1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Ripoll L, von Zastrow M, Blythe EE. Intersection of GPCR trafficking and cAMP signaling at endomembranes. J Cell Biol 2025; 224:e202409027. [PMID: 40131202 PMCID: PMC11934914 DOI: 10.1083/jcb.202409027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
GPCRs comprise the largest family of signaling receptors and control essentially every physiological process. Many biochemical reactions underlying GPCR signaling are now elucidated to atomic resolution in cell-free preparations, but how elemental signaling reactions are organized in intact cells remains less clear. Significant progress has been made toward bridging this knowledge gap by leveraging new tools and methodologies enabling the experimental detection, localization, and manipulation of defined signaling reactions in living cells. Here, we chronicle advances at this rapidly moving frontier of molecular and cell biology, focusing on GPCR-initiated signaling through the classical cAMP pathway as an example. We begin with a brief review of established concepts. We then discuss the still-evolving understanding that ligand-induced GPCR signaling occurs from endomembranes as well as the plasmalemma, and that this enables cells to flexibly sculpt downstream signaling responses in both space and time. Finally, we note some key limitations of the present understanding and propose some promising directions for future investigation.
Collapse
Affiliation(s)
- Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Emily E. Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Lobe MMM, Verma S, Patil VM, Iyer MR. A review of kappa opioid receptor antagonists and their clinical trial landscape. Eur J Med Chem 2025; 287:117205. [PMID: 39893986 DOI: 10.1016/j.ejmech.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025]
Abstract
Myriad signaling pathways are implicated in neuropsychiatric disorders, yet many mechanisms are unknown and current treatment options are limited. The intriguing dynorphin/kappa opioid receptor (KOR) system that is widely distributed throughout the brain appears to be essential in regulating many physiological and pathophysiological processes. This review explores up to date advances on the relationship between the dynorphin/KOR system with a particular focus on the KOR antagonist compounds tested as clinical candidates that could offer potential treatment options for CNS disorders.
Collapse
Affiliation(s)
- Maloba M M Lobe
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Saroj Verma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh University, Bharat, Meerut, Uttar Pradesh, 250004, India
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD, 20852, USA.
| |
Collapse
|
4
|
Skiba MA, Canavan C, Nemeth GR, Liu J, Kanso A, Kruse AC. Epitope-directed selection of GPCR nanobody ligands with evolvable function. Proc Natl Acad Sci U S A 2025; 122:e2423931122. [PMID: 40067891 PMCID: PMC11929449 DOI: 10.1073/pnas.2423931122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Antibodies have the potential to target G protein-coupled receptors (GPCRs) with high receptor, cellular, and tissue selectivity; however, few antibody ligands for GPCRs exist. Here, we describe a generalizable selection method to enrich for GPCR ligands from a synthetic camelid antibody fragment (nanobody) library. Our strategy yielded multiple nanobody ligands for the angiotensin II type I receptor (AT1R), a prototypical GPCR and important drug target. We found that nanobodies readily act as allosteric modulators, encoding selectivity for both the receptor and chemical features of GPCR ligands. We then used structure-guided design to convert two nanobodies from allosteric ligands to competitive AT1R inhibitors through simple mutations. This work demonstrates that nanobodies can encode multiple pharmacological behaviors and have great potential as evolvable scaffolds for the development of next-generation GPCR therapeutics.
Collapse
MESH Headings
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/genetics
- Ligands
- Epitopes/immunology
- Epitopes/chemistry
- Epitopes/genetics
- Humans
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/immunology
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/immunology
- HEK293 Cells
- Animals
- Allosteric Regulation
Collapse
Affiliation(s)
- Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Clare Canavan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Genevieve R. Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jinghan Liu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Ali Kanso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Galindo G, Maejima D, DeRoo J, Burlingham SR, Fixen G, Morisaki T, Febvre HP, Hasbrook R, Zhao N, Ghosh S, Mayton EH, Snow CD, Geiss BJ, Ohkawa Y, Sato Y, Kimura H, Stasevich TJ. AI-assisted protein design to rapidly convert antibody sequences to intrabodies targeting diverse peptides and histone modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636921. [PMID: 39975170 PMCID: PMC11839053 DOI: 10.1101/2025.02.06.636921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Intrabodies are engineered antibodies that function inside living cells, enabling therapeutic, diagnostic, and imaging applications. While powerful, their development has been hindered by challenges associated with their folding, solubility, and stability in the reduced intracellular environment. Here, we present an AI-driven pipeline integrating AlphaFold2, ProteinMPNN, and live-cell screening to optimize antibody framework regions while preserving epitope-binding complementarity-determining regions. Using this approach, we successfully converted 19 out of 26 antibody sequences into functional single-chain variable fragment (scFv) intrabodies, including a panel targeting diverse histone modifications for real-time imaging of chromatin dynamics and gene regulation. Notably, 18 of these 19 sequences had failed to convert using the standard approach, demonstrating the unique effectiveness of our method. As antibody sequence databases expand, our method will accelerate intrabody design, making their development easier, more cost-effective, and broadly accessible for biological research.
