1
|
Charman M, Weitzman MD. Mysteries of adenovirus packaging. J Virol 2025:e0018025. [PMID: 40243339 DOI: 10.1128/jvi.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
It is conventionally held that most DNA viruses package their genomes by one of two fundamental mechanisms: described by the sequential or concurrent models of assembly and packaging. Sequential packaging involves the translocation of a viral genome into a pre-formed capsid, often referred to as the pro-capsid. In contrast, concurrent packaging does not require the assembly of a pro-capsid. Instead, the genome is condensed, and the capsid shell is formed around the genome. The accumulation of empty particles in adenovirus infected cells has led to the assumption that adenovirus packaging may be best described by the sequential model. However, existing models fail to adequately explain all experimental observations, leaving many mysteries of adenovirus genome packaging unresolved. In this review, we describe key findings in adenovirus assembly and packaging, and we discuss them in the context of the competing models of sequential versus concurrent packaging. We discuss recent findings that have redefined our understanding of adenovirus packaging, including the role of viral biomolecular condensates and visualization of viral assembly and packaging in situ. These advances have renewed interest in the concurrent model of packaging. We anticipate that lessons learned from adenovirus packaging will be highly valuable for the advancement of viral vectors and gene-delivery technologies. In reviewing this topic, we hope to stimulate discussion and facilitate future investigation that will ultimately resolve gaps in knowledge and expand our understanding of DNA virus genome packaging.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Center for Genome Integrity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Xiao H, Chen W, Pang H, Zheng J, Wang L, Feng H, Song J, Cheng L, Liu H. Structure of the scaffolding protein and portal within the bacteriophage P22 procapsid provides insights into the self-assembly process. PLoS Biol 2025; 23:e3003104. [PMID: 40245015 PMCID: PMC12005531 DOI: 10.1371/journal.pbio.3003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025] Open
Abstract
In the assembly pathway of tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses, a procapsid with a dodecameric portal for DNA delivery at a unique vertex is initially formed. Appropriate procapsid assembly requires the transient presence of multiple copies of a scaffolding protein (SP), which is absent in the mature virion. However, how the SP contributes to dodecameric portal formation, facilitates portal and coat protein incorporation, and is subsequently released remains unclear because of a lack of structural information. Here, we present the structure of the SP-portal complex within the procapsid of bacteriophage P22 at 3-9 Å resolutions. The AlphaFold2-predicted SP model fits well with the density map of the complex. The SP forms trimers and tetramers that interact to yield a dome-like complex on the portal. Two SP domains mediate multimerization. Each trimer interacts with two neighboring portal subunits. The SP has a loop-hook-like structure that aids in coat protein recruitment during viral assembly. The loops of those SP subunits on the portal are positioned in clefts between adjacent portal subunits. Conformational changes in the portal during phage maturation may trigger the disassembly and release of the SP complex. Our findings provide insights into SP-assisted procapsid assembly in bacteriophage P22 and suggest that this strategy is also implemented by other dsDNA viruses, including herpesviruses.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Li Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Feng
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jingdong Song
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Li Z, Liu B, Cao B, Cun S, Liu R, Liu X. The potential role of viruses in antibiotic resistance gene dissemination in activated sludge viromes. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137046. [PMID: 39752831 DOI: 10.1016/j.jhazmat.2024.137046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 03/12/2025]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in activated sludge (AS) systems poses significant environmental and public health challenges. The role of viruses, primarily bacteriophages, in storing and spreading ARGs in AS systems remains largely unexplored. This study characterized the viral community, virus-associated ARGs (vir_ARGs), and mobile genetic elements (MGEs) of aerobic AS viromes from eight wastewater treatment plants (WWTPs) in eastern China. 78,604 viral operational taxonomic units (vOTUs) were identified, including 1685 temperate vOTUs (T-vOTUs). Five ARG types were detected in 37 vOTUs, indicating a low proportion of ARG-carrying viruses. The co-occurrence rate between vir_ARGs and MGEs was 37.83 %, and six ARG-carrying vOTUs contained multiple MGEs, indicating a transfer potential of vir_ARGs. Additionally, ARG and MGE profiles of AS metagenomes were analyzed to evaluate the transfer potential of phage activity on ARGs. The results showed that phage-associated MGEs showed a significant coupling with both the abundance and composition of ARGs, suggesting a potential role of phages in ARG propagation. These findings offer preliminary insights into understanding the viral resistome and its transfer potential in AS systems. Future research necessitates rigorous pure culture and molecular biology experiments to elucidate the precise mechanisms through which viruses contribute to the dissemination and persistence of ARGs.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Cun
