spina Bifida. Obstet Gynecol 2023; 141:505-521. [PMID: 36735401 DOI: 10.1097/aog.0000000000005074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
Spina bifida remains a common congenital anomaly of the central nervous system despite national fortification of foods with folic acid, with a prevalence of 2-4 per 10,000 live births. Prenatal screening for the early detection of this condition provides patients with the opportunity to consider various management options during pregnancy. Prenatal repair of open spina bifida, traditionally performed by the open maternal-fetal surgical approach through hysterotomy, has been shown to improve outcomes for the child, including decreased need for cerebrospinal fluid diversion surgery and improved lower neuromotor function. However, the open maternal-fetal surgical approach is associated with relatively increased risk for the patient and the overall pregnancy, as well as future pregnancies. Recent advances in minimally invasive prenatal repair of open spina bifida through fetoscopy have shown similar benefits for the child but relatively improved outcomes for the pregnant patient and future childbearing.
Collapse
|
8
|
Sacral Spina Bifida Occulta: A Frequency Analysis of Secular Change. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substantial relaxation of natural selection beginning around 1900 changed the mutation/selection balance of modern genetic material, producing an increase in variable anatomical structures. While multiple structures have been affected, the temporal increase in variations of the sacrum, specifically, ‘Sacral Spina Bifida Occulta,’ have been reliably demonstrated on a localised scale. Calculation of largescale frequency has been hindered by the localised nature of these publications, the morphological variability of this variation, and potential pathological associations, which have produced divergent classifications, and conflicting reported rates of occurrence. A systematic review of the reported literature was conducted to provide an objective analysis of Sacral Spina Bifida Occulta frequency from 2500 BCE to the present. This review was designed to compensate for observed inconsistencies in reporting and to ascertain, for the first time, the temporal trajectory of this secular trend. A systematic review of Sacral Spina Bifida Occulta literature was conducted through the strict use of clinical meta-analysis criteria. Publications were retrieved from four databases: PubMed, Embase, the Adelaide University Library database, and Google Scholar. Data were separated into three historical groups, (1 = <1900, 2 = 1900 to 1980 and 3 = >1980), and frequency outcomes compared, to determine temporal rates of occurrence.
A total of 39/409 publications were included in the final analysis, representing data for 16,167 sacra, spanning a period of 4,500 years. Statistically significant results were obtained, with total open S1 frequency increasing from 2.34%, (79 to 1900CE), to 4.80%, (1900 to 1980CE) and to 5.43% (>1980CE). These increases were significant at p<0.0001, with Chi-squared analysis. A clear secular increase in the global frequency of Sacral Spina Bifida Occulta has been demonstrated from 1900 to the present. This research provides a novel and adaptable framework for the future assessment of variation distribution, with important implications for the fields of biological anthropology and bioarchaeology.
Collapse
|
9
|
Gober J, Thomas SP, Gater DR. Pediatric Spina Bifida and Spinal Cord Injury. J Pers Med 2022; 12:jpm12060985. [PMID: 35743769 PMCID: PMC9225638 DOI: 10.3390/jpm12060985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
Pediatric spina bifida (SB) and spinal cord injury (SCI) are unfortunately common in our society, and their unique findings and comorbidities warrant special consideration. This manuscript will discuss the epidemiology, pathophysiology, prevention, and management strategies for children growing and developing with these unique neuromuscular disorders. Growth and development of the maturing child places them at high risk of spinal cord tethering, syringomyelia, ascending paralysis, pressure injuries, and orthopedic abnormalities that must be addressed frequently and judiciously. Similarly, proper neurogenic bladder and neurogenic bowel management is essential not just for medical safety, but also for optimal psychosocial integration into the child’s expanding social circle.
Collapse
Affiliation(s)
- Joslyn Gober
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- Correspondence:
| | - Sruthi P. Thomas
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA;
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Wilson R, O'Connor D. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep 2021; 24:101617. [PMID: 34976673 PMCID: PMC8684027 DOI: 10.1016/j.pmedr.2021.101617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception - first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folic acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification 'RCT evidenced-based' folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of 'carbon one nutrient' supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.
Collapse
Affiliation(s)
- R.D. Wilson
- Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
| | - D.L. O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
中国残疾人康复协会肢体残疾康复专业委员会脊柱裂学组 . [Expert consensus on diagnosis and treatment of spina bifida]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1361-1367. [PMID: 34779159 PMCID: PMC8586762 DOI: 10.7507/1002-1892.202105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/08/2021] [Indexed: 11/03/2022]
Abstract
Spina bifida and tethered spinal cord are congenital diseases that can lead to severe disability. At present, most doctors in relevant specialties in China still have insufficient understanding of spina bifida, resulting in high incidence and aggravation of its complications. To provide guidance for the diagnosis and treatment of spina bifida and tethered spinal cord in China, experts from neurosurgery, urology, orthopedics, spine surgery, and rehabilitation departments who have experiences in the diagnosis and treatment of spina bifida discussed and summarized their experiences, and referred to the relevant literature on the diagnosis and treatment of spina bifida at home and abroad. Expert consensus was formed in the following aspects: concept, classification, and pathological changes of spina bifida; diagnosis; treatment process and operation timing; principles and methods of treatment; rehabilitation; and follow up. This expert consensus can provide reference for relevant care providers of spina bifida in China.