Collapse
Affiliation(s)
- Gabriel Galindo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Daiki Maejima
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Jacob DeRoo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Scott R Burlingham
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Gretchen Fixen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Hasbrook
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - E Handly Mayton
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Christopher D Snow
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuko Sato
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO, USA
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| |
Collapse
|
6
|
Mannes M, Martin C, Damian M, Cantel S, Orcel H, Fehrentz JA, Mouillac B, Kniazeff J, Banères JL, Ballet S. G protein peptidomimetics reveal allosteric effects and stepwise interactions in ghrelin receptor-G protein coupling. Sci Signal 2025; 18:eado7692. [PMID: 39903809 DOI: 10.1126/scisignal.ado7692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
G protein-coupled receptor (GPCR) signaling is a dynamic process involving various conformational intermediates in addition to those captured in static three-dimensional structures. Here, we used newly developed G protein peptidomimetics to characterize the interactions of the ghrelin receptor (GHSR) with G proteins. Coupling to the G protein peptidomimetic not only affected the conformational features of the cytoplasmic regions of the receptor where the G protein binds but also allosterically affected the extracellular ligand-binding pocket. These conformational and allosteric changes increased the affinity of G protein-coupled GHSR for the endogenous agonist ghrelin. In addition, our data identified different complexes along the G protein activation pathway that differed in the engagement of the Gαq C-terminal helix. Given that this helix is the main link between the activated receptor and the Gα nucleotide-binding pocket, these findings suggested a stepwise process involving distinct states in GPCR-catalyzed G protein activation. Collectively, our results provide evidence for the dynamic behavior of GPCR-G protein signaling complexes, with such dynamics most likely contributing to signaling selectivity and/or efficacy.
Collapse
Affiliation(s)
- Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Julie Kniazeff
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Du W, Rahman SN, Barker E, Bräuner-Osborne H, Mathiesen JM, Ward DT, Jensen AA. Detailed functional characterization of four nanobodies as positive allosteric modulators of the human calcium-sensing receptor. Biochem Pharmacol 2025; 231:116619. [PMID: 39522703 DOI: 10.1016/j.bcp.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The calcium-sensing receptor (CaSR) plays a key role in calcium homeostasis, and small-molecule and peptide positive allosteric modulators (PAMs) of CaSR, so-called calcimimetics, are used in the treatment of hyperparathyroidism and hypocalcemic disorders. In this study, four monovalent nanobodies - representing four distinct nanobody families with CaSR PAM activity - were subjected to elaborate pharmacological profiling at the receptor. While Nb5 displayed negligible PAM activity at CaSR in all assays, Nb4, Nb10 and Nb45 all potently potentiated Ca2+-evoked signalling through a myc epitope-tagged CaSR expressed in HEK293 or HEK293T cells in Gαq and Gαi1 protein activation assays and in a Ca2+/Fluo-4 assay. Nb4 and Nb10 also displayed comparable PAM properties at a stable CaSR-HEK293 cell line in a Ca2+/Fura-2 imaging assay, but surprisingly Nb45 was completely inactive at this cell line in both the Ca2+/Fura-2 and Ca2+/Fluo-4 assays. Investigations into this binary difference in Nb45 activity revealed that the nanobody only possesses modulatory activity at CaSRs tagged N-terminally with various epitopes (myc, HA, Flag-SNAP), whereas it is inactive at the untagged wild-type receptor. In conclusion, overall each of the four nanobodies exhibit similar CaSR PAM properties in a range of assays, and thus none of them display pathway bias as modulators. However, of the four nanobodies Nb4 and Nb10 would be applicable as pharmacological tools for the wild-type CaSR, whereas the complete inactivity of Nb45 at the untagged CaSR serves as an reminder that epitope-tagging of a receptor, even if deemed functionally silent, can have profound implications for ligand discovery efforts.
Collapse
Affiliation(s)
- Wei Du
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sabrina N Rahman
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Eleanor Barker
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Kim D, Liu W, Viner R, Cherezov V. Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination. Structure 2024; 32:2206-2219.e4. [PMID: 39471802 PMCID: PMC11625002 DOI: 10.1016/j.str.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential transmembrane proteins playing key roles in human health and disease. Understanding their atomic-level molecular structure and conformational states is imperative for advancing drug development. Recent breakthroughs in single-particle cryogenic electron microscopy (cryo-EM) have propelled the structural biology of GPCRs into a new era. Nevertheless, the preparation of suitable GPCR samples and their complexes for cryo-EM analysis remains challenging due to their poor stability and highly dynamic nature. Here, we present our online buffer exchange-native MS method combined with Direct Mass Technology (OBE-nMS+DMT) which facilitates high-throughput analysis and guides sample preparation. We applied this method to optimize the GPR119-Gs complex sample prior to cryo-EM analysis, leading to a 3.51 Å resolution structure from only 396 movies collected on a 200 kV Glacios. This study suggests that the OBE-nMS+DMT method emerges as a powerful tool for prescreening sample conditions in cryo-EM studies of GPCRs and other membrane protein complexes.
Collapse
Affiliation(s)
- Donggyun Kim
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Weijing Liu
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA.
