1
|
Damacet P, Mirica KA. Periodic Patterning of Matter in Non-Equilibrium Liesegang-Type Structures. Angew Chem Int Ed Engl 2025:e202425292. [PMID: 40247399 DOI: 10.1002/anie.202425292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Bottom-up self-organization of unordered molecules into ordered, spatiotemporal patterns of complex structures through non-equilibrium reaction-diffusion (RD) processes is ubiquitous in nature across all scales. Unlike many RD processes that typically lead to transient patterns, periodic precipitation reactions governed by the Liesegang phenomenon are distinguished by the formation of stable, permanent structures. This unique characteristic makes them valuable tools in the development of hierarchical multifunctional materials, an area that has seen significant progress in recent decades. This review summarizes the fundamental aspects of the Liesegang phenomenon, focusing on the key characteristics, compositional features, inherent properties, and formation mechanisms of Liesegang patterns in chemical systems, while also highlighting their occurrence in biological and geological settings. We discuss recent advancements in applying periodic precipitation to address global challenges in microelectronics and environmental monitoring, concluding with a forward-looking perspective on the promising future applications of the Liesegang periodic precipitation in materials science, nanotechnology, medicine, and environmental engineering.
Collapse
Affiliation(s)
- Patrick Damacet
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
2
|
Elias S, Hardy TA, Khan A, Redgrave J, Hoggard N, Coley S, Dyde R, O'Malley R, Yasiry Z, Paling D. Baló's concentric sclerosis successfully treated with alemtuzumab: Long-term follow-up. Mult Scler 2025:13524585251331536. [PMID: 40219936 DOI: 10.1177/13524585251331536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Baló's concentric sclerosis (BCS) is regarded as a rare variant of multiple sclerosis (MS), characterised by multi-layered ring-like lesions in cerebral white matter. Despite pathological overlap with MS, the effect of treatment with MS disease-modifying therapies remains unclear. The only extant case report of alemtuzumab in BCS described a lack of clinical response in a patient who had previously not responded to corticosteroids, plasmapheresis and cyclophosphamide. The authors speculated that alemtuzumab may have been effective if started earlier in the disease process. We present the outcomes of a patient with BCS who responded clinically and radiologically to alemtuzumab over a 6-year follow-up.
Collapse
Affiliation(s)
- Sandra Elias
- Department of Neurology, Concord Hospital, Sydney, NSW, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Aijaz Khan
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Jessica Redgrave
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Nigel Hoggard
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Stuart Coley
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Richard Dyde
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Ronan O'Malley
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Zeid Yasiry
- Department of Neurology, Leeds General Infirmary, Leeds, UK
| | - David Paling
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
3
|
Barbosa DJ, Carvalho C, Costa I, Silva R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol Neurobiol 2025; 62:4705-4723. [PMID: 39477877 PMCID: PMC11880050 DOI: 10.1007/s12035-024-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
Molecular motors are cellular components involved in the intracellular transport of organelles and materials to ensure cell homeostasis. This is particularly relevant in neurons, where the synaptic components synthesized in the soma need to travel over long distances to their destination. They can walk on microtubules (kinesins and dyneins) or actin filaments (myosins), the major components of cell cytoskeleton. While kinesins mostly perform the anterograde transport of intracellular components toward the plus ends of microtubules located distally in cell processes, cytoplasmic dyneins allow the retrograde flux of intracellular cargo toward the minus ends of microtubules located at the cell soma. Axon myelination represents a major aspect of neuronal maturation and is essential for neuronal function, as it speeds up the transmission of electrical signals. Increasing evidence supports a role for molecular motors in the homeostatic control of myelination. This role includes the trafficking of myelin components along the processes of myelinating cells and local regulation of pathways that ensure axon wrapping. Dysfunctional control of the intracellular transport machinery has therefore been linked to several brain pathologies, including demyelinating diseases. These disorders include a broad spectrum of conditions characterized by pathological demyelination of axons within the nervous system, ultimately leading to axonal degeneration and neuronal death, with multiple sclerosis representing the most prevalent and studied condition. This review highlights the involvement of molecular motors in the homeostatic control of myelination. It also discusses studies that have yielded insights into the dysfunctional activity of molecular motors in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Daniel José Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Cátia Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Etemadifar M, Aghili A, Shojaei S, Alaei SA, Salari M, Norouzi M. Balo concentric sclerosis, an emerging variant of multiple sclerosis: A case-series and literature review. J Neuroimmunol 2025; 400:578527. [PMID: 39842344 DOI: 10.1016/j.jneuroim.2025.578527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/28/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Balo concentric sclerosis (BCS) is a rare demyelinating disease. This study aims to follow up on patients initially diagnosed with BCS and MS or presented with BCS in the context of MS. METHODS This study was conducted at an MS clinic center in Isfahan, monitoring 2600 MS patients, among which 10 cases were related to BCS. These 10 patients were assessed clinically and radiologically during 2013-2024, with consecutive MRIs and periodic clinical examinations. RESULTS Among the 10 patients, BCS was either the inaugural presentation of MS or occurred in the context of the disease. The most common Symptoms included limb weakness and paresthesia. All patients exhibited characteristic onion-like lesions in the periventricular white matter, with two showing tumefactive demyelination. CSF analysis was abnormal in all patients, revealing positive oligoclonal bands (OCB), which were categorized as type 2 in all patients. Treatment mainly involved rituximab, which indicated plausible results. CONCLUSION Our study highlights the variability in BCS clinical presentations and supports its classification as a variant of MS due to overlapping characteristics. Additionally, our findings contribute to understanding BCS's distinct clinical and radiologic profiles and emphasize the importance of further investigation into its pathophysiology and treatment.