Collapse
|
12
|
Goyal A, Kumawat M, Vashisth M, Gill PS, Sing I, Dhaulakhandi DB. Study of C677T Methylene Tetrahydrofolate Reductase Gene Polymorphism as a Risk Factor for Neural Tube Defects. Asian J Neurosurg 2021; 16:554-561. [PMID: 34660368 PMCID: PMC8477844 DOI: 10.4103/ajns.ajns_372_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction Various genetic and environmental factors contribute to the development of neural tube defects (NTDs) which are a group of neurulation defects resulting from failure of closure of embryonic neural tube. Among genetic factors is polymorphism in methylene tetrahydrofolate reductase (MTHFR) gene, giving rise to a gene variant or mutant. However, in most studies directed at finding an association between MTHFR variants and NTD, there is no clear evidence of a cause-and-effect relationship. Materials and Methods Forty diagnosed cases of NTDs and forty healthy individuals were investigated in a case-control study for presence of C677T MTHFR gene polymorphism. Serum folate and Vitamin B12 levels were estimated and MTHFR gene polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism. Results It was found that 32 cases were homozygous with CC genotype and eight were heterozygous with CT genotype, whereas 35 controls had CC genotype and five had CT genotype. TT genotype was absent in both the groups. There was no statistically significant difference between both the groups. No evidence of association between MTHFR C677T polymorphism and NTDs was found. Conclusion Although there was no evidence of association between MTHFR C677T polymorphism and NTDs, our study does not rule out the impact of MTHFR gene mutation on folate metabolism. The reason for absence of TT genotype and no association could be a small sample size. Larger, comprehensive, and well-designed multicentric but feasible studies involving proper subjects and appropriate and adequate controls from several hospitals may provide more meaningful data.
Collapse
Affiliation(s)
- Anjalika Goyal
- Department of Biochemistry, PGIMS, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Manjulata Kumawat
- Department of Biochemistry, PGIMS, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Minakshi Vashisth
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Paramjit Singh Gill
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ishwar Sing
- Department of Neurosurgery, PGIMS, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Dhara B Dhaulakhandi
- Department of Biotechnology and Molecular Medicine, PGIMS, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
13
|
Zhang Y, Yuan H, Peng M, Hu Z, Fan Z, Xu J, He L, Wang Y, Wang W, Su Y, Liu C, Zhang H, Zhao K. Folic acid deficiency damages male reproduction via endoplasmic reticulum stress-associated PERK pathway induced by Caveolin-1 in mice. Syst Biol Reprod Med 2021; 67:383-394. [PMID: 34474604 DOI: 10.1080/19396368.2021.1954724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Folic acid is critical to maintaining normal male reproductive function. Endoplasmic reticulum (ER) stress plays a crucial role in folic acid deficiency. Studies have shown that Caveolin-1 (Cav-1) is involved in ER stress, but the specific mechanism in male reproduction is still unclear. This study aimed to investigate the effects of folic acid deficiency on spermatogenesis and elucidate the underlying mechanisms. C57BL/6 mice fed with folic acid deficiency induced diet(0.3 mg/kg) were used. A significant decrease in the sperm concentration in the folic acid deficiency group was observed. Meanwhile, folic acid deficiency decreased Cav-1 expression in the testis tissue and increased endoplasmic reticulum stress-related PERK, eIF2α, ATF4, CHOP gene expression. Our results suggest that folic acid deficiency can affect male reproduction through the Cav-1-PERK-eIFα-ATF4-CHOP pathway.Abbreviations: ATF4: activating transcription factor 4; Ca2+: calcium ion; Cav-1: Caveolin-1; CCK-8: cell counting kit-8; CHOP: CCAAT-enhancer-binding protein homologous protein; DNA: Deoxyribonucleic acid; DSB: double strand breakage; eIF2α: eukaryotic Initiation Factor 2 alpha; ER: endoplasmic reticulum; FD: folic acid deficiency; FITC: fluorescein isothiocyanate; HE: hematoxylin and eosin; H3K4me3: histone H3 lysine 4 trimethylation; PERK: protein kinase RNA-like endoplasmic reticulum kinase; PI: propidium iodide; RT-qPCR: quantitative reverse transcription PCR; TUNEL: TdT mediated dUTP Nick End Labeling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfang Yuan
- Department of Obstetrics And Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Peake JN, Knowles RL, Shawe J, Rankin J, Copp AJ. Maternal ethnicity and the prevalence of British pregnancies affected by neural tube defects. Birth Defects Res 2021; 113:968-980. [PMID: 33754462 PMCID: PMC7611580 DOI: 10.1002/bdr2.1893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Few data are available on the prevalence of neural tube defects (NTDs) within different ethnic communities of the United Kingdom. This study aimed to calculate prevalence estimates for NTD-affected pregnancies, classified by maternal ethnicity, and to explore why variations in prevalence might exist. METHODS A cross-sectional study was performed with data from regional congenital anomaly registers in England and Wales, for NTD-affected pregnancies between 2006 and 2011. Using binomial regression models, we examined NTD-affected pregnancy prevalence estimates and rate ratios (PRRs), by maternal ethnicity. RESULTS The prevalence of NTDs was 12.14 per 10,000 births, with no differences between study years. Anencephaly, encephalocele and spina bifida occurred at 4.98, 1.37 and 5.80 per 10,000 births respectively. Mothers of Indian ethnicity were 1.84 times more likely (95% CI: 1.24, 2.73) and Bangladeshi mothers 2.86 times more likely (95% CI: 1.48, 5.53) than White mothers to have an NTD-affected pregnancy, after adjusting for maternal deprivation and maternal age. The excess prevalence in Indian mothers was specifically for anencephaly (PRR 2.57; 95% CI: 1.52, 4.34), and in Bangladeshi mothers the trend was for increased spina bifida (PRR 3.86; 95% CI: 0.72, 8.69). Anencephaly in Indian mothers was especially associated with other congenital anomalies (non-isolated NTDs). CONCLUSIONS Different British ethnic groups vary in NTD prevalence. The excess prevalence of anencephaly as a non-isolated NTD in pregnancies of Indian mothers could indicate involvement of genetic or other unmeasured behavioral factors. Future work is needed to seek etiological explanations for the ethnicity differences and to develop improved methods for primary prevention.