- BaoShan City inspection and testing Institute, Baoshan 678000, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Rawson B, Yang Q, Catalano CE, Smith DE. Single-molecule measurements of bacteriophage lambda DNA packaging using purified terminase motor proteins and E. coli integration host factor. Sci Rep 2025; 15:7093. [PMID: 40016253 PMCID: PMC11868608 DOI: 10.1038/s41598-024-74915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/27/2024] [Indexed: 03/01/2025] Open
Abstract
Biomotor-driven DNA packaging is a key step in the life cycle of many viruses. We previously developed single-molecule methods using optical tweezers to measure packaging dynamics of the bacteriophage lambda motor. The lambda system is more complex than others examined via single-molecule assays with respect to the packaging substrate and ancillary proteins required. Because of this, previous studies which efficiently detected packaging events used crude E. coli cell extracts containing host factors and the terminase packaging enzyme. However, use of extracts is suboptimal for biochemical manipulation and obfuscates interrogation of additional factors that affect the process. Here we describe an optical tweezers assay using purified lambda terminase holoenzyme. Packaging events are as efficient as with crude extracts, but only if purified E. coli integration host factor (IHF) is included in the motor assembly reactions. We find that the ATP-driven DNA translocation dynamics, motor force generation, and motor-DNA interactions without nucleotide are virtually identical to those measured with extracts. Thus, single-molecule packaging activity can be fully recapitulated in a minimal system containing only purified lambda procapsids, purified terminase, IHF, and ATP. This sets the stage for single-molecule studies to investigate additional phage proteins known to play essential roles in the packaging reaction.
Collapse
Affiliation(s)
- Brandon Rawson
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Pajak J, Prokhorov NS, Jardine PJ, Morais MC. The mechano-chemistry of a viral genome packaging motor. Curr Opin Struct Biol 2024; 89:102945. [PMID: 39500074 DOI: 10.1016/j.sbi.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
Double-stranded DNA viruses actively package their genomes into pre-assembled protein capsids using energy derived from virus-encoded ASCE ATPase ring motors. Single molecule experiments in the aughts and early 2010s demonstrated that these motors are some of the most powerful molecular motors in nature, and that the activities of individual subunits around the ATPase ring motor are highly coordinated to ensure efficient genome encapsidation. While these studies provided a comprehensive kinetic scheme describing the events that occur during packaging, the physical basis of force generation and subunit coordination remained elusive. This article reviews recent structural and computational results that have begun to illuminate the molecular basis of force generation and DNA translocation in these powerful molecular motors.
Collapse
Affiliation(s)
- Joshua Pajak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nikolai S Prokhorov
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marc C Morais
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Feiss M, Sippy JA. DNA Packaging Specificity in the λ-Like Phages: Gifsy-1. Mol Microbiol 2024; 122:491-503. [PMID: 39233649 DOI: 10.1111/mmi.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
DNA viruses recognize viral DNA and package it into virions. Specific recognition is needed to distinguish viral DNA from host cell DNA. The λ-like Escherichia coli phages are interesting and good models to examine genome packaging by large DNA viruses. Gifsy-1 is a λ-like Salmonella phage. Gifsy-1's DNA packaging specificity was compared with those of closely related phages λ, 21, and N15. In vivo packaging studies showed that a Gifsy-1-specific phage packaged λ DNA at ca. 50% efficiency and λ packages Gifsy-1-specific DNA at ~30% efficiency. The results indicate that Gifsy-1 and λ share the same DNA packaging specificity. N15 is also shown to package Gifsy-1 DNA. Phage 21 fails to package λ, N15, and Gifsy-1-specific DNAs; the efficiencies are 0.01%, 0.01%, and 1%, respectively. A known incompatibility between the 21 helix-turn-helix motif and cosBλ is proposed to account for the inability of 21 to package Gifsy-1 DNA. A model is proposed to explain the 100-fold difference in packaging efficiency between λ and Gifsy-1-specific DNAs by phage 21. Database sequences of enteric prophages indicate that phages with Gifsy-1's DNA packaging determinants are confined to Salmonella species. Similarly, prophages with λ DNA packaging specificity are rarely found in Salmonella. It is proposed that λ and Gifsy-1 have diverged from a common ancestor phage, and that the differences may reflect adaptation of their packaging systems to host cell differences.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean Arens Sippy