Collapse
Affiliation(s)
- Masoud Etemadifar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Aghili
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saba Shojaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed-Ali Alaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Norouzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Della-Flora Nunes G, Osso LA, Haynes JA, Conant L, Thornton MA, Stockton ME, Brassell KA, Morris A, Mancha Corchado YI, Gaynes JA, Chavez AR, Woerner MB, MacKenna DA, Alavi A, Danks A, Poleg-Polsky A, Gandhi R, Vivian JA, Denman DJ, Hughes EG. Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function. Nat Commun 2025; 16:732. [PMID: 39820244 PMCID: PMC11739692 DOI: 10.1038/s41467-025-56092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice. We focus on the visual pathway, which is uniquely positioned to provide insights into structure-function relationships during de/remyelination. We show endogenous remyelination is driven by recent oligodendrocyte loss and is highly efficacious following mild demyelination, but fails to restore the oligodendrocyte population when high rates of oligodendrocyte loss occur quickly. Testing a thyromimetic (LL-341070) compared to clemastine, we find it better enhances oligodendrocyte gain and hastens recovery of neuronal function. The therapeutic benefit of the thyromimetic is temporally restricted, and it acts exclusively following moderate to severe demyelination, eliminating the endogenous remyelination deficit. However, we find regeneration of oligodendrocytes and myelin to healthy levels is not necessary for recovery of visual neuronal function. These findings advance our understanding of remyelination and its impact on functional recovery to inform future therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johana A Haynes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren Conant
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine A Brassell
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Morris
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yessenia I Mancha Corchado
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anthony R Chavez
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Aryan Alavi
- Autobahn Therapeutics Inc, San Diego, CA, USA
| | - Anne Danks
- Autobahn Therapeutics Inc, San Diego, CA, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Daniel J Denman
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
Lin Y, Chan KH, Mak HKF, Yau KX, Cao P. Quantitative myelin water assessment for multiple sclerosis using multi-inversion magnetic resonance fingerprinting. Med Phys 2025; 52:433-443. [PMID: 39388122 DOI: 10.1002/mp.17461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelination disease. Myelin water is a biomarker of myelin and thus myelin water imaging is a vital tool to provide insight into the demyelination process. PURPOSE This study aimed to characterize the multiple compartments including myelin water fraction (MWF), gray matter (GM) cellular water, white matter (WM) cellular water, and cerebrospinal fluid (CSF) using multiple inversion recovery (mIR) magnetic resonance fingerprinting (MRF) on a clinical MS cohort. METHODS The Phantom experiment was conducted with tubes containing different WM and GM concentrations extracted from pig brains. For the in-vivo experiment, 23 healthy control (HC) volunteers and 18 MS patients were recruited for this study. The experiments were performed using a clinical 3T MRI. A multi-slice, fast imaging with a steady-state precession (FISP) based mIR MRF protocol was used to obtain the MWF measurements, with 6 min of scan time for each volunteer. The quantification was based on the iterative non-negative least squares (NNLS) with reweighting. The brain compartments quantified were myelin water, WM cellular water, GM cellular water, and CSF. A radiologist with 6 years of experience labeled the MS lesions on FLAIR, MPRAGE, and MWF. Statistical analysis was performed by applying unpaired and paired student's t-tests to compare the MWF results in different groups and in normal-appearing white matter (NAWM) and MS lesions. RESULTS The phantom result demonstrated the ability to detect MWF with various myelin concentrations. The maps derived from mIR MRF, including MWF, WM cellular water, GM cellular water, and CSF were consistent with the anatomical structures observed in FLAIR and MPRAGE. The MWF values in the NAWM of MS patients were significantly different from those in HC, with values of 0.32 ± 0.025 and 0.25 ± 0.036, respectively. Additionally, the MWF values in WM lesions were significantly smaller than in NAWM at 0.034 ± 0.036. CONCLUSION The mIR-MRF technique, using multi-compartment analysis, can simultaneously generate maps of MWF, WM cellular water, GM cellular water, and CSF with sufficient brain coverage and in a reasonably short scan time. The MWF map might provide insights into the demyelination associated with MS.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Koon-Ho Chan
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | | | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
8
|
Mireles-Ramírez MA, Velázquez-Brizuela IE, Sánchez-Rosales N, Márquez-Pedroza Y, Hernandez-Preciado MR, Gabriel Ortiz G. The prevalence, incidence, and clinical assessment of neuromyelitis optica spectrum disorder in patients with demyelinating diseases. Neurologia 2024; 39:743-748. [PMID: 35882307 DOI: 10.1016/j.nrleng.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is characterised by recurrent attacks of optic neuritis and transverse myelitis. The purpose of this work was to identify the incidence and prevalence of NMOSD and its clinical characteristics in the population treated for demyelinating diseases in Western Mexico. MATERIAL AND METHOD A descriptive, retrospective study was carried out in the Department of Neurology, at the Sub-specialty Medical Unit, Specialties Hospital (known by its Spanish abbreviation UMAE-HE), of the National Western Medical Center (CMNO), Mexican Institute of Social Security (IMSS). A review of the electronic files for all patients with a diagnosis of NMOSD in 2019, was carried out in the State of Jalisco, Mexico. RESULTS Fifty-eight patients with NMOSD were included in the study. The incidence was 0.71/100 000 (CI 0.60-0.85) and the prevalence was 1.09/100 000 (CI 0.84-1.42). There were 79.3% women, and 20.6% were men (P = .01). All (100%) patients presented with anti-aquaporin-4 immunoglobulin G, and 89.6% showed seropositivity for anti-aquaporin-4 (CI 82.6-94.9). Magnetic resonance imaging was performed on 100% of patients, where 34.4% were normal, and 65.5% (38) abnormal, presenting with non-specific subcortical lesions (P = 0.04). The initial clinical presentation was optic neuritis (ON) in 58.6%; where 31.0% was bilateral ON, 20.7% was left ON, and 6.9% were right ON; transverse myelitis in 26.0%, area postrema syndrome (APS) in 10.3%, among others. CONCLUSIONS The incidence of NMOSD exceeds 0.71/100 000, the prevalence is low at 1.09/100 000, and NMOSD is predominantly found in women.
Collapse
Affiliation(s)
- M A Mireles-Ramírez
- Department of Neurology, Sub-Specialty Medical Unit, National Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - I E Velázquez-Brizuela
- Department of Philosophical and Methodological Disciplines and Molecular Biology in Medicine Service of the Civil Hospital, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - N Sánchez-Rosales
- Department of Neurology, Sub-Specialty Medical Unit, National Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Y Márquez-Pedroza
- Department of Oncology and Uronephrology Sub-Specialty Medical Unit, National Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - M R Hernandez-Preciado
- Department of Neurology, Sub-Specialty Medical Unit, National Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - G Gabriel Ortiz
- Department of Neurology, Sub-Specialty Medical Unit, National Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico; Department of Philosophical and Methodological Disciplines and Molecular Biology in Medicine Service of the Civil Hospital, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
9
|
Toru Asahina A, Lu J, Chugh P, Sharma S, Sharma P, Tan S, Kovoor J, Stretton B, Gupta A, Sorby-Adams A, Goh R, Harroud A, Clarke MA, Evangelou N, Patel S, Dwyer A, Agzarian M, Bacchi S, Slee M. Prognostic significance of paramagnetic rim lesions in multiple sclerosis: A systematic review. J Clin Neurosci 2024; 129:110810. [PMID: 39232367 DOI: 10.1016/j.jocn.2024.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The diagnostic potential of paramagnetic rim lesions (PRLs) has been previously established; however, the prognostic significance of these lesions has not previously been consistently described. This study aimed to establish the prognostic role of PRLs in MS with respect to the Expanded Disability Status Scale (EDSS) and rates of disability progression. Databases of PubMed, EMBASE, Scopus and reference lists of selected articles were searched up to 29/04/2023. The review was conducted in accordance with PRISMA guidelines and was registered prospectively on PROSPERO (CRD42023422052). 7 studies were included in the final review. All of the eligible studies found that patients with PRLs tend to have higher baseline EDSS scores. Longitudinal assessments revealed greater EDSS progression in patients with PRLs over time in most studies. However, the effect of location of PRLs within the central nervous system were not assessed across the studies. Only one study investigated progression independent of relapse activity (PIRA) and showed that this clinical entity occurred in a greater proportion in patients with PRLs. This review supports PRLs as a predictor of EDSS progression. This measure has widespread applicability, however further multicentre studies are needed. Future research should explore the impact of PRLs on silent disability, PIRA, take into account different MS phenotypes and the topography of PRLs in prognosis.
