1
|
Ling H, Fu X, Huang N, Zhong Z, Liu T, Cui H, Que Y. A Sugarcane Smut Fungus Effector Hijacks Plant Vacuolar Sorting Receptor-Mediated Trafficking to Evade Host Immune Detection. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40166905 DOI: 10.1111/pce.15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
The smut fungus Sporisorium scitamineum is a major pathogen in sugarcane, causing significant agricultural losses worldwide. However, the molecular mechanisms by which its effectors facilitate infection and evade host immunity remain largely unclear. In this study, we identified the sugarcane vacuolar sorting receptor 1 gene (ScVSR1), whose expression negatively correlate with several putative S. scitamineum effector genes in a co-expression network. Overexpression of ScVSR1 in Arabidopsis thaliana reduced resistance to a fungal powdery mildew pathogen, indicating the negative role of ScVSR1 in plant defence. Among the co-expressed S. scitamineum effectors, SsPE15, a secreted cerato-platanin-like protein (CPP), physically interacts with ScVSR1 and is sorted into the prevacuolar compartment (PVC) by interacting with ScVSR1 in plant cells. Deletion of SsPE15 in S. scitamineum enhanced fungal virulence, suggesting that SsPE15 acts as an immune elicitor. Furthermore, the C-terminal domain of the SsPE15, containing the VSR sorting signal, was found to facilitate vesicular location. Notably, fusing this C-terminal domain to the bacterial effector AvrRpt2 significantly reduced AvrRpt2-triggered programmed cell death in Arabidopsis, a process partially dependent on AtVSR1 and AtVSR2. These findings reveal an immune evasion strategy by which S. scitamineum effector SsPE15 hijacks the host's vesicular trafficking system to avoid immune detection.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ning Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Zaofa Zhong
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tingting Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Haitao Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
2
|
Gao L, Pei Y, Wang P, Cen Y, Yan X, Hou Y. Cotton SNARE complex component GhSYP121 regulates salicylic acid signaling during defense against Verticillium dahliae. J Cell Physiol 2024; 239:e31329. [PMID: 38801215 DOI: 10.1002/jcp.31329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Syntaxin of plant (SYP) plays a crucial role in SNARE-mediated membrane trafficking during endocytic and secretory pathways, contributing to the regulation and execution of plant immunity against pathogens. Verticillium wilt is among the most destructive fungal diseases affecting cotton worldwide. However, information regarding SYP family genes in cotton is scarce. Through genome-wide identification and transcriptome profiling, we identified GhSYP121, a Qa SNARE gene in Gossypium hirsutum. GhSYP121 is notably induced by Verticillium dahliae, the causal agent of Verticillium wilt in cotton, and acts as a negative regulator of defense against V. dahliae. This is evidenced by the reduced resistance of GhSYP121-deficient cotton and the increased susceptibility of GhSYP121-overexpressing lines. Furthermore, the activation of the salicylic acid (SA) pathway by V. dahliae is inversely correlated with the expression level of GhSYP121. GhSYP121 interacts with its cognate SNARE component, GhSNAP33, which is required for the penetration resistance against V. dahliae in cotton. Collectively, GhSYP121, as a member of the cotton SNARE complex, is involved in regulating the SA pathway during plant defense against V. dahliae. This finding enhances our understanding of the potential role of GhSYP121 in these distinct pathways that contribute to plant defense against V. dahliae infection.
Collapse
Affiliation(s)
- Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Yuhan Cen
- College of Science, China Agricultural University, Beijing, China
| | - Xin Yan
- College of Science, China Agricultural University, Beijing, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Lan HJ, Ran J, Wang WX, Zhang L, Wu NN, Zhao YT, Huang MJ, Ni M, Liu F, Cheng N, Nakata PA, Pan J, Whitham SA, Baker BJ, Liu JZ. Clathrin light chains negatively regulate plant immunity by hijacking the autophagy pathway. PLANT COMMUNICATIONS 2024; 5:100937. [PMID: 38693694 PMCID: PMC11369776 DOI: 10.1016/j.xplc.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The crosstalk between clathrin-mediated endocytosis (CME) and the autophagy pathway has been reported in mammals; however, the interconnection of CME with autophagy has not been established in plants. Here, we report that the Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopies Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants in both autoimmunity and nutrient sensitivity. Accordingly, the autophagy pathway is significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, multiple assays demonstrate that CLC2 directly interacts with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP are subjected to autophagic degradation, and degradation of GFP-ATG8h is significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneous knockout of ATG8h and ATG8i by CRISPR-Cas9 results in enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results reveal a link between the function of CLCs and the autophagy pathway in Arabidopsis.