| | - Vadim Cherezov
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
9
|
Lange SM, McFarland MR, Lamoliatte F, Carroll T, Krshnan L, Pérez-Ràfols A, Kwasna D, Shen L, Wallace I, Cole I, Armstrong LA, Knebel A, Johnson C, De Cesare V, Kulathu Y. VCP/p97-associated proteins are binders and debranching enzymes of K48-K63-branched ubiquitin chains. Nat Struct Mol Biol 2024; 31:1872-1887. [PMID: 38977901 PMCID: PMC11638074 DOI: 10.1038/s41594-024-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers in human cells. Despite their abundance, our understanding of branched Ub function in cell signaling has been stunted by the absence of accessible methods and tools. Here we identify cellular branched-chain-specific binding proteins and devise approaches to probe K48-K63-branched Ub function. We establish a method to monitor cleavage of linkages within complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. We engineer a K48-K63 branch-specific nanobody and reveal the molecular basis of its specificity in crystal structures of nanobody-branched Ub chain complexes. Using this nanobody, we detect increased K48-K63-Ub branching following valosin-containing protein (VCP)/p97 inhibition and after DNA damage. Together with our discovery that multiple VCP/p97-associated proteins bind to or debranch K48-K63-linked Ub, these results suggest a function for K48-K63-branched chains in VCP/p97-related processes.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Logesvaran Krshnan
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Anna Pérez-Ràfols
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Dominika Kwasna
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Linnan Shen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Iona Wallace
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Isobel Cole
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
10
|
Perez Almeria CV, Otun O, Schlimgen R, Lamme TD, Crudden C, Youssef N, Musli L, Jenjak S, Bobkov V, Drube J, Hoffmann C, Volkman BF, Granier S, Bechara C, Siderius M, Heukers R, Schafer CT, Smit MJ. Constitutive activity of an atypical chemokine receptor revealed by inverse agonistic nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621790. [PMID: 39574661 PMCID: PMC11580867 DOI: 10.1101/2024.11.04.621790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Chemokine stimulation of atypical chemokine receptor 3 (ACKR3) does not activate G proteins but recruits arrestins. It is a chemokine scavenger that indirectly influences responses by restricting the availability of CXCL12, an agonist shared with the canonical receptor CXCR4. ACKR3 is upregulated in numerous disorders. Due to limited insights in chemokine-activated ACKR3 signaling, it is unclear how ACKR3 contributes to pathological phenotypes. One explanation may be that high constitutive activity of ACKR3 drives non-canonical signaling through a basal receptor state. Here we characterize the constitutive action of ACKR3 using novel inverse agonistic nanobodies to suppress basal activity. These new tools promote an inactive receptor conformation which decreased arrestin engagement and inhibited constitutive internalization. Basal, non-chemotactic, breast cancer cell motility was also suppressed, suggesting a role for ACKR3 in this process. The basal receptor activity in pathophysiology may provide a new therapeutic approach for targeting ACKR3.
Collapse
Affiliation(s)
- Claudia V Perez Almeria
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Omolade Otun
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Roman Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Thomas D Lamme
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Caitrin Crudden
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Noureldine Youssef
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Lejla Musli
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Shawn Jenjak
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Vladimir Bobkov
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raimond Heukers
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
- QVQ Holding BV, Utrecht, the Netherlands
| | - Christopher T Schafer
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Steiner WP, Iverson N, Venkatakrishnan V, Wu J, Stepniewski TM, Michaelson Z, Bröckel JW, Zhu JF, Bruystens J, Lee A, Nelson I, Bertinetti D, Arveseth CD, Tan G, Spaltenstein P, Xu J, Hüttenhain R, Kay M, Herberg FW, Selent J, Anand GS, Dunbrack RL, Taylor SS, Myers BR. A Structural Mechanism for Noncanonical GPCR Signal Transduction in the Hedgehog Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621410. [PMID: 39554190 PMCID: PMC11565934 DOI: 10.1101/2024.10.31.621410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Hedgehog (Hh) signaling pathway is fundamental to embryogenesis, tissue homeostasis, and cancer. Hh signals are transduced via an unusual mechanism: upon agonist-induced phosphorylation, the noncanonical G protein-coupled receptor SMOOTHENED (SMO) binds the catalytic subunit of protein kinase A (PKA-C) and physically blocks its enzymatic activity. By combining computational structural approaches with biochemical and functional studies, we show that SMO mimics strategies prevalent in canonical GPCR and PKA signaling complexes, despite little sequence or secondary structural homology. An intrinsically disordered region of SMO binds the PKA-C active site, resembling the PKA regulatory subunit (PKA-R) / PKA-C holoenzyme, while the SMO transmembrane domain binds a conserved PKA-C interaction hub, similar to other GPCR-effector complexes. In contrast with prevailing GPCR signal transduction models, phosphorylation of SMO promotes intramolecular electrostatic interactions that stabilize key structural elements within the SMO cytoplasmic domain, thereby remodeling it into a PKA-inhibiting conformation. Our work provides a structural mechanism for a central step in the Hh cascade and defines a paradigm for disordered GPCR domains to transmit signals intracellularly.
Collapse
Affiliation(s)
- William P. Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Nathan Iverson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jan W. Bröckel
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jessica Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Isaac Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Friedrich W. Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Ganesh S. Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Roland L. Dunbrack
- Institute for Cancer Research. Fox Chase Cancer Center. Philadelphia PA, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Batebi H, Pérez-Hernández G, Rahman SN, Lan B, Kamprad A, Shi M, Speck D, Tiemann JKS, Guixà-González R, Reinhardt F, Stadler PF, Papasergi-Scott MM, Skiniotis G, Scheerer P, Kobilka BK, Mathiesen JM, Liu X, Hildebrand PW. Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor. Nat Struct Mol Biol 2024; 31:1692-1701. [PMID: 38867113 DOI: 10.1038/s41594-024-01334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by promoting guanine nucleotide exchange. Here, we investigate the coupling of G proteins with GPCRs and describe the events that ultimately lead to the ejection of GDP from its binding pocket in the Gα subunit, the rate-limiting step during G-protein activation. Using molecular dynamics simulations, we investigate the temporal progression of structural rearrangements of GDP-bound Gs protein (Gs·GDP; hereafter GsGDP) upon coupling to the β2-adrenergic receptor (β2AR) in atomic detail. The binding of GsGDP to the β2AR is followed by long-range allosteric effects that significantly reduce the energy needed for GDP release: the opening of α1-αF helices, the displacement of the αG helix and the opening of the α-helical domain. Signal propagation to the Gs occurs through an extended receptor interface, including a lysine-rich motif at the intracellular end of a kinked transmembrane helix 6, which was confirmed by site-directed mutagenesis and functional assays. From this β2AR-GsGDP intermediate, Gs undergoes an in-plane rotation along the receptor axis to approach the β2AR-Gsempty state. The simulations shed light on how the structural elements at the receptor-G-protein interface may interact to transmit the signal over 30 Å to the nucleotide-binding site. Our analysis extends the current limited view of nucleotide-free snapshots to include additional states and structural features responsible for signaling and G-protein coupling specificity.