Collapse
Affiliation(s)
- Jordana N Peake
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rachel L Knowles
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jill Shawe
- Faculty of Health, University of Plymouth, Devon, UK
| | - Judith Rankin
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
15
|
Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, Yin Q, Millenson ME, O’Connor TG, Barrett ES, Snyder NW, Peddada S, Mitchell RT. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update 2021; 27:747-770. [PMID: 33675653 PMCID: PMC8222765 DOI: 10.1093/humupd/dmaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The function of the gestational sac (GS) and the placenta in the closely related processes of embryogenesis and teratogenicity in the first trimester has been minimally described. The prevailing assumption is that direct teratogenic effects are mediated by the critical extraembryonic organ, the placenta, which either blocks or transfers exposures to the foetus. Placental transfer is a dominant mechanism, but there are other paradigms by which the placenta can mediate teratogenic effects. Knowledge of these paradigms and first trimester human developmental biology can be useful to the epidemiologist in the conduct of biomarker-based studies of both maternal and child health. OBJECTIVE AND RATIONALE Our aim is to provide a causal framework for modelling the teratogenic effects of first trimester exposures on child health outcomes mediated by the GS and placenta using biomarker data collected in the first trimester. We initially present first trimester human developmental biology for the sake of informing and strengthening epidemiologic approaches. We then propose analytic approaches of modelling placental mechanisms by way of causal diagrams using classical non-embryolethal teratogens (diethylstilboestrol [DES], folic acid deficiency and cytomegalovirus [CMV]) as illustrative examples. We extend this framework to two chronic exposures of particular current interest, phthalates and maternal adiposity. SEARCH METHODS Information on teratogens was identified by a non-systematic, narrative review. For each teratogen, we included papers that answered the five following questions: (i) why were these exposures declared teratogens? (ii) is there a consensus on biologic mechanism? (iii) is there reported evidence of a placental mechanism? (iv) can we construct a theoretical model of a placental mechanism? and (v) can this knowledge inform future work on measurement and modelling of placental-foetal teratogenesis? We prioritized literature specific to human development, the organogenesis window in the first trimester and non-embryolethal mechanisms. OUTCOMES As a result of our review of the literature on five exposures considered harmful in the first trimester, we developed four analytic strategies to address first trimester placental mechanisms in birth cohort studies: placental transfer and direct effects on the foetus (DES and maternal adiposity), indirect effects through targeted placental molecular pathways (DES and phthalates), pre-placental effects through disruptions in embryonic and extraembryonic tissue layer differentiation (folic acid deficiency), and multi-step mechanisms that involve maternal, placental and foetal immune function and inflammation (DES and CMV). WIDER IMPLICATIONS The significance of this review is to offer a causal approach to classify the large number of potentially harmful exposures in pregnancy when the exposure occurs in the first trimester. Our review will facilitate future research by advancing knowledge of the first trimester mechanisms necessary for researchers to effectively associate environmental exposures with child health outcomes.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Layden
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rahel L Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Miragaia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Thomas G O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nathaniel W Snyder
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
16
|
Corona-Rivera JR, Olvera-Molina S, Pérez-Molina JJ, Aranda-Sánchez CI, Bobadilla-Morales L, Corona-Rivera A, Peña-Padilla C, Ruiz-Gómez A, Morales-Domínguez GE. Prevalence of open neural tube defects and risk factors related to isolated anencephaly and spina bifida in live births from the "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara (Jalisco, Mexico). Congenit Anom (Kyoto) 2021; 61:46-54. [PMID: 33118203 DOI: 10.1111/cga.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