Collapse
Affiliation(s)
- Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Ran
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wen-Xu Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Ting Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min Ni
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianwei Pan
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Barbara J Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, CA 94706, USA
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Zhang M, Zhang S. Stomatal development: NRPM proteins in dynamic localization of ERECTA receptor. Curr Biol 2024; 34:R143-R146. [PMID: 38412823 DOI: 10.1016/j.cub.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dynamic cellular localization of receptors is key to the perception of their peptide ligands and the activation of downstream signaling pathways. A new study identifies NRPMs as novel regulators of ERECTA receptor localization and stomatal formation downstream of the EPF1/EPF2 peptide ligands and upstream of the YDA MAPK cascade.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Wang J, Jiang Q, Pleskot R, Grones P, Bahafid E, Denay G, Galván‐Ampudia C, Xu X, Vandorpe M, Mylle E, De Smet I, Vernoux T, Simon R, Nowack MK, Van Damme D. TPLATE complex-dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance. EMBO Rep 2023; 24:e54709. [PMID: 37458257 PMCID: PMC10481661 DOI: 10.15252/embr.202254709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signaling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live-cell imaging revealed that TPC-dependent regulation of CLAVATA3-dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC-mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3-mediated signaling during plant development.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Qihang Jiang
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Roman Pleskot
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzech Republic
| | - Peter Grones
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Elmehdi Bahafid
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)DüsseldorfGermany
| | - Grégoire Denay
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)DüsseldorfGermany
| | - Carlos Galván‐Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de LyonCNRS, INRAELyonFrance
| | - Xiangyu Xu
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Evelien Mylle
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ive De Smet
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de LyonCNRS, INRAELyonFrance
| | - Rüdiger Simon
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)DüsseldorfGermany
| | - Moritz K Nowack
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
6
|
Zhou D, Godinez-Vidal D, He J, Teixeira M, Guo J, Wei L, Van Norman JM, Kaloshian I. A G-type lectin receptor kinase negatively regulates Arabidopsis immunity against root-knot nematodes. PLANT PHYSIOLOGY 2023; 193:721-735. [PMID: 37103588 PMCID: PMC10469371 DOI: 10.1093/plphys/kiad253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/19/2023]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Damaris Godinez-Vidal
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jiangman He
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Jeon H, Segonzac C. Manipulation of the Host Endomembrane System by Bacterial Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:208-217. [PMID: 36645655 DOI: 10.1094/mpmi-09-22-0190-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Agricultural and Life Science Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
9
|
Wu N, Li WJ, Chen C, Zhao YP, Hou YX. Analysis of the PRA1 Genes in Cotton Identifies the Role of GhPRA1.B1-1A in Verticillium dahliae Resistance. Genes (Basel) 2022; 13:genes13050765. [PMID: 35627150 PMCID: PMC9141244 DOI: 10.3390/genes13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/25/2023] Open
Abstract
Verticillium wilt in cotton (Gossypium hirsutum) is primarily caused by Verticillium dahliae. Previous data suggest that prenylated RAB acceptors (PRAs) play essential roles in environmental plant adaptation, although the potential roles of PRA1 in cotton are unclear. Therefore, in this study, PRA1 family members were identified in G. hirsutum, and their roles in biotic and abiotic stresses were analyzed. Thirty-seven GhPRA1 family members were identified in upland cotton, which were divided into eight groups. Gene structure and domain analyses revealed that the sequences of GhPRA1 members in each group were highly conserved. Many environmental stress-related and hormone-response cis-acting elements were identified in the GhPRA1 promoter regions, indicating that they may respond to biotic and abiotic stresses. Expression analysis revealed that GhPRA1 members were widely expressed in upland cotton. The GhPRA1 genes responded to abiotic stress: drought, cold, salt, and heat stress. GhPRA1.B1-1A expression increased after V. dahliae infection. Furthermore, the functional role of GhPRA1.B1-1A was confirmed by overexpression in Arabidopsis thaliana, which enhanced the resistance to V. dahliae. In contrast, V. dahliae resistance was significantly weakened via virus-induced gene silencing of GhPRA1.B1-1A in upland cotton. Simultaneously, reactive oxygen species accumulation; the H2O2, salicylic acid, and jasmonic acid contents; and callose deposition were significantly decreased in cotton plants with GhPRA1.B1-1A silencing. These findings contribute to a better understanding of the biological roles of GhPRA1 proteins and provide candidate genes for cotton breeders for breeding V. dahliae-resistant cultivars.
Collapse
Affiliation(s)
- Na Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (N.W.); (W.-J.L.); (C.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wen-Jie Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (N.W.); (W.-J.L.); (C.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chen Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (N.W.); (W.-J.L.); (C.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan-Peng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (N.W.); (W.-J.L.); (C.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (Y.-P.Z.); (Y.-X.H.)
| | - Yu-Xia Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (N.W.); (W.-J.L.); (C.C.)
- College of Science, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.-P.Z.); (Y.-X.H.)
| |
Collapse
|
10
|
Chi Y, Wang C, Wang M, Wan D, Huang F, Jiang Z, Crawford BM, Vo-Dinh T, Yuan F, Wu F, Pei ZM. Flg22-induced Ca 2+ increases undergo desensitization and resensitization. PLANT, CELL & ENVIRONMENT 2021; 44:3563-3575. [PMID: 34536020 DOI: 10.1111/pce.14186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The flagellin epitope flg22, a pathogen-associated molecular pattern (PAMP), binds to the receptor-like kinase FLAGELLIN SENSING2 (FLS2), and triggers Ca2+ influx across the plasma membrane (PM). The flg22-induced increases in cytosolic Ca2+ concentration ([Ca2+ ]i ) (FICA) play a crucial role in plant innate immunity. It's well established that the receptor FLS2 and reactive oxygen species (ROS) burst undergo sensitivity adaptation after flg22 stimulation, referred to as desensitization and resensitization, to prevent over responses to pathogens. However, whether FICA also mount adaptation mechanisms to ensure appropriate and efficient responses against pathogens remains poorly understood. Here, we analysed systematically [Ca2+ ]i increases upon two successive flg22 treatments, recorded and characterized rapid desensitization but slow resensitization of FICA in Arabidopsis thaliana. Pharmacological analyses showed that the rapid desensitization might be synergistically regulated by ligand-induced FLS2 endocytosis as well as the PM depolarization. The resensitization of FICA might require de novo FLS2 protein synthesis. FICA resensitization appeared significantly slower than FLS2 protein recovery, suggesting additional regulatory mechanisms of other components, such as flg22-related Ca2+ permeable channels. Taken together, we have carefully defined the FICA sensitivity adaptation, which will facilitate further molecular and genetic dissection of the Ca2+ -mediated adaptive mechanisms in PAMP-triggered immunity.
