1
|
Wang FI, Dixon SJ, Chidiac P. Extracellular ATP and structurally related molecules potentiate adenosine A 2a receptor-stimulated cAMP production. Cell Signal 2025; 131:111711. [PMID: 40044016 DOI: 10.1016/j.cellsig.2025.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Extracellular ATP has been reported to potentiate signalling by several Class B G protein-coupled receptors (GPCRs). The adenosine A2a receptor (A2aR) is a Class A GPCR that regulates many physiological processes, and a potential therapeutic target for many diseases. In vivo, A2aR is exposed transiently to extracellular ATP within the cellular microenvironment under both physiological and pathological conditions. The modulating effects of extracellular ATP seen with Class B GPCRs have not previously been investigated in other classes of GPCRs. In the present study, we investigated the effects of extracellular ATP on A2aR signalling. We also studied the actions of similar molecules to explore the structure-activity relationship. Cyclic 3',5'-adenosine monophosphate (cAMP) levels were monitored following agonist-induced receptor activation in cells co-transfected with plasmids encoding A2aR and a luminescent cAMP biosensor. Extracellular ATP increased the potency of both adenosine and selective A2aR agonists by approximately an order of magnitude. In the absence of agonist, ATP did not activate A2aR, arguing against an effect due to ATP metabolism to adenosine. The potentiating effect of ATP was mimicked by other nucleotides and similarly by phosphorylated sugars. Non-phosphorylated sugars produced comparable effects, but higher concentrations were required to do so. This difference in potency implies that the phosphate group is important for modulating A2aR activity. Here, we present the first evidence that A2aR can be positively modulated by extracellular ATP, thus the effect of ATP is not limited to Class B GPCRs.
Collapse
Affiliation(s)
- Fang I Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada.
| |
Collapse
|
2
|
Sexton R, Fazel M, Schweiger M, Pressé S, Beckstein O. Bayesian Nonparametric Analysis of Residence Times for Protein-Lipid Interactions in Molecular Dynamics Simulations. J Chem Theory Comput 2025; 21:4203-4220. [PMID: 40172093 DOI: 10.1021/acs.jctc.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Molecular Dynamics (MD) simulations are a versatile tool to investigate the interactions of proteins within their environments, in particular, of membrane proteins with the surrounding lipids. However, quantitative analysis of lipid-protein binding kinetics has remained challenging due to considerable noise and low frequency of long binding events, even in hundreds of microseconds of simulation data. Here, we apply Bayesian nonparametrics to compute residue-resolved residence time distributions from MD trajectories. Such an analysis characterizes binding processes at different time scales (quantified by their kinetic off-rate) and assigns to each trajectory frame a probability of belonging to a specific process. In this way, we classify trajectory frames in an unsupervised manner and obtain, for example, different binding poses or molecular densities based on the time scale of the process. We demonstrate our approach by characterizing interactions of cholesterol with six different G-protein-coupled receptors (A2AAR, β2AR, CB1R, CB2R, CCK1R, and CCK2R) simulated with coarse-grained MD simulations with the MARTINI model. The nonparametric Bayesian analysis allows us to connect the coarse binding time series data to the underlying molecular picture and thus not only infers accurate binding kinetics with error distributions from MD simulations but also describes molecular events responsible for the broad range of kinetic rates.
Collapse
Affiliation(s)
- Ricky Sexton
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Maxwell Schweiger
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
3
|
Schmidt L, de Groot BL. Identification of allosteric sites and ligand-induced modulation in the dopamine receptor through large-scale alchemical mutation scan. Chem Sci 2025:d4sc04723k. [PMID: 40303451 PMCID: PMC12036339 DOI: 10.1039/d4sc04723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
G protein coupled receptors, particularly class A GPCRs are arguably the most important class of membrane receptors and preferred targets for drug development. Despite extensive research on how ligands modulate the receptor response, discovering new, highly specific ligands remains challenging. However, finding residues outside the conserved microswitches that affect the active-inactive state equilibrium and are specific for a certain receptor, can be beneficial for the design of ligands with higher receptor selectivity. Focusing on the human dopamine receptor 2 (DRD2), we uncover crucial residues for the activation modulation using alchemical non-equilibrium free energy calculations. Our findings match with literature on activation microswitches and experimental studies, while also uncovering novel important residues. Further, we analyzed mutation-induced changes in residue contact networks and found that modulating these networks can lead to a stabilization of the respective opposite state, an effect that could as well be achieved by well-engineered (small) ligands. This way we provide insights into the mechanism of action of the well-known drugs risperidone and bromocriptine and showcase on these two examples how our data can be used for the design of new ligands.
Collapse
Affiliation(s)
- Lisa Schmidt
- Max Planck Institute for Multidisciplinary Sciences, Department of Theoretical and Computational Biophysics, Group of Computational Biomolecular Dynamics Goettingen Germany
| | - Bert L de Groot
- Max Planck Institute for Multidisciplinary Sciences, Department of Theoretical and Computational Biophysics, Group of Computational Biomolecular Dynamics Goettingen Germany
| |
Collapse
|
4
|
Guo L, Gao Y, Zhang S, Zhao L, Zhao R, Sun P, Pan X, Zhang W. 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as D 3R-Selective Ligands for 3D-QSAR, Docking and Molecular Dynamics Simulation Studies. Int J Mol Sci 2025; 26:3559. [PMID: 40332026 DOI: 10.3390/ijms26083559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Dopamine D3 receptor (D3R) is a key receptor for regulating motor, cognitive, and other functions. In this study, 50 2-phenylcyclopropylmethylamine (PCPMA) derivatives with good selectivity for D3R were investigated using a three-dimensional quantitative structure-activity relationship (3D-QSAR) method. The CoMFA and CoMSIA model results showed good predictive ability, as evidenced by high r2 and q2 values. 3D-QSAR results showed that steric, electrostatic, and hydrophobic fields played important roles in the binding of PCPMAs to D3R. Based on above results, four novel PCPMAs were designed, which were predicted to have a stronger affinity with D3R. Molecular docking combined with 300 ns molecular dynamics simulations were performed to reveal the mode of interaction between D3R and PCPMAs. Additionally, a combination of free energy calculations and energy decomposition results indicated strong interaction between the ligands and residues in the binding pocket of the D3 receptor. This work provides suggestions for exploring more selective D3R ligands, and this theoretical framework also lays the foundation for future experimental investigations to evaluate the pharmacological characteristics and binding affinities of novel derivatives.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| | - Yuepeng Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| | - Sujuan Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| | - Lingmi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| | - Runxin Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| | - Pinghua Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinhui Pan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
- Stake Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, School of Pharmacy, Institute for Safflower Industry Research, Shihezi University, Shihezi 832002, China
| |
Collapse
|
5
|
Manookian B, Mukhaleva E, Gogoshin G, Bhattacharya S, Sivaramakrishnan S, Vaidehi N, Rodin AS, Branciamore S. Temporally Resolved and Interpretable Machine Learning Model of GPCR conformational transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643765. [PMID: 40166135 PMCID: PMC11957019 DOI: 10.1101/2025.03.17.643765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Identifying target-specific drugs remains a challenge in pharmacology, especially for highly homologous proteins such as dopamine receptors D2R and D3R. Differences in target-specific cryptic druggable sites for such receptors arise from the distinct conformational ensembles underlying their dynamic behavior. While Molecular Dynamics (MD) simulations has emerged as a powerful tool for dissecting protein dynamics, the sheer volume of MD data requires scalable and unbiased data analysis strategies to pinpoint residue communities regulating conformational state ensembles. We have developed the Dynamically Resolved Universal Model for BayEsiAn network Tracking (DRUMBEAT) interpretable machine learning algorithm and validated it by identifying residue communities that enable the deactivation of the β2-adrenergic receptor. Further, upon analyzing dopamine receptor dynamics we identified distinct and non-conserved residue communities around the contacts F1704.62_F172ECL2 and S1464.38_G14134.56 that are specific to D3R conformational transitions compared to D2R. This information can be tapped to design subtype-specific drugs for neuropsychiatric and substance use disorders.