We determine the prevalence and trends of open neural tube defects (ONTDs) during 1991 to 2019 at the "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara (Mexico). Also, details of potential risks were obtained in 662 newborns, including those 143 patients with anencephaly and open spina bifida (OSB) classified as isolated (cases) and 519 controls. Data were analyzed using multivariable logistic regression. Among 267 201 live births during the study period, 336 were born with ONTDs, yielding an overall prevalence of 12.6 per 10 000. After folic acid (FA)-related programs began in Mexico (2003-2019), only OSB showed a decline of 20.6%. For anencephaly, associated risks included relatives with neural tube defects (NTDs) (adjusted odds ratio [aOR]: 67.9, 95% confidence interval [95% CI]: 11.3-409.8), pre-pregnancy body mass index (BMI) ≥25 kg/m2 (aOR: 2.6, 95% CI: 1.1-6.0), insufficient gestational weight gain (aOR: 3.0, 95% CI: 1.3-7.1), parity ≥4 (aOR: 3.2, 95% CI: 1.3-7.7), and exposure to analgesic/antipyretic drugs (aOR: 9.0; 95% CI: 2.5-33.0). For OSB, associated risks included consanguinity (aOR: 14.0, 95% CI: 3.5-55.9), relatives with NTDs (aOR: 22.4, 95% CI: 4.5-112.9), BMI ≥25 kg/m2 (aOR: 2.5, 95% CI: 1.6-4.2), insufficient gestational weight gain (aOR: 1.9, 95% CI: 1.1-3.1), and exposures to hyperthermia (aOR: 2.3, 95% CI: 1.2-4.3), common cold (aOR: 6.8, 95% CI: 3.6-12.7), and analgesic/antipyretic drugs (aOR: 3.6, 95% CI: 1.3-10.0). Our high rate probably results from exposures to preventable risks, most related to FA, indicating a need for strengthening existing FA-related programs in Mexico.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,"Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Sandra Olvera-Molina
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - J Jesús Pérez-Molina
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Cristian Irela Aranda-Sánchez
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,"Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,"Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Adolfo Ruiz-Gómez
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Guadalupe Elena Morales-Domínguez
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
17
|
Pangilinan F, Finlay EK, Molloy AM, Abaan HO, Shane B, Mills JL, Brody LC, Parle-McDermott A. A dihydrofolate reductase 2 (DHFR2) variant is associated with risk of neural tube defects in an Irish cohort but not in a United Kingdom cohort. Am J Med Genet A 2021; 185:1307-1311. [PMID: 33544972 DOI: 10.1002/ajmg.a.62090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/24/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Emma K Finlay
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Hattice O Abaan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, Bethesda, Maryland, USA
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
18
|
Palladino E, Van Mieghem T, Connor KL. Diet Alters Micronutrient Pathways in the Gut and Placenta that Regulate Fetal Growth and Development in Pregnant Mice. Reprod Sci 2021; 28:447-461. [PMID: 32886339 DOI: 10.1007/s43032-020-00297-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Maternal malnutrition and micronutrient deficiencies can alter fetal development. However, the mechanisms underlying these relationships are poorly understood. We used a systems physiology approach to investigate diet-induced effects on maternal gut microbes and folate/inositol transport in the maternal/fetal gut and placenta. Female mice were fed a control diet (CON) diet, undernourished (UN, restricted by 30% of CON intake) or a high-fat diet (HF, 60% kcals fat) during pregnancy to model normal pregnancy, fetal growth restriction or maternal metabolic dysfunction, respectively. At gestational day 18.5, we assessed circulating folate levels by microbiological assay, relative abundance of gut lactobacilli by G3PhyloChip™, and folate/inositol transporters in placenta and maternal/fetal gut by qPCR/immunohistochemistry. UN and HF-fed mothers had lower plasma folate concentrations vs. CON. Relative abundances of three lactobacilli taxa were higher in HF vs. UN and CON. HF-fed mothers had higher gut proton coupled folate transporter (Pcft) and reduced folate carrier 1 (Rfc1), and lower sodium myo-inositol co-transporter 2 (Smit2), mRNA expression vs. UN and CON. HF placentae had increased folate receptor beta (Frβ) expression vs. UN. mRNA expression of Pcft, folate receptor alpha (Frα), and Smit2 was higher in gut of HF fetuses vs. UN and CON. Transporter protein expression was not different between groups. Maternal malnutrition alters abundance of select gut microbes and folate/inositol transporters, which may influence maternal micronutrient status and delivery to the fetus, impacting pregnancy/fetal outcomes.