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Boyd C, Seed K. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. Nucleic Acids Res 2024; 52:10431-10446. [PMID: 39149900 PMCID: PMC11417361 DOI: 10.1093/nar/gkae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery and virion components results in inhibition of ICP1's lifecycle. PLEs are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Li FY, Tan XE, Shimamori Y, Kiga K, Veeranarayanan S, Watanabe S, Nishikawa Y, Aiba Y, Sato'o Y, Miyanaga K, Sasahara T, Hossain S, Thitiananpakorn K, Kawaguchi T, Nguyen HM, Yeo Syin Lian A, Sultana S, Alessa O, Kumwenda G, Sarangi J, Revilleza JEC, Baranwal P, Faruk MO, Hidaka Y, Thu M, Arbaah M, Batbold A, Maniruzzaman, Liu Y, Duyen HTM, Sugano T, Tergel N, Shimojyo T, Cui L. Phagemid-based capsid system for CRISPR-Cas13a antimicrobials targeting methicillin-resistant Staphylococcus aureus. Commun Biol 2024; 7:1129. [PMID: 39271957 PMCID: PMC11399120 DOI: 10.1038/s42003-024-06754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
In response to the escalating antibiotic resistance in multidrug-resistant pathogens, we propose an innovative phagemid-based capsid system to generate CRISPR-Cas13a-loaded antibacterial capsids (AB-capsids) for targeted therapy against multidrug-resistant Staphylococcus aureus. Our optimized phagemid system maximizes AB-capsid yield and purity, showing a positive correlation with phagemid copy number. Notably, an 8.65-fold increase in copy number results in a 2.54-fold rise in AB-capsid generation. Phagemids carrying terL-terS-rinA-rinB (prophage-encoded packaging site genes) consistently exhibit high packaging efficiency, and the generation of AB-capsids using lysogenized hosts with terL-terS deletion resulted in comparatively lower level of wild-type phage contamination, with minimal compromise on AB-capsid yield. These generated AB-capsids selectively eliminate S. aureus strains carrying the target gene while sparing non-target strains. In conclusion, our phagemid-based capsid system stands as a promising avenue for developing sequence-specific bactericidal agents, offering a streamlined approach to combat antibiotic-resistant pathogens within the constraints of efficient production and targeted efficacy.
Collapse
Affiliation(s)
- Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Yuzuki Shimamori
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Yutaro Nishikawa
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
- EIKEN CHEMICAL CO.,LTD., Shimotsuga District, Tochigi, 329-0114, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Sarah Hossain
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Adeline Yeo Syin Lian
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Sharmin Sultana
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Ola Alessa
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Geoffrey Kumwenda
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Jayathilake Sarangi
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Jastin Edrian Cocuangco Revilleza
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Priyanka Baranwal
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Mohammad Omar Faruk
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Yuya Hidaka
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Myat Thu
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Mahmoud Arbaah
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Anujin Batbold
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Maniruzzaman
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Yi Liu
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Ho Thi My Duyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Takashi Sugano
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Nayanjin Tergel
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan
| | - Takayuki Shimojyo
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke city, Tochigi, 329-0498, Japan.
| |
Collapse
|
10
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
11
|
Torkashvand N, Kamyab H, Shahverdi AR, Khoshayand MR, Karimi Tarshizi MA, Sepehrizadeh Z. Characterization and genome analysis of a broad host range lytic phage vB_SenS_TUMS_E19 against Salmonella enterica and its efficiency evaluation in the liquid egg. Can J Microbiol 2024; 70:358-369. [PMID: 38990097 DOI: 10.1139/cjm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Salmonella enterica serovars are zoonotic bacterial that cause foodborne enteritis. Due to bacteria's antibiotic resistance, using bacteriophages for biocontrol and treatment is a new therapeutic approach. In this study, we isolated, characterized, and analyzed the genome of vB_SenS_TUMS_E19 (E19), a broad host range Salmonella bacteriophage, and evaluated the influence of E19 on liquid eggs infected with Salmonella enterica serovar Enteritidis. Transmission electron microscopy showed that the isolated bacteriophage had a siphovirus morphotype. E19 showed rapid adsorption (92% in 5 min), a short latent period (18 min), a large burst size (156 PFU per cell), and a broad host range against different Salmonella enterica serovars. Whole-genome sequencing analysis indicated that the isolated phage had a 42 813 bp long genome with 49.8% G + C content. Neither tRNA genes nor those associated with antibiotic resistance, virulence factors, or lysogenic formation were detected in the genome. The efficacy of E19 was evaluated in liquid eggs inoculated with S. Enteritidis at 4 and 25 °C, and results showed that it could effectively eradicate S. Enteritidis in just 30 min and prevented its growth up to 72 h. Our findings indicate that E19 can be an alternative to a preservative to control Salmonella in food samples and help prevent and treat salmonellosis.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pourcel C, Essoh C, Ouldali M, Tavares P. Acinetobacter baumannii satellite phage Aci01-2-Phanie depends on a helper myophage for its multiplication. J Virol 2024; 98:e0066724. [PMID: 38829140 PMCID: PMC11264900 DOI: 10.1128/jvi.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.