Collapse
Affiliation(s)
- Babgen Manookian
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell and Developmental Biology, University of Minnesota; Minneapolis, MN, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Andrei S. Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope; Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope; Duarte, CA, USA
| |
Collapse
|
6
|
Sexton R, Fazel M, Schweiger M, Pressé S, Beckstein O. Bayesian nonparametric analysis of residence times for protein-lipid interactions in Molecular Dynamics simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622502. [PMID: 40093144 PMCID: PMC11908185 DOI: 10.1101/2024.11.07.622502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Molecular Dynamics (MD) simulations are a versatile tool to investigate the interactions of proteins within their environments, in particular of membrane proteins with the surrounding lipids. However, quantitative analysis of lipid-protein binding kinetics has remained challenging due to considerable noise and low frequency of long binding events, even in hundreds of microseconds of simulation data. Here we apply Bayesian nonparametrics to compute residue-resolved residence time distributions from MD trajectories. Such an analysis characterizes binding processes at different timescales (quantified by their kinetic off-rate) and assigns to each trajectory frame a probability of belonging to a specific process. In this way, we classify trajectory frames in an unsupervised manner and obtain, for example, different binding poses or molecular densities based on the timescale of the process. We demonstrate our approach by characterizing interactions of cholesterol with six different G-protein coupled receptors (A 2 A AR ,β 2 AR ,CB 1 R ,CB 2 R ,CCK 1 R ,CCK 2 R ) simulated with coarse-grained MD simulations with the MARTINI model. The nonparametric Bayesian analysis allows us to connect the coarse binding time series data to the underlying molecular picture and, thus, not only infers accurate binding kinetics with error distributions from MD simulations but also describes molecular events responsible for the broad range of kinetic rates.
Collapse
Affiliation(s)
- Ricky Sexton
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| | - Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
- Present address: National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Maxwell Schweiger
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe AZ, USA
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| |
Collapse
|
7
|
Fatima SA, Akhtar B, Sharif A, Khan MI, Shahid M, Anjum F, Hussain F, Mobashar A, Ashraf M. Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases. Inflammopharmacology 2025; 33:959-977. [PMID: 39955696 DOI: 10.1007/s10787-025-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Chronic painful autoimmune disorders such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA) induce significant discomfort. They are defined by persistent inflammation and immune-mediated tissue injury. The activation and sensitisation of nociceptors, mutated in various disorders, are fundamental components contributing to the pain experienced in these conditions. Recent discoveries indicate that immunological mediators and nociceptive receptors interact functionally within peripheral and central sensitisation pathways, amplifying chronic pain. This research examines the involvement of nociceptors in rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. It explores how immune cells and pro-inflammatory cytokines induce, sensitise and regulate various nociceptive receptors (P2X, TRPA1 and TRPV1). Finally, we address possible future directions with respect to the treatment of long-lasting effects on immunity, and what new drug targets could be pursued as well, in order to counteract such either neuro-immune interactions in conditions involving the immunological system. By studying nociceptive mechanisms across autoimmune illnesses, we want to identify shared pathways and activation of nociceptors specific to individual diseases. This will shed insight on potential therapies for managing pain associated with autoimmune diseases.
Collapse
Affiliation(s)
- Syeda Asloob Fatima
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maham Ashraf
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Viohl N, Hakami Zanjani AA, Khandelia H. Molecular insights into the modulation of the 5HT 2A receptor by serotonin, psilocin, and the G protein subunit Gqα. FEBS Lett 2025; 599:876-891. [PMID: 39865564 PMCID: PMC11931985 DOI: 10.1002/1873-3468.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
5HT2AR is a G-protein-coupled receptor that drives many neuronal functions and is a target for psychedelic drugs. Understanding ligand interactions and conformational transitions is essential for developing effective pharmaceuticals, but mechanistic details of 5HT2AR activation remain poorly understood. We utilized all-atom molecular dynamics simulations and free-energy calculations to investigate 5HT2AR's conformational dynamics upon binding to serotonin and psilocin. We show that the active state of 5HT2AR collapses to a closed state in the absence of Gqα, underscoring the importance of G-protein coupling. We discover an intermediate "partially-open" receptor conformation. Both ligands have higher binding affinities for the orthosteric than the extended binding pocket. These findings enhance our understanding of 5HT2AR's activation and may aid in developing novel therapeutics. Impact statement This study sheds light on 5HT2AR activation, revealing intermediate conformations and ligand dynamics. These insights could enhance drug development for neurological and psychiatric disorders, benefiting researchers and clinicians in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Niklas Viohl
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
- Present address:
Max Perutz LabsVienna BioCenter, University of Vienna and Medical University of ViennaViennaAustria
| | - Ali Asghar Hakami Zanjani
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
9
|
Ahmad R, Luka M, Journe A, Gallet S, Hegron A, Do Cruzeiro M, Millan MJ, Delagrange P, Masri B, Dam J, Prevot V, Jockers R. Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G 12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes. J Pineal Res 2025; 77:e70041. [PMID: 40091563 PMCID: PMC11911906 DOI: 10.1111/jpi.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G12/13 protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G12/13 protein-RhoA pathway.
Collapse
Affiliation(s)
- Raise Ahmad
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Marine Luka
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | - Sarah Gallet
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Alan Hegron
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | | | | | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| |
Collapse
|
10
|
Mirza S, Ahmad MS. Applications of MicroED in structural biology and structure-based drug discovery. Biochim Biophys Acta Gen Subj 2025; 1869:130758. [PMID: 39761934 DOI: 10.1016/j.bbagen.2025.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Microcrystal electron diffraction (MicroED) is an emerging method for the structure determination of proteins and peptides, enzyme-inhibitor complexes. Several structures of biomolecules, including lysozyme, proteinase K, adenosine receptor A2A, insulin, xylanase, thermolysin, DNA, and Granulovirus occlusion bodies, have been successfully determined through MicroED. As MicroED uses very small crystals for structure determination, therefore, it has several advantages over conventional X-ray diffraction methods. In this review article, we discussed the most recent developments in the field of MicroED and its applications for the structural determination of different types of peptides, proteins, enzymes, DNA, and enzyme-inhibitor-complexed structures.
