1
|
Zanfirescu RL, Anghel L, Tudurachi BS, Clement AM, Zăvoi A, Benchea LC, Ciocoiu M, Sascău RA, Stătescu C, Radu R. Improved ASCVD Screening in Diabetes: a Focus on Scoring Models and Detection Techniques. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025:rjim-2025-0009. [PMID: 40277130 DOI: 10.2478/rjim-2025-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). Diabetes accelerates the progression of atherosclerosis through key mechanisms such as insulin resistance, hyperglycemia, dyslipidemia, chronic inflammation, and oxidative stress, significantly increasing the risk of coronary artery disease, stroke, and heart failure. Traditional risk assessment models and treatment strategies often fall short in fully addressing these complexities, leaving a substantial residual cardiovascular risk in diabetic patients. This review focuses on the need for enhanced screening protocols in diabetic populations, examining advanced risk scoring models and detection techniques aimed at improving early identification and management of ASCVD. Also, this study examines the pathophysiological links between diabetes and atherosclerosis, emphasizing the need for enhanced screening protocols. Emerging tools, such as non-invasive imaging techniques (e.g., coronary artery calcium scoring, CCTA) and biomarkers (e.g., polygenic risk scores), offer promise for improved early detection and risk stratification. Additionally, newer therapeutic strategies targeting inflammation and insulin resistance are being explored to mitigate cardiovascular risks in this population. Given the significant cardiovascular risk associated with diabetes, particularly T2DM, these advancements are crucial in reducing morbidity and mortality related to atherosclerotic events.
Collapse
Affiliation(s)
- Răzvan-Liviu Zanfirescu
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Larisa Anghel
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Bogdan-Sorin Tudurachi
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Alexandra-Mihaela Clement
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Alexandra Zăvoi
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Laura-Cătălina Benchea
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Manuela Ciocoiu
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Radu Andy Sascău
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Cristian Stătescu
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| | - Rodica Radu
- Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu" Iaşi, România
- "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, România
| |
Collapse
|
2
|
Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discov 2025; 11:186. [PMID: 40253354 PMCID: PMC12009291 DOI: 10.1038/s41420-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Renal cell carcinoma (RCC), a therapeutically recalcitrant genitourinary malignancy, exemplifies the profound interplay between oncogenic signaling and metabolic adaptation. Emerging evidence positions metabolic reprogramming as a central axis of RCC pathogenesis, characterized by dynamic shifts in nutrient utilization that transcend canonical Warburg physiology to encompass lipid anabolism, glutamine auxotrophy, and microenvironment-driven metabolic plasticity. This orchestrated rewiring of cellular energetics sustains tumor proliferation under hypoxia while fostering immunosuppression through metabolite-mediated T cell exhaustion and myeloid-derived suppressor cell activation. Crucially, RCC exhibits metabolic heterogeneity across histological subtypes and intratumoral regions-a feature increasingly recognized as a determinant of therapeutic resistance. Our review systematically deciphers the molecular architecture of RCC metabolism, elucidating how VHL/HIF axis mutations, mTOR pathway dysregulation, and epigenetic modifiers converge to reshape glucose flux, lipid droplet biogenesis, and amino acid catabolism. We present novel insights into spatial metabolic zonation within RCC tumors, where pseudohypoxic niches engage in lactate shuttling and cholesterol efflux to adjacent vasculature, creating pro-angiogenic and immunosuppressive microdomains. Therapeutically, we evaluate first-in-class inhibitors targeting rate-limiting enzymes in de novo lipogenesis and glutamine metabolism, while proposing biomarker-driven strategies to overcome compensatory pathway activation. We highlight the synergy between glutaminase inhibitors and PD-1 blockade in reinvigorating CD8+ T cell function, and the role of lipid-loaded cancer-associated fibroblasts in shielding tumors from ferroptosis. Finally, we outline a translational roadmap integrating multi-omics profiling, functional metabolomics, and spatial biology to match metabolic vulnerabilities with precision therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shengli Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zhang W, Yu X, Lin Y, Wu C, Zhu R, Jiang X, Tao J, Chen Z, He J, Zhang X, Xu J, Zhang M. Acetyl-CoA synthetase 2 alleviates brain injury following cardiac arrest by promoting autophagy in brain microvascular endothelial cells. Cell Mol Life Sci 2025; 82:160. [PMID: 40244361 PMCID: PMC12006639 DOI: 10.1007/s00018-025-05689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Brain injury is a common sequela following cardiac arrest (CA), with up to 70% of hospitalized patients dying from it. Brain microvascular endothelial cells (BMVECs) play a crucial role in post-cardiac arrest brain injury (PCABI). However, the effects and mechanisms of targeting BMVEC energy metabolism to mitigate brain injury remain unclear. METHODS We established a mouse model of cardiac arrest by injecting potassium chloride into the right internal jugular vein. Mass spectrometry detected targeted changes in short-chain fatty acids and energy metabolism metabolites in the CA/CPR group compared to the sham group. Mice with overexpressed ACSS2 in BMVECs were created using an AAV-BR1 vector, and ACSS2 knockout mice were generated using the CRE-LOXP system. The oxygen glucose deprivation/re-oxygenation (OGD/R) model was established to investigate the role and mechanisms of ACSS2 in endothelial cells in vitro. RESULTS Metabolomics analysis revealed disrupted cerebral energy metabolism post-CA/CPR, with decreased acetyl-CoA and amino acids. Overexpression of ACSS2 in BMVECs increased acetyl-CoA levels and improved neurological function. Vascular endothelial cell-specific ACSS2 knockout mice exhibited reduced aortic sprouting in vitro. Overexpression of ACSS2 improved endothelial dysfunction following oxygen glucose deprivation/re-oxygenation (OGD/R) and influenced autophagy by interacting with transcription factor EB (TFEB) and modulating the AMP-activated protein kinase α (AMPKα) pathway. CONCLUSION Our study shows that ACSS2 modulates the biological functions of BMVECs by promoting autophagy. Enhancing energy metabolism via ACSS2 may target PCABI treatment development.
Collapse
Affiliation(s)
- Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xin Yu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Ruojie Zhu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Ziwei Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiantao He
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xiaodan Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China.
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China.
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Ma J, Wu C, Zhang Z, Liu H, Zong K, Wang Y, Lin R, Li R, Zou C, Zuo Q, Xu Y, Liu J, Zhao R. Metabolic pathway and genetically causal links of 1,400 circulating metabolites on the risk of intracranial aneurysms and aneurysmal subarachnoid hemorrhage. Neuroscience 2025; 568:27-37. [PMID: 39800046 DOI: 10.1016/j.neuroscience.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND The rupture of intracranial aneurysms (IAs) leads to aneurysmal subarachnoid hemorrhage (aSAH), which is associated with significant disability and mortality rates. This study aims to identify metabolic markers causally linked to the occurrence of IAs and aSAH through Mendelian randomization (MR), thereby offering novel predictive and therapeutic targets. METHODS We conducted a genome-wide association study (GWAS) on IAs and aSAH, analyzing 1,400 metabolomic indices from the Canadian Longitudinal Study on Aging (CLSA) cohort (n = 8,299). Subsequently, we employed two-sample Mendelian randomization to ascertain potential causal relationships between each metabolite and the conditions IAs and aSAH by various MR methodologies, including MR Egger, Weighted median, Inverse variance weighted (IVW), MR-PRESSO, Simple mode, and Weighted mode. The heterogeneity of instrumental variables was assessed using Cochran's Q statistics, and metabolic pathway analyses were performed via the Metaconflict 5.0 platform. RESULTS Our analysis found that 87 metabolites/metabolic ratios were associated with IAs, and 85 metabolites/metabolic ratios were associated with aSAH. After false discovery rate (FDR) correction and sensitivity analyses, nine metabolites/metabolic ratios were significantly causally associated with aSAH. Conversely, while 87 metabolites and their ratios initially showed potential causal links with IA, none demonstrated significant causal associations post-FDR correction. The study also pinpointed eight significant metabolic pathways implicated in both IAs and aSAH. CONCLUSION This study found that nine circulating metabolites and their ratios with significant causal associations to aSAH, while no metabolites and their ratios were causally linked to IAs. These results suggest possible mechanisms and predictive molecular targets for IAs and aSAH.