Collapse
Affiliation(s)
- Yuan Chi
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Biology, Duke University, Durham, North Carolina, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chao Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengyun Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Di Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feifei Huang
- Department of Biology, Duke University, Durham, North Carolina, USA
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghao Jiang
- Department of Biology, Duke University, Durham, North Carolina, USA
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bridget M Crawford
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Fang Yuan
- Department of Biology, Duke University, Durham, North Carolina, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feihua Wu
- Department of Biology, Duke University, Durham, North Carolina, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, North Carolina, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Machado Wood AK, Panwar V, Grimwade-Mann M, Ashfield T, Hammond-Kosack KE, Kanyuka K. The vesicular trafficking system component MIN7 is required for minimizing Fusarium graminearum infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5010-5023. [PMID: 33877328 PMCID: PMC8364293 DOI: 10.1093/jxb/erab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Plants have developed intricate defense mechanisms, referred to as innate immunity, to defend themselves against a wide range of pathogens. Plants often respond rapidly to pathogen attack by the synthesis and delivery to the primary infection sites of various antimicrobial compounds, proteins, and small RNA in membrane vesicles. Much of the evidence regarding the importance of vesicular trafficking in plant-pathogen interactions comes from studies involving model plants whereas this process is relatively understudied in crop plants. Here we assessed whether the vesicular trafficking system components previously implicated in immunity in Arabidopsis play a role in the interaction with Fusarium graminearum, a fungal pathogen well-known for its ability to cause Fusarium head blight disease in wheat. Among the analysed vesicular trafficking mutants, two independent T-DNA insertion mutants in the AtMin7 gene displayed a markedly enhanced susceptibility to F. graminearum. Earlier studies identified this gene, encoding an ARF-GEF protein, as a target for the HopM1 effector of the bacterial pathogen Pseudomonas syringae pv. tomato, which destabilizes MIN7 leading to its degradation and weakening host defenses. To test whether this key vesicular trafficking component may also contribute to defense in crop plants, we identified the candidate TaMin7 genes in wheat and knocked-down their expression through virus-induced gene silencing. Wheat plants in which TaMin7 genes were silenced displayed significantly more Fusarium head blight disease. This suggests that disruption of MIN7 function in both model and crop plants compromises the trafficking of innate immunity signals or products resulting in hypersusceptibility to various pathogens.
Collapse
Affiliation(s)
- Ana K Machado Wood
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Mike Grimwade-Mann
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tom Ashfield
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden AL5 2JQ, UK
| | | | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Correspondence:
| |
Collapse
|
12
|
Ekanayake G, Smith JM, Jones KB, Stiers HM, Robinson SJ, LaMontagne ED, Kostos PH, Cornish PV, Bednarek SY, Heese A. DYNAMIN-RELATED PROTEIN DRP1A functions with DRP2B in plant growth, flg22-immune responses, and endocytosis. PLANT PHYSIOLOGY 2021; 185:1986-2002. [PMID: 33564884 PMCID: PMC8133600 DOI: 10.1093/plphys/kiab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/25/2020] [Indexed: 05/10/2023]
Abstract
Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - John M Smith
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
- Division of Plant Sciences, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Kody B Jones
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Hayley M Stiers
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Samuel J Robinson
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Erica D LaMontagne
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Paxton H Kostos
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Peter V Cornish
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Antje Heese
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| |
Collapse
|
13
|
Cecchini NM, Speed DJ, Roychoudhry S, Greenberg JT. Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1615-1629. [PMID: 33342031 PMCID: PMC8048937 DOI: 10.1111/tpj.15137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/10/2023]
Abstract
The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.
Collapse
Affiliation(s)
- Nicolás M. Cecchini
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC‐CONICET) and Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias QuímicasUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende – Ciudad UniversitariaCórdobaX5000HUAArgentina
| | - DeQuantarius J. Speed
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| | - Suruchi Roychoudhry
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centre for Plant SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| |
Collapse
|
14
|
Jiang M, Wang J, Rui M, Yang L, Shen J, Chu H, Song S, Chen Y. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123946. [PMID: 33264991 DOI: 10.1016/j.jhazmat.2020.123946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
The widely application of metallic oxide nanoparticles (NPs) has led to an increase in their accumulation in farmland. Previous studies have found that the metallic oxide NPs have negative effect on plants development and growth. Nonetheless, the underlying mechanism of response to metallic oxide NPs in rice remains elusive. In this study, we show that rice FT-INTERACTING PROTEIN 7 (OsFTIP7) plays an essential role in NPs of CuO and ZnO-mediated physiological and biochemical changes in rice. Loss of function of OsFTIP7 reduced the toxicity of the NPs of CuO and ZnO to the seedlings by accumulating more biomass and chlorophyll contents. Furthermore, after high exposure to metallic oxide NPs, more indole-3-acetic acid (IAA) were determined in Osftip7 with higher expression of auxin biosynthetic genes than the control seedlings. What's more, IAA-treated seedlings displayed the similar phenotype as Osftip7 under high concentrations of NPs of CuO and ZnO. Taken together, the results substantiate that OsFTIP7 is involved in metallic oxide nanoparticle-mediated physiological and biochemical changes by negatively regulating auxin biosynthesis in rice.