Collapse
Affiliation(s)
- Salma Mirza
- Dow University of Health Sciences, Ojha, Karachi 74200, Pakistan
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
11
|
Yin L, Ni K, Mao T, Tian S, Liu C, Chen J, Zhou M, Li H, Hu Q. Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors. Pharmacol Ther 2025; 267:108802. [PMID: 39862926 DOI: 10.1016/j.pharmthera.2025.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects. As a class of GPCRs located on the surface of cell membranes, the discovery and clinical implementation of adenosine and P2Y receptors purinergic signaling modulators have progressed dramatically. However, many preclinical drug candidates targeting purinergic receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning ligands into the clinic, the renewed impetus has focused on the modulation of purinergic receptor function by exogenous agonists/antagonists and allosteric modulators to exploit biased agonism. This article provides a brief overview of the research progress on the mechanism of purinergic biased signal transduction from the conformational changes of purinergic GPCRs and biased ligands primarily, and highlights therapeutically relevant biased agonism at purinergic receptors.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Chunxiao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Li ZH, Sun ZJ, Tang SCW, Zhao MH, Chen M, Chang DY. Finerenone Alleviates Over-Activation of Complement C5a-C5aR1 Axis of Macrophages by Regulating G Protein Subunit Alpha i2 to Improve Diabetic Nephropathy. Cells 2025; 14:337. [PMID: 40072066 PMCID: PMC11898422 DOI: 10.3390/cells14050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages. Over-activation of the MR was observed in patients with DN and was associated with DN prognosis. The renoprotective role of a new generation of non-steroidal selective mineralocorticoid receptor antagonist (MRA), finerenone, has been confirmed in DM and CKD patients. However, the mechanism by which finerenone improves renal inflammation in DN has yet to be completely understood. It was found in this research that the oral administration of finerenone attenuated the kidney injuries in established DN in db/db mice, and particularly improved the pathological changes in the renal tubulointerstitia. Specifically, finerenone inhibited the over-activation of the MR in macrophages, thereby reducing the expression of G protein subunit alpha i2 (GNAI2, Gnαi2), a key downstream component of the C5aR1 pathway. Animal experiments demonstrated that C5aR1 knockout alleviated renal injuries, confirming the critical pathogenic role of C5aR1 in DN. Moreover, finerenone mitigated inflammatory and chemotaxis responses by downregulating Gnαi2 in macrophages. These effects were reflected by reduced expressions of the pro-inflammatory chemokines CXCL15 and CCL2, the regulation of macrophage polarization and improvements in apoptosis. This study intends to understand the protective role of finerenone in DN, which is conducive to revealing the pathophysiological mechanism of DN and further optimizing the treatment of DN patients.
Collapse
Affiliation(s)
- Zi-Han Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
| | - Zi-Jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China;
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
Claff T, Ebenhoch R, Kley JT, Magarkar A, Nar H, Weichert D. Structural basis for lipid-mediated activation of G protein-coupled receptor GPR55. Nat Commun 2025; 16:1973. [PMID: 40000629 PMCID: PMC11861906 DOI: 10.1038/s41467-025-57204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
GPR55 is an orphan G protein-coupled receptor (GPCR) and represents a promising drug target for cancer, inflammation, and metabolic diseases. The endogenous activation of lipid GPCRs can be solely mediated by membrane components and different lipids have been proposed as endogenous activators of GPR55, such as cannabinoids and lysophosphatidylinositols. Here, we determine high-resolution cryo-electron microscopy structures of the activated GPR55 in complex with heterotrimeric G13 and two structurally diverse ligands: the putative endogenous agonist 1-palmitoyl-2-lysophosphatidylinositol (LPI) and the synthetic agonist ML184. These results reveal insights into ligand recognition at GPR55, G protein coupling and receptor activation. Notably, an orthosteric binding site opening towards the membrane is observed in both structures, enabling direct interaction of the agonists with membrane lipids. The structural observations are supported by mutagenesis and functional experiments employing G protein dissociation assays. These findings will be of importance for the structure-based development of drugs targeting GPR55.
Collapse
Affiliation(s)
| | - Rebecca Ebenhoch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Jörg T Kley
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Dietmar Weichert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany.
| |
Collapse
|
14
|
Haddad HK, Mercado-Reyes JI, Mustafá ER, D’Souza SP, Chung CS, Nestor RRM, Olinski LE, Martinez Damonte V, Saskin J, Vemaraju S, Raingo J, Kauer JA, Lang RA, Oancea E. Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption. Proc Natl Acad Sci U S A 2025; 122:e2403891122. [PMID: 39951488 PMCID: PMC11874419 DOI: 10.1073/pnas.2403891122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that Opn3 is coexpressed with the melanocortin 4 receptor (Mc4r) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gαi/o-dependent manner. Under baseline conditions, OPN3 via Gαi/o potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gαs-independent manner. In mice, we found that Opn3 in Mc4r-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.
Collapse
Affiliation(s)
- Hala K. Haddad
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Jonathan I. Mercado-Reyes
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - E. Román Mustafá
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - C. Sean Chung
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Ramses R. M. Nestor
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Lauren E. Olinski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua Saskin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jesica Raingo
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH45229
| | - Elena Oancea
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| |
Collapse
|
15
|
Guan L, Qi B, Tan J, Chen Y, Sun Y, Zhang Q, Zou Y. Structural Insight into the Inactive/Active States of 5-HT1AR and Molecular Mechanisms of Electric Fields in Modulating 5-HT1AR. J Chem Inf Model 2025; 65:2066-2079. [PMID: 39924812 DOI: 10.1021/acs.jcim.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Probing the differences between inactive/active states of the serotonin 1A receptor (5-HT1AR) and the dynamic receptor conformations is vital for understanding signaling transduction pathways and diverse physiological responses. Here, we compared the conformational features between the inactive and active states of 5-HT1AR and explored the role of serotonin in the activation process of 5-HT1AR by using molecular dynamics (MD) simulations. The results show that the position of TM6 and the arrangements of key motifs exhibit distinctions in the inactive and active states of 5-HT1AR. The binding of serotonin to 5-HT1AR is mostly driven by hydrophobic, aromatic stacking, anion-π, and H-bonding interactions. We also performed additional MD simulations with electric fields (EFs) of 0.01 and 0.03 V/nm to investigate the effects of EFs on the conformation of the 5-HT1AR-serotonin complex. The conformational change of 5-HT1AR and the inward movement of TM6 are increased with the field strength, indicative of a dependence on the strength of the EF. The EF of 0.03 V/nm affects the binding behaviors of serotonin with 5-HT1AR and further disturbs the activation of 5-HT1AR by serotonin. This study first reveals atomic-level information about the distinct features between inactive and active states of 5-HT1AR and demonstrates the pivotal role of EF in modulating the 5-HT1AR-ligand complex.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, P. R. China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
16
|
Han Y, Dawson JR, DeMarco KR, Rouen KC, Ngo K, Bekker S, Yarov-Yarovoy V, Clancy CE, Xiang YK, Ahn SH, Vorobyov I. Molecular simulations reveal intricate coupling between agonist-bound β-adrenergic receptors and G protein. iScience 2025; 28:111741. [PMID: 39898043 PMCID: PMC11787599 DOI: 10.1016/j.isci.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
G protein-coupled receptors (GPCRs) and G proteins transmit signals from hormones and neurotransmitters across cell membranes, initiating downstream signaling and modulating cellular behavior. Using advanced computer modeling and simulation, we identified atomistic-level structural, dynamic, and energetic mechanisms of norepinephrine (NE) and stimulatory G protein (Gs) interactions with β-adrenergic receptors (βARs), crucial GPCRs for heart function regulation and major drug targets. Our analysis revealed distinct binding behaviors of NE within β1AR and β2AR despite identical orthosteric binding pockets. β2AR had an additional binding site, explaining variations in NE binding affinities. Simulations showed significant differences in NE dissociation pathways and receptor interactions with the Gs. β1AR binds Gs more strongly, while β2AR induces greater conformational changes in the α subunit of Gs. Furthermore, GTP and GDP binding to Gs may disrupt coupling between NE and βAR, as well as between βAR and Gs. These findings may aid in designing precise βAR-targeted drugs.