Collapse
Affiliation(s)
- Junren Ma
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Congyan Wu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Zhentao Zhang
- Department of Emergency, Changhai hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Kang Zong
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Yonghui Wang
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Ruyue Lin
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Rui Li
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Chao Zou
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Qiao Zuo
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Yi Xu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Rui Zhao
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
6
|
Ye ZW, Xia HF, Liu XC, Wu ZY, Chen G, Yu ZL, Jia J. Enhancing immunotherapy efficacy in oral cancer through AKB-9778-mediated vascular normalization. Int Immunopharmacol 2025; 148:114133. [PMID: 39879836 DOI: 10.1016/j.intimp.2025.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Tumor vasculature exhibit numerous abnormal features distinct from those of healthy vessels, potentially advancing tumor development by establishing an aberrant microenvironment. Therefore, vascular normalization has proven to be an effective tactic for substantially enhancing treatment efficacy across multiple tumors. However, the methods to attain vascular normalization may vary among tumor types. VE-PTP, expressed exclusively in vascular endothelial cells (ECs) and acting as a critical suppressor of vascular maturity and functionality, is upregulated in oral cancer due to hypoxia. In this study, we explored the effect and mechanism of AKB-9778, a competitive inhibitor of VE-PTP, in promoting vascular normalization of oral cancer. Initially, we showed that AKB-9778 can slow down tumor progression by fostering vascular normalization in a murine OSCC model. This was evidenced by improvements in vessel density, pericyte coverage, local hypoxia, and vascular permeability. RNA sequencing additionally indicated that the ECs of tumor vasculature exhibit abnormal alterations in adhesion molecules, and AKB-9778 treatment might facilitate vascular normalization by modulating lipid metabolism pathways, especially HSD17B7-regulated steroid biosynthesis. AKB-9778 treatment significantly up-regulated the HSD17B7 expression, thereby restoring the lipid content in tumor ECs. Moreover, this restoration of lipid metabolism mediated by HSD17B7 was associated with improved adhesion molecule expression and vascular normalization, facilitating immune cell infiltration and contributing to AKB-9778's anti-tumor effects. Finally, we verified the effects and safety of combined AKB-9778 treatment on improving the efficacy of anti-PD-1 immunotherapy. In summary, this study revealed the mechanism and potential application of AKB-9778-induced vascular normalization in patients with oral cancer.
Collapse
Affiliation(s)
- Zi-Wu Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xing-Chi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhou-Yang Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Chen Y, Zhang X, Zhang Y, Zhang S, Huo Y, Wu Y, Shen L, Mao J. Metabolomic Characteristics of Aqueous Humor in Wet Age-Related Macular Degeneration and the Impact of Anti-VEGF Treatment. Invest Ophthalmol Vis Sci 2025; 66:37. [PMID: 39937494 PMCID: PMC11827895 DOI: 10.1167/iovs.66.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose To explore the alterations in metabolites of wet age-related macular degeneration (wAMD) by conducting metabolomics in aqueous humor from patients with wAMD and to assess the potential effects of anti-vascular endothelial growth factor (anti-VEGF) on these metabolites. Methods Metabolomic analysis was performed on the aqueous humor of 30 patients with wAMD receiving anti-VEGF treatments and 20 controls, via ultra-high performance liquid chromatography tandem mass spectrometry. The aqueous humor samples collected from untreated patients with wAMD were classified as the pre-wAMD group. Accordingly, the samples collected from patients with wAMD receiving one anti-VEGF treatment were designated as the post-wAMD group. Individuals were further classified into responders and nonresponders according to their reaction to the treatment. Principal component analysis, hierarchical cluster analysis, and the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis, were subsequently performed. Machine learning and receiver operating characteristic curve analyses were used to further analyze potential vital metabolites. Results Among the 1001 metabolites verified in the aqueous humor, 306 compounds separated patients with pre-wAMD from the control group, whereas 68 metabolites differentiated patients with post-wAMD and patients with pre-wAMD. Enrichment in metabolic pathways was noted in ABC transporters, thiamine metabolism, glycerophospholipid metabolism, mammalian target of rapamycin signaling pathway and tyrosine metabolism, and so on. Machine learning and receiver operating characteristic curves analysis suggested that δ-valerolactam could not only distinguish between patients with wAMD and the control group, but also differentiate between patients with post-wAMD and patients with pre-wAMD. Changes in acylcarnitine were observed in anti-VEGF responders with wAMD. Conclusions There were noticeable alterations in the aqueous humor of patients with wAMD involving many metabolites that are associated with ABC transporters, glycerophospholipid metabolism, and the mammalian target of rapamycin signaling pathway. It is possible that δ-valerolactam can be applied as a biomarker in wAMD.
Collapse
Affiliation(s)
- Yijing Chen
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Xiaoya Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanli Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shian Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Huo
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yubo Wu
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Lijun Shen
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianbo Mao
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang Z, Lu J, Wang Y, Liu Z, Li D, Deng K, Zhang G, Zhao B, You P, Fan Y, Wang F, Wang Z. Genome-Wide Scans for Selection Signatures in Haimen Goats Reveal Candidate Genes Associated with Growth Traits. BIOLOGY 2025; 14:40. [PMID: 39857271 PMCID: PMC11759764 DOI: 10.3390/biology14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Understanding the genetic characteristics of indigenous goat breeds is vital for their conservation and breeding. Haimen goats, native to China's Yangtze River Delta, possess distinctive traits such as white hair, moderate growth rate, high-quality meat, and small body size. However, knowledge regarding the genetic structure and germplasm characteristics of Haimen goats remains limited. In this study, we performed 20× whole-genome resequencing of 90 goats (60 Haimen goats and 30 Boer goats) to identify single-nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) associated with growth traits. Here, we analyzed population genetic structure and genome-wide selection signatures between the Haimen and Boer goats based on whole-genome resequencing data. The principal component analysis (PCA) and neighbor-joining (N-J) tree results demonstrated significant genetic differentiation between the Haimen and Boer goats. The nucleotide diversity (Pi) and linkage disequilibrium (LD) decay results indicated higher genomic diversity in the Haimen goat population. Furthermore, selective sweep analysis identified candidate genes associated with growth traits. These genes exhibited strong selection signatures and were related to body size (DONSON, BMPR1B, and EPHA5), muscle development (GART, VGLL3, MYH15), and fat metabolism (ADAMTS5, LRP6, XDH, CPT1A, and GPD1). We also identified growth-related candidate genes (NCOR1, DPP6, NOTCH2, and FGGY) specific to Haimen goats. Among these genes, pancreatic lipase-related protein 1 (PNLIPRP1) emerged as the primary candidate gene influencing growth phenotypes. Further analysis revealed that a 26 bp Indel in PNLIPRP1 increased its gene expression, suggesting that this Indel could serve as a molecular marker for early marker-assisted selection, potentially enhancing early growth in goats. These findings provide valuable molecular markers and candidate genes for improving growth traits in Haimen goat breeding.
Collapse
Affiliation(s)
- Zhen Zhang
- Sanya Research Institute, Nanjing Agricultural University, Sanya 572025, China; (Z.Z.); (Z.L.); (F.W.)
| | - Jiafeng Lu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Yifei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (G.Z.)
| | - Zhipeng Liu
- Sanya Research Institute, Nanjing Agricultural University, Sanya 572025, China; (Z.Z.); (Z.L.); (F.W.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (G.Z.)