Collapse
Affiliation(s)
- Adon Toru Asahina
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| | - Joe Lu
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Pooja Chugh
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Srishti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Prakriti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Sheryn Tan
- University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua Kovoor
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Brandon Stretton
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Aashray Gupta
- University of Adelaide, Adelaide, SA 5005, Australia; Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Annabel Sorby-Adams
- University of Adelaide, Adelaide, SA 5005, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Rudy Goh
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Lyell McEwin Hospital, Elizabeth Vale, SA 5112, Australia
| | - Adil Harroud
- McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Margareta A Clarke
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sandy Patel
- South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Andrew Dwyer
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marc Agzarian
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Stephen Bacchi
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| |
Collapse
|
10
|
Yokote H, Miyazaki Y, Fujimori J, Nishida Y, Toru S, Niino M, Nakashima I, Miura Y, Yokota T. Slowly expanding lesions are associated with disease activity and gray matter loss in relapse-onset multiple sclerosis. J Neuroimaging 2024; 34:758-765. [PMID: 39390692 DOI: 10.1111/jon.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) have been proposed as novel MRI markers of chronic active lesions in multiple sclerosis (MS). However, the mechanism through which SELs affect brain volume loss in patients with MS remains unknown. Additionally, the prevalence and significance of SELs in Asian patients with MS remain unclear. This study aimed to investigate the association between SELs and no evidence of disease activity (NEDA)-3 status as well as brain volume loss in Japanese patients. METHODS A total of 99 patients with relapse-onset MS were retrospectively evaluated. SELs were identified on brain MRI based on local deformation when consecutive scans were registered longitudinally. We developed a logistic regression model and generalized linear mixed models (GLMMs) to evaluate the association between the number of SELs and disease activity and changes in brain volume. RESULTS During the observation period (2.0 ± 0.22 years), 35 patients developed at least one SEL. Multivariable logistic regression analysis showed that ≥2 SELs were associated with 0.2 times the risk of achieving a NEDA-3 status. GLMMs revealed that the number of SELs was negatively associated with volume changes in the cortex (p = .00169) and subcortical gray matter (p = .00964) after correction for multiple comparisons. CONCLUSION SELs were identified in Japanese patients with MS during the 2-year observation period. The number of SELs is associated with disease activity and brain volume loss, suggesting that the number of SELs could be a biomarker of disease activity in MS.
Collapse
Affiliation(s)
- Hiroaki Yokote
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusei Miyazaki
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Xie Z, Zhou Q, Hu J, He L, Meng H, Liu X, Sun G, Luo Z, Feng Y, Li L, Chu X, Du C, Yang D, Yang X, Zhang J, Ge C, Zhang X, Chen S, Geng M. Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis optica spectrum disorders. J Transl Med 2024; 22:989. [PMID: 39487546 PMCID: PMC11529322 DOI: 10.1186/s12967-024-05801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood. METHODS To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP). RESULTS Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. CONCLUSIONS Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Huangyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Yuan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Dabing Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xinying Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xiang Zhang
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
12
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
13
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Ye XF, Huang ZP, Li MM, Liu SF, Huang WL, Hamud AMS, Ye LC, Li LY, Wu SJ, Zhuang JL, Chen YH, Chen XR, Lin S, Wei XF, Chen CN. Update on aquaporin-4 antibody detection: the early diagnosis of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 90:105803. [PMID: 39128164 DOI: 10.1016/j.msard.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.
Collapse
Affiliation(s)
- Xiao-Fang Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Wan-Li Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Abdullahi Mukhtar Sheik Hamud
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Juan Wu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Centre, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China; Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiao-Feng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China.
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China.
| |
Collapse
|
15
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
16
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
17
|
Guevara C, Vicencio SC, Pizarro IS, Villavicencio-Tejo F, Quintanilla RA, Astudillo P, Ampuero E, Varas R, Orellana JA, Ortiz FC. Evidence for TGF-β1/Nrf2 Signaling Crosstalk in a Cuprizone Model of Multiple Sclerosis. Antioxidants (Basel) 2024; 13:914. [PMID: 39199160 PMCID: PMC11351764 DOI: 10.3390/antiox13080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and degenerative disease that impacts central nervous system (CNS) function. One of the major characteristics of the disease is the presence of regions lacking myelin and an oxidative and inflammatory environment. TGF-β1 and Nrf2 proteins play a fundamental role in different oxidative/inflammatory processes linked to neurodegenerative diseases such as MS. The evidence from different experimental settings has demonstrated a TGF-β1-Nrf2 signaling crosstalk under pathological conditions. However, this possibility has not been explored in experimental models of MS. Here, by using the cuprizone-induced demyelination model of MS, we report that the in vivo pharmacological blockage of the TGF-β1 receptor reduced Nrf2, catalase, and TGFβ-1 protein levels in the demyelination phase of cuprizone administration. In addition, ATP production, locomotor function and cognitive performance were diminished by the treatment. Altogether, our results provide evidence for a crosstalk between TGF-β1 and Nrf2 signaling pathways under CNS demyelination, highlighting the importance of the antioxidant cellular response of neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Coram Guevara
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Sinay C. Vicencio
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Ignacio S. Pizarro
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile (R.A.Q.)
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile (R.A.Q.)
| | - Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Estibaliz Ampuero
- Laboratorio Neurofarmacología del Comportamiento, Facultad de Química y Biología, Universidad de Santiago, Santiago9170022, Chile
| | - Rodrigo Varas
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
18
|
Lee JJ, Scheuren PS, Liu H, Loke RWJ, Laule C, Loucks CM, Kramer JLK. The myelin water imaging transcriptome: myelin water fraction regionally varies with oligodendrocyte-specific gene expression. Mol Brain 2024; 17:45. [PMID: 39044257 PMCID: PMC11264438 DOI: 10.1186/s13041-024-01115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Identifying sensitive and specific measures that can quantify myelin are instrumental in characterizing microstructural changes in neurological conditions. Neuroimaging transcriptomics is emerging as a valuable technique in this regard, offering insights into the molecular basis of promising candidates for myelin quantification, such as myelin water fraction (MWF). We aimed to demonstrate the utility of neuroimaging transcriptomics by validating MWF as a myelin measure. We utilized data from a normative MWF brain atlas, comprised of 50 healthy subjects (mean age = 25 years, range = 17-42 years) scanned at 3 Tesla. Magnetic resonance imaging data included myelin water imaging to extract MWF and T1 anatomical scans for image registration and segmentation. We investigated the inter-regional distributions of gene expression data from the Allen Human Brain Atlas in conjunction with inter-regional MWF distribution patterns. Pearson correlations were used to identify genes with expression profiles mirroring MWF. The Single Cell Type Atlas from the Human Protein Atlas was leveraged to classify genes into gene sets with high cell type specificity, and a control gene set with low cell type specificity. Then, we compared the Pearson correlation coefficients for each gene set to determine if cell type-specific gene expression signatures correlate with MWF. Pearson correlation coefficients between MWF and gene expression for oligodendrocytes and adipocytes were significantly higher than for the control gene set, whereas correlations between MWF and inhibitory/excitatory neurons were significantly lower. Our approach in integrating transcriptomics with neuroimaging measures supports an emerging technique for understanding and validating MRI-derived markers such as MWF.