Collapse
Affiliation(s)
- Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - John R.D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Khoa Ngo
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Slava Bekker
- American River College, Sacramento, CA 95841, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616, USA
- Center for Precision Medicine and Data Science, University of California, Davis, Davis, CA 95616, USA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Center for Precision Medicine and Data Science, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
17
|
Teixeira LB, Blouin MJ, Le Gouill C, Picard LP, Costa-Neto CM, Bouvier M, Parreiras-E-Silva LT. Sustained Gα s signaling mediated by vasopressin type 2 receptors is ligand dependent but endocytosis and β-arrestin independent. Sci Signal 2025; 18:eadf6206. [PMID: 40136046 DOI: 10.1126/scisignal.adf6206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 03/27/2025]
Abstract
The canonical model of G protein-coupled receptor (GPCR) signaling comprises G protein activation at the plasma membrane, followed by receptor phosphorylation and β-arrestin recruitment, which leads to receptor desensitization and endocytosis. However, the activation of some GPCRs results in sustained G protein signaling from intracellular compartments in a manner reportedly dependent on β-arrestin and receptor endocytosis. The vasopressin type 2 receptor (V2R) can be activated by two structurally similar hormones, arginine vasopressin and oxytocin, both of which stimulate the production of the second messenger cyclic adenosine monophosphate (cAMP). In this study, we showed that sustained V2R signaling and endosomal Gαs (stimulatory G protein alpha subunit) translocation could occur without β-arrestin-mediated receptor endocytosis and was primarily controlled by the residence time of the ligand on the receptor. β-Arrestin had opposing effects on sustained signaling: It facilitated receptor internalization into endosomes, where it activated Gαs, and promoted cAMP production from this compartment. However, β-arrestin-mediated receptor endocytosis also induced ligand dissociation due to the acidic endosomal environment, thereby limiting the signal. Overall, our data suggest that signals originating at the plasma membrane play a dominant role in sustained V2R signaling stimulated by arginine vasopressin.
Collapse
Affiliation(s)
- Larissa B Teixeira
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14.049-900, Brazil
| | - Marie-José Blouin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Louis-Philippe Picard
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Claudio M Costa-Neto
- Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of BioMolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, SP 14.040-903, Brazil
| |
Collapse
|
18
|
Ma Y, Wang Y, Tang M, Weng Y, Chen Y, Xu Y, An S, Wu Y, Zhao S, Xu H, Li D, Liu M, Lu W, Ru H, Song G. Cryo-EM structure of an activated GPR4-Gs signaling complex. Nat Commun 2025; 16:605. [PMID: 39799123 PMCID: PMC11724869 DOI: 10.1038/s41467-025-55901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
G protein-coupled receptor 4 (GPR4) belongs to the subfamily of proton-sensing GPCRs (psGPCRs), which detect pH changes in extracellular environment and regulate diverse physiological responses. GPR4 was found to be overactivated in acidic tumor microenvironment as well as inflammation sites, with a triad of acidic residues within the transmembrane domain identified as crucial for proton sensing. However, the 3D structure remains unknown, and the roles of other conserved residues within psGPCRs are not well understood. Here we report cryo-electron microscopy (cryo-EM) structures of active zebrafish GPR4 at both pH 6.5 and 8.5, each highlighting a distribution of histidine and acidic residues at the extracellular region. Cell-based assays show that these ionizable residues moderately influence the proton-sensing capacity of zebrafish GPR4, compared to the more significant effects of the triad residues. Furthermore, we reveal a cluster of aromatic residues within the orthosteric pocket that may propagate the signaling to the intercellular region via repacking the aromatic patch at the central region. This study provides a framework for future signaling and functional investigation of psGPCRs.
Collapse
Affiliation(s)
- Yitong Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yijie Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengyuan Tang
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Weng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yueming Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuxiao An
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huanhuan Xu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Heng Ru
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
19
|
Vögele M, Thomson NJ, Truong ST, McAvity J, Zachariae U, Dror RO. Systematic analysis of biomolecular conformational ensembles with PENSA. J Chem Phys 2025; 162:014101. [PMID: 39745157 PMCID: PMC11698571 DOI: 10.1063/5.0235544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Atomic-level simulations are widely used to study biomolecules and their dynamics. A common goal in such studies is to compare simulations of a molecular system under several conditions-for example, with various mutations or bound ligands-in order to identify differences between the molecular conformations adopted under these conditions. However, the large amount of data produced by simulations of ever larger and more complex systems often renders it difficult to identify the structural features that are relevant to a particular biochemical phenomenon. We present a flexible software package named Python ENSemble Analysis (PENSA) that enables a comprehensive and thorough investigation into biomolecular conformational ensembles. It provides featurization and feature transformations that allow for a complete representation of biomolecules such as proteins and nucleic acids, including water and ion binding sites, thus avoiding the bias that would come with manual feature selection. PENSA implements methods to systematically compare the distributions of molecular features across ensembles to find the significant differences between them and identify regions of interest. It also includes a novel approach to quantify the state-specific information between two regions of a biomolecule, which allows, for example, tracing information flow to identify allosteric pathways. PENSA also comes with convenient tools for loading data and visualizing results, making them quick to process and easy to interpret. PENSA is an open-source Python library maintained at https://github.com/drorlab/pensa along with an example workflow and a tutorial. We demonstrate its usefulness in real-world examples by showing how it helps us determine molecular mechanisms efficiently.
Collapse
Affiliation(s)
- Martin Vögele
- Authors to whom correspondence should be addressed: and
| | - Neil J. Thomson
- Department of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sang T. Truong
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Jasper McAvity
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | - Ron O. Dror
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
20
|
Thomson NJ, Zachariae U. Mechanism of negative μ-opioid receptor modulation by sodium ions. Structure 2025; 33:196-205.e2. [PMID: 39536757 DOI: 10.1016/j.str.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Negative allosteric modulation of G-protein coupled receptors (GPCRs) by Na+ ions was first described in the 1970s for opioid receptors (ORs) and has subsequently been detected for most class A GPCRs. In high-resolution structures of inactive-state class A GPCRs, a Na+ ion binds to a conserved pocket near residue D2.50, whereas active-state structures of GPCRs are incompatible with Na+ binding. Correspondingly, Na+ diminishes agonist affinity, stabilizes the receptors in the inactive state, and reduces basal signaling. We applied a mutual-information based analysis to μs-timescale biomolecular simulations of the μ-opioid receptor (μ-OR). Our results reveal that Na+ binding is coupled to a water wire linking the Na+ binding site with the agonist binding pocket and to rearrangements in polar networks propagating conformational changes to the agonist and G-protein binding sites. These findings provide a new mechanistic link between the presence of the ion, altered agonist affinity, receptor deactivation, and lowered basal signaling levels.