Collapse
Affiliation(s)
- Elia Palladino
- Carleton University (Health Sciences), Ottawa, Ontario, Canada
| | - Tim Van Mieghem
- Mount Sinai Hospital (Obstetrics and Gynaecology), Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Ortiz-Cruz G, Aguayo-Gómez A, Luna-Muñoz L, Muñoz-Téllez LA, Mutchinick OM. Myelomeningocele genotype-phenotype correlation findings in cilia, HH, PCP, and WNT signaling pathways. Birth Defects Res 2021; 113:371-381. [PMID: 33470056 DOI: 10.1002/bdr2.1872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is the most severe and frequent type of spina bifida. Its etiology remains poorly understood. The Hedgehog (Hh), Wnt, and planar cell polarity (PCP) signaling pathways are essential for normal tube closure, needing a structural-functional cilium for its adequate function. The present study aimed to investigate the impact of different gene variants (GV) from those pathways on MMC genotype-subphenotype correlations. METHODS The study comprised 500 MMC trios and 500 controls, from 16 Telethon centers of 16 Mexican states. Thirty-four GVs of 29 genes from cilia, Hh, PCP, and Wnt pathways, were analyzed, by an Illumina on design microarray. The total sample (T-MMC) was stratified in High-MMC (H-MMC) when thoracic and Low-MMC (L-MMC) when lumbar-sacral vertebrae affected. STATA/SE-12.1 and PLINK software were used for allelic association, TDT, and gene-gene interaction (GGI) analyses, considering p value <.01 as statistically significant differences (SSD). RESULTS Association analysis showed SSD for COBL-rs10230120, DVL2-rs2074216, PLCB4-rs6077510 GVs in T-MMC and L-MMC, and VANGL2-rs120886448 in T-MMC and H-MMC, and INVS-rs7024375 exclusively in L-MMC. TDT assay showed SSD preferential transmissions of C2CD3-rs826058 in H-MMC, and LRP5-rs3736228, and BBS2-rs1373 in L-MMC. Statistically significant GGI was observed in four in T-MMC, four completely different in L-MMC, and one in H-MMC. Interestingly, no one repeated in subphenotypes. CONCLUSIONS Our results support an association of GVs in Hh, Wnt, PCP, and cilia pathways, with MMC occurrence location, although further validation is needed. Furthermore, present results show a distinctive panel of gene-variants in H-MMC and LMMC subphenotypes, suggesting a feasible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gabriela Ortiz-Cruz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adolfo Aguayo-Gómez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Luis A Muñoz-Téllez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
20
|
Li Z, Feng J, Yuan Z. Key Modules and Hub Genes Identified by Coexpression Network Analysis for Revealing Novel Biomarkers for Spina Bifida. Front Genet 2020; 11:583316. [PMID: 33343629 PMCID: PMC7738565 DOI: 10.3389/fgene.2020.583316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Spina bifida is a common neural tube defect (NTD) accounting for 5–10% of perinatal mortalities. As a polygenic disease, spina bifida is caused by a combination of genetic and environmental factors, for which the precise molecular pathogenesis is still not systemically understood. In the present study, we aimed to identify the related gene module that might play a vital role in the occurrence and development of spina bifida by using weighted gene co-expression network analysis (WGCNA). Transcription profiling according to an array of human amniocytes from patients with spina bifida and healthy controls was downloaded from the Gene Expression Omnibus database. First, outliers were identified and removed by principal component analysis (PCA) and sample clustering. Then, genes in the top 25% of variance in the GSE4182 dataset were then determined in order to explore candidate genes in potential hub modules using WGCNA. After data preprocessing, 5407 genes were obtained for further WGCNA. Highly correlated genes were divided into nineteen modules. Combined with a co-expression network and significant differentially expressed genes, 967 candidate genes were identified that may be involved in the pathological processes of spina bifida. Combined with our previous microRNA (miRNA) microarray results, we constructed an miRNA–mRNA network including four miRNAs and 39 mRNA among which three key genes were, respectively, linked to two miRNA-associated gene networks. Following the verification of qRT-PCR and KCND3 was upregulated in the spina bifida. KCND3 and its related miR-765 and miR-142-3p are worthy of further study. These findings may be conducive for early detection and intervention in spina bifida, as well as be of great significance to pregnant women and clinical staff.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zarzycki A, Thomas ZM, Mazrier H. Comparison of inherited neural tube defects in companion animals and livestock. Birth Defects Res 2020; 113:319-348. [PMID: 33615733 DOI: 10.1002/bdr2.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from the improper or incomplete closure of the neural tube during embryonic development. A number of similar malformations of the protective coverings surrounding the central nervous system are also often included under this umbrella term, which may not strictly fit this definition. A range of NTD phenotypes exist and have been reported in humans and a wide range of domestic and livestock species. In the veterinary literature, these include cases of anencephaly, encephalocele, dermoid sinus, spina bifida, and craniorachischisis. While environmental factors have a role, genetic predisposition may account for a significant part of the risk of NTDs in these animal cases. Studies of laboratory model species (fish, birds, amphibians, and rodents) have been instrumental in improving our understanding of the neurulation process. In mice, over 200 genes that may be involved in this process have been identified and variant phenotypes investigated. Like laboratory mouse models, domestic animals and livestock species display a wide range of NTD phenotypes. They remain, however, a largely underutilized population and could complement already established laboratory models. Here we review reports of NTDs in companion animals and livestock, and compare these to other animal species and human cases. We aim to highlight the potential of nonlaboratory animal models for mutation discovery as well as general insights into the mechanisms of neurulation and the development of NTDs.