Collapse
Affiliation(s)
- Jaimie J Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Paulina S Scheuren
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Hanwen Liu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan W J Loke
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Catrina M Loucks
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Fonseca A, Santos E, Taipa R. Baló concentric sclerosis: Literature review and report of two cases. J Neuroimmunol 2024; 392:578370. [PMID: 38797061 DOI: 10.1016/j.jneuroim.2024.578370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Baló's concentric sclerosis (BCS) is a rare variant of multiple sclerosis characterized by unique pathological features of alternating demyelination and preserved myelin. OBJECTIVES To describe two cases of BCS, radiological and pathological findings and its clinical course. RESULTS We report two distinct cases of BCS that presented with unique MRI findings suggestive of BCS, but with different clinical courses and responses to treatment. The first case demonstrated substantial recovery following corticosteroid therapy, while the second case, initially suspected to be a malignant tumour, showed improvement after surgical intervention and immunoglobulin therapy. CONCLUSION These cases highlight the variability in presentation and course of BCS, underscoring the challenges in diagnosis and the importance of considering BCS in the differential diagnosis of demyelinating and tumefactive lesions. The cases also emphasize the potential for favourable outcomes with appropriate management, challenging the traditional view of BCS as uniformly severe.
Collapse
Affiliation(s)
- Angelo Fonseca
- Neurology Department, Hospital Pedro Hispano, ULS-Matosinhos, Portugal.
| | - Ernestina Santos
- Neurology Department, Centro Hospitalar e Universitário de Santo António, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto Porto Portugal, Portugal; ITR-Laboratory for Integrative and Translational Research in Population Health Porto Portugal, Portugal
| | - Ricardo Taipa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto Porto Portugal, Portugal; ITR-Laboratory for Integrative and Translational Research in Population Health Porto Portugal, Portugal; Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences Centro Hospitalar, Universitário do Porto Porto, Portugal
| |
Collapse
|
20
|
Han Y, Sun J, Xiaojuan, Li MX, Ma Q. Inosine pretreatment of pregnant rats ameliorates maternal inflammation-mediated hypomyelination in pups via microglia polarization switch. Brain Res 2024; 1834:148844. [PMID: 38432260 DOI: 10.1016/j.brainres.2024.148844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Periventricular leukomalacia (PVL) is a neurological condition observed in premature infants, characterized by hypomyelination and activation of microglia. Maternal inflammation-induced brain injury in offspring significantly contributes to the development of PVL. Currently, there are no clinical pharmaceutical interventions available for pregnant women to prevent maternal inflammation-mediated brain injury in their offspring. Inosine has been shown to modulate the immune response in diverse stressful circumstances, such as injury, ischemia, and inflammation. The aim of this investigation was to examine the potential prophylactic impact of inosine on offspring PVL induced by maternal inflammation. This was accomplished by administering a 1 mg/ml inosine solution (40 ml daily) to pregnant Sprague-Dawley (SD) rats for 16 consecutive days prior to their intraperitoneal injection of lipopolysaccharide (350 µg/kg, once a day, for two days). The results showed that maternal inosine pretreatment significantly reversed the reduction in MBP and CNPase (myelin-related markers), CC-1 and Olig2 (oligodendrocyte-related markers) in their PVL pups (P7), suggesting that inosine administration during pregnancy could improve hypomyelination and enhance the differentiation of oligodendrocyte precursor cells (OPCs) in their PVL pups. Furthermore, the protective mechanism of inosine against PVL is closely associated with the activation and polarization of microglia. This is evidenced by a notable reduction in the quantity of IBA 1-positive microglia, a decrease in the level of CD86 (a marker for M1 microglia), an increase in the level of Arg 1 (a marker for M2 microglia), as well as a decrease in the level of pro-inflammatory factors TNF-α, IL-1β, and IL-6, and an increase in the level of anti-inflammatory factors IL-4 and IL-10 in the brain of PVL pups following maternal inosine pretreatment. Taken together, inosine pretreatment of pregnant rats can improve hypomyelination in their PVL offspring by triggering the M1/M2 switch of microglia.
Collapse
Affiliation(s)
- Yong Han
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| | - Xiaojuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Ma Xin Li
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Quanrui Ma
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
21
|
Vanheule E, Cambron M, Dobai A, Casselman JW. Rim lesions in MS at 3T: clinical correlation and possible radiological alternatives for daily practice at lower field strength. J Neuroradiol 2024; 51:101165. [PMID: 37907156 DOI: 10.1016/j.neurad.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND AND PURPOSE Paramagnetic rim lesions (PRLs) have been described as an imaging feature specific to multiple sclerosis (MS) using high-field strength phase-sensitive MR imaging. These lesions are suggested to reflect chronic active inflammation associated with greater disease severity and a more rapid disability progression. The aim of our study is to investigate the relationship between PRLs, clinical parameters, other radiological findings and disease progression. MATERIAL AND METHODS This cross-sectional study included MS patients treated with teriflunomide, fingolimod, natalizumab or ocrelizumab for at least 2 years. PRLs seen at 3T MRI were analysed and correlated with clinical data and radiological progression, defined as an increase of the T2/FLAIR-lesion load during therapy. In the search for alternatives for these PRLs, we defined two additional radiological markers: 'FLAIR-bullet lesions', and on post-contrast black-blood (BB) images, 'BB-bullet lesions'. RESULTS We included 84 MS patients of whom 27 (32 %) had at least 1 PRL. PRLs were associated with radiological progression under therapy (p=0.039) and higher clinical disability scores, although only significant for 9-Hole Peg Test (p=0.023). Patients with FLAIR-bullet or BB-bullet lesions at 3T MRI had a higher chance of PRL (p<0.001) with a likelihood ratio of 13.2 for FLAIR-bullets and 12.6 for BB-bullet lesions, thanks to the high negative predictive value of respectively 83 % and 90 %. CONCLUSION PRLs are associated with an increase of T2/FLAIR-lesion load under therapy and unfavourable clinical outcome. Our newly defined 'bullet lesions' are associated with PRLs and might be an interesting MRI marker for centres without access to high-field SWI images.
Collapse
Affiliation(s)
- Eva Vanheule
- Department of Radiology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium.
| | - Melissa Cambron
- Department of Neurology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium
| | - Adrienn Dobai
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary; Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa street 6, Budapest, 1083, Hungary
| | - Jan W Casselman
- Department of Radiology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium; Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Fu JT, Yang CJ, Lee LY, Chen WP, Chen YW, Chen CC, Sun YT, Yang CS, Tzeng SF. Erinacine S, a small active component derived from Hericium erinaceus, protects oligodendrocytes and alleviates mood abnormalities in cuprizone-exposed rodents. Biomed Pharmacother 2024; 173:116297. [PMID: 38394854 DOI: 10.1016/j.biopha.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Hericium erinaceus mycelium extract (HEM), containing erinacine A (HeA) and erinacine S (HeS), has shown promise in promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), crucial for myelin production in the central nervous system (CNS). The main aim of this study was to characterize the protective effects of HEM and its components on OLs and myelin in demyelinating rodents by exposure to cuprizone (CPZ), a copper chelating agent commonly used to induce demyelination in the corpus callosum of the brain. Rats were fed by CPZ-containing diet and simultaneously orally administered HEM, HeA, or HeS on a daily basis for three weeks. We found that HEM and HeS preserved myelin and OLs in the corpus callosum of CPZ-fed rats, along with reduced microglia and astrocyte activation, and downregulated IL-1β expression. Furthermore, post-treatment with HeS, in mouse models with acute (6 weeks) or chronic (12 weeks) CPZ-induced demyelination demonstrated oral administration during the final 4 weeks (HeS4/6 or HeS4/12) effectively preserved myelin in the corpus callosum. Additionally, HeS4/6 and HeS4/12 inhibited anxious and depressive-like behaviors in CPZ-fed mice. In summary, simultaneous administration of HEM and HeS in rats during short-term CPZ intoxication preserved OLs and myelin. Furthermore, post-administration of HeS not only inhibited demyelination and gliosis but also alleviated anxiety and depression in both acute and chronic CPZ-fed mice. This study presents compelling evidence supporting the potential of HeS as a promising small active compound for protecting OLs and preserving myelin in demyelinating diseases associated with emotional disorders.