Collapse
Affiliation(s)
- Neil J Thomson
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
21
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
22
|
Kim H, Park G, Shin HG, Kwon D, Kim H, Baek IY, Nam MH, Cho IJ, Kim J, Seong J. Optogenetic Control of Dopamine Receptor 2 Reveals a Novel Aspect of Dopaminergic Neurotransmission in Motor Function. J Neurosci 2025; 45:e1473242024. [PMID: 39562043 DOI: 10.1523/jneurosci.1473-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Dopaminergic neurotransmission plays a crucial role in motor function through the coordination of dopamine receptor (DRD) subtypes, such as DRD1 and DRD2, thus the functional imbalance of these receptors can lead to Parkinson's disease. However, due to the complexity of dopaminergic circuits in the brain, it is limited to investigating the individual functions of each DRD subtype in specific brain regions. Here, we developed a light-responsive chimeric DRD2, OptoDRD2, which can selectively activate DRD2-like signaling pathways with spatiotemporal resolution. OptoDRD2 was designed to include the light-sensitive component of rhodopsin and the intracellular signaling domain of DRD2. Upon illumination with blue light, OptoDRD2 triggered DRD2-like signaling pathways, such as Gαi/o subtype recruitment, a decrease in cAMP levels, and ERK phosphorylation. To explore unknown roles of DRD2 in glutamatergic cell populations of basal ganglia circuitry, OptoDRD2 was genetically expressed in excitatory neurons in lateral globus pallidus (LGP) of the male mouse brain. The optogenetic stimulation of OptoDRD2 in the LGP region affected a wide range of locomotion-related parameters, such as increased frequency of movement and decreased immobility time, resulting in the facilitation of motor function of living male mice. Therefore, our findings indicate a potentially novel role for DRD2 in the excitatory neurons of the LGP region, suggesting that OptoDRD2 can be a valuable tool enabling the investigation of unknown roles of DRD2 at specific cell types or brain regions.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyo Geun Shin
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Duwan Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Heejung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il-Joo Cho
- Departments of Convergence Medicine, Korea University, Seoul 02841, Republic of Korea
- Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Shah H, Fairlie DP, Lim J. Protease-activated receptor 2: A promising therapeutic target for women's cancers. J Pharmacol Exp Ther 2025; 392:100016. [PMID: 39892996 DOI: 10.1124/jpet.124.002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 01/22/2025] Open
Abstract
Cancers affecting women, such as breast, uterine, ovarian, endometrial, and cervical cancers, have become increasingly prevalent. The growing incidence and death rates associated with these cancers warrant the development of innovative and alternative approaches to current treatments. This article investigates the association of women's cancers with a molecular target known as protease-activated receptor 2 (PAR2), a G protein-coupled receptor that is expressed on the surface of cancer cells. Expression levels of the PAR2 gene were curated from publicly available databases, and PAR2 was found to be significantly overexpressed in tissues from patients with breast, uterine, ovarian, endometrial, or cervical cancer compared with normal tissues. PAR2 overexpression has been previously linked to tumor progression and, in some cases, tumor growth. Activation of PAR2 by either endogenous proteases or synthetic agonists triggers certain downstream intracellular signaling pathways that have been associated with tumor progression, cell migration and invasion, angiogenesis, and apoptosis of cancer cells. Although recent advances have led to identification of several PAR2 antagonists, none has yet been developed for human use. Additionally, PAR2 inhibition has been shown to increase the efficacy of chemotherapeutic drugs, allowing them to be potentially used at less toxic doses in combination therapies for cancer. The present work briefly summarizes the current status of PAR2 as a potential therapeutic target for treating women's cancers. SIGNIFICANCE STATEMENT: This article highlights potential roles for protease-activated receptor 2 (PAR2) in cancers affecting women. Overexpression of the PAR2 gene in women's cancers is associated with various oncogenic processes, such as tumor progression, cell migration, and invasion, ultimately contributing to poorer patient prognoses. Given the increasing incidence of women's cancers, there is an urgent need to develop novel therapeutic drugs, and PAR2 represents a promising target for developing new treatments.
Collapse
Affiliation(s)
- Himani Shah
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | - Junxian Lim
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2025; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
25
|
Bachler ZT, Brown MF. Hidden water's influence on rhodopsin activation. Biophys J 2024; 123:4167-4179. [PMID: 39550612 PMCID: PMC11700366 DOI: 10.1016/j.bpj.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.
Collapse
Affiliation(s)
- Zachary T Bachler
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
26
|
Liu H, Bai Q, Wang X, Jin Y, Ju X, Lu C. Immune signature of gene expression pattern shared by autism spectrum disorder and Huntington's disease. IBRO Neurosci Rep 2024; 17:311-319. [PMID: 39398347 PMCID: PMC11471255 DOI: 10.1016/j.ibneur.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Autism spectrum disorder (ASD) and Huntington's disease (HD) are complex neurological conditions with unclear causes and limited treatments, affecting individuals, families, and society. Despite ASD and HD representing two opposing stages of neuronal development and degeneration, they share similar clinical-pathological features in motor function. In this study, we leveraged transcriptomic data from the prefrontal cortex available in public databases to identify shared transcriptional characteristics of ASD and HD. Differential expression analysis revealed that the majority of differentially expressed genes (DEGs) were up-regulated in ASD carriers, whereas most DEGs were down-regulated in HD carriers. Among the DEGs shared between both diseases, three out of seven protein-coding genes were related to the immune system. Furthermore, we identified two enriched pathways shared between ASD and HD DEGs. The gene interaction network analysis unveiled four hub genes shared by both diseases, all of which are associated with immune functions. The findings suggest a shared gene expression pattern in the prefrontal cortex of people with ASD and HD, closely linked to the immune system. These findings will contribute to exploring the biological mechanisms underlying the shared phenotypes of these two diseases from an immunological perspective.
Collapse
Affiliation(s)
- Huanhuan Liu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Qiuyu Bai
- Yancheng College of Mechatronic Technology, Yancheng, China
| | | | - Yunlei Jin
- Children’ s Hospital of Changchun, Changchun, China
| | - Xingda Ju
- School of Psychology, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China
| |
Collapse
|
27
|
Hovah ME, Holzgrabe U. Bivalent and bitopic ligands of the opioid receptors: The prospects of a dual approach. Med Res Rev 2024; 44:2545-2599. [PMID: 38751227 DOI: 10.1002/med.22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 10/05/2024]
Abstract
Opioid receptors belonging to the class A G-protein coupled receptors (GPCRs) are the targets of choice in the treatment of acute and chronic pain. However, their on-target side effects such as respiratory depression, tolerance and addiction have led to the advent of the 'opioid crisis'. In the search for safer analgesics, bivalent and more recently, bitopic ligands have emerged as valuable tool compounds to probe these receptors. The activity of bivalent and bitopic ligands rely greatly on the allosteric nature of the GPCRs. Bivalent ligands consist of two pharmacophores, each binding to the individual orthosteric binding site (OBS) of the monomers within a dimer. Bitopic or dualsteric ligands bridge the gap between the OBS and the spatially distinct, less conserved allosteric binding site (ABS) through the simultaneous occupation of these two sites. Bivalent and bitopic ligands stabilize distinct conformations of the receptors which ultimately translates into unique signalling and pharmacological profiles. Some of the interesting properties shown by these ligands include improved affinity and/or efficacy, subtype and/or functional selectivity and reduced side effects. This review aims at providing an overview of some of the bivalent and bitopic ligands of the opioid receptors and, their pharmacology in the hope of inspiring the design and discovery of the next generation of opioid analgesics.