Collapse
Affiliation(s)
- Meng Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Rui
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Shen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Huangwei Chu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| | - Ying Chen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Rausche J, Stenzel I, Stauder R, Fratini M, Trujillo M, Heilmann I, Rosahl S. A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites. THE NEW PHYTOLOGIST 2021; 229:469-487. [PMID: 32762082 DOI: 10.1111/nph.16853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2 -dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2 -dependent processes during plant immunity.
Collapse
Affiliation(s)
- Juliane Rausche
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Ron Stauder
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Marta Fratini
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Marco Trujillo
- Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| |
Collapse
|
16
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
17
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020; 3:e202000720. [PMID: 32788227 PMCID: PMC7425213 DOI: 10.26508/lsa.202000720] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020. [PMID: 32788227 DOI: 10.1101/927731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
19
|
Qi X, Yoshinari A, Bai P, Maes M, Zeng SM, Torii KU. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. eLife 2020; 9:58097. [PMID: 32795387 PMCID: PMC7470842 DOI: 10.7554/elife.58097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Akira Yoshinari
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Michal Maes
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Scott M Zeng
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Department of Physics, University of Washington, Seattle, United States
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States.,Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan.,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
20
|
It's about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology. PLoS Comput Biol 2020; 16:e1007982. [PMID: 32598362 PMCID: PMC7351226 DOI: 10.1371/journal.pcbi.1007982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/10/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.
Collapse
|
21
|
Yu C, Dou K, Wang S, Wu Q, Ni M, Zhang T, Lu Z, Tang J, Chen J. Elicitor hydrophobin Hyd1 interacts with Ubiquilin1-like to induce maize systemic resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:509-526. [PMID: 30803127 DOI: 10.1111/jipb.12796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown. Here, we report that the class II hydrophobin ThHyd1 acts as an elicitor of induced systemic resistance (ISR) in plants. Immunogold labeling and immunofluorescence revealed ThHyd1 localized on maize (Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root cDNA library. ThHyd1 interacted directly with ubiquilin 1-like (UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum (Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene (JA/ET) signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.
Collapse
Affiliation(s)
- Chuanjin Yu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Dou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiong Wu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mi Ni
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tailong Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhixiang Lu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Tang
- School of Life Science, Fuyang Normal University, Fuyang, 236037, China
| | - Jie Chen
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Huang FC, Hwang HH. Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response. Int J Mol Sci 2020; 21:ijms21051722. [PMID: 32138311 PMCID: PMC7084338 DOI: 10.3390/ijms21051722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0416-412
| |
Collapse
|
23
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
24
|
Yao L, Yu Q, Huang M, Song Z, Grosser J, Chen S, Wang Y, Gmitter FG. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. PLoS One 2020; 15:e0228876. [PMID: 32059041 PMCID: PMC7021301 DOI: 10.1371/journal.pone.0228876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Zhen Song
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Jutras PV, Sainsbury F, Goulet MC, Lavoie PO, Tardif R, Hamel LP, D'Aoust MA, Michaud D. pH Gradient Mitigation in the Leaf Cell Secretory Pathway Attenuates the Defense Response of Nicotiana benthamiana to Agroinfiltration. J Proteome Res 2020; 19:106-118. [PMID: 31789035 DOI: 10.1021/acs.jproteome.9b00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of Nicotiana benthamiana infiltrated with the bacterial gene vector Agrobacterium tumefaciens. An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector. Leaves infiltrated with the empty vector had a low soluble protein content compared to noninfiltrated control leaves, associated with increased levels of stress-related proteins but decreased levels of photosynthesis-associated proteins. M2 expression partly compromised these effects of agroinfiltration to restore soluble protein content in the leaf tissue, associated with restored levels of photosynthesis-associated proteins and reduced levels of stress-related proteins in the apoplast. These data illustrate the cell-wide influence of the Golgi lumen pH homeostasis on the leaf proteome of N. benthamiana responding to microbial challenge. They also underline the relevance of assessing the eventual unintended effects of accessory proteins used to modulate specific cellular or metabolic functions in plant protein biofactories.