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Peihua You
- Portal Agri-Industries Co., Ltd., Xingdian Street, Pikou District, Nanjing 210095, China;
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (D.L.); (K.D.); (B.Z.); (Y.F.)
| | - Feng Wang
- Sanya Research Institute, Nanjing Agricultural University, Sanya 572025, China; (Z.Z.); (Z.L.); (F.W.)
| | - Ziyu Wang
- Sanya Research Institute, Nanjing Agricultural University, Sanya 572025, China; (Z.Z.); (Z.L.); (F.W.)
| |
Collapse
|
9
|
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 2024:S1043-2760(24)00296-0. [PMID: 39672762 DOI: 10.1016/j.tem.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Indian Institute of Technology Dharwad, Karnataka, India
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Cheng KY, Wang SW, Lan T, Mao ZJ, Xu YY, Shen Q, Zeng XX. CircRNA-mediated regulation of cardiovascular disease. Front Cardiovasc Med 2024; 11:1411621. [PMID: 39660120 PMCID: PMC11628502 DOI: 10.3389/fcvm.2024.1411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, such as coronary heart disease, cerebrovascular disease (e.g., stroke), peripheral arterial disease, congenital heart anomalies, deep vein thrombosis, and pulmonary embolism. CVDs are often referred to as the leading cause of mortality worldwide. Recent advancements in deep sequencing have unveiled a plethora of noncoding RNA transcripts, including circular RNAs (circRNAs), which play pivotal roles in the regulation of CVDs. A decade of research has differentiated various circRNAs by their vasculoprotective or deleterious functions, revealing potential therapeutic targets. This review provides an overview of circRNAs and a comprehensive examination of CVDs, the regulatory circRNAs within the vasculature, and the burgeoning research domain dedicated to these noncoding RNAs.
Collapse
Affiliation(s)
- Ke-yun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhu-jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - You-yao Xu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
11
|
Chen X, Wang Y, Dou X, Wan J, Zhou J, Li T, Yu J, Ye F. Integrative metabolomics and proteomics reveal the effect and mechanism of Zi Qi decoction on alleviating liver fibrosis. Sci Rep 2024; 14:28943. [PMID: 39578538 PMCID: PMC11584741 DOI: 10.1038/s41598-024-80616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024] Open
Abstract
Liver fibrosis is a common progressive liver disease that can cause liver dysfunction and lead to serious complications. Zi Qi decoction (ZQ) is a traditional formulation that exerts pharmacological effects on the treatment of liver fibrosis. However, precise intervention mechanisms remain unclear. The aim of this study was to synergistically harness proteomics and metabolomics techniques to elucidate the specific target of ZQ and its potential mechanism of action. A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was established. Subsequently, the protective effect of ZQ on liver fibrosis mice was evaluated according to histopathological examination and biochemical indicators. Quantitative proteomics based on data independent acquisition (DIA) and non-targeted metabolomic analyses revealed the pharmacodynamic mechanism of ZQ. In addition, various cellular and molecular assays were used to detect changes in glycolysis levels in LSECs and mouse liver fibrosis models. The study results showed that ZQ significantly alleviated CCl4-induced liver injury and fibrosis in mice. DIA-based quantitative proteomics and non-targeted metabolomics analyses indicated that ZQ treatment downregulated glycolysis-related proteins such as PKM2, PFKP, and HK2, while regulating glycolysis-related metabolites and pathways. In addition, ZQ down-regulated glycolytic activity in mice with liver fibrosis and in LSECs, and inhibited CXCL1 secretion and neutrophil recruitment. ZQ inhibited LSEC glycolysis and mitigated neutrophil infiltration, thereby playing a therapeutic role in liver fibrosis.
Collapse
Affiliation(s)
- Xiaoying Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Yifan Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaoyun Dou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jie Wan
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jingwen Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Tianci Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jun Yu
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Fang Ye
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
12
|
Shao W, Wang B, Wang P, Zhang S, Gong S, Guo X, Duan D, Shao Z, Liu W, He L, Gao F, Lv X, Feng Y. Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head. Bone Res 2024; 12:64. [PMID: 39516484 PMCID: PMC11549335 DOI: 10.1038/s41413-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/07/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.
Collapse
Affiliation(s)
- Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Deyu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Zhang W, Ren C, Yang Y, Xu J, Tong F, Wu X, Yang Y. Ginseng aconitum decoction (Shenfu Tang) provides neuroprotection by ameliorating impairment of blood-brain barrier in cerebral ischemia-reperfusion injury. Brain Res 2024; 1842:149098. [PMID: 38942350 DOI: 10.1016/j.brainres.2024.149098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Ischemic stroke (IS) remains one of the most serious threats to human life. Early blood-brain barrier damage (BBB) is the cause of parenchymal cell damage. Repair of the structure and function of the BBB is beneficial for the treatment of IS. The traditional prescription ginseng aconitum decoction (GAD) has a long history in the treatment of cardiovascular and cerebrovascular diseases, however, the effect of GAD on the BBB disruption and underlying mechanisms remains largely unknown. To address these issues, in vitro models of BBB were established with brain endothelial cells (bEnd.3). We found that GAD reduced the leakage of the fluorescent probe FITC-dextran (P < 0.01) and increased the expression of tight junction proteins (Claudin-5, ZO-1) (P < 0.05) in the BBB model in vitro. Furthermore, to investigate the BBB protective effects of GAD in vivo. A total of 25 male C57/BL6 mice (20 - 22 g) were randomly divided into 5 groups (n = 5 per group): (1) Sham group (saline), (2) MCAO group (saline), (3) MCAO + CG group (Chinese ginseng 8 mg/kg/day), (4) MCAO + AC group (aconite 8 mg/kg/day), (5) MCAO + GAD group (GAD 8 mg/kg/day).We constructed IS model in mice and found that GAD treatment reduced IgG leakage (P < 0.05), up-regulated the expression of tight junction proteins Claudin-5, Occludin, and ZO-1 (P < 0.05). Further mechanism study showed that fatty acid oxidation (FAO) of vascular endothelial cells is involved in the protection of the BBB after IS, and GAD regulates FAO (P < 0.05) to protect BBB. In addition, we found the effect of GAD was stronger than that of Chinese ginseng (CG) (P < 0.05) and aconite (AC) (P < 0.01) alone. We concluded that GAD ameliorated the BBB dysfunction by regulating FAO involving vascular endothelial cells after IS. At the same time, the prescription is more effective than single traditional Chinese medicine.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Fang Tong
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaodan Wu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
15
|
Dennery PA, Yao H. Metformin Promotes Angiogenesis in Neonatal Lung Injury: A New Deal of an Old Drug. Am J Respir Cell Mol Biol 2024; 71:386-387. [PMID: 38923887 PMCID: PMC11450311 DOI: 10.1165/rcmb.2024-0202ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry Brown University Providence, Rhode Island
- Department of Pediatrics Warren Alpert Medical School of Brown University Providence, Rhode Island
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry Brown University Providence, Rhode Island
- Department of Medicine Warren Alpert Medical School of Brown University Providence, Rhode Island
- Providence Veterans Affairs Medical Center Providence, Rhode Island
| |
Collapse
|
16
|
Wang S, Awad KS, Chen LY, Siddique MAH, Ferreyra GA, Wang CL, Joseph T, Yu ZX, Takeda K, Demirkale CY, Zhao YY, Elinoff JM, Danner RL. Endothelial PHD2 deficiency induces apoptosis resistance and inflammation via AKT activation and AIP1 loss independent of HIF2α. Am J Physiol Lung Cell Mol Physiol 2024; 327:L503-L519. [PMID: 39159362 PMCID: PMC11482463 DOI: 10.1152/ajplung.00077.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