Collapse
Affiliation(s)
- Marie Emilie Hovah
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| |
Collapse
|
28
|
Kim DH, Kim MS, Lee JS, Yoon DS, Lee JS. Genome-wide identification of 769 G protein-coupled receptor (GPCR) genes from the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2024; 207:116868. [PMID: 39173477 DOI: 10.1016/j.marpolbul.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The marine medaka Oryzias melastigma is a useful fish model for marine and estuarine ecotoxicology studies and can be applied to field-based population genomics because of its distribution in Asian estuaries and other coastal areas. We identified 769 full-length G protein-coupled receptor genes in the O. melastigma genome and classified them into five distinct classes. A phylogenetic comparison of GPCR genes in O. melastigma to humans and two other small fish species revealed a high-level orthological relationship. Purinergic and chemokine receptors were highly differentiated in humans whereas significant differentiation of chemosensory receptors was evident in fish species. Our results suggest that the GPCR gene families among the species used in this study exhibit evidence of sporadic evolutionary processes. These results may help improve our understanding of the advanced repertoires of GPCR and expand our knowledge of physiological mechanisms of fish in response to various environmental stimuli.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
29
|
Mohole M, Naglekar A, Sengupta D, Chattopadhyay A. Probing the energy landscape of the lipid interactions of the serotonin 1A receptor. Biophys Chem 2024; 313:107289. [PMID: 39002247 DOI: 10.1016/j.bpc.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
30
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
31
|
Shi W, Xu C, Lei P, Sun X, Song M, Guo Y, Song W, Li Y, Yu L, Zhang H, Wang H, Zhang DL. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets for breast cancer. Breast Cancer Res Treat 2024; 207:417-434. [PMID: 38834774 DOI: 10.1007/s10549-024-07373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.
Collapse
Affiliation(s)
- Wenning Shi
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Ping Lei
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Mengju Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yacong Guo
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenxuan Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yizheng Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Hongmei Wang
- Shaanxi University of Chinese Medicine, No.1, Middle Century Avenue, Chenyangzhai, Xianyang, 712046, Shaanxi, China.
| | - Dao-Lai Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
32
|
Pan B, Guo C, Liu D, Wüthrich K. Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression. JOURNAL OF BIOMOLECULAR NMR 2024; 78:133-138. [PMID: 38554216 DOI: 10.1007/s10858-024-00439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024]
Abstract
In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the "toggle switch tryptophan". Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.
Collapse
Affiliation(s)
- Benxun Pan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
33
|
Hao W, Luo D, Jiang Y, Wan S, Li X. An overview of sphingosine-1-phosphate receptor 2: Structure, biological function, and small-molecule modulators. Med Res Rev 2024; 44:2331-2362. [PMID: 38665010 DOI: 10.1002/med.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.
Collapse
Affiliation(s)
- Wanting Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Marine Biomedical Research, Institute of Qingdao, Qingdao, China
| |
Collapse
|
34
|
Peng Q, Jiang H, Cheng X, Wang N, Zhou S, Zhang Y, Yang T, Chen Y, Zhang W, Lv S, Nan W, Wang J, Fan GH, Li J, Zhang J. Cryo-EM Structure and Biochemical Analysis of the Human Chemokine Receptor CCR8. Biochemistry 2024; 63:1892-1900. [PMID: 38985857 DOI: 10.1021/acs.biochem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.
Collapse
Affiliation(s)
- Qi Peng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Na Wang
- Cobio Biotechnology Co., Ltd., No. 9 Building, Building 16 of SHUWU, No. 73 Tanmi Road, Jiangbei New District, Nanjing 211500, China
| | - Sili Zhou
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - JianFei Wang
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Guo-Huang Fan
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
35
|
Reinhardt F, Kaiser A, Prömel S, Stadler PF. Evolution of neuropeptide Y/RFamide-like receptors in nematodes. Heliyon 2024; 10:e34473. [PMID: 39130429 PMCID: PMC11315170 DOI: 10.1016/j.heliyon.2024.e34473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The Neuropeptide Y/RFamide-like receptors belong to the Rhodopsin-like G protein-coupled receptors G protein-coupled receptors (GPCRs) and are involved in functions such as locomotion, feeding and reproduction. With 41 described receptors they form the best-studied group of neuropeptide GPCRs in Caenorhabditis elegans. In order to understand the expansion of the Neuropeptide Y/RFamide-like receptor family in nematodes, we started from the sequences of selected receptor paralogs in C. elegans as query and surveyed the corresponding orthologous sequences in another 159 representative nematode target genomes. To this end we employed a automated pipeline based on ExonMatchSolver, a tool that solves the paralog-to-contig assignment problem. Utilizing subclass-specific HMMs we were able to detect a total of 1557 Neuropeptide Y/RFamide-like receptor sequences (1100 NPRs, 375 FRPRs and 82 C09F12.3) in the 159 target nematode genomes investigated here. These sequences demonstrate a good conservation of the Neuropeptide Y/RFamide-like receptors across the Nematoda and highlight the diversification of the family in nematode evolution. No other genus shares all Neuropeptide Y/RFamide-like receptors with the genus Caenorhabditis. At the same time, we observe large numbers of clade specific duplications and losses of family members across the phylum Nematoda.
Collapse
Affiliation(s)
- Franziska Reinhardt
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
| | - Anette Kaiser
- Leipzig University, Faculty of Medicine, Department of Anesthesiology and Intensive Care, Liebigstr. 19, Leipzig, D-04103, Germany
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, Leipzig, D-04103, Germany
| | - Simone Prömel
- Heinrich Heine University Düsseldorf, Universitätsstraße 1/ Gebäude 26.24, Düsseldorf, D-40225, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrße 22, D-04103 Leipzig, Germany
- Inst. f. Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
36
|
Aguilar-Pineda J, González-Melchor M. Influence of the Water Model on the Structure and Interactions of the GPR40 Protein with the Lipid Membrane and the Solvent: Rigid versus Flexible Water Models. J Chem Theory Comput 2024; 20:6369-6387. [PMID: 38991114 PMCID: PMC11270832 DOI: 10.1021/acs.jctc.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
G protein-coupled receptors (GPCR) are responsible for modulating various physiological functions and are thus related to the pathophysiology of different diseases. Being potential therapeutic targets, multiple computational methodologies have been developed to analyze their behavior and interactions with other species. The solvent, on the other hand, has received much less attention. In this work, we analyzed the effect of four explicit water models on the structure and interactions of the GPR40 receptor in its apo form. We employed the rigid SPC/E and TIP4P models, and their flexible versions, the FBA/ϵ and TIP4P/ϵflex. We explored the structural changes and their correlation with some bulk dynamic properties of water. Our results showed an adverse effect on the conservation of the secondary structure of the receptor with all the models due to the breaking of the intramolecular hydrogen bond network, being more evident for the TIP4P models. Notably, all four models brought the receptor to states similar to the active one, modifying the intracellular part of the TM5 and TM6 domains in a "hinge" type movement, allowing the opening of the structure. Regarding the dynamic properties, the rigid models showed results comparable to those obtained in other studies on membrane systems. However, flexible models exhibit disparities in the molecular representation of systems. Surprisingly, the FBA/ϵ model improves the molecular picture of several properties, even though their agreement with bulk diffusion is poorer. These findings reinforce our idea that exploring other water models or improving the current ones, to better represent the membrane interface, can lead to a positive impact on the description of the signal transduction mechanisms and the search of new drugs by targeting these receptors.