Collapse
Affiliation(s)
- Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jou Yang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Cui SH, Suo N, Yang Y, Wu X, Guo SM, Xie X. The aminosteroid U73122 promotes oligodendrocytes generation and myelin formation. Acta Pharmacol Sin 2024; 45:490-501. [PMID: 37935896 PMCID: PMC10834981 DOI: 10.1038/s41401-023-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17β-estradiol, and both compounds do activate estrogen receptors Erα and Erβ with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erβ to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Shi-Hao Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Meng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
25
|
Nunes GDF, Osso LA, Haynes JA, Morris A, Conant L, Stockton ME, Thornton MA, Vivian JA, Gandhi R, Denman DJ, Hughes EG. Incomplete remyelination via endogenous or therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581491. [PMID: 39411163 PMCID: PMC11475873 DOI: 10.1101/2024.02.21.581491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myelin loss induces deficits in action potential propagation that result in neural dysfunction and contribute to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that seek to restore neural function are clinical imperatives. Here, we used in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice. We focused on the visual pathway, which is uniquely positioned to provide insights into structure-function relationships during de/remyelination. We show that endogenous remyelination is driven by recent oligodendrocyte loss and is highly efficacious following mild demyelination, but fails to restore the oligodendrocyte population when high rates of oligodendrocyte loss occur too quickly. Testing a novel thyromimetic compared to clemastine fumarate, we find it better enhances oligodendrocyte gain during remyelination and hastens recovery of neuronal function. Surprisingly, its therapeutic benefit was temporally restricted, and it acted exclusively following moderate to severe demyelination to eliminate endogenous remyelination deficits. However, complete remyelination is unnecessary as partial oligodendrocyte restoration was sufficient to recover visual neuronal function. These findings advance our understanding of remyelination and its impact on functional recovery to inform future therapeutic strategies.
Collapse
|
26
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Pirici D, Mogoanta L, Ion DA, Kumar-Singh S. Fractal Analysis in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:365-384. [PMID: 38468042 DOI: 10.1007/978-3-031-47606-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Neurodegenerative diseases are defined by progressive nervous system dysfunction and death of neurons. The abnormal conformation and assembly of proteins is suggested to be the most probable cause for many of these neurodegenerative disorders, leading to the accumulation of abnormally aggregated proteins, for example, amyloid β (Aβ) (Alzheimer's disease and vascular dementia), tau protein (Alzheimer's disease and frontotemporal lobar degeneration), α-synuclein (Parkinson's disease and Lewy body dementia), polyglutamine expansion diseases (Huntington disease), or prion proteins (Creutzfeldt-Jakob disease). An aberrant gain-of-function mechanism toward excessive intraparenchymal accumulation thus represents a common pathogenic denominator in all these proteinopathies. Moreover, depending upon the predominant brain area involvement, these different neurodegenerative diseases lead to either movement disorders or dementia syndromes, although the underlying mechanism(s) can sometimes be very similar, and on other occasions, clinically similar syndromes can have quite distinct pathologies. Non-Euclidean image analysis approaches such as fractal dimension (FD) analysis have been applied extensively in quantifying highly variable morphopathological patterns, as well as many other connected biological processes; however, their application to understand and link abnormal proteinaceous depositions to other clinical and pathological features composing these syndromes is yet to be clarified. Thus, this short review aims to present the most important applications of FD in investigating the clinical-pathological spectrum of neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Laurentiu Mogoanta
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Adriana Ion
- Department of Physiopathology, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Samir Kumar-Singh
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Cell Biology & Histology and Translational Neuroscience Department, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
28
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
29
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
30
|
Keehn CC, Yazdian A, Hunt PJ, Davila-Siliezar P, Laylani NA, Lee AG. Monoclonal antibodies in neuro-ophthalmology. Saudi J Ophthalmol 2024; 38:13-24. [PMID: 38628411 PMCID: PMC11017005 DOI: 10.4103/sjopt.sjopt_256_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024] Open
Abstract
Neuro-ophthalmologic diseases include a broad range of disorders affecting the afferent and efferent visual pathways. Recently, monoclonal antibody (mAb) therapies have emerged as a promising targeted approach in the management of several of these complex conditions. Here, we describe the mechanism-specific applications and advancements in neuro-ophthalmologic mAb therapies. The application of mAbs in neuro-ophthalmologic diseases highlights our increasing understanding of disease-specific mechanisms in autoimmune conditions such as neuromyelitis optica, thyroid eye disease, and myasthenia gravis. Due to the specificity of mAb therapies, applications in neuro-ophthalmologic diseases have yielded exceptional clinical outcomes, including both reduced rate of relapse and progression to disability, visual function preservation, and quality of life improvement. These advancements have not only expanded the range of treatable neuro-ophthalmologic diseases but also reduced adverse events and increased the response rate to treatment. Further research into neuro-ophthalmologic disease mechanisms will provide accurate and specific targeting of important disease mediators through applications of future mAbs. As our understanding of these diseases and the relevant therapeutic targets evolve, we will continue to build on our understanding of how mAbs interfere with disease pathogenesis, and how these changes improve clinical outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Caroline C. Keehn
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Arman Yazdian
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Patrick J. Hunt
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Pamela Davila-Siliezar
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Noor A. Laylani
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
- Department of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, USA
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, University of Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
31
|
Li M, Liu Q. Inflammatory Demyelinating Diseases of the Central Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 41:171-218. [PMID: 39589715 DOI: 10.1007/978-3-031-69188-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Over the past decades, a large number of immunomodulatory or immunosuppressive treatments have been approved to treat central nervous system (CNS) demyelinating disorders such as multiple sclerosis (MS). Owing to the heterogeneity of patients with CNS demyelinating diseases, there is no clinical treatment that can adequately control all disease subtypes. Although significant progress has been made for relapsing-remitting MS, effective management of the progressive phase of MS has not yet been achieved. This is at least in part caused by our incomplete understanding of the mechanisms driving disease progression, despite our increasing knowledge regarding the underlying cellular and molecular mechanisms. Here, we summarized our current knowledge regarding the mechanisms of CNS demyelinating disorders and their animal models to identify open questions and challenges for existing concepts. We also discussed potential strategies for the future design of immune therapies to treat CNS demyelinating disorders.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
32
|