Collapse
Affiliation(s)
- Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | - Frank Sainsbury
- Griffith Institute for Drug Discovery , Griffith University , Nathan , QLD 4111 , Australia
| | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | | | | | | | | | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| |
Collapse
|
26
|
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: Advancing on two frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:2-24. [PMID: 31846204 DOI: 10.1111/jipb.12898] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved multiple defense strategies to cope with pathogens, among which plant immune signaling that relies on cell-surface localized and intracellular receptors takes fundamental roles. Exciting breakthroughs were made recently on the signaling mechanisms of pattern recognition receptors (PRRs) and intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs). This review summarizes the current view of PRRs activation, emphasizing the most recent discoveries about PRRs' dynamic regulation and signaling mechanisms directly leading to downstream molecular events including mitogen-activated protein kinase (MAPK) activation and calcium (Ca2+ ) burst. Plants also have evolved intracellular NLRs to perceive the presence of specific pathogen effectors and trigger more robust immune responses. We also discuss the current understanding of the mechanisms of NLR activation, which has been greatly advanced by recent breakthroughs including structures of the first full-length plant NLR complex, findings of NLR sensor-helper pairs and novel biochemical activity of Toll/interleukin-1 receptor (TIR) domain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baomin Feng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
27
|
Seifbarghi S, Borhan MH, Wei Y, Ma L, Coutu C, Bekkaoui D, Hegedus DD. Receptor-Like Kinases BAK1 and SOBIR1 Are Required for Necrotizing Activity of a Novel Group of Sclerotinia sclerotiorum Necrosis-Inducing Effectors. FRONTIERS IN PLANT SCIENCE 2020; 11:1021. [PMID: 32754179 PMCID: PMC7367142 DOI: 10.3389/fpls.2020.01021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Sclerotinia sclerotiorum is a characteristic necrotrophic plant pathogen and is dependent on the induction of host cell death for nutrient acquisition. To identify necrosis-inducing effectors, the genome of S. sclerotiorum was scanned for genes encoding small, secreted, cysteine-rich proteins. These potential effectors were tested for their ability to induce necrosis in Nicotiana benthamiana via Agrobacterium-mediated expression and for cellular localization in host cells. Six novel proteins were discovered, of which all but one required a signal peptide for export to the apoplast for necrotizing activity. Virus-induced gene silencing revealed that the five necrosis-inducing effectors with a requirement for secretion also required the plant co-receptor-like kinases Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) and Suppressor of BAK1-Interacting Receptor-like Kinase 1 (SOBIR1) for the induction of necrosis. S. sclerotiorum necrosis-inducing effector 2 (SsNE2) represented a new class of necrosis-inducing proteins as orthologs were identified in several other phytopathogenic fungi that were also capable of inducing necrosis. Substitution of conserved cysteine residues with alanine reduced, but did not abolish, the necrotizing activity of SsNE2 and full-length protein was required for function as peptides spanning the entire protein were unable to induce necrosis. These results illustrate the importance of necrosis-inducing effectors for S. sclerotiorum virulence and the role of host extracellular receptor(s) in effector-triggered susceptibility to this pathogen.
Collapse
Affiliation(s)
- Shirin Seifbarghi
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lisong Ma
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | - Dwayne D. Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Dwayne D. Hegedus,
| |
Collapse
|
28
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Faccio A, Bonfante P, Chabaud M, Chiapello M, Van Damme D, Genre A. TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. FRONTIERS IN PLANT SCIENCE 2019; 10:1628. [PMID: 31921269 PMCID: PMC6934022 DOI: 10.3389/fpls.2019.01628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane-the perifungal membrane-which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis. Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane. Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma. Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis-alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mireille Chabaud
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Menzel W, Stenzel I, Helbig LM, Krishnamoorthy P, Neumann S, Eschen-Lippold L, Heilmann M, Lee J, Heilmann I. A PAMP-triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:833-847. [PMID: 31318449 DOI: 10.1111/nph.16069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/30/2019] [Indexed: 05/24/2023]
Abstract
The phosphoinositide kinase PIP5K6 has recently been identified as a target for the mitogen-activated protein kinase (MAPK) MPK6. Phosphorylation of PIP5K6 inhibited the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ), impacting membrane trafficking and cell expansion in pollen tubes. Here, we analyzed whether MPK6 regulated PIP5K6 in vegetative Arabidopsis cells in response to the pathogen-associated molecular pattern (PAMP) flg22. Promoter-β-glucuronidase analyses and quantitative real-time reverse transcription polymerase chain reaction data show PIP5K6 expressed throughout Arabidopsis tissues. Upon flg22 treatment of transgenic protoplasts, the PIP5K6 protein was phosphorylated, and this modification was reduced for a PIP5K6 variant lacking MPK6-targeted residues, or in protoplasts from mpk6 mutants. Upon flg22 treatment of Arabidopsis plants, phosphoinositide levels mildly decreased and a fluorescent reporter for PtdIns(4,5)P2 displayed reduced plasma membrane association, contrasting with phosphoinositide increases reported for abiotic stress responses. Flg22 treatment and chemical induction of the upstream MAPK kinase, MKK5, decreased phosphatidylinositol 4-phosphate 5-kinase activity in mesophyll protoplasts, indicating that the flg22-activated MAPK cascade limited PtdIns(4,5)P2 production. PIP5K6 expression or PIP5K6 protein abundance changed only marginally upon flg22 treatment, consistent with post-translational control of PIP5K6 activity. PtdIns(4,5)P2 -dependent endocytosis of FM 4-64, PIN2 and the NADPH-oxidase RbohD were reduced upon flg22 treatment or MKK5 induction. Reduced RbohD-endocytosis was correlated with enhanced ROS production. We conclude that MPK6-mediated phosphorylation of PIP5K6 limits the production of a functional PtdIns(4,5)P2 pool upon PAMP perception.
Collapse
Affiliation(s)
- Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Lisa-Marie Helbig
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Susanne Neumann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| |
Collapse
|
30
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
31
|
van der Burgh AM, Joosten MHAJ. Plant Immunity: Thinking Outside and Inside the Box. TRENDS IN PLANT SCIENCE 2019; 24:587-601. [PMID: 31171472 DOI: 10.1016/j.tplants.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
Models are extensively used to describe the coevolution of plants and microbial attackers. Such models distinguish between different classes of plant immune responses, based on the type of danger signal that is recognized or on the strength of the defense response that the danger signal provokes. However, recent molecular and biochemical advances have shown that these dichotomies are blurred. With molecular proof in hand, we propose here to abandon the current classification of plant immune responses, and to define the different forms of plant immunity solely based on the site of microbe recognition - either extracellular or intracellular. Using this spatial partition, our 'spatial immunity model' facilitates a broadly inclusive, but clearly distinguishing nomenclature to describe immune signaling in plant-microbe interactions.