Collapse
Affiliation(s)
- Hossein Batebi
- Universität Leipzig, Medizinische Fakultät, Institut für Medizinische Physik und Biophysik, Leipzig, Germany
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany
| | - Guillermo Pérez-Hernández
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Sabrina N Rahman
- University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - Baoliang Lan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Antje Kamprad
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Mingyu Shi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - David Speck
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Johanna K S Tiemann
- Universität Leipzig, Medizinische Fakultät, Institut für Medizinische Physik und Biophysik, Leipzig, Germany
- Novozymes A/S, Lyngby, Denmark
| | - Ramon Guixà-González
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Franziska Reinhardt
- Universität Leipzig, Department of Computer Science, Bioinformatics, Leipzig, Germany
| | - Peter F Stadler
- Universität Leipzig, Department of Computer Science, Bioinformatics, Leipzig, Germany
| | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Scheerer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesper M Mathiesen
- University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Peter W Hildebrand
- Universität Leipzig, Medizinische Fakultät, Institut für Medizinische Physik und Biophysik, Leipzig, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.
| |
Collapse
|
13
|
Yu J, Kumar A, Zhang X, Martin C, Van Holsbeeck K, Raia P, Koehl A, Laeremans T, Steyaert J, Manglik A, Ballet S, Boland A, Stoeber M. Structural basis of μ-opioid receptor targeting by a nanobody antagonist. Nat Commun 2024; 15:8687. [PMID: 39384768 PMCID: PMC11464722 DOI: 10.1038/s41467-024-52947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
The μ-opioid receptor (μOR), a prototypical G protein-coupled receptor (GPCR), is the target of opioid analgesics such as morphine and fentanyl. Due to the severe side effects of current opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, represent alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the μOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded μOR ligand and uncover the molecular basis for μOR antagonism by determining the cryo-EM structure of the NbE-μOR complex. NbE displays a unique ligand binding mode and achieves μOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a β-hairpin loop formed by NbE that deeply protrudes into the μOR, we design linear and cyclic peptide analogs that recapitulate NbE's antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes lower molecular weight μOR ligands that can serve as a basis for therapeutic developments.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/antagonists & inhibitors
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/pharmacology
- Humans
- Cryoelectron Microscopy
- Ligands
- HEK293 Cells
- Animals
- Protein Binding
- Binding Sites
- Models, Molecular
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
Collapse
Affiliation(s)
- Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Amit Kumar
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xuefeng Zhang
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin Van Holsbeeck
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pierre Raia
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Antoine Koehl
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | | | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Salom D, Wu A, Liu CC, Palczewski K. The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents. Mol Pharmacol 2024; 106:155-163. [PMID: 39107078 PMCID: PMC11413913 DOI: 10.1124/molpharm.124.000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Arum Wu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Chang C Liu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| |
Collapse
|
17
|
Lou JS, Su M, Wang J, Do HN, Miao Y, Huang XY. Distinct binding conformations of epinephrine with α- and β-adrenergic receptors. Exp Mol Med 2024; 56:1952-1966. [PMID: 39218975 PMCID: PMC11447022 DOI: 10.1038/s12276-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024] Open
Abstract
Agonists targeting α2-adrenergic receptors (ARs) are used to treat diverse conditions, including hypertension, attention-deficit/hyperactivity disorder, pain, panic disorders, opioid and alcohol withdrawal symptoms, and cigarette cravings. These receptors transduce signals through heterotrimeric Gi proteins. Here, we elucidated cryo-EM structures that depict α2A-AR in complex with Gi proteins, along with the endogenous agonist epinephrine or the synthetic agonist dexmedetomidine. Molecular dynamics simulations and functional studies reinforce the results of the structural revelations. Our investigation revealed that epinephrine exhibits different conformations when engaging with α-ARs and β-ARs. Furthermore, α2A-AR and β1-AR (primarily coupled to Gs, with secondary associations to Gi) were compared and found to exhibit different interactions with Gi proteins. Notably, the stability of the epinephrine-α2A-AR-Gi complex is greater than that of the dexmedetomidine-α2A-AR-Gi complex. These findings substantiate and improve our knowledge on the intricate signaling mechanisms orchestrated by ARs and concurrently shed light on the regulation of α-ARs and β-ARs by epinephrine.
Collapse
Affiliation(s)
- Jian-Shu Lou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
19
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
21
|
Gauthier C, Raynaud P, Jean-Alphonse F, Vallet A, Vaugrente O, Jugnarain V, Boulo T, Gauthier C, Reiter E, Bruneau G, Crépieux P. An intracellular VHH targeting the Luteinizing Hormone receptor modulates G protein-dependent signaling and steroidogenesis. Mol Cell Endocrinol 2024; 589:112235. [PMID: 38621656 DOI: 10.1016/j.mce.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor β-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.