Schröder LJ, Mulenge F, Pavlou A, Skripuletz T, Stangel M, Gudi V, Kalinke U. Dynamics of reactive astrocytes fosters tissue regeneration after cuprizone-induced demyelination. Glia 2023; 71:2573-2590. [PMID: 37455566 DOI: 10.1002/glia.24440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Demyelination in the central nervous system (CNS) is a hallmark of many neurodegenerative diseases such as multiple sclerosis (MS) and others. Here, we studied astrocytes during de- and remyelination in the cuprizone mouse model. To this end, we exploited the ribosomal tagging (RiboTag) technology that is based on Cre-mediated cell type-selective HA-tagging of ribosomes. Analyses were performed in the corpus callosum of GFAP-Cre+/- Rpl22HA/wt mice 5 weeks after cuprizone feeding, at the peak of demyelination, and 0.5 and 2 weeks after cuprizone withdrawal, when remyelination and tissue repair is initiated. After 5 weeks of cuprizone feeding, reactive astrocytes showed inflammatory signatures with enhanced expression of genes that modulate leukocyte migration (Tlr2, Cd86, Parp14) and they produced the chemokine CXCL10, as verified by histology. Furthermore, demyelination-induced reactive astrocytes expressed numerous ligands including Cx3cl1, Csf1, Il34, and Gas6 that act on homeostatic as well as activated microglia and thus potentially mediate activation and recruitment of microglia and enhancement of their phagocytotic activity. During early remyelination, HA-tagged cells displayed reduced inflammatory response signatures, as indicated by shutdown of CXCL10 production, and enhanced expression of osteopontin (SPP1) as well as of factors that are relevant for tissue remodeling (Timp1), regeneration and axonal repair. During late remyelination, the signatures shifted towards resolving inflammation by active suppression of lymphocyte activation and differentiation and support of glia cell differentiation. In conclusion, we detected highly dynamic astroglial transcriptomic signatures in the cuprizone model, which reflects excessive communication among glia cells and highlights different astrocyte functions during neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Zhang X, Weickenmeier J. Brain Stiffness Follows Cuprizone-Induced Variations in Local Myelin Content. Acta Biomater 2023; 170:507-518. [PMID: 37660962 DOI: 10.1016/j.actbio.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Brain maturation and neurological diseases are intricately linked to microstructural changes that inherently affect the brain's mechanical behavior. Animal models are frequently used to explore relative brain stiffness changes as a function of underlying microstructure. Here, we are using the cuprizone mouse model to study indentation-derived stiffness changes resulting from acute and chronic demyelination during a 15-week observation period. We focus on the corpus callosum, cingulum, and cortex which undergo different degrees of de- and remyelination and, therefore, result in region-specific stiffness changes. Mean stiffness of the corpus callosum starts at 1.1 ± 0.3 kPa in untreated mice, then cuprizone treatment causes stiffness to drop to 0.6 ± 0.1 kPa by week 3, temporarily increase to 0.9 ± 0.3 kPa by week 6, and ultimately stabilize around 0.7 ± 0.1 kPa by week 9 for the rest of the observation period. The cingulum starts at 3.2 ± 0.9 kPa, then drops to 1.6 ± 0.4 kPa by week 3, and then gradually stabilizes around 1.4 ± 0.3 kPa by week 9. Cortical stiffness exhibits less stiffness variations overall; it starts at 4.2 ± 1.3 kPa, drops to 2.4 ± 0.6 kPa by week 3, and stabilizes around 2.7 ± 0.9 kPa by week 6. We also assess the impact of tissue fixation on indentation-based mechanical tissue characterization. On the one hand, fixation drastically increases untreated mean tissue stiffness by a factor of 3.3 for the corpus callosum, 2.9 for the cingulum, and 3.6 for the cortex; on the other hand, fixation influences interregional stiffness ratios during demyelination, thus suggesting that fixation affects individual brain tissues differently. Lastly, we determine the spatial correlation between stiffness measurements and myelin density and observe a region-specific proportionality between myelin content and tissue stiffness. STATEMENT OF SIGNIFICANCE: Despite extensive work, the relationship between microstructure and mechanical behavior in the brain remains mostly unknown. Additionally, the existing variation of measurement results reported in literature requires in depth investigation of the impact of individual cell and protein populations on tissue stiffness and interregional stiffness ratios. Here, we used microindentation measurements to show that brain stiffness changes with myelin density in the cuprizone-based demyelination mouse model. Moreover, we explored the impact of tissue fixation prior to mechanical characterization because of conflicting results reported in literature. We observe that fixation has a distinctly different impact on our three regions of interest, thus causing region-specific tissue stiffening and, more importantly, changing interregional stiffness ratios.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 United States
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 United States.
| |
Collapse
|
34
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Sy M, Newton BL, Pawling J, Hayama KL, Cordon A, Yu Z, Kuhle J, Dennis JW, Brandt AU, Demetriou M. N-acetylglucosamine inhibits inflammation and neurodegeneration markers in multiple sclerosis: a mechanistic trial. J Neuroinflammation 2023; 20:209. [PMID: 37705084 PMCID: PMC10498575 DOI: 10.1186/s12974-023-02893-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.
Collapse
Affiliation(s)
- Michael Sy
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Barbara L Newton
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Judy Pawling
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Ken L Hayama
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Andres Cordon
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Zhaoxia Yu
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California Irvine, Bren Hall 2019, Irvine, CA, 92697, USA
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Mittlere Strasse 83, 4056, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alexander U Brandt
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Michael Demetriou
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA.
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, USA.
| |
Collapse
|
36
|
Martín Monreal MT, Hansen BE, Iversen PF, Enevold C, Ødum N, Sellebjerg F, Højrup P, Rode von Essen M, Nielsen CH. Citrullination of myelin basic protein induces a Th17-cell response in healthy individuals and enhances the presentation of MBP85-99 in patients with multiple sclerosis. J Autoimmun 2023; 139:103092. [PMID: 37506490 DOI: 10.1016/j.jaut.2023.103092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The post-translational modification citrullination has been proposed to play a role in the pathogenesis of multiple sclerosis (MS). Myelin basic protein (MBP) is a candidate autoantigen which is citrullinated to a minor extent under physiological conditions and hypercitrullinated in MS. We examined immune cell responses elicited by hypercitrullinated MBP (citMBP) in cultures of mononuclear cells from 18 patients with MS and 42 healthy donors (HDs). The immunodominant peptide of MBP, MBP85-99, containing citrulline in position 99, outcompeted the binding of native MBP85-99 to HLA-DR15, which is strongly linked to MS. Moreover, using the monoclonal antibody MK16 as probe, we observed that B cells and monocytes from HLA-DR15+ patients with MS presented MBP85-99 more efficiently after challenge with citMBP than with native MBP. Both citMBP and native MBP induced proliferation of CD4+ T cells from patients with MS as well as TNF-α production by their B cells and CD4+ T cells, and citrullination of MBP tended to enhance TNF-α secretion by CD4+ T cells from HLA-DR15+ patients. Unlike native MBP, citMBP induced differentiation into Th17 cells in cultures from HDs, while neither form of MBP induced Th17-cell differentiation in cultures from patients with MS. These data suggest a role for citrullination in the breach of tolerance to MBP in healthy individuals and in maintenance of the autoimmune response to MBP in patients with MS.
Collapse
Affiliation(s)
- María Teresa Martín Monreal
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Pernille F Iversen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Tokarska N, Naniong JMA, Johnston JM, Salapa HE, Muir GD, Levin MC, Popescu BF, Verge VMK. Acute intermittent hypoxia alters disease course and promotes CNS repair including resolution of inflammation and remyelination in the experimental autoimmune encephalomyelitis model of MS. Glia 2023; 71:2045-2066. [PMID: 37132422 DOI: 10.1002/glia.24381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.