In hypoxic and pseudohypoxic rodent models of pulmonary hypertension (PH), hypoxia-inducible factor (HIF) inhibition attenuates disease initiation. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PH in humans, indicating the involvement of other mechanisms. Given the association between endothelial cell dysfunction and PH, the effects of pseudohypoxia and its underlying pathways were investigated in primary human lung endothelial cells. PHD2 silencing or inhibition, while activating HIF2α, induced apoptosis-resistance and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activated AKT and ERK, inhibited JNK, and reduced AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affected these same kinase pathways and produced a similar dysfunctional endothelial cell phenotype, which was partially reversed by AKT inhibition. Consistent with these in vitro findings, AIP1 protein levels in lung endothelial cells were decreased in Tie2-Cre/Phd2 knockout mice compared with wild-type controls. Lung vascular endothelial cells from patients with pulmonary arterial hypertension (PAH) showed IFN/STAT activation. Lung tissue from both SU5416/hypoxia PAH rats and patients with PAH all showed AKT activation and dysregulated AIP1 expression. In conclusion, PHD2 deficiency in lung vascular endothelial cells drives an apoptosis-resistant and inflammatory phenotype, mediated by AKT activation and AIP1 loss independent of HIF signaling. Targeting these pathways, including PHD2, AKT, and AIP1, holds the potential for developing new treatments for endothelial dysfunction in PH.NEW & NOTEWORTHY HIF activation alone does not conclusively lead to human PH, suggesting that HIF-independent signaling may also contribute to hypoxia-induced PH. This study demonstrated that PHD2 silencing-induced pseudohypoxia in human lung endothelial cells suppresses apoptosis and activates STAT, effects that persist despite HIF2α inhibition or knockdown and are attributed to AKT and ERK activation, JNK inhibition, and AIP1 loss. These findings align with observations in lung endothelial cells and tissues from PAH rodent models and patients.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad A H Siddique
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Caroline L Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Thea Joseph
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zu-Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kazuyo Takeda
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - You-Yang Zhao
- Section for Injury Repair and Regeneration, Stanley Manne Children Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
17
|
Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, Chen W, Chen Z, Li H, Chen J, Shen J, Xie X. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med 2024; 5:101728. [PMID: 39293390 PMCID: PMC11525028 DOI: 10.1016/j.xcrm.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Despite advances in treatment, the prognosis of patients with osteosarcoma remains unsatisfactory, and searching for potential targets is imperative. Here, we identify N4-acetylcytidine (ac4C) acetyltransferase 10 (NAT10) as a candidate therapeutic target in osteosarcoma through functional screening. NAT10 overexpression is correlated with a poor prognosis, and NAT10 knockout inhibits osteosarcoma progression. Mechanistically, NAT10 enhances mRNA stability of activating transcription factor 4 (ATF4) through ac4C modification. ATF4 induces the transcription of asparagine synthetase (ASNS), which catalyzes asparagine (Asn) biosynthesis, facilitating osteosarcoma progression. Utilizing virtual screening, we identify paliperidone and AG-401 as potential NAT10 inhibitors, and both inhibitors are found to bind to NAT10 proteins. Inhibiting NAT10 suppresses osteosarcoma progression in vivo. Combined treatment using paliperidone and AG-401 produces synergistic inhibition for osteosarcoma in patient-derived xenograft (PDX) models. Our findings demonstrate that NAT10 facilitates osteosarcoma progression through the ATF4/ASNS/Asn axis, and pharmacological inhibition of NAT10 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Guo L, Zong Y, Yang W, Lin Y, Feng Q, Yu C, Liu X, Li C, Zhang W, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Nie L. DCBLD2 deletion increases hyperglycemia and induces vascular remodeling by inhibiting insulin receptor recycling in endothelial cells. FEBS J 2024; 291:4076-4095. [PMID: 38872483 DOI: 10.1111/febs.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Discoidin, CUB, LCCL domain-containing 2 (DCBLD2) is a type I transmembrane protein with a similar structure to neuropilin, which acts as a co-receptor for certain receptor tyrosine kinases (RTKs). The insulin receptor is an RTK and plays a critical role in endothelial cell function and glycolysis. However, how and whether DCBLD2 regulates insulin receptor activity in endothelial cells is poorly understood. Diabetes was induced through treatment of Dcbld2 global-genome knockout mice and endothelium-specific knockout mice with streptozotocin. Vascular ultrasound, vascular tension test, and hematoxylin and eosin staining were performed to assess endothelial function and aortic remodeling. Glycolytic rate assays, real-time PCR and western blotting were used to investigate the effects of DCBLD2 on glycolytic activity and insulin receptor (InsR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in endothelial cells. Co-immunoprecipitation was used to assess the effects of DCBLD2 on insulin receptor endocytosis and recycling. Membrane and cytoplasmic proteins were isolated to determine whether DCBLD2 could affect the localization of the insulin receptor. We found that Dcbld2 deletion exacerbated endothelial dysfunction and vascular remodeling in diabetic mice. Both Dcbld2 knockdown and Dcbld2 deletion inhibited glycolysis and the InsR/PI3K/Akt signaling pathway in endothelial cells. Furthermore, Dcbld2 deletion inhibited insulin receptor recycling. Taken together, Dcbld2 deficiency exacerbated diabetic endothelial dysfunction and vascular remodeling by inhibiting the InsR/PI3K/Akt pathway in endothelial cells through the inhibition of Rab11-dependent insulin receptor recycling. Our data suggest that DCBLD2 is a potential therapeutic target for diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, Zhang Z, Ji Y. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024; 178:117181. [PMID: 39059349 DOI: 10.1016/j.biopha.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.
Collapse
Affiliation(s)
- Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Wu Y, Huang J, Liu L, Zhang X, Zhang W, Li Q. CircHIPK3/miR-124 affects angiogenesis in early-onset preeclampsia via CPT1A-mediated fatty acid oxidation. J Mol Med (Berl) 2024; 102:1037-1049. [PMID: 38904677 DOI: 10.1007/s00109-024-02461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Multiple theories have been proposed to explain the pathogenesis of early-onset preeclampsia (EOPE), and angiogenic dysfunction is an important part of this pathogenesis. Carnitine palmitoyltransferase (CPT1A) is a key rate-limiting enzyme in the metabolic process of fatty acid oxidation (FAO). FAO regulates endothelial cell (EC) proliferation during vascular germination and is also essential for ab initio deoxyribonucleotide synthesis, but its role in EOPE needs to be further elucidated. In the present study, we investigated its functional role in EOPE by targeting the circHIPK3/miR-124-3p/CPT1A axis. In our study, reduced expression of circHIPK3 and CPT1A and increased expression of miR-124-3p in placental tissues from patients with EOPE were associated with EC dysfunction. Here, we confirmed that CPT1A regulates fatty acid oxidative activity, cell proliferation, and tube formation in ECs by regulating FAO. Functionally, knockdown of circHIPK3 suppressed EC angiogenesis by inhibiting CPT1A-mediated fatty acid oxidative activity, which was ameliorated by CPT1A overexpression. In addition, circHIPK3 regulates CPT1A expression by sponging miR-124-3p. Hence, circHIPK3 knockdown reduced fatty acid oxidation in ECs by sponging miR-124-3p in a CPT1A-dependent manner and inhibited EC proliferation and tube formation, which may have led to aberrant angiogenesis in EOPE. Thus, strategies targeting CPT1A-driven FAO may be promising approaches for the treatment of EOPE. KEY MESSAGES: Decreased Carnitine palmitoyltransferase (CPT1A) expression in preeclampsia(PE). CPT1A overexpression promotes FAO activity and tube formation in ECs. CircHIPK3 can affect CPT1A expression and impaire angiogenesis of EOPE. CircHIPK3 regulates CPT1A expression by acting as a ceRNA of miR-124-3p in HUVECs. Confirming the effect of circHIPK3/miR-124-3p/CPT1A axis on EOPE.