Collapse
Affiliation(s)
| | - Pauline Raynaud
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Frédéric Jean-Alphonse
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Amandine Vallet
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | | | - Thomas Boulo
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Eric Reiter
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Gilles Bruneau
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Pascale Crépieux
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France.
| |
Collapse
|
22
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
23
|
Nix MA, Wiita AP. Alternative target recognition elements for chimeric antigen receptor (CAR) T cells: beyond standard antibody fragments. Cytotherapy 2024; 26:729-738. [PMID: 38466264 DOI: 10.1016/j.jcyt.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AIMS Chimeric antigen receptor T (CAR-T) cells are a remarkably efficacious, highly promising and rapidly evolving strategy in the field of immuno-oncology. The precision of these targeted cellular therapies is driven by the specificity of the antigen recognition element (the "binder") encoded in the CAR. This binder redirects these immune effector cells precisely toward a defined antigen on the surface of cancer cells, leading to T-cell receptor-independent tumor lysis. Currently, for tumor targeting most CAR-T cells are designed using single-chain variable fragments (scFvs) derived from murine or human immunoglobulins. However, there are several emerging alternative binder modalities that are finding increasing utility for improved CAR function beyond scFvs. METHODS Here we review the most recent developments in the use of non-canonical protein binding domains in CAR design, including nanobodies, DARPins, natural ligands, and de novo-designed protein elements. RESULTS Overall, we describe how new protein binder formats, with their unique structural properties and mechanisms of action, may possess key advantages over traditional scFv CAR designs. CONCLUSIONS These alternative binder designs may contribute to enhanced CAR-T therapeutic options and, ultimately, improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Cartography Biosciences, South San Francisco, California, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA.
| |
Collapse
|
24
|
Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, Pin JP, Acher FC, Goupil-Lamy A. Epitope Identification of an mGlu5 Receptor Nanobody Using Physics-Based Molecular Modeling and Deep Learning Techniques. J Chem Inf Model 2024; 64:4436-4461. [PMID: 38423996 DOI: 10.1021/acs.jcim.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.
Collapse
Affiliation(s)
- Floriane Eshak
- SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Léo Pion
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Damien Nevoltris
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Patrick Chames
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Science Council, Dassault Systèmes, 78140 Vélizy-Villacoublay, France
| |
Collapse
|
25
|
Cheng N, Pimentel JM, Trejo J. Ubiquitin-driven G protein-coupled receptor inflammatory signaling at the endosome. Am J Physiol Cell Physiol 2024; 326:C1605-C1610. [PMID: 38646783 PMCID: PMC11371321 DOI: 10.1152/ajpcell.00161.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitously expressed cell surface receptors that mediate numerous physiological responses and are highly druggable. Upon activation, GPCRs rapidly couple to heterotrimeric G proteins and are then phosphorylated and internalized from the cell surface. Recent studies indicate that GPCRs not only localize at the plasma membrane but also exist in intracellular compartments where they are competent to signal. Intracellular signaling by GPCRs is best described to occur at endosomes. Several studies have elegantly documented endosomal GPCR-G protein and GPCR-β-arrestin signaling. Besides phosphorylation, GPCRs are also posttranslationally modified with ubiquitin. GPCR ubiquitination has been studied mainly in the context of receptor endosomal-lysosomal trafficking. However, new studies indicate that ubiquitination of endogenous GPCRs expressed in endothelial cells initiates the assembly of an intracellular p38 mitogen-activated kinase signaling complex that promotes inflammatory responses from endosomes. In this mini-review, we discuss emerging discoveries that provide critical insights into the function of ubiquitination in regulating GPCR inflammatory signaling at endosomes.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, California, United States
| | - Julio M Pimentel
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| |
Collapse
|
26
|
Suder DS, Gonen S. Mitigating the Blurring Effect of CryoEM Averaging on a Flexible and Highly Symmetric Protein Complex through Sub-Particle Reconstruction. Int J Mol Sci 2024; 25:5665. [PMID: 38891853 PMCID: PMC11171969 DOI: 10.3390/ijms25115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This "blurring" effect can be difficult to overcome and is possibly more pronounced when averaging highly symmetric complexes. Approaches to mitigating flexibility during CryoEM processing are becoming increasingly critical as the technique advances and is applied to more dynamic proteins and complexes. Here, we detail the use of sub-particle averaging and signal subtraction techniques to precisely target and resolve flexible DARPin protein attachments on a designed tetrahedrally symmetric protein scaffold called DARP14. Particles are first aligned as full complexes, and then the symmetry is reduced by alignment and focused refinement of the constituent subunits. The final reconstructions we obtained were vastly improved over the fully symmetric reconstructions, with observable secondary structure and side-chain placement. Additionally, we were also able to reconstruct the core region of the scaffold to 2.7 Å. The data processing protocol outlined here is applicable to other dynamic and symmetric protein complexes, and our improved maps could allow for new structure-guided variant designs of DARP14.
Collapse
Affiliation(s)
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Papasergi-Scott MM, Pérez-Hernández G, Batebi H, Gao Y, Eskici G, Seven AB, Panova O, Hilger D, Casiraghi M, He F, Maul L, Gmeiner P, Kobilka BK, Hildebrand PW, Skiniotis G. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature 2024; 629:1182-1191. [PMID: 38480881 PMCID: PMC11734571 DOI: 10.1038/s41586-024-07153-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/02/2024] [Indexed: 03/26/2024]
Abstract
G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.