Collapse
Affiliation(s)
- Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justin M A Naniong
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gillian D Muir
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
38
|
Takai Y, Misu T, Fujihara K, Aoki M. Pathology of myelin oligodendrocyte glycoprotein antibody-associated disease: a comparison with multiple sclerosis and aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders. Front Neurol 2023; 14:1209749. [PMID: 37545724 PMCID: PMC10400774 DOI: 10.3389/fneur.2023.1209749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is expressed on the outermost layer of the myelin sheath in the central nervous system. Recently, the clinical concept of MOG antibody-associated disease (MOGAD) was established based on the results of human MOG-transfected cell-based assays which can detect conformation-sensitive antibodies against MOG. In this review, we summarized the pathological findings of MOGAD and discussed the issues that remain unresolved. MOGAD pathology is principally inflammatory demyelination without astrocyte destruction, characterized by perivenous demyelination previously reported in acute disseminated encephalomyelitis and by its fusion pattern localized in both the white and gray matter, but not by radially expanding confluent demyelination typically seen in multiple sclerosis (MS). Some of demyelinating lesions in MOGAD show severe loss of MOG staining compared with those of other myelin proteins, suggesting a MOG-targeted pathology in the disease. Perivascular cuffings mainly consist of macrophages and T cells with CD4-dominancy, which is also different from CD8+ T-cell-dominant inflammation in MS. Compared to aquaporin 4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders (NMOSD), perivenous complement deposition is less common, but can be seen on myelinated fibers and on myelin degradation products within macrophages, resembling MS Pattern II pathology. Thus, the pathogenetic contribution of complements in MOGAD is still debatable. Together, these pathological features in MOGAD are clearly different from those of MS and AQP4 antibody-positive NMOSD, suggesting that MOGAD is an independent autoimmune demyelinating disease entity. Further research is needed to clarify the exact pathomechanisms of demyelination and how the pathophysiology relates to the clinical phenotype and symptoms leading to disability in MOGAD patients.
Collapse
Affiliation(s)
- Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Samara A, Cantoni C, Piccio L, Cross AH, Chahin S. Obesity, gut microbiota, and multiple sclerosis: Unraveling the connection. Mult Scler Relat Disord 2023; 76:104768. [PMID: 37269641 DOI: 10.1016/j.msard.2023.104768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Obesity is associated with chronic mild-grade systemic inflammation and neuroinflammation. Obesity in early childhood and adolescence is also a significant risk factor for multiple sclerosis (MS) development. However, the underlying mechanisms that explain the link between obesity and MS development are not fully explored. An increasing number of studies call attention to the importance of gut microbiota as a leading environmental risk factor mediating inflammatory central nervous system demyelination, particularly in MS. Obesity and high-calorie diet are also associated with disturbances in gut microbiota. Therefore, gut microbiota alteration is a plausible connection between obesity and the increased risk of MS development. A greater understanding of this connection could provide additional therapeutic opportunities, like dietary interventions, microbiota-derived products, and exogenous antibiotics and probiotics. This review summarizes the current evidence regarding the relationships between MS, obesity, and gut microbiota. We discuss gut microbiota as a potential link between obesity and increased risk for MS. Additional experimental studies and controlled clinical trials targeting gut microbiota are warranted to unravel the possible causal relationship between obesity and increased risk of MS.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, United States
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States; Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Salim Chahin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
40
|
Fahim I, Ishaque A, Ramzan F, Shamsuddin SABA, Ali A, Salim A, Khan I. Overexpression of OLIG2 and MYT1L Transcription Factors Enhance the Differentiation Potential of Human Mesenchymal Stem Cells into Oligodendrocytes. Curr Issues Mol Biol 2023; 45:4100-4123. [PMID: 37232730 PMCID: PMC10217246 DOI: 10.3390/cimb45050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration. OBJECTIVES The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders. METHODOLOGY hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins. RESULTS All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days. CONCLUSIONS The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration.
Collapse
Affiliation(s)
- Ifrah Fahim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aisha Ishaque
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
41
|
Wang Y, Bian J, Yao M, Du L, Xu Y, Chang H, Cong H, Wei Y, Xu W, Wang H, Zhang X, Geng X, Yin L. Targeting chemoattractant chemokine (C-C motif) ligand 2 derived from astrocytes is a promising therapeutic approach in the treatment of neuromyelitis optica spectrum disorders. Front Immunol 2023; 14:1144532. [PMID: 37056770 PMCID: PMC10086366 DOI: 10.3389/fimmu.2023.1144532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Aquaporin-4 immunoglobulin G (AQP4-IgG)-induced astrocytes injury is a key mechanism in the pathogenesis of neuromyelitis spectrum disorder (NMOSD), and although CCL2 is involved, its specific role has not been reported. We aimed to further investigate the role and potential mechanisms of CCL2 in AQP4-IgG-induced astrocyte injury. Methods First, we evaluated CCL2 levels in paired samples of subject patients by automated microfluidic platform, Ella®. Second, we knock down astrocyte's CCL2 gene in vitro and in vivo to define the function of CCL2 in AQP4-IgG-induced astrocyte injury. Third, astrocyte injury and brain injury in live mice were assessed by immunofluorescence staining and 7.0T MRI, respectively. Western blotting and high-content screening were conducted to clarify the activation of inflammatory signaling pathways, and changes in CCL2 mRNA and cytokine/chemokines were measured by qPCR technique and flow cytometry, respectively. Results There were greatly higher CSF-CCL2 levels in NMOSD patients than that in other non-inflammatory neurological diseases (OND) groups. Blocking astrocyte CCL2 gene expression can efficiently mitigate AQP4-IgG-induced damage in vitro and in vivo. Interestingly, prevention of CCL2 expression could decrease other inflammatory cytokines released, including IL-6 and IL-1β. Our data suggest that CCL2 involves in the initiation and plays a pivotal role in AQP4-IgG-damaged astrocytes. Discussion Our results indicate that CCL2 may serve as a promising candidate target for inflammatory disorder therapy, including NMOSD.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Li Du
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yun Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wangshu Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
42
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Mapping the myelin bilayer with short-T 2 MRI: Methods validation and reference data for healthy human brain. Magn Reson Med 2023; 89:665-677. [PMID: 36253953 PMCID: PMC10091754 DOI: 10.1002/mrm.29481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore the properties of short-T2 signals in human brain, investigate the impact of various experimental procedures on these properties and evaluate the performance of three-component analysis. METHODS Eight samples of non-pathological human brain tissue were subjected to different combinations of experimental procedures including D2 O exchange and frozen storage. Short-T2 imaging techniques were employed to acquire multi-TE (33-2067 μs) data, to which a three-component complex model was fitted in two steps to recover the properties of the underlying signal components and produce amplitude maps of each component. For validation of the component amplitude maps, the samples underwent immunohistochemical myelin staining. RESULTS The signal component representing the myelin bilayer exhibited super-exponential decay with T2,min of 5.48 μs and a chemical shift of 1.07 ppm, and its amplitude could be successfully mapped in both white and gray matter in all samples. These myelin maps corresponded well to myelin-stained tissue sections. Gray matter signals exhibited somewhat different components than white matter signals, but both tissue types were well represented by the signal model. Frozen tissue storage did not alter the signal components but influenced component amplitudes. D2 O exchange was necessary to characterize the non-aqueous signal components, but component amplitude mapping could be reliably performed also in the presence of H2 O signals. CONCLUSIONS The myelin mapping approach explored here produced reasonable and stable results for all samples. The extensive tissue and methodological investigations performed in this work form a basis for signal interpretation in future studies both ex vivo and in vivo.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Rossi B, Dusi S, Angelini G, Bani A, Lopez N, Della Bianca V, Pietronigro EC, Zenaro E, Zocco C, Constantin G. Alpha4 beta7 integrin controls Th17 cell trafficking in the spinal cord leptomeninges during experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1071553. [PMID: 37143680 PMCID: PMC10151683 DOI: 10.3389/fimmu.2023.1071553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of αLβ2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of α4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective α4β7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that α4β7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of α4 integrin chain or α4β7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to α4β7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of α4β7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for α4β7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| | - Silvia Dusi