Collapse
Affiliation(s)
- Jorge
Alberto Aguilar-Pineda
- Instituto de Física
“Luis Rivera Terrazas”, Benemérita Universidad
Autónoma de Puebla, Av San Claudio, Cd Universitaria, Apdo. Postal
J-48, Puebla 72570, México
| | - Minerva González-Melchor
- Instituto de Física
“Luis Rivera Terrazas”, Benemérita Universidad
Autónoma de Puebla, Av San Claudio, Cd Universitaria, Apdo. Postal
J-48, Puebla 72570, México
| |
Collapse
|
37
|
Gaiser BI, Danielsen M, Xu X, Røpke Jørgensen K, Fronik P, Märcher-Rørsted E, Wróbel TM, Liu X, Mosolff Mathiesen J, Sejer Pedersen D. Bitopic Ligands Support the Presence of a Metastable Binding Site at the β 2 Adrenergic Receptor. J Med Chem 2024; 67:11053-11068. [PMID: 38952152 DOI: 10.1021/acs.jmedchem.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Metastable binding sites (MBS) have been observed in a multitude of molecular dynamics simulations and can be considered low affinity allosteric binding sites (ABS) that function as stepping stones as the ligand moves toward the orthosteric binding site (OBS). Herein, we show that MBS can be utilized as ABS in ligand design, resulting in ligands with improved binding kinetics. Four homobivalent bitopic ligands (1-4) were designed by molecular docking of (S)-alprenolol ((S)-ALP) in the cocrystal structure of the β2 adrenergic receptor (β2AR) bound to the antagonist ALP. Ligand 4 displayed a potency and affinity similar to (S)-ALP, but with a >4-fold increase in residence time. The proposed binding mode was confirmed by X-ray crystallography of ligand 4 in complex with the β2AR. This ligand design principle can find applications beyond the β2AR and G protein-coupled receptors (GPCRs) as a general approach for improving the pharmacological profile of orthosteric ligands by targeting the OBS and an MBS simultaneously.
Collapse
Affiliation(s)
- Birgit Isabel Gaiser
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Mia Danielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Xinyu Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084 ,China
| | - Kira Røpke Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Philipp Fronik
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Emil Märcher-Rørsted
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Tomasz M Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084 ,China
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Xie L, Liu X, Yao Y, Tan B, Su R. Serine 3.39 and isoleucine 4.60 are key sites for 5-HT 2AR-mediated G s signaling. FEBS Lett 2024; 598:1783-1791. [PMID: 38757247 DOI: 10.1002/1873-3468.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Certain amino acid sites of 5-HT2AR play crucial roles in interacting with various G proteins. Hallucinogens and non-hallucinogens both act on 5-HT2AR but mediate different pharmacological effects, possibly due to the coupling of different G proteins. Therefore, this study identified the binding sites of hallucinogens and non-hallucinogens with 5-HT2AR through molecular docking. We conducted site mutation to examine the impact of these sites on G proteins, in order to find out the sites that can distinguish the pharmacological effects of hallucinogens and non-hallucinogens. Our results indicate that I4.60A and S3.39A did not affect the ability of hallucinogens to activate Gq signaling, but significantly reduced Gs signaling activation by hallucinogens. These results suggest that S3.39 and I4.60 are important for the activation of Gs signaling by hallucinogens.
Collapse
Affiliation(s)
- Lulu Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China
- Shenyang Pharmaceutical University, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China
| |
Collapse
|
39
|
Flammia R, Huang B, Pagare PP, M St Onge C, Abebayehu A, Gillespie JC, Mendez RE, Selley DE, Dewey WL, Zhang Y. Blocking potential metabolic sites on NAT to improve its safety profile while retaining the pharmacological profile. Bioorg Chem 2024; 148:107489. [PMID: 38797065 PMCID: PMC11190787 DOI: 10.1016/j.bioorg.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The number of opioid-related overdose deaths and individuals that have suffered from opioid use disorders have significantly increased over the last 30 years. FDA approved maintenance therapies to treat opioid use disorder may successfully curb drug craving and prevent relapse but harbor adverse effects that reduce patient compliance. This has created a need for new chemical entities with improved patient experience. Previously our group reported a novel lead compound, NAT, a mu-opioid receptor antagonist that potently antagonized the antinociception of morphine and showed significant blood-brain barrier permeability. However, NAT belongs to thiophene containing compounds which are known structural alerts for potential oxidative metabolism. To overcome this, 15 NAT derivatives with various substituents at the 5'-position of the thiophene ring were designed and their structure-activity relationships were studied. These derivatives were characterized for their binding affinity, selectivity, and functional activity at the mu opioid receptor and assessed for their ability to antagonize the antinociceptive effects of morphine in vivo. Compound 12 showed retention of the basic pharmacological attributes of NAT while improving the withdrawal effects that were experienced in opioid-dependent mice. Further studies will be conducted to fully characterize compound 12 to examine whether it would serve as a new lead for opioid use disorder treatment and management.
Collapse
Affiliation(s)
- Rachael Flammia
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Abeje Abebayehu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States; Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298-0059.
| |
Collapse
|
40
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble and functional membrane protein analogues. Nature 2024; 631:449-458. [PMID: 38898281 PMCID: PMC11236705 DOI: 10.1038/s41586-024-07601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
Affiliation(s)
- Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Goldbach
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra E M Balbi
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Srajan Kapoor
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Jagrity Choudhury
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christian Schellhaas
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Simon Kozlov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
41
|
Yang Y, Qiao X, Yu S, Zhao X, Jin Y, Liu R, Li J, Wang L, Song L. A trace amine associated receptor mediates antimicrobial immune response in the oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105171. [PMID: 38537729 DOI: 10.1016/j.dci.2024.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.
Collapse
Affiliation(s)
- Yuehong Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Rui Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Jie Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
42
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Barik S, Riddell T. The Brain-Heart Network of Syncope. Int J Mol Sci 2024; 25:6959. [PMID: 39000068 PMCID: PMC11241714 DOI: 10.3390/ijms25136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Observed and recorded in various forms since ancient times, 'syncope' is often popularly called 'fainting', such that the two terms are used synonymously. Syncope/fainting can be caused by a variety of conditions, including but not limited to head injuries, vertigo, and oxygen deficiency. Here, we draw on a large body of literature on syncope, including the role of a recently discovered set of specialized mammalian neurons. Although the etiology of syncope still remains a mystery, we have attempted to provide a comprehensive account of what is known and what still needs to be performed. Much of our understanding of syncope is owing to studies in the laboratory mouse, whereas evidence from human patients remains scarce. Interestingly, the cardioinhibitory Bezold-Jarisch reflex, recognized in the early 1900s, has an intriguing similarity to-and forms the basis of-syncope. In this review, we have integrated this minimal model into the modern view of the brain-neuron-heart signaling loop of syncope, to which several signaling events contribute. Molecular signaling is our major focus here, presented in terms of a normal heart, and thus, syncope due to abnormal or weak heart activity is not discussed in detail. In addition, we have offered possible directions for clinical intervention based on this model. Overall, this article is expected to generate interest in chronic vertigo and syncope/fainting, an enigmatic condition that affects most humans at some point in life; it is also hoped that this may lead to a mechanism-based clinical intervention in the future.