Collapse
MESH Headings
- Humans
- Binding Sites
- Cryoelectron Microscopy
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/drug effects
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/ultrastructure
- Guanosine Triphosphate/metabolism
- Guanosine Triphosphate/pharmacology
- Models, Molecular
- Molecular Dynamics Simulation
- Protein Binding
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/ultrastructure
- Time Factors
- Enzyme Activation/drug effects
- Protein Domains
- Protein Structure, Secondary
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Guillermo Pérez-Hernández
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Hossein Batebi
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Yang Gao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gözde Eskici
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Marina Casiraghi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis Maul
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter W Hildebrand
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
29
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
30
|
Bock A, Irannejad R, Scott JD. cAMP signaling: a remarkably regional affair. Trends Biochem Sci 2024; 49:305-317. [PMID: 38310024 PMCID: PMC11175624 DOI: 10.1016/j.tibs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Louis Pasteur once famously said 'in the fields of observation chance favors only the prepared mind'. Much of chance is being in the right place at the right time. This is particularly true in the crowded molecular environment of the cell where being in the right place is often more important than timing. Although Brownian motion argues that enzymes will eventually bump into substrates, this probability is greatly enhanced if both molecules reside in the same subcellular compartment. However, activation of cell signaling enzymes often requires the transmission of chemical signals from extracellular stimuli to intracellular sites of action. This review highlights new developments in our understanding of cAMP generation and the 3D utilization of this second messenger inside cells.
Collapse
Affiliation(s)
- Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany.
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Sencanski M, Glisic S, Kubale V, Cotman M, Mavri J, Vrecl M. Computational Modeling and Characterization of Peptides Derived from Nanobody Complementary-Determining Region 2 (CDR2) Targeting Active-State Conformation of the β 2-Adrenergic Receptor (β 2AR). Biomolecules 2024; 14:423. [PMID: 38672440 PMCID: PMC11048008 DOI: 10.3390/biom14040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This study assessed the suitability of the complementarity-determining region 2 (CDR2) of the nanobody (Nb) as a template for the derivation of nanobody-derived peptides (NDPs) targeting active-state β2-adrenergic receptor (β2AR) conformation. Sequences of conformationally selective Nbs favoring the agonist-occupied β2AR were initially analyzed by the informational spectrum method (ISM). The derived NDPs in complex with β2AR were subjected to protein-peptide docking, molecular dynamics (MD) simulations, and metadynamics-based free-energy binding calculations. Computational analyses identified a 25-amino-acid-long CDR2-NDP of Nb71, designated P4, which exhibited the following binding free-energy for the formation of the β2AR:P4 complex (ΔG = -6.8 ± 0.8 kcal/mol or a Ki = 16.5 μM at 310 K) and mapped the β2AR:P4 amino acid interaction network. In vitro characterization showed that P4 (i) can cross the plasma membrane, (ii) reduces the maximum isoproterenol-induced cAMP level by approximately 40% and the isoproterenol potency by up to 20-fold at micromolar concentration, (iii) has a very low affinity to interact with unstimulated β2AR in the cAMP assay, and (iv) cannot reduce the efficacy and potency of the isoproterenol-mediated β2AR/β-arrestin-2 interaction in the BRET2-based recruitment assay. In summary, the CDR2-NDP, P4, binds preferentially to agonist-activated β2AR and disrupts Gαs-mediated signaling.
Collapse
Affiliation(s)
- Milan Sencanski
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, National Institute of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, National Institute of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| | - Marko Cotman
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| | - Janez Mavri
- Department of Computational Biochemistry and Drug Design, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| |
Collapse
|
32
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
33
|
Majumdar S, Chiu YT, Pickett JE, Roth BL. Illuminating the understudied GPCR-ome. Drug Discov Today 2024; 29:103848. [PMID: 38052317 DOI: 10.1016/j.drudis.2023.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the target of >30% of approved drugs. Despite their popularity, many of the >800 human GPCRs remain understudied. The Illuminating the Druggable Genome (IDG) project has generated many tools leading to important insights into the function and druggability of these so-called 'dark' receptors. These tools include assays, such as PRESTO-TANGO and TRUPATH, billions of small molecules made available via the ZINC virtual library, solved orphan GPCR structures, GPCR knock-in mice, and more. Together, these tools are illuminating the remaining 'dark' GPCRs.
Collapse
Affiliation(s)
- Sreeparna Majumdar
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Ting Chiu
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Yu MSC, Edelbacher TV, Grätz C, Chiang DM, Reithmair M, Pfaffl MW. Summary report of the 1st MOVE symposium in Málaga from 24-27th October 2023 - Foster the European mobility for young scientists in extracellular vesicles research. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:95-113. [PMID: 39698417 PMCID: PMC11648475 DOI: 10.20517/evcna.2024.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Mia S. C. Yu
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Authors contributed equally
| | - Tanja V. Edelbacher
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Division of Functional Microbiology, Institute for Microbiology, Center for Pathobiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Authors contributed equally
| | - Christian Grätz
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Dapi M. Chiang
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
35
|
Cui Q, Wang L, Wang H, Chen X, Han L, Geng T, Kou Y, Zhang W, Dai M, Qiao H, Sun Z, Li L, Lan Z, Xu H, Xu J, Dai Y, Geng Y. Nanobodies as negative allosteric modulators for human calcium sensing receptor. Biochem Biophys Res Commun 2024; 695:149401. [PMID: 38154264 DOI: 10.1016/j.bbrc.2023.149401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.
Collapse
Affiliation(s)
- Qianqian Cui
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tengjie Geng
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huarui Qiao
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zengchao Sun
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lingyun Li
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhongyun Lan
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, and Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100021, China.