Collapse
Affiliation(s)
- Yanying Wu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Lijuan Liu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Xiaowen Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China.
| | - Qi Li
- Institute of Reproductive Medicine Center, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
21
|
Cai Y, Li L, Shao C, Chen Y, Wang Z. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J Cardiovasc Transl Res 2024; 17:816-827. [PMID: 38294628 DOI: 10.1007/s12265-024-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
22
|
Xu Z, Mou C, Ji R, Chen H, Ding Y, Jiang X, Meng F, He F, Luo B, Yu J. Alterations in metabolome and lipidome in patients with in-stent restenosis. CNS Neurosci Ther 2024; 30:e14832. [PMID: 39009504 PMCID: PMC11249805 DOI: 10.1111/cns.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
CONTEXT In-stent restenosis (ISR) can lead to blood flow obstruction, insufficient blood supply to the brain, and may even result in serious complications such as stroke. Endothelial cell hyperproliferation and thrombosis are the primary etiologies, frequently resulting in alterations in intravascular metabolism. However, the metabolic changes related to this process are still undermined. OBJECTIVE We tried to characterize the serum metabolome of patients with ISR and those with non-restenosis (NR) using metabolomics and lipidomics, exploring the key metabolic pathways of this pathological phenomenon. RESULTS We observed that the cysteine and methionine pathways, which are associated with cell growth and oxidative homeostasis, showed the greatest increase in the ISR group compared to the NR group. Within this pathway, the levels of N-formyl-l-methionine and L-methionine significantly increased in the ISR group, along with elevated levels of downstream metabolites such as 2-ketobutyric acid, pyruvate, and taurocholate. Additionally, an increase in phosphatidylcholine (PC) and phosphatidylserine (PS), as well as a decrease in triacylglycerol in the ISR group, indicated active lipid metabolism in these patients, which could be a significant factor contributing to the recurrence of blood clots after stent placement. Importantly, phenol sulfate and PS(38:4) were identified as potential biomarkers for distinguishing ISR, with an area under the curve of more than 0.85. CONCLUSIONS Our study revealed significant metabolic alterations in patients with ISR, particularly in the cysteine and methionine pathways, with phenol sulfate and PS(38:4) showing promise for ISR identification.
Collapse
Affiliation(s)
- Ziqi Xu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chenye Mou
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Renjie Ji
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hanfen Chen
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuge Ding
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoyi Jiang
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
23
|
Fan YM, Li YX, Zhang Y, Chen D, Yuan MQ, Li YC, Teo ESM, Xu MH, Zhou YY, Yang PF, Zhao CM, Zheng JJ, Li JB, Bao C. Effect of acupuncture on tic disorder: a randomized controlled clinical trial based on energy metabolomics and infrared thermography. BMC Complement Med Ther 2024; 24:240. [PMID: 38902771 PMCID: PMC11191346 DOI: 10.1186/s12906-024-04534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Acupuncture is a method for treating tic disorder. However, there is a lack of sufficient clinical objective basis in regards of its treatment efficacy. Indeed, there are structural abnormalities present in energy metabolism and infrared thermography in children with tic disorder. Therefore, this study proposes a clinical trial scheme to explore the possible mechanism of acupuncture in treating tic disorder. METHODS This randomized controlled trial will recruit a total of 90 children, in which they will be divided into non-intervention group and intervention group. The non-intervention group consists of 30 healthy children while the intervention group consists of 60 children with tic disorder. The intervention group will be randomly allocated into either the treatment group or the control group, with 30 children randomly assigned in each group. Children either received acupuncture treatment and behavioral therapy (treatment group) or sham acupuncture treatment and behavioral therapy (control group), 3 treatment sessions per week for a period of 12 weeks, with a total of 36 treatment sessions. Outcome measures include YGTSS, urinary and fecal metabolomics, infrared thermography of body surface including governor vessel. For the intervention group, these outcome measures will be collected at the baseline and 90th day prior to intervention. Whereas for the non-intervention group, outcome measures (excluding YGTSS) will be collected at the baseline. DISCUSSION The main outcome will be to observe the changes of the severity of tic condition, the secondary outcome will be to observe the changes of structural characteristic of infrared thermography of body surface/acupoints along the governor vessel and to evaluate the changes of urinary and fecal metabolomics at the end of the treatment, so as to analyze the relationship between them and to provide further knowledge in understanding the possible mechanism of acupuncture in improving the clinical symptoms via regulating and restoring the body metabolomics network, which in future it can develop as a set of clinical guideline (diagnosis, treatment, assessment, prognosis) in treating tic disorder. ChiCTR2300075188(Chinese Clinical Trial Registry, http://www.chictr.org.cn , registered on 29 August 2023).
Collapse
Affiliation(s)
- Yi-Ming Fan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying-Xin Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng-Qian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Cai Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Elsie Sin May Teo
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Hui Xu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang-Yang Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pan-Feng Yang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Mei Zhao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Jing Zheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Bing Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chao Bao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
24
|
Hu C, Lei Y, Liu X, Yu X, Geng Z, Liu Y, Yang L, Tie X, Zhou W, Li X, Zhang Y, Liang Y. Dissecting microenvironment in cystadenomas and hepatic cysts based on single nucleus RNA-sequencing data. Comput Biol Med 2024; 176:108541. [PMID: 38744012 DOI: 10.1016/j.compbiomed.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Hepatic cystadenoma is a rare disease, accounting for about 5% of all cystic lesions, with a high tendency of malignant transformation. The preoperative diagnosis of cystadenoma is difficult, and some cystadenomas are easily misdiagnosed as hepatic cysts at first. Hepatic cyst is a relatively common liver disease, most of which are benign, but large hepatic cysts can lead to pressure on the bile duct, resulting in abnormal liver function. To better understand the difference between the microenvironment of cystadenomas and hepatic cysts, we performed single-nuclei RNA-sequencing on cystadenoma and hepatic cysts samples. In addition, we performed spatial transcriptome sequencing of hepatic cysts. Based on nucleus RNA-sequencing data, a total of seven major cell types were identified. Here we described the tumor microenvironment of cystadenomas and hepatic cysts, particularly the transcriptome signatures and regulators of immune cells and stromal cells. By inferring copy number variation, it was found that the malignant degree of hepatic stellate cells in cystadenoma was higher. Pseudotime trajectory analysis demonstrated dynamic transformation of hepatocytes in hepatic cysts and cystadenomas. Cystadenomas had higher immune infiltration than hepatic cysts, and T cells had a more complex regulatory mechanism in cystadenomas than hepatic cysts. Immunohistochemistry confirms a cystadenoma-specific T-cell immunoregulatory mechanism. These results provided a single-cell atlas of cystadenomas and hepatic cyst, revealed a more complex microenvironment in cystadenomas than in hepatic cysts, and provided new perspective for the molecular mechanisms of cystadenomas and hepatic cyst.