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Nicola Lopez
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Carlotta Zocco
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| |
Collapse
|
44
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
45
|
Li J, He Y, Wang H, Chen J. Microglial/macrophage activation in the cerebrospinal fluid of neuromyelitis optica spectrum disorders. Brain Behav 2022; 12:e2798. [PMID: 36306394 PMCID: PMC9759122 DOI: 10.1002/brb3.2798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/07/2022] Open
Abstract
AIM The aims of this pilot study were to investigate the levels of biomarkers of microglial/macrophage activation-YKL-40, sCD163, and sCD14-in patients with neuromyelitis optica spectrum disorder (NMOSD) and determine the possible associations between these biomarkers and Expanded Disability Status Scale (EDSS) scores. METHODS We measured the levels of three microglia-/macrophage-related proteins (YKL-40, soluble CD163, and soluble CD14) in cerebrospinal fluid (CSF) using enzyme-linked immunosorbent assays. In addition, patients' neurological disability levels were assessed using EDSS scores. RESULTS NMOSD patients had significantly higher CSF levels of YKL-40(210.52 ± 161.62 for NMOSD and 63.18 ± 9.22 for control), sCD163 (87.23 ± 56.85 for NMOSD and 58.14 ± 7.66 for control), and sCD14 (68.22 ± 24.11 for NMOSD and 55.75 ± 9.48 for control) compared with controls. Furthermore, these biomarker levels were positively correlated with EDSS scores in patients with NMOSD (r = 0.303, p = .002 for YKL-40; r = 0310, p = .001 for sCD14; r = 0.250, p = .011 for sCD163), but not in patients with multiple sclerosis or glial fibrillary acidic protein astrocytopathy. CONCLUSION Our findings suggest that microglial/macrophage activation may be implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Chenzhou, China
| | - Yan He
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Honghao Wang
- Neuroimmunology & Neuroinfection Group, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinyu Chen
- Neuroimmunology & Neuroinfection Group, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Catalpol Regulates Oligodendrocyte Regeneration and Remyelination by Activating the GEF-Cdc42/Rac1 Signaling Pathway in EAE Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7074157. [DOI: 10.1155/2022/7074157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
The main obstacle to remyelination in demyelinating diseases, such as multiple sclerosis, is the inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature oligodendrocytes (OLs) in the demyelinating region. Consequently, promoting OL differentiation and myelin remodeling is a key goal in the search for treatments. Rho GTPases play diverse and important roles throughout the development of neuronal axons and the formation of the myelin sheath. The current study aimed to investigate the direct protective effects of catalpol on demyelination damage induced by myelin oligodendrocyte glycoprotein (MOG) immunization and to explore whether the GEF-Cdc42/Rac1 signaling pathway contributes to the regeneration effect induced by catalpol. In the MOG-induced experimental autoimmune encephalomyelitis (EAE) mouse model of demyelination, we observed that catalpol significantly promoted OL development by enhancing the expression of glutathione S-transferase pi (GST-pi) in the affected brain. By Luxol fast blue staining and myelin basic protein (MBP) expression assessment, catalpol was found to increase MBP expression and promote myelin repair. Furthermore, catalpol promoted OL differentiation associated with the upregulation of Cdc42/Rac1 expression and activation in vivo. In addition, PAK1/MRCKα, proteins downstream of Cdc42/Rac1, was positively regulated by catalpol. We also found that catalpol alleviated clinical neurological dysfunction, inhibited inflammatory infiltration, increased the proportion of Treg cells, and suppressed demyelination. Overall, our study is the first to reveal that catalpol can promote OL generation and myelination and contributes to the crucial regulatory process of GEF-Cdc42/Rac1 signaling expression and activation. Therefore, catalpol is a promising drug candidate for the potential treatment of demyelinating diseases.
Collapse
|
47
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
48
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
49
|
Baharlooi H, Mansourabadi AH, Minbashi Moeini M, Mohamed Khosroshahi L, Azimi M. Nucleic Acids as Novel Therapeutic Modalities to Address Multiple Sclerosis Onset and Progression. Cell Mol Neurobiol 2022; 42:2611-2627. [PMID: 34694513 PMCID: PMC11421605 DOI: 10.1007/s10571-021-01158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023]
Abstract
The issue of treating Multiple Sclerosis (MS) begins with disease-modifying treatments (DMTs) which may cause lymphopenia, dyspnea, and many other adverse effects. Consequently, further identification and evaluation of alternative treatments are crucial to monitoring their long-term outcomes and hopefully, moving toward personalized approaches that can be translated into clinical treatments. In this article, we focused on the novel therapeutic modalities that alter the interaction between the cellular constituents contributing to MS onset and progression. Furthermore, the studies that have been performed to evaluate and optimize drugs' efficacy, and particularly, to show their limitations and strengths are also presented. The preclinical trials of novel approaches for multiple sclerosis treatment provide promising prospects to cure the disease with pinpoint precision. Considering the fact that not a single treatment could be effective enough to cover all aspects of MS treatment, additional researches and therapies need to be developed in the future. Since the pathophysiology of MS resembles a jigsaw puzzle, researchers need to put a host of pieces together to create a promising window towards MS treatment. Thus, a combination therapy encompassing all these modules is highly likely to succeed in dealing with the disease. The use of different therapeutic approaches to re-induce self-tolerance in autoreactive cells contributing to MS pathogenesis is presented. A Combination therapy using these tools may help to deal with the clinical disabilities and symptoms of the disease in the future.
Collapse
Affiliation(s)
- Hussein Baharlooi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Minbashi Moeini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Université Laval, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Québec, Canada
| | | | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Hemmat highway, Tehran, Iran.
| |
Collapse
|
50
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α. Front Immunol 2022; 13:1036799. [PMID: 36389783 PMCID: PMC9650248 DOI: 10.3389/fimmu.2022.1036799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 12/10/2023] Open
Abstract
Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia. We examined their ability to recover from acute microglia depletion, as well as the impact of chronic microglia depletion on the progression of disease. Following acute depletion in the brains of GFAP-IL6 mice, microglia repopulation was enhanced, while in GFAP-IFN mice, microglia did not repopulate the brain. Furthermore, chronic CSF1R inhibition was detrimental to the brain of GFAP-IL6 and GFAP-IFN mice and gave rise to severe CNS calcification which strongly correlated with the absence of microglia. In addition, PLX5622-treated GFAP-IFN mice had markedly reduced survival. Our findings provide evidence for novel microglia functions to protect against IFN-α-mediated neurotoxicity and neuronal dysregulation, as well as restrain calcification as a result of both IL-6- and IFN-α-induced neuroinflammation. Taken together, we demonstrate that CSF1R inhibition may be an undesirable target for therapeutic treatment of neuroinflammatory diseases that are driven by elevated IL-6 and IFN-α production.
Collapse
Affiliation(s)
| | | | | | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|