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Braga Emidio N, Cheloha RW. Semi-synthetic nanobody-ligand conjugates exhibit tunable signaling properties and enhanced transcriptional outputs at neurokinin receptor-1. Protein Sci 2024; 33:e4866. [PMID: 38088474 PMCID: PMC10806929 DOI: 10.1002/pro.4866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
Antibodies have proven highly valuable for therapeutic development; however, they are typically poor candidates for applications that require activation of G protein-coupled receptors (GPCRs), the largest collection of targets for clinically approved drugs. Nanobodies (Nbs), the smallest antibody fragments retaining full antigen-binding capacity, have emerged as promising tools for pharmacologic applications, including GPCR modulation. Past work has shown that conjugation of Nbs with ligands can provide GPCR agonists that exhibit improved activity and selectivity compared to their parent ligands. The neurokinin-1 receptor (NK1R), a GPCR targeted for the treatment of pain, is activated by peptide agonists such as Substance P (SP) and neurokinin A (NKA), which induce signaling through multiple pathways (Gs , Gq and β-arrestin). In this study, we investigated whether conjugating NK1R ligands with Nbs that bind to a separate location on the receptor would provide chimeric compounds with distinctive signaling properties. We employed sortase A-mediated ligation to generate several conjugates consisting of Nbs linked to NK1R ligands. Many of these conjugates exhibited divergent and unexpected signaling properties and transcriptional outputs. For example, some Nb-NKA conjugates showed enhanced receptor binding capacity, high potency partial agonism, prolonged cAMP production, and an increase in transcriptional output associated with Gs signaling; whereas other conjugates were virtually inactive. Nanobody conjugation caused only minor alterations in ligand-induced upstream Gq signaling with unexpected enhancements in transcriptional (downstream) responses. Our findings underscore the potential of nanobody conjugation for providing compounds with advantageous properties such as biased agonism, prolonged duration of action, and enhanced transcriptional responses. These compounds hold promise not only for facilitating fundamental research on GPCR signal transduction mechanisms but also for the development of more potent and enduring therapeutics.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ross W. Cheloha
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
37
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
39
|
Yu J, Kumar A, Zhang X, Martin C, Raia P, Koehl A, Laeremans T, Steyaert J, Manglik A, Ballet S, Boland A, Stoeber M. Structural Basis of μ-Opioid Receptor-Targeting by a Nanobody Antagonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570395. [PMID: 38106026 PMCID: PMC10723425 DOI: 10.1101/2023.12.06.570395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The μ-opioid receptor (μOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the μOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded μOR ligand and uncover the molecular basis for μOR antagonism by solving the cryo-EM structure of the NbE-μOR complex. NbE displays a unique ligand binding mode and achieves μOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a β-hairpin loop formed by NbE that deeply inserts into the μOR and centers most binding contacts, we design short peptide analogues that retain μOR antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes novel μOR ligands that can serve as a basis for therapeutic developments.
Collapse
Affiliation(s)
- Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Amit Kumar
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xuefeng Zhang
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pierre Raia
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Antoine Koehl
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | | | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Yu G, Wang J, Zhang Y, Wu H, Wang Y, Cui Y, Yang Y, Tang X, Zhang Q, Wang J, Sun J, Chen R, Wang Y, Li P. Anti-Idiotypic Nanobody Alkaline Phosphatase Fusion Protein-Triggered On-Off-On Fluorescence Immunosensor for Aflatoxin in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917663 DOI: 10.1021/acs.jafc.3c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Nanobodies (Nbs) are widely used in immunoassays with the advantages of small size and high stability. Here, the nanobody employed as the surrogate of aflatoxin antigen and the recognition mechanism of antiaflatoxin mAb with nanobody was studied by molecular modeling, which verified the feasibility of Nbs as antigen substitutes. On this basis, a nanobody-alkaline phosphatase fusion protein (Nb-AP) was constructed, and a highly sensitive "on-off-on" fluorescent immunosensor (OFO-FL immunosensor) based on the calcein/Ce3+ system was developed for aflatoxin quantification. Briefly, calcein serves as a signal transducer, and its fluorescence can be quenched after it is bound with Ce3+. In the presence of Nb-AP, AP catalyzed p-nitrophenyl phosphate to generate orthophosphate, which competes in binding with Ce3+, leading to fluorescence recovery. The method has a linearity range of 0.005-100 ng/mL, and the IC50 of the OFO-FL immunosensor was 0.063 ng/mL, which was 18-fold lower than that of conventional enzyme-linked immunosorbent assay. The assay was successfully applied in food samples with a recovery of 88-121%.
Collapse
Affiliation(s)
- Gege Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuefan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqian Tang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ran Chen
- Sinograin Hubei Branch Quality Inspection Center Co, LTD., Wuhan 430062, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwu Li
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
41
|
Burghi V, Paradis JS, Officer A, Adame-Garcia SR, Wu X, Matthees ESF, Barsi-Rhyne B, Ramms DJ, Clubb L, Acosta M, Tamayo P, Bouvier M, Inoue A, von Zastrow M, Hoffmann C, Gutkind JS. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. J Biol Chem 2023; 299:105293. [PMID: 37774973 PMCID: PMC10641165 DOI: 10.1016/j.jbc.2023.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
β-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether β-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., β-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate β-arrestins, thereby limiting the ability to distinguish G protein from β-arrestin-mediated signaling events. We used β2-adrenergic receptor (β2AR) and its β2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, β-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and β-arrestins in controlling gene expression. We found that Gαs is not required for β2AR and β-arrestin conformational changes, β-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in β-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of β2AR in wildtype and β-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing β-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of β2AR. Overall, our results support that Gs is essential for β2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas β-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.