Collapse
Affiliation(s)
- Alexandra Zarzycki
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Zoe M Thomas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Hamutal Mazrier
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Prevention of Neural Tube Defects by Folic Acid Supplementation: A National Population-Based Study. Nutrients 2020; 12:nu12103170. [PMID: 33081287 PMCID: PMC7603060 DOI: 10.3390/nu12103170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Folic acid supplementation is recommended for neural tube defect prevention during pregnancy. We conducted an observational, retrospective national registry study to determine the rate of dispensing of periconceptional folic acid after prescription in a sample of French women representative of the general population. Our study population (n = 186,061) was a representative sample of the French population, recorded in the Health Data System database on pharmacy dispensing of medication and mandatory reporting of pregnancy. Between 2006 and 2016, 14.3% of pregnant women had a prescription for folic acid supplementation during the month preceding conception and for the first 12 weeks of pregnancy. Of these prescriptions, 30.9% were issued before the start of pregnancy. This percentage was lower for first pregnancies. The rate of pharmacy dispensing during the preconception period increased progressively from 3.8% to 8.3% between 2006 and 2016. In France, the rate of pharmacy dispensing of periconceptional folic acid after medical prescription is very low and does not follow international recommendations. It seems essential to implement awareness-raising policies targeting the general population and physicians regarding effective periconceptional supplementation, particularly starting in the preconception period. Clarification of international recommendations and fortification of flour could improve the efficacy of folate supplementation at population level.
Collapse
|
23
|
Pei L, Wu J, Li J, Mi X, Zhang X, Li Z, Zhang Y. Effect of periconceptional folic acid supplementation on the risk of neural tube defects associated with a previous spontaneous abortion or maternal first-trimester fever. Hum Reprod 2020; 34:1587-1594. [PMID: 31305926 DOI: 10.1093/humrep/dez112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does maternal periconceptional no folic acid supplementation have an increased risk of neural tube defects (NTDs) associated with previous spontaneous abortion or first-trimester fever? SUMMARY ANSWER Maternal periconceptional no folic acid supplementation can increase the risk of NTDs associated with previous spontaneous abortion or first-trimester fever, independent of known confounding factors. WHAT IS KNOWN ALREADY Maternal periconceptional folic acid deficiency can increase the risk of NTDs. However, whether an interaction between periconceptional no folic acid supplementation and history of spontaneous abortion or first-trimester fever may have an increased risk of NTDs remains unknown. STUDY DESIGN, SIZE, DURATION A population-based case-control study was performed including 104 nuclear families with offspring with NTDs and 100 control families with normal offspring between 1993 and 2002. PARTICIPANTS/MATERIALS, SETTING, METHODS We investigated the potential interaction between periconceptional no folic acid use and a maternal history of spontaneous abortion or first-trimester fever in the risk for NTDs. Information on exposure factors was obtained at the onset of pregnancy, and pregnancy outcomes were collected during the first week after delivery or at the time of termination of the pregnancy. A multivariate logistic regression analysis was performed. MAIN RESULTS AND THE ROLE OF CHANCE The interaction between periconceptional no folic acid use and a maternal history of spontaneous abortion markedly increased the risk of NTDs (adjusted odds ratio (aOR) 18.68, 95% CI, 4.43-78.76) after adjusting for potential confounding factors. The interaction coefficient was found to be 2.08, higher than 1, indicating that there is a significant interaction between two factors. Mothers who did not take periconceptional folic acid and had first-trimester fever had an increased risk of NTDs (aOR 21.81, 95% CI, 8.81-80.73). However, the interaction coefficient was found to be 0.62, less than 1, indicating that there is no significant interaction between two factors. LIMITATIONS, REASONS FOR CAUTION A potential limitation was that the interval between the previous spontaneous abortion and the beginning of the subsequent pregnancy could not be estimated accurately, but was at least 1 year or more. WIDER IMPLICATIONS OF THE FINDINGS We emphasize that a previous spontaneous abortion may represent a first occurrence of NTDs rather than be the cause of NTDs. Our findings indicate that mothers with a history of spontaneous abortion are ideal candidates for periconceptional folic acid supplementation. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by National Natural Science Foundation of China (41871360) and Danone Nutrition Center for Dietary Nutrition Research and Education Foundation (DIC2015-05). There are no competing interests to declare.
Collapse
Affiliation(s)
- Lijun Pei
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Jilei Wu
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Jiajia Li
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Xin Mi
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China
| | - Xiaofen Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China
| | - Zhengyu Li
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Yuan Zhang
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Reynolds EH, Green R. Valproate and folate: Congenital and developmental risks. Epilepsy Behav 2020; 108:107068. [PMID: 32375098 DOI: 10.1016/j.yebeh.2020.107068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Increasing awareness of the congenital and developmental risks associated with the use of sodium valproate (VPA) has led to recent European guidelines designed to avoid the use of this drug in pregnancy if effective alternative treatments are available. In the general population, it is well established that periconceptual folic acid reduces the risk of neural tube defects (NTDs) and possibly other congenital abnormalities. We here review the evidence 1) that VPA interferes with one-carbon metabolism, including the transport of methylfolate into the brain and the placenta by targeting folate receptors; 2) that VPA effects on the folate metabolic system contribute to congenital and developmental problems associated with VPA exposure; and 3) that genetic factors, notably polymorphisms related to one-carbon metabolism, contribute to the vulnerability to these VPA-induced risks. Based on these facts, we propose that the standard periconceptual use of 400 μg of folic acid may not adequately protect against VPA or other antiepileptic drug (AED)-induced congenital or developmental risks. Pending definitive studies to determine appropriate dose, we recommend up to 5 mg of folic acid periconceptually in at-risk women with the caveat that the addition of supplementary vitamin B12 may also be prudent because vitamin B12 deficiency is common in pregnancy in some countries and is an additional risk factor for developmental abnormalities.