Collapse
Affiliation(s)
- Congxue Hu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongqi Lei
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyang Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xingxin Yu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhida Geng
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yu Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liyu Yang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuehong Tie
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenzhe Zhou
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yingjian Liang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
25
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
26
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
27
|
Cao Y, Wang H, Hu S, Xu Q, Ma J, Wang H, Xiong X, Wang W, Wang L. PICK1 modulates glycolysis and angiogenesis of hypoxic endothelial cells by regulating iron homeostasis. Mol Cell Biochem 2024; 479:1297-1312. [PMID: 37368155 DOI: 10.1007/s11010-023-04795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Iron accumulation, which is controlled by transferrin receptor 1 (TfR1), modulates hypoxia-inducible factor-1α (HIF-1α) activation and angiogenesis of hypoxic endothelial cells. The study examined the role of protein interacting with C-kinase 1 (PICK1), a scaffold protein containing PDZ domain, in regulating glycolysis and angiogenesis of hypoxic vascular endothelial cells through its potential effect on TfR1, which features a supersecondary structure that interacts with the PDZ domain. Iron chelator deferoxamine and TfR1 siRNA were employed to assess the impact of iron accumulation on angiogenesis, while the effects of PICK1 siRNA and overexpressing lentivirus on TfR1-mediated iron accumulation were also investigated in hypoxic human umbilical vein vascular endothelial cells (HUVECs). The study found that 72-h hypoxia impaired the proliferation, migration, and tube formation of HUVECs, and reduced the upregulation of vascular endothelial growth factor, HIF-1α, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, and PICK1, while increasing the expression of TfR1 as compared to 24-h hypoxia. Administration of deferoxamine or TfR1 siRNA reversed these effects and led to increased glycolysis, ATP content, and phosphofructokinase activity, along with increased PICK1 expression. PICK1 overexpression improved glycolysis, enhanced angiogenic capacity, and attenuated TfR1 protein upregulation in hypoxic HUVECs, with higher expression of angiogenic markers, which could be significantly reversed by the PDZ domain inhibitor. PICK1 knockdown exerted opposite effects. The study concluded that PICK1 modulated intracellular iron homeostasis, thereby promoting glycolysis and angiogenesis of HUVECs in response to prolonged hypoxia, at least in part, by regulating TfR1 expression.
Collapse
Affiliation(s)
- Yu Cao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hongbo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai, Ouhai, Wenzhou, 325000, Zhejiang, China
| | - Shuyu Hu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai, Ouhai, Wenzhou, 325000, Zhejiang, China
| | - Qiaomin Xu
- Department of Anesthesiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 321400, Zhejiang, China
| | - Jun Ma
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huile Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai, Ouhai, Wenzhou, 325000, Zhejiang, China
| | - Wantie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou, 325035, Zhejian, China
| | - Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai, Ouhai, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
28
|
Li J, Fang Z, Dal E, Zhang H, Yu K, Ma M, Wang M, Sun R, Lu M, Wang H, Li Y. Transmembrane protein 176B regulates amino acid metabolism through the PI3K-Akt-mTOR signaling pathway and promotes gastric cancer progression. Cancer Cell Int 2024; 24:95. [PMID: 38438907 PMCID: PMC10913232 DOI: 10.1186/s12935-024-03279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The present study aimed to investigate the expression level, biological function, and underlying mechanism of transmembrane protein 176B (TMEM176B) in gastric cancer (GC). METHODS TMEM176B expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). The function of TMEM176B was determined by various in vitro assays including colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and flow cytometry. Bioinformatics techniques were then used to elucidate the signaling pathways associated with TMEM176B activity. Tumor formation experiments were conducted on nude mice for in vivo validation of the preceding findings. TMEM176B expression was cross-referenced to clinicopathological parameters and survival outcomes. RESULTS It was observed that TMEM176B was overexpressed in GC cells and tissues. Targeted TMEM176B abrogation inhibited colony formation, proliferation, migration, and invasion but promoted apoptosis in GC cell lines while TMEM176B overexpression had the opposite effects. Subsequent experimental validation disclosed an association between TMEM176B and the phosphatidylinositol 3-carboxykinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling axis. Moreover, TMEM176B affects GC cancer progression by regulating asparagine synthetase (ASNS). The in vivo assays confirmed that TMEM176B is oncogenic and the clinical data revealed a connection between TMEM176B expression and the clinicopathological determinants of GC. CONCLUSION The foregoing results suggest that TMEM176B significantly promotes the development of gastric cancer and is an independent prognostic factor of it.
Collapse
Affiliation(s)
- Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - ZiQing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Emre Dal
- University of Utah, Salt Lake City, UT, 84102, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - KeXun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MengDi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MingLiang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruochuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MingDian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - HuiZhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - YongXiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
29
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
31
|
Huang C, Huang W, Meng Y, Zhou C, Wang X, Zhang C, Tian Y, Wei W, Li Y, Zhou Q, Chen W, Tang Y. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface. Biomed Mater 2024; 19:025019. [PMID: 38215489 DOI: 10.1088/1748-605x/ad1df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 μg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 μg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Xiaozhuan Wang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
32
|
Wang Z, Zhao F, Xu C, Zhang Q, Ren H, Huang X, He C, Ma J, Wang Z. Metabolic reprogramming in skin wound healing. BURNS & TRAUMA 2024; 12:tkad047. [PMID: 38179472 PMCID: PMC10762507 DOI: 10.1093/burnst/tkad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| |
Collapse
|
33
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
34
|
Xu S, Ge Y, Wang X, Yin W, Zhu X, Wang J, Qiao S. Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis. Clin Exp Hypertens 2023; 45:2186319. [PMID: 36890708 DOI: 10.1080/10641963.2023.2186319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Endothelial pyroptosis is a pathological mechanism of atherosclerosis (AS). Circular RNAs (circRNAs) are vital in AS progression by regulating endothelial cell functions. The study aimed to explore whether circ-USP9× regulated pyroptosis of endothelial cell to involve in AS development and the molecular mechanism. Pyroptosis was determined using lactate dehydrogenase (LDH) assay, enzyme linked immunosorbent assay (ELISA), flow cytometry, propidium iodide (PI) staining assay, and western blot. The mechanism of circ-USP9× was determined using RNA pull-down and RNA binding protein immunoprecipitation (RIP) assays. Results showed that circ-USP9× was upregulated in AS and oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Knockdown of circ-USP9× suppressed ox-LDL induced pyroptosis of HUVECs. Mechanically, circ-USP9× could bind to EIF4A3 in the cytoplasm. Moreover, EIF4A3 was bound to GSDMD and further affects GSDMD stability. Overexpression of EIF4A3 rescued cell pyroptosis induced by circ-USP9× depletion. In short, circ-USP9× interacted with EIF4A3 to enhance GSDMD stability, thus further promoting ox-LDL-induced pyroptosis of HUVECs. These findings suggested that circ-USP9× participates in AS progression and may be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Shengkai Xu
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Yishan Ge
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Xuebin Wang
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Wei Yin
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Xiaoqing Zhu
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Jie Wang
- Department of Cardiology, Suzhou Science and Technology City Hospital, Suzhou, China
| | - Shigang Qiao
- Institute of clinical medicine, Suzhou Science and Technology City Hospital, Suzhou, China
| |
Collapse
|
35
|
Yang K, Li X, Qiu T, Zhou J, Gong X, Lan Y, Ji Y. Effects of propranolol on glucose metabolism in hemangioma-derived endothelial cells. Biochem Pharmacol 2023; 218:115922. [PMID: 37956892 DOI: 10.1016/j.bcp.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. Propranolol is the first-line treatment for IH, but the underlying mechanism of propranolol treatment in IH is not completely understood. Integrated transcriptional and metabolic analyses were performed to investigate the metabolic changes in hemangioma-derived endothelial cells (HemECs) after propranolol treatment. The findings were then further validated through independent cell experiments using a Seahorse XFp analyzer, Western blotting, immunohistochemistry and mitochondrial functional assays. Thirty-four differentially expressed metabolites, including the glycolysis metabolites glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate, were identified by targeted metabolomics. A KEGG pathway enrichment analysis showed that the disturbances in these metabolites were highly related to glucose metabolism-related pathways, including the pentose phosphate pathway, the Warburg effect, glycolysis and the citric acid cycle. Transcriptional analysis revealed that metabolism-related pathways, including glycine, serine and threonine metabolism, tyrosine metabolism, and glutathione metabolism, were highly enriched. Moreover, integration of the metabolomic and transcriptomic data revealed that glucose metabolism-related pathways, particularly glycolysis, were altered after propranolol treatment. Cell experiments demonstrated that HemECs exhibited higher levels of glycolysis than human umbilical vein ECs (HUVECs) and that propranolol suppressed glycolysis in HemECs. In conclusion, propranolol inhibited glucose metabolism in HemECs by suppressing glucose metabolic pathways, particularly glycolysis.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