Collapse
Affiliation(s)
- Valeria Burghi
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Justine S Paradis
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Adam Officer
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Sendi Rafael Adame-Garcia
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Benjamin Barsi-Rhyne
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Dana J Ramms
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Lauren Clubb
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Monica Acosta
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mark von Zastrow
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
42
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
43
|
Miller RM, Sescil J, Sarcinella MC, Bailey RC, Wang W. Accessible and Generalizable in Vitro Luminescence Assay for Detecting GPCR Activation. ACS MEASUREMENT SCIENCE AU 2023; 3:337-343. [PMID: 37868356 PMCID: PMC10588934 DOI: 10.1021/acsmeasuresciau.3c00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 10/24/2023]
Abstract
G protein-coupled receptors (GPCRs) serve critical physiological roles as the most abundant family of receptors. Here, we describe the design of a generalizable and cell lysate-based method that leverages the interaction between an agonist-activated GPCR and a conformation-specific binder to reconstitute split nanoluciferase (NanoLuc) in vitro. This tool, In vitro GPCR split NanoLuc ligand Triggered Reporter (IGNiTR), has broad applications. We have demonstrated IGNiTR's use with three Gs-coupled GPCRs, two Gi-coupled GPCRs and three classes of conformation-specific binders: nanobodies, miniG proteins, and G protein peptidomimetics. As an in vitro method, IGNiTR enables the use of synthetic G protein peptidomimetics and provides easily scalable and portable reagents for characterizing GPCRs and ligands. We tested three diverse applications of IGNiTR: (1) proof-of-concept GPCR ligand screening using dopamine receptor D1 IGNiTR; (2) detection of opioids for point-of-care testing; and (3) characterizing GPCR functionality during Nanodisc-based reconstitution processes. Due to IGNiTR's unique advantages and the convenience of its cell lysate-based format, this tool will find extensive applications in GPCR ligand detection, screening, and GPCR characterization.
Collapse
Affiliation(s)
- Ruby M. Miller
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Sescil
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marina C. Sarcinella
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan C. Bailey
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Emidio NB, Cheloha RW. Semi-synthetic nanobody-ligand conjugates exhibit tunable signaling properties and enhanced transcriptional outputs at neurokinin receptor-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561411. [PMID: 37986858 PMCID: PMC10659424 DOI: 10.1101/2023.10.08.561411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Antibodies have proven highly valuable for therapeutic development; however, they are typically poor candidates for applications that require activation of G protein-coupled receptors (GPCRs), the largest collection of targets for clinically approved drugs. Nanobodies (Nbs), the smallest antibody fragments retaining full antigen-binding capacity, have emerged as promising tools for pharmacologic applications, including GPCR modulation. Past work has shown that conjugation of Nbs with ligands can provide GPCR agonists that exhibit improved activity and selectivity compared to their parent ligands. The neurokinin-1 receptor (NK1R), a GPCR targeted for the treatment of pain, is activated by peptide agonists such as Substance P (SP) and neurokinin A (NKA), which induce signaling through multiple pathways (Gs, Gq and β-arrestin). In this study, we investigated whether conjugating NK1R ligands with Nbs that bind to a separate location on the receptor would provide chimeric compounds with distinctive signaling properties. We employed sortase A-mediated ligation to generate several conjugates consisting of Nbs linked to NK1R ligands. Many of these conjugates exhibited divergent and unexpected signaling properties and transcriptional outputs. For example, some Nb-NKA conjugates showed enhanced receptor binding capacity, high potency partial agonism, prolonged cAMP production, and an increase in transcriptional output associated with Gs signaling; whereas other conjugates were virtually inactive. Nanobody conjugation caused only minor alterations in ligand-induced upstream Gq signaling with unexpected enhancements in transcriptional (downstream) responses. Our findings underscore the potential of nanobody conjugation for providing compounds with advantageous properties such as biased agonism, prolonged duration of action, and enhanced transcriptional responses. These compounds hold promise not only for facilitating fundamental research on GPCR signal transduction mechanisms but also for the development of more potent and enduring therapeutics.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Ross W. Cheloha
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
45
|
Sadee W. Ligand-Free Signaling of G-Protein-Coupled Receptors: Physiology, Pharmacology, and Genetics. Molecules 2023; 28:6375. [PMID: 37687205 PMCID: PMC10489045 DOI: 10.3390/molecules28176375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular functions. Each GPCR exists in complex aggregates with multiple resting and active conformations. Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein complex with high agonist affinity. However, the ensuing signaling process can further remodel the receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated ligand-free receptor can continue signaling, as proposed for rhodopsin and μ opioid receptors, resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency. Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-free signaling-proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling, its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Aether Therapeutics Inc., Austin, TX 78756, USA
| |
Collapse
|
46
|
Bhattacharjee P, Iyer MR. Rational Design, Synthesis, and Evaluation of Fluorescent CB 2 Receptor Ligands for Live-Cell Imaging: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1235. [PMID: 37765043 PMCID: PMC10534640 DOI: 10.3390/ph16091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies.
Collapse
Affiliation(s)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
47
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
48
|
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Structural basis of α 1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat Commun 2023; 14:3655. [PMID: 37339967 DOI: 10.1038/s41467-023-39310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.
Collapse
Affiliation(s)
- Yosuke Toyoda
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
49
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
50
|
Zhang L, Mobbs JI, May LT, Glukhova A, Thal DM. The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 2023; 79:102560. [PMID: 36848776 DOI: 10.1016/j.sbi.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.
Collapse
Affiliation(s)
- Liudi Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@JesseMobbs
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@laurentmay
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia. https://twitter.com/@gl_alisa
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia.
| |
Collapse
|