Collapse
Affiliation(s)
- Aranka M van der Burgh
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Wang H, He H, Qi Y, McLellan H, Tian Z, Birch PRJ, Tian Z. The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. PLANT CELL REPORTS 2019; 38:173-182. [PMID: 30488097 DOI: 10.1007/s00299-018-2359-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/22/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Oomycetes MAMP Pep-13 can trigger SERK3/BAK1-independent PTI. Silencing of SERK3/BAK1 in solanaceous plants resulted in reduced expression of brassinosteroid marker genes and enhanced PTI transcriptional responses to Pep-13 treatment. To prevent disease, pattern recognition receptors (PRRs) are responsible for detecting microbe-associated molecular patterns (MAMPs) to switch on plant innate immunity. SOMATIC EMBROYOGENESIS KINASE 3 (SERK3)/BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) is a well-characterized receptor-like kinase (RLK) that serves as a pivotal co-receptor with PRRs to activate immunity following recognition of MAMPs including flg22, EF-Tu, INF1 and XEG1. However, the requirement for SERK3/BAK1 in many pattern-triggered immune (PTI) signaling pathways is not yet known. Pep-13 is an oomycete MAMP that consists of a highly conserved motif (an oligopeptide of 13 amino acids) shared in Phytophthora transglutaminases. Quantitative RT-PCR analysis reveals that the transcripts of three PTI marker genes (WRKY7, WRKY8 and ACRE31) rapidly accumulate in response to three different MAMPs: flg22, chitin and Pep-13. Whereas silencing of SERK3/BAK1 in Nicotiana benthamiana or potato compromised transcript accumulation in response to flg22, it did not attenuate WRKY7, WRKY8 and ACRE31 up-regulation in response to chitin or Pep-13. This indicates that Pep-13 triggers immunity in a SERK3/BAK1-independent manner, similar to chitin. Surprisingly, silencing of SERK3/BAK1 led to significantly increased accumulation of PTI marker gene transcripts following Pep-13 or chitin treatment, compared to controls. This was accompanied by reduced expression of brassinosteroid (BR) marker genes StSTDH, StEXP8 and StCAB50 and StCHL1, which is a negative regulator of PTI, supporting previous reports that SERK3/BAK1-dependent BR signaling attenuates plant immunity. We provide Pep-13 as an alternative to chitin as a trigger of SERK3/BAK1-independent immunity.
Collapse
Affiliation(s)
- Haixia Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan, 430070, People's Republic of China
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Huan He
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan, 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yetong Qi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan, 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhejuan Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan, 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan, 430070, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
33
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. Tomato Dynamin Related Protein 2A Associates With LeEIX2 and Enhances PRR Mediated Defense by Modulating Receptor Trafficking. FRONTIERS IN PLANT SCIENCE 2019; 10:936. [PMID: 31379912 PMCID: PMC6658876 DOI: 10.3389/fpls.2019.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/04/2019] [Indexed: 05/17/2023]
Abstract
The endocytic trafficking pathway is employed by the plant to regulate immune responses, and is often targeted by pathogen effectors to promote virulence. The model system of the tomato receptor-like protein (RLP) LeEIX2 and its ligand, the elicitor EIX, employs endocytosis to transmit receptor-mediated signals, with some of the signaling events occurring directly from endosomal compartments. Here, to explore the trafficking mechanism of LeEIX2-mediated immune signaling, we used a proteomic approach to identify LeEIX2-associating proteins. We report the identification of SlDRP2A, a dynamin related protein, as an associating partner for LeEIX2. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 in VHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune responses.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
- *Correspondence: Maya Bar,
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
34
|
Cui Y, Li X, Yu M, Li R, Fan L, Zhu Y, Lin J. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 2018; 145:dev.165688. [PMID: 30228101 DOI: 10.1242/dev.165688] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
The plant transmembrane receptor kinase FLAGELLIN SENSING 2 (FLS2) is crucial for innate immunity. Although previous studies have reported FLS2-mediated signal transduction and endocytosis via the clathrin-mediated pathway, whether additional endocytic pathways affect FLS2-mediated defense responses remains unclear. Here, we show that the Arabidopsis thaliana sterol-deficient mutant steroid methyltransferase 1 displays defects in immune responses induced by the flagellin-derived peptide flg22. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) coupled with single-particle tracking showed that the spatiotemporal dynamics of FLS2-GFP changed on a millisecond time scale and that the FLS2-GFP dwell time at the plasma membrane increased in cells treated with a sterol-extracting reagent when compared with untreated counterparts. We further demonstrate that flg22-induced FLS2 clustering and endocytosis involves the sterol-associated endocytic pathway, which is distinct from the clathrin-mediated pathway. Moreover, flg22 enhanced the colocalization of FLS2-GFP with the membrane microdomain marker Flot 1-mCherry and FLS2 endocytosis via the sterol-associated pathway. This indicates that plants may respond to pathogen attacks by regulating two different endocytic pathways. Taken together, our results suggest the key role of sterol homeostasis in flg22-induced plant defense responses.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.,Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Jinming Street, Kaifeng 475001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China .,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
35
|
Claus LAN, Savatin DV, Russinova E. The crossroads of receptor-mediated signaling and endocytosis in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:827-840. [PMID: 29877613 DOI: 10.1111/jipb.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 05/20/2023]
Abstract
Plants deploy numerous plasma membrane receptors to sense and rapidly react to environmental changes. Correct localization and adequate protein levels of the cell-surface receptors are critical for signaling activation and modulation of plant development and defense against pathogens. After ligand binding, receptors are internalized for degradation and signaling attenuation. However, one emerging notion is that the ligand-induced endocytosis of receptor complexes is important for the signal duration, amplitude, and specificity. Recently, mutants of major endocytosis players, including clathrin and dynamin, have been shown to display defects in activation of a subset of signal transduction pathways, implying that signaling in plants might not be solely restricted to the plasma membrane. Here, we summarize the up-to-date knowledge of receptor complex endocytosis and its effect on the signaling outcome, in the context of plant development and immunity.