36
|
Mao T, Xie L, Guo Y, Ji X, Wan J, Cui X, Fan Q, Liu W, Wang S, Han W, Lin Q, Jia W. Mechanistic exploration of Yiqi Liangxue Shengji prescription on restenosis after balloon injury by integrating metabolomics with network pharmacology. PHARMACEUTICAL BIOLOGY 2023; 61:1260-1273. [PMID: 37602438 PMCID: PMC10443980 DOI: 10.1080/13880209.2023.2244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Yiqi Liangxue Shengji prescription (YQLXSJ) is a traditional Chinese medicine (TCM) formula that has long been used for treatment after percutaneous coronary intervention (PCI). OBJECTIVE To investigate the putative pharmacological mechanism of YQLXSJ on restenosis through an integrated approach utilizing metabolomics and network pharmacology. MATERIALS AND METHODS Forty male Sprague-Dawley rats were divided into sham, model, YQLXSJ, and positive groups. YQLXSJ group received the treatment of YQLXSJ (6 g/kg/d, i.g.) and the positive group was treated with atorvastatin (2 mg/kg/d, i.g.). After 4 weeks, the improvement in intimal hyperplasia was evaluated by ultrasound, H&E staining, and immunofluorescence. UPLC-MS/MS technology was utilized to screen the differential metabolites. Network pharmacology was conducted using TCMSP, GeneCards, and Metascape, etc., in combination with metabolomics. Eventually, the core targets were acquired and validated. RESULTS Compared to models, YQLXSJ exhibited decreased intima-media thickness on ultrasound (0.23 ± 0.02 mm vs. 0.20 ± 0.01 mm, p < 0.01) and reduced intima thickness by H&E (30.12 ± 6.05 μm vs. 14.32 ± 1.37 μm, p < 0.01). We identified 18 differential metabolites and 5 core targets such as inducible nitric oxide synthase (NOS2), endothelial nitric oxide synthase (NOS3), vascular endothelial growth factor-A (VEGFA), ornithine decarboxylase-1 (ODC1) and group IIA secretory phospholipase A2 (PLA2G2A). These targets were further confirmed by molecular docking and ELISA. DISCUSSION AND CONCLUSIONS This study confirms the effects of YQLXSJ on restenosis and reveals some biomarkers. TCM has great potential in the prevention and treatment of restenosis by improving metabolic disorders.
Collapse
Affiliation(s)
- Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yanqiong Guo
- Department of Cardiology, Beijing Fengtai District Hospital of Chinese Medicine, Beijing, P.R. China
| | - Xiang Ji
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xiaoyun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Qian Fan
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wei Liu
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Shuai Wang
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wenbo Han
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wenhao Jia
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| |
Collapse
|
37
|
Zodda E, Tura-Ceide O, Mills NL, Tarragó-Celada J, Carini M, Thomson TM, Cascante M. Autonomous metabolic reprogramming and oxidative stress characterize endothelial dysfunction in acute myocardial infarction. eLife 2023; 12:e86260. [PMID: 38014932 PMCID: PMC10871716 DOI: 10.7554/elife.86260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.
Collapse
Affiliation(s)
- Erika Zodda
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and Girona Biomedical Research Institute (IDIBGI)GironaSpain
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
| | - Josep Tarragó-Celada
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di MilanoMilanItaly
| | - Timothy M Thomson
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
- Universidad Peruana Cayetano HerediaLimaPeru
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
- Institute of Biomedicine (IBUB), University of BarcelonaBarcelonaSpain
| |
Collapse
|
38
|
Xu Y, Jia Y, Wu N, Wang J, He L, Yang D. CD93 Ameliorates Diabetic Wounds by Promoting Angiogenesis via the p38MAPK/MK2/HSP27 Axis. Eur J Vasc Endovasc Surg 2023; 66:707-721. [PMID: 37295599 DOI: 10.1016/j.ejvs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Diabetic wounds are a complication of diabetes mellitus, which is characterised by microcirculation dysfunction caused by decreased local blood supply and insufficient metabolic exchange. Clinically, in addition to glycaemic control, the most important treatment for diabetic wounds is to promote local angiogenesis, which accelerates wound healing. The authors previous study demonstrated that CD93, which is specifically expressed on vascular endothelial cells (ECs), redundantly regulates angiogenesis in zebrafish, suggesting that CD93 is a potential angiogenic molecule. However, the role of CD93 in diabetic wounds has not yet been elucidated. METHODS The angiogenic effects of CD93 were studied from four aspects: exogenous, endogenous, in vitro, and in vivo. CD93 recombinant protein was used in microvascular ECs and in mice to observe angiogenesis in vitro and in vivo. The wound model was established in CD93-/- and wild type diabetic mice, and the degree of wound healing as well as the amount and maturity of neovascularisation were investigated. The possible mechanism of CD93 in angiogenesis was determined by CD93 overexpression in cultured ECs. RESULTS CD93 recombinant protein was found to exogenously promote tube formation and sprouting of ECs. It also recruited cells to promote the formation of vascular like structures in subcutaneous tissue and accelerated wound healing by optimising angiogenesis and re-epithelisation. Furthermore, CD93 deficiency was observed to delay wound repair, characterised by reduced neovascularisation, vascular maturity, and re-epithelisation level. Mechanically, CD93 activated the p38MAPK/MK2/HSP27 signalling pathway, positively affecting the angiogenic functions of ECs. CONCLUSION This study demonstrated that CD93 promotes angiogenesis both in vitro and in vivo and that its angiogenic role in vitro is mediated by the p38MAPK/MK2/HSP27 signalling pathway. It was also found that CD93 exerts beneficial effects on wound healing in diabetic mice by promoting angiogenesis and re-epithelisation.
Collapse
Affiliation(s)
- Yuan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuhuan Jia
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Na Wu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
39
|
Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res 2023; 197:106946. [PMID: 37797661 DOI: 10.1016/j.phrs.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ocular neovascular disease (OND), characterized by the aberrant formation of immature blood vessels, is the leading cause of vision impairment and blindness. It is important to find effective ways to diagnose and treat these diseases. Circular RNA (circRNA) is a group of endogenous non-coding RNA that play a crucial role in regulating different biological processes. Due to their close association with ocular disease and angiogenesis, circRNAs have become a hotspot in OND research. In this review, we intensively investigate the possibility of using circRNAs in the management of ONDs. In general, angiogenesis is divided into five phases. On the basis of these five steps, we describe the potential of using circRNAs by introducing how they regulate angiogenesis. Subsequently, the interactions between circRNAs and ONDs, including pterygium, corneal neovascularization, age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, are analyzed in detail. We also introduce the potential use of circRNAs as OND diagnostic biomarkers. Finally, we summarize the prospects of using circRNAs as a potential strategy in OND management. The gaps in recent research are also pointed out with the purpose of promoting the introduction of circRNAs into clinical applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
40
|
Liu QJ, Yuan W, Yang P, Shao C. Role of glycolysis in diabetic atherosclerosis. World J Diabetes 2023; 14:1478-1492. [PMID: 37970130 PMCID: PMC10642412 DOI: 10.4239/wjd.v14.i10.1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
Diabetes mellitus is a kind of typical metabolic disorder characterized by elevated blood sugar levels. Atherosclerosis (AS) is one of the most common complications of diabetes. Modern lifestyles and trends that promote overconsumption and unhealthy practices have contributed to an increase in the annual incidence of diabetic AS worldwide, which has created a heavy burden on society. Several studies have shown the significant effects of glycolysis-related changes on the occurrence and development of diabetic AS, which may serve as novel thera-peutic targets for diabetic AS in the future. Glycolysis is an important metabolic pathway that generates energy in various cells of the blood vessel wall. In particular, it plays a vital role in the physiological and pathological activities of the three important cells, Endothelial cells, macrophages and vascular smooth muscle cells. There are lots of similar mechanisms underlying diabetic and common AS, the former is more complex. In this article, we describe the role and mechanism underlying glycolysis in diabetic AS, as well as the therapeutic targets, such as trained immunity, microRNAs, gut microbiota, and associated drugs, with the aim to provide some new perspectives and potentially feasible programs for the treatment of diabetic AS in the foreseeable future.