Collapse
Affiliation(s)
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California Davis, USA
| |
Collapse
|
25
|
Lee S, Gleeson JG. Closing in on Mechanisms of Open Neural Tube Defects. Trends Neurosci 2020; 43:519-532. [PMID: 32423763 PMCID: PMC7321880 DOI: 10.1016/j.tins.2020.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
Collapse
Affiliation(s)
- Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA.
| |
Collapse
|
26
|
Jia S, Wei X, Ma L, Wang Y, Gu H, Liu D, Ma W, Yuan Z. Maternal, paternal, and neonatal risk factors for neural tube defects: A systematic review and meta-analysis. Int J Dev Neurosci 2019; 78:227-235. [PMID: 31563704 DOI: 10.1016/j.ijdevneu.2019.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Neural tube defects [NTDs] are severe congenital anomalies. The etiology of NTDs is not fully known, and studies on the potential risk factors of NTDs present inconsistent results. Thus, we conducted a systematic review and meta-analysis to investigate the maternal, paternal, and neonatal risk factors for NTDs. STUDY DESIGN We systematically reviewed relative original studies published through October 6, 2018 available in Pubmed, Embase and the Cochrane Library without restrictions for language. The selected studies measured maternal, paternal, and neonatal risk factors and examined their associations with NTDs. A meta-analysis, including subgroup analysis and sensitivity analysis, was conducted to estimate the pooled effect measures. Two reviewers independently extracted data using a predesigned data collection form. RESULTS Forty-five studies were eligible for inclusion in the meta-analysis, and twelve potential risk factors were analyzed. The factors that were associated with NTDs risk included stressful life events [odds ratio [OR],1.61; 95% confidence interval [CI], 1.24-2.08; p < 0.001; I2 = 59.2%], low maternal education level [OR, 1.42; 95% CI, 1.19-1.70; p < 0.001; I2 = 47.7%], pregestational diabetes [OR, 2.24; 95% CI, 1.21-4.12; p < 0.010; I2 = 56.3%], low paternal age [OR, 1.41; 95% CI, 1.10-1.81; p = 0.007; I2 = 0.0%], low birth weight [OR, 5.53; 95% CI, 1.95-15.70; p = 0.001; I2 = 98.5%], and neonatal female gender [OR, 1.54; 95% CI, 1.10-2.14; p = 0.012; I2 = 67.8%]. CONCLUSION Stressful life events, pregestational diabetes, low birth weight, and neonatal female gender are risk factors associated with NTDs. Low maternal education level and low paternal age are factors that are moderately associated with NTDs. Further cohort studies are required to verify the factors associated with NTDs and control the risk of this severe birth defect.
Collapse
Affiliation(s)
- Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
- Department of Pathophysiology, Basic Science College, China Medical University, Shenyang, PR China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| |
Collapse
|
27
|
Lubinsky M. The VACTERL association: mosaic mitotic aneuploidy as a cause and a model. J Assist Reprod Genet 2019; 36:1549-1554. [PMID: 31129863 PMCID: PMC6708033 DOI: 10.1007/s10815-019-01485-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
While mitotic errors commonly cause aneuploid clones soon after conception, the embryos often normalize as clones are rapidly eliminated. Although generally considered benign, evidence suggests clone elimination as the primary cause of the vertebral, ano-rectal, cardiac, tracheo-esophageal, renal, and limb (VACTERL) association of anomalies, and possibly other adverse outcomes as well. Here, clone elimination-related development disruption at specific locations is used as the basis of a comprehensive theoretical VACTERL association model that also elucidates mitotic mosaic aneuploidy effects. For the association, the model explains random temporal and spatial origins during a limited time frame and overlapping clusters of component anomalies. It supports early developmental effects involving the stage of determination, where the position in a specific morphogen field controls what a cell will become and where it will be located. Developmental properties related to determination also create specific vulnerabilities to the midline and distal defects, the latter explaining exclusively radial and tibial defects with duplications and deficiencies. The model also supports isolated anomalies as part of the association and, for mosaic mitotic aneuploidy, indicates that clone elimination nears completion at the time of lower limb determination. Although mosaic clone elimination may cause other defects, occurrences in different developmental fields separate them from VACTERL anomalies. Clone elimination may also be related to risks for a single umbilical artery and for non-structural adverse pregnancy outcomes such as losses, prematurity, and growth delays, while a paucity of clone lethality in non-humans explains the rarity of the association and of single umbilical arteries in animals.