Collapse
Affiliation(s)
- Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniel V Savatin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
36
|
Li J, Staiger CJ. Understanding Cytoskeletal Dynamics During the Plant Immune Response. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:513-533. [PMID: 29975609 DOI: 10.1146/annurev-phyto-080516-035632] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall-based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Christopher J Staiger
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
37
|
Wang L, Xue Y, Xing J, Song K, Lin J. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:525-551. [PMID: 29489393 DOI: 10.1146/annurev-arplant-042817-040233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Li Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
38
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
39
|
Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. Plant-microbe interactions: organelles and the cytoskeleton in action. THE NEW PHYTOLOGIST 2018; 217:1012-1028. [PMID: 29250789 DOI: 10.1111/nph.14959] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 1012 I. Introduction 1012 II. The endomembrane system in plant-microbe interactions 1013 III. The cytoskeleton in plant-microbe interactions 1017 IV. Organelles in plant-microbe interactions 1019 V. Inter-organellar communication in plant-microbe interactions 1022 VI. Conclusions and prospects 1023 Acknowledgements 1024 References 1024 SUMMARY: Plants have evolved a multilayered immune system with well-orchestrated defense strategies against pathogen attack. Multiple immune signaling pathways, coordinated by several subcellular compartments and interactions between these compartments, play important roles in a successful immune response. Pathogens use various strategies to either directly attack the plant's immune system or to indirectly manipulate the physiological status of the plant to inhibit an immune response. Microscopy-based approaches have allowed the direct visualization of membrane trafficking events, cytoskeleton reorganization, subcellular dynamics and inter-organellar communication during the immune response. Here, we discuss the contributions of organelles and the cytoskeleton to the plant's defense response against microbial pathogens, as well as the mechanisms used by pathogens to target these compartments to overcome the plant's defense barrier.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Alexander Nedo
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
40
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. SlPRA1A/RAB attenuate EIX immune responses via degradation of LeEIX2 pattern recognition receptor. PLANT SIGNALING & BEHAVIOR 2018; 13:e1467689. [PMID: 29944445 PMCID: PMC6103275 DOI: 10.1080/15592324.2018.1467689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pattern recognition receptors (PRR) are plasma membrane (PM) proteins that recognize microbe-associated molecular patterns (MAMPs), triggering an immune response. PRR are classified as receptor like kinases (RLKs) or receptor like proteins (RLPs). The PM localization of PRRs, which is crucial for their availability to sense MAMPs, depends on their appropriate trafficking through the endomembrane system. Recently, we have identified SlPRA1A, a prenylated RAB acceptor type-1 (PRA1) from S. lycopersicum, as a regulator of RLP-PRR localization and protein levels. SlPRA1A overexpression strongly decreases RLP-PRR protein levels, particularly those of LeEIX2, redirecting it to the vacuole for degradation. Interestingly, SlPRA1A does not affect RLK-PRRs, indicating its activity to be specific to RLP-PRR systems. As PRA1 proteins stabilize RABs on membranes, promoting RABs activity, we aimed to identify a RAB target of SlPRA1A. Screening of a set of A. thaliana RABs revealed that AtRABA1e is able to mimic SlPRA1A activity. Through live cell imaging, we observed that SlPRA1A enhances AtRABA1e localization on SlPRA1A positive punctuated structures. These results indicate that AtRABA1e is a putative target of SlPRA1, and a co-regulator of LeEIX2 trafficking and degradation.
Collapse
Affiliation(s)
- L. Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - S. Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Bar
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel
| | - A. Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- CONTACT A. Avni School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
LaMontagne ED, Heese A. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:114-121. [PMID: 28915433 DOI: 10.1016/j.pbi.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses.
Collapse
Affiliation(s)
- Erica D LaMontagne
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Antje Heese
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.
| |
Collapse
|
43
|
Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, Anzenberger F, Ichikawa M, Tsutsumi C, Sato MH, Kuster B, Bednarek SY, Isono E. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc Natl Acad Sci U S A 2017; 114:E7197-E7204. [PMID: 28784794 PMCID: PMC5576839 DOI: 10.1073/pnas.1710866114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.