Collapse
Affiliation(s)
- Qian-Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
41
|
Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci 2023; 24:15032. [PMID: 37834480 PMCID: PMC10573276 DOI: 10.3390/ijms241915032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.
Collapse
Affiliation(s)
- Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Arseniy Lobov
- Laboratory for Regenerative Biomedicine, Research Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia;
| | - Marsel Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia;
| | - Alexey Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Evgeny Grigoriev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| |
Collapse
|
42
|
Wang Z, Wan Q, Xie B, Zhu Z, Xu X, Fu P, Liu R. Integrated network pharmacology and fecal metabolomic analysis of the combinational mechanisms of Shexiang Baoxin Pill against atherosclerosis. Mol Omics 2023; 19:653-667. [PMID: 37357557 DOI: 10.1039/d3mo00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Shexiang Baoxin Pill (SBP) has an excellent therapeutic effect on atherosclerosis (AS), but the combinational mechanisms of SBP against AS remain unclear. This study aimed to investigate the combinational mechanisms of SBP against AS by comprehensive network pharmacology and fecal metabolomic analysis. Bufonis venenum, one of the adjuvant medicines in SBP, is an animal medicine with a narrow therapeutic window. Considering animal protection, we evaluated the anti-AS effect of SBP without BV (SBP-BV) using ApoE-/- mouse models, culture cells, and metabolomic methods. Our data suggested that SBP showed remarkable anti-atherosclerotic effects through multiple targets and multiple pathways, while each component in SBP played different roles in their synergistic effect. Notably, SBP-BV showed comparable effects with SBP in the treatment of AS. Both SBP and SBP-BV could reduce cholesterol uptake in RAW264.7 cells and prevent the occurrence and development of AS in WD-induced ApoE-/- mice by attenuating the atherosclerotic plaque area, and reducing inflammatory cytokines and cholesterol levels in vivo. Our finding might provide new insights into the research and development of new anti-atherosclerosis drugs.
Collapse
Affiliation(s)
- Zhicong Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qianqian Wan
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China.
| | - Bin Xie
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zifan Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Peng Fu
- Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
43
|
Kuebler WM. Come, Sweet Death: Why Endothelial Cells Die in Fructose. Am J Respir Cell Mol Biol 2023; 69:247-249. [PMID: 37348085 PMCID: PMC10503301 DOI: 10.1165/rcmb.2023-0195ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology Charité University Medicine Berlin, corporate member of the Free University Berlin and Humboldt University of Berlin Berlin, Germany
- German Center for Cardiovascular Research, partner site Berlin, Germany
- German Center for Lung Research, partner site Berlin, Germany
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Ontario, Canada
- Department of Physiology and Department of Surgery University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
44
|
Astone M, Oberkersch RE, Tosi G, Biscontin A, Santoro MM. The circadian protein BMAL1 supports endothelial cell cycle during angiogenesis. Cardiovasc Res 2023; 119:1952-1968. [PMID: 37052172 DOI: 10.1093/cvr/cvad057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S) Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.
Collapse
Affiliation(s)
- Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Alberto Biscontin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| |
Collapse
|
45
|
Cui Y, Liu H, Wang Z, Zhang H, Tian J, Wang Z, Song W, Guo H, Liu L, Tian R, Zuo X, Ren S, Zhang F, Niu R. Fructose promotes angiogenesis by improving vascular endothelial cell function and upregulating VEGF expression in cancer cells. J Exp Clin Cancer Res 2023; 42:184. [PMID: 37507736 PMCID: PMC10375648 DOI: 10.1186/s13046-023-02765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weijie Song
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruinan Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
46
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
47
|
Chen S, Wang Y, Kong L, Ji Y, Cui J, Shen W. Role of UDP-glucose ceramide glucosyltransferase in venous malformation. Front Cell Dev Biol 2023; 11:1178045. [PMID: 37274734 PMCID: PMC10235597 DOI: 10.3389/fcell.2023.1178045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Venous malformation (VM) results from the abnormal growth of the vasculature; however, the detailed molecular mechanism remains unclear. As a glycosyltransferase, UDP-glucose ceramide glucosyltransferase (UGCG) is localized to the Golgi body and is a key enzyme in the first step of glycosphingolipid synthesis. Here, we aimed to explore the relationship between UGCG and the development of VM. First, investigations using RT-qPCR and Western blotting on the diseased vasculature of VM patients and normal vascular tissues revealed that UGCG expression was markedly elevated in the diseased vessels. Subsequently, immunofluorescence assay showed that UGCG was co-localized with CD31, an endothelial cell marker, in tissues from patients with VM and healthy subjects. Then, we established TIE2-L914F-mutant human umbilical vein endothelial cells (HUVECs) by lentivirus transfection. Next, Western blotting revealed that UGCG expression was considerably higher in HUVECsTIE2-L914F. In addition, we established a UGCG-overexpressing HUVECs line by plasmid transfection. With the CCK8 cell proliferation experiment, wound healing assay, and tube formation assay, we found that UGCG could promote the proliferation, migration, and tube formation activity of HUVECs, whereas the inhibition of UGCG could inhibit the proliferation, migration, and tube formation activity of HUVECsTIE2-L914F. Finally, Western blotting revealed that UGCG regulates the AKT/mTOR pathway in HUVECs. These data demonstrated that UGCG can affect the activity of vascular endothelial cells and regulate the AKT/mTOR signaling pathway; this is a potential mechanism underlying VM pathogenesis.
Collapse
|
48
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
49
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
50
|
Yang K, Qiu T, Gong X, Zhou J, Lan Y, Chen S, Ji Y. Integrated nontargeted and targeted metabolomics analyses amino acids metabolism in infantile hemangioma. Front Oncol 2023; 13:1132344. [PMID: 37025602 PMCID: PMC10070834 DOI: 10.3389/fonc.2023.1132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. However, the exact pathogenesis of IH remains unclear. Integrated nontargeted and targeted metabolic analyses were performed to obtain insight into the possible pathogenic mechanism of IH. The results of nontargeted metabolic analysis showed that 216 and 128 differential metabolites (DMs) were identified between hemangioma-derived endothelial cells (HemECs) and HUVECs in positive-ion and negative-ion models, respectively. In both models, these DMs were predominantly enriched in pathways related to amino acid metabolism, including aminoacyl-tRNA biosynthesis and arginine and proline metabolism. Then, targeted metabolic analysis of amino acids was further performed to further clarify HemEC metabolism. A total of 22 amino acid metabolites were identified, among which only 16 metabolites, including glutamine, arginine and asparagine, were significantly differentially expressed between HemECs and HUVECs. These significant amino acids were significantly enriched in 10 metabolic pathways, including 'alanine, aspartate and glutamate metabolism', 'arginine biosynthesis', 'arginine and proline metabolism', and 'glycine, serine and threonine metabolism'. The results of our study revealed that amino acid metabolism is involved in IH. Key differential amino acid metabolites, including glutamine, asparagine and arginine, may play an important role in regulating HemEC metabolism.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|