Collapse
Affiliation(s)
- Sailen Barik
- Independent Researcher, EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| | | |
Collapse
|
44
|
Liu X, Cheng Z, Shang X, Zhang H, Liu X, Pan W, Fu J, Xue Q, Zhang A. New Mechanism for the Apoptosis of Human Neuroblastoma Cells by the Interaction between Fluorene-9-Bisphenol and the G Protein-Coupled Estrogen Receptor 1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10494-10503. [PMID: 38833413 DOI: 10.1021/acs.est.4c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is an emerging contaminant. Presently, there is no report on its interaction with G protein-coupled estrogen receptor 1 (GPER). By using an integrated toxicity research scenario that combined theoretical study with experimental methods, BHPF was found to inhibit the GPER-mediated effect via direct receptor binding. Molecular dynamics simulations found that Trp2726.48 and Glu2756.51 be the key amino acids of BHPF binding with GPER. Moreover, the calculation indicated that BHPF was a suspected GPER inhibitor, which neither can activate GPER nor is able to form water channels of GPER. The role of two residues was successfully verified by following gene knockout and site-directed mutagenesis assays. Further in vitro assays showed that BHPF could attenuate the increase in intracellular concentration of free Ca2+ induced by G1-activated GPER. Besides, BHPF showed an enhanced cytotoxicity compared with G15, indicating that BHPF might be a more potent GPER inhibitor than G15. In addition, a statistically significant effect on the mRNA level of GPER was observed for BHPF. In brief, the present study proposes that BHPF be a GPER inhibitor, and its GPER molecular recognition mechanism has been revealed, which is of great significance for the health risk and assessment of BHPF.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi Cheng
- College of Life Sciences and Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, Tang'shan 063210, P. R. China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Institute of Environmental and Health, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
45
|
Sachdev S, Creemer BA, Gardella TJ, Cheloha RW. Highly biased agonism for GPCR ligands via nanobody tethering. Nat Commun 2024; 15:4687. [PMID: 38824166 PMCID: PMC11144202 DOI: 10.1038/s41467-024-49068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.
Collapse
Affiliation(s)
- Shivani Sachdev
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Brendan A Creemer
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA.
| |
Collapse
|
46
|
Liu Z, Cao X, Ma Z, Xu L, Wang L, Li J, Xiao M, Jiang X. Enhanced Sampling Molecular Dynamics Simulations Reveal Transport Mechanism of Glycoconjugate Drugs through GLUT1. Int J Mol Sci 2024; 25:5486. [PMID: 38791523 PMCID: PMC11122603 DOI: 10.3390/ijms25105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.
Collapse
Affiliation(s)
- Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xueting Cao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
47
|
Adamczuk K, Ngo TH, Czapiński J, Rivero-Müller A. Glycoprotein-glycoprotein Receptor Binding Detection Using Bioluminescence Resonance Energy Transfer. Endocrinology 2024; 165:bqae052. [PMID: 38679471 DOI: 10.1210/endocr/bqae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.
Collapse
Affiliation(s)
- Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Thu Ha Ngo
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
48
|
Nedyalkova M, Robeva R, Romanova J, Yovcheva K, Lattuada M, Simeonov V. In silico screening of potential agonists of a glucagon-like peptide-1 receptor among female sex hormone derivatives. J Biomol Struct Dyn 2024:1-12. [PMID: 38587907 DOI: 10.1080/07391102.2024.2330714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that exerts its pleiotropic effects through a specific GLP-1 receptor (GLP-1R). The hormone-receptor complex might regulate glucose-dependent insulin secretion, and energy homeostasis; moreover, it could decrease inflammation and provide cardio- and neuroprotection. Additionally, the beneficial influence of GLP-1 on obesity in women might lead to improvement of their ovarian function. The links between metabolism and reproduction are tightly connected, and it is not surprising that different estrogen derivatives, estrogen-receptor modulator (SERM) and progestins used for gonadal and oncological disorders might influence carbohydrate and lipid metabolism. However, their possible influence on the GLP-1R has not been studied. The docking scores and top-ranked poses of raloxifene were much higher than those observed for other investigated SERMs and estradiol per se. Among different studied progestins, drospirenone showed slightly higher affinity to GLP-1R. Herein, the same data set of the drugs is evaluated by molecular dynamics (MD) simulations and compared with the obtained docking result. Notably, it is demonstrated that the used docking protocol and the applied MD calculations ranked the same ligand (raloxifene) as the best one. In the present study, raloxifene might exert an allosteric influence on GLP-1R signaling, which might contribute to potential beneficial effects on metabolism and weight regulation. However, further experimental and clinical studies are needed to reveal if the GLP-1R modulation has a real biological impact.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Department of Chemistry, Fribourg University, Fribourg, Switzerland
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria
| | - Julia Romanova
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| | - Kirila Yovcheva
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| | - Marco Lattuada
- Department of Chemistry, Fribourg University, Fribourg, Switzerland
| | - Vasil Simeonov
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| |
Collapse
|
49
|
Montejo-López W, Sampieri-Cabrera R, Nicolás-Vázquez MI, Aceves-Hernández JM, Razo-Hernández RS. Analysing the effect caused by increasing the molecular volume in M1-AChR receptor agonists and antagonists: a structural and computational study. RSC Adv 2024; 14:8615-8640. [PMID: 38495977 PMCID: PMC10938299 DOI: 10.1039/d3ra07380g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
M1 muscarinic acetylcholine receptor (M1-AChR), a member of the G protein-coupled receptors (GPCR) family, plays a crucial role in learning and memory, making it an important drug target for Alzheimer's disease (AD) and schizophrenia. M1-AChR activation and deactivation have shown modifying effects in AD and PD preclinical models, respectively. However, understanding the pharmacology associated with M1-AChR activation or deactivation is complex, because of the low selectivity among muscarinic subtypes, hampering their therapeutic applications. In this regard, we constructed two quantitative structure-activity relationship (QSAR) models, one for M1-AChR agonists (total and partial), and the other for the antagonists. The binding mode of 59 structurally different compounds, including agonists and antagonists with experimental binding affinity values (pKi), were analyzed employing computational molecular docking over different structures of M1-AChR. Furthermore, we considered the interaction energy (Einter), the number of rotatable bonds (NRB), and lipophilicity (ilogP) for the construction of the QSAR model for agonists (R2 = 89.64, QLMO2 = 78, and Qext2 = 79.1). For the QSAR model of antagonists (R2 = 88.44, QLMO2 = 82, and Qext2 = 78.1) we considered the Einter, the fraction of sp3 carbons fCsp3, and lipophilicity (MlogP). Our results suggest that the ligand volume is a determinant to establish its biological activity (agonist or antagonist), causing changes in binding energy, and determining the affinity for M1-AChR.
Collapse
Affiliation(s)
- Wilber Montejo-López
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Raúl Sampieri-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Juan Manuel Aceves-Hernández
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de Mexico 54714 Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca 62209 Mexico
| |
Collapse
|
50
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble functional analogues of integral membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540044. [PMID: 38496615 PMCID: PMC10942269 DOI: 10.1101/2023.05.09.540044] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
|