Collapse
|
28
|
Panda PK, Mallik KC, Patel R, Barik M. Molecular Basis of Spina Bifida: Recent Advances and Future Prospectives. J Pediatr Neurosci 2019; 14:16-19. [PMID: 31316638 PMCID: PMC6601120 DOI: 10.4103/jpn.jpn_20_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Spina bifida (SB) (spinal neural tube [NT] defects) is basically caused by an abnormality at the closure of the NT. Materials and Methods: Molecular researchers have now got new etiopathogenesis of the defective neural tube closure. Although molecular mechanisms in the SB is really important taxation for further work. We understand through the unique novel mutant responsible genes and modifying genes and included the different molecular aspects of SB from the available tools and databases and excluded the case reports. Statistical Analysis: We use here simple statistics (percentage, mean, median, and average) through the Statistical Package for the Social Sciences (SPSS), version 14, and found P > 0.0001 to be significant. Results: We have reported that the majority of 90% genes are responsible in SB and their associated diseases. These innovative unique patterns of responsible genes attached with the result abnormalities at the neuronal and non neuronal tissues are equally important for the SB and NTC. Conclusion: Our present ideology is aiming to understand the inductive and direct interactions of the downstream target sites among responsible regulating genes (RRGs). It is an unique pattern of genetic roadmap to control and guides the neurulation and may provide further insights into the causes of SB and may help to develop new molecular-targeted therapy (MTT).
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kanhu Charan Mallik
- Department of Radiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ranjankumar Patel
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mayadhar Barik
- Department of Paediatric Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
29
|
Lin Y, Yu J, Wu J, Wang S, Zhang T. Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression. Epigenetics Chromatin 2019; 12:22. [PMID: 30992047 PMCID: PMC6466687 DOI: 10.1186/s13072-019-0268-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. Results Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. Conclusions Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs. Electronic supplementary material The online version of this article (10.1186/s13072-019-0268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Hwang SY, Sung B, Kim ND. Roles of folate in skeletal muscle cell development and functions. Arch Pharm Res 2019; 42:319-325. [DOI: 10.1007/s12272-018-1100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 01/24/2023]
|
31
|
Molloy AM, Mills JL. Fortifying food with folic acid to prevent neural tube defects: are we now where we ought to be? Am J Clin Nutr 2018; 107:857-858. [PMID: 29868919 PMCID: PMC6248603 DOI: 10.1093/ajcn/nqy110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin,
Dublin, Ireland
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, NIH, Bethesda,
MD
| |
Collapse
|
32
|
Fang Y, Zhang R, Zhi X, Zhao L, Cao L, Wang Y, Cai C. Association of main folate metabolic pathway gene polymorphisms with neural tube defects in Han population of Northern China. Childs Nerv Syst 2018; 34:725-729. [PMID: 29392422 DOI: 10.1007/s00381-018-3730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Neural tube defects (NTDs) are one of the most prevalent and the most severe congenital malformations worldwide. Studies have confirmed that folic acid supplementation could effectively reduce NTDs risk, but the genetic mechanism remains unclear. In this study, we explored association of single nucleotide polymorphisms (SNP) within folate metabolic pathway genes with NTDs in Han population of Northern China. METHODS We performed a case-control study to compare genotype and allele distributions of SNPs in 152 patients with NTDs and 169 controls. A total of 16 SNPs within five genes were genotyped by the Sequenom MassARRAY assay. RESULTS Our results indicated that three SNPs associated significantly with NTDs (P<0.05). For rs2236225 within MTHFD1, children with allele A or genotype AA had a high NTDs risk (OR=1.500, 95%CI=1.061~2.120; OR=2.862, 95%CI=1.022~8.015, respectively). For rs1801133 within MTHFR, NTDs risk markedly increased in patients with allele T or genotype TT (OR=1.552, 95%CI=1.130~2.131; OR=2.344, 95%CI=1.233~4.457, respectively). For rs1801394 within MTRR, children carrying allele G and genotype GG had a higher NTDs risk (OR=1.533, 95%CI=1.102~2.188; OR=2.355, 95%CI=1.044~5.312, respectively). CONCLUSIONS Our results suggest that rs2236225 of MTHFD1 gene, rs1801133 of MTHFR gene and rs1801394 of MTRR gene were associated with NTDs in Han population of Northern China.
Collapse
Affiliation(s)
- Yulian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Ruiping Zhang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Xiufang Zhi
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Linsheng Zhao
- Department of Pathology, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Lirong Cao
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Yizheng Wang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, Beichen District, Tianjin, China.
| |
Collapse
|
33
|
Molloy AM. Should vitamin B 12 status be considered in assessing risk of neural tube defects? Ann N Y Acad Sci 2018; 1414:109-125. [PMID: 29377209 PMCID: PMC5887889 DOI: 10.1111/nyas.13574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023]
Abstract
There is a strong biological premise for including vitamin B12 with folic acid in strategies to prevent neural tube defects (NTDs), due to the closely interlinked metabolism of these two vitamins. For example, reduction of B12 deficiency among women of reproductive age could enhance the capacity of folic acid to prevent NTDs by optimizing the cellular uptake and utilization of natural folate cofactors. Vitamin B12 might also have an independent role in NTD prevention, such that adding it in fortification programs might be more effective than fortifying with folic acid alone. Globally, there is ample evidence of widespread vitamin B12 deficiency in low‐ and middle‐income countries, but there is also considerable divergence of vitamin B12 status across regions, likely due to genetic as well as nutritional factors. Here, I consider the evidence that low vitamin B12 status may be an independent factor associated with risk of NTDs, and whether a fortification strategy to improve B12 status would help reduce the prevalence of NTDs. I seek to identify knowledge gaps in this respect and specify research goals that would address these gaps.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|