Collapse
Affiliation(s)
- Marie-Kristin Nagel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kamila Kalinowska
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Karin Vogel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Anzenberger
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Chie Tsutsumi
- Department of Botany, National Museum of Nature and Science, 305-0005 Tsukuba, Japan
| | - Masa H Sato
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Erika Isono
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
44
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
45
|
Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). THE NEW PHYTOLOGIST 2017; 215:382-396. [PMID: 28513921 DOI: 10.1111/nph.14592] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
To detect potential pathogens, plants perceive the fungal polysaccharide chitin through receptor complexes containing lysin motif receptor-like kinases (LysM-RLKs). To investigate the ligand-induced spatial dynamics of chitin receptor components, we studied the subcellular behaviour of two Arabidopsis thaliana LysM-RLKs involved in chitin signalling, CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) and LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5. We performed standard and quantitative confocal laser scanning microscopy on stably transformed A. thaliana plants expressing fluorescently tagged CERK1 and LYK5 from their native promoters. Microscopy approaches were complemented by biochemical analyses in plants and in vitro. Both CERK1 and LYK5 localized to the plasma membrane and showed constitutive endomembrane trafficking. After chitin treatment, however, CERK1 remained at the plasma membrane while LYK5 relocalized into mobile intracellular vesicles. Detailed analyses revealed that chitin perception transiently induced the internalization of LYK5 into late endocytic compartments. Plants that lacked CERK1 or expressed an enzymatically inactive CERK1 variant did not exhibit chitin-induced endocytosis of LYK5. CERK1 could phosphorylate LYK5 in vitro and chitin treatment induced CERK1-dependent phosphorylation of LYK5 in planta. Our results suggest that chitin-induced phosphorylation by CERK1 triggers LYK5 internalization. Thus, our work identifies phosphorylation as a key regulatory step in endocytosis of plant RLKs and also provides evidence for receptor complex dissociation after ligand perception.
Collapse
Affiliation(s)
- Jan Erwig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Ronja Hacke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Alexandra Matei
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Elena Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| |
Collapse
|
46
|
Abstract
The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| |
Collapse
|
47
|
Jelenska J, Davern SM, Standaert RF, Mirzadeh S, Greenberg JT. Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1769-1783. [PMID: 28521013 PMCID: PMC5444442 DOI: 10.1093/jxb/erx060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Diverse pathogen-derived molecules, such as bacterial flagellin and its conserved peptide flg22, are recognized in plants via plasma membrane receptors and induce both local and systemic immune responses. The fate of such ligands was unknown: whether and by what mechanism(s) they enter plant cells and whether they are transported to distal tissues. We used biologically active fluorophore and radiolabeled peptides to establish that flg22 moves to distal organs with the closest vascular connections. Remarkably, entry into the plant cell via endocytosis together with the FLS2 receptor is needed for delivery to vascular tissue and long-distance transport of flg22. This contrasts with known routes of long distance transport of other non-cell-permeant molecules in plants, which require membrane-localized transporters for entry to vascular tissue. Thus, a plasma membrane receptor acts as a transporter to enable access of its ligand to distal trafficking routes.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra M Davern
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert F Standaert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Saed Mirzadeh
- Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Leslie ME, Heese A. Quantitative Analysis of Ligand-Induced Endocytosis of FLAGELLIN-SENSING 2 Using Automated Image Segmentation. Methods Mol Biol 2017; 1578:39-54. [PMID: 28220414 DOI: 10.1007/978-1-4939-6859-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plants are equipped with a suite of plant pattern recognition receptors (PRRs) that must be properly trafficked to and from the plasma membrane (PM), which serves as the host-pathogen interface, for robust detection of invading pathogenic microbes. Recognition of bacterial flagellin, or the derived peptide flg22, is facilitated by the PM-localized PRR, FLAGELLIN SENSING 2 (FLS2). Upon flg22 binding, FLS2 is rapidly internalized from the PM into endosomal compartments and subsequently degraded. To understand better the integration of FLS2 endocytosis and signaling outputs, we developed methods for the quantitative analysis of FLS2 trafficking using freely available bioimage informatic tools. Emphasis was placed on robust recognition of features and ease of access for users. Using the free and open-source software Fiji (Fiji is just ImageJ) and Trainable Weka Segmentation (TWS) plug-in, we developed a workflow for the automated identification of green fluorescent protein (GFP)-tagged FLS2 in endosomal puncta. Fiji-TWS methods can be adapted with ease for the analysis of FLS2 trafficking in various genetic backgrounds as well as for the endocytic regulation of diverse plant PRRs.
Collapse
Affiliation(s)
- Michelle E Leslie
- Division of Biochemistry, Interdisciplinary Plant Group (IPG), University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA. .,Elemental Enzymes Inc., 1685 Galt Industrial Blvd, St. Louis, MO, 63132, USA.
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group (IPG), University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
49
|
Johnson A, Vert G. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:612. [PMID: 28484480 PMCID: PMC5401915 DOI: 10.3389/fpls.2017.00612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 05/02/2023]
Abstract
Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.
Collapse
|
50
|
Zhang H, Zhao T, Zhuang P, Song Z, Du H, Tang Z, Gao Z. NbCZF1, a Novel C2H2-Type Zinc Finger Protein, as a New Regulator of SsCut-Induced Plant Immunity in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2016; 57:2472-2484. [PMID: 27649734 DOI: 10.1093/pcp/pcw160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C2H2-type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C2H2-type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C2H2-type zinc finger protein in N. benthamiana.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- These authors contributed equally to this work
| | - Tongyao Zhao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- These authors contributed equally to this work
| | - Peitong Zhuang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiqiang Song
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Du
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaozhao Tang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|