Collapse
Affiliation(s)
- Christine Pourcel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Essoh
- Department of Biochemistry-Genetic, School of Biological Sciences, Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
13
|
Xu W, Ma C, Wang G, Fu F, Sha J. Trapping and recapturing single DNA molecules with pore-cavity-pore device. NANOTECHNOLOGY 2024; 35:335302. [PMID: 38772350 DOI: 10.1088/1361-6528/ad4e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Single-molecule detection technology is a technique capable of detecting molecules at the single-molecule level, characterized by high sensitivity, high resolution, and high specificity. Nanopore technology, as one of the single-molecule detection tools, is widely used to study the structure and function of biomolecules. In this study, we constructed a small-sized nanopore with a pore-cavity-pore structure, which can achieve a higher reverse capture rate. Through simulation, we investigated the electrical potential distribution of the nanopore with a pore-cavity-pore structure and analyzed the influence of pore size on the potential distribution. Accordingly, different pore sizes can be designed based on the radius of gyration of the target biomolecules, restricting their escape paths inside the chamber. In the future, nanopores with a pore-cavity-pore structure based on two-dimensional thin film materials are expected to be applied in single-molecule detection research, which provides new insights for various detection needs.
Collapse
Affiliation(s)
- Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Fangzhou Fu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
14
|
Xia X, Sung PY, Martynowycz MW, Gonen T, Roy P, Zhou ZH. RNA genome packaging and capsid assembly of bluetongue virus visualized in host cells. Cell 2024; 187:2236-2249.e17. [PMID: 38614100 PMCID: PMC11182334 DOI: 10.1016/j.cell.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Po-Yu Sung
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael W Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Boyd CM, Seed KD. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590561. [PMID: 38712175 PMCID: PMC11071384 DOI: 10.1101/2024.04.22.590561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery, and virion components results in inhibition of ICP1's lifecycle. PLEs' are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA, and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M. Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| | - Kimberley D. Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Yu M, Zhang M, Zeng R, Cheng R, Zhang R, Hou Y, Kuang F, Feng X, Dong X, Li Y, Shao Z, Jin M. Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments. Nat Commun 2024; 15:3228. [PMID: 38622147 PMCID: PMC11018836 DOI: 10.1038/s41467-024-47600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.
Collapse
Affiliation(s)
- Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Ruolin Cheng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Fangfang Kuang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xiyang Dong
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Yinfang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
17
|
Mukherjee A, Kizziah JL, Hawkins NC, Nasef MO, Parker LK, Dokland T. Structure of the Portal Complex from Staphylococcus aureus Pathogenicity Island 1 Transducing Particles In Situ and In Isolation. J Mol Biol 2024; 436:168415. [PMID: 38135177 PMCID: PMC10923094 DOI: 10.1016/j.jmb.2023.168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
Collapse
Affiliation(s)
- Amarshi Mukherjee
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James L Kizziah
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N'Toia C Hawkins
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed O Nasef
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura K Parker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Prokhorov NS, Davis C, Maruthi K, Yang Q, Sherman M, Woodson M, White M, Miller LM, Jarrold M, Catalano C, Morais M. Biophysical and structural characterization of a multifunctional viral genome packaging motor. Nucleic Acids Res 2024; 52:831-843. [PMID: 38084901 PMCID: PMC10810279 DOI: 10.1093/nar/gkad1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christal R Davis
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kashyap Maruthi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Qin Yang
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Michael Woodson
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Silva EC, Quinde CA, Cieza B, Basu A, Vila MMDC, Balcão VM. Molecular Characterization and Genome Mechanical Features of Two Newly Isolated Polyvalent Bacteriophages Infecting Pseudomonas syringae pv. garcae. Genes (Basel) 2024; 15:113. [PMID: 38255005 PMCID: PMC10815195 DOI: 10.3390/genes15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses' taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells.
Collapse
Affiliation(s)
- Erica C. Silva
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Carlos A. Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Basilio Cieza
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Boyd CM, Subramanian S, Dunham DT, Parent KN, Seed KD. A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodeling hijacked phage coat proteins into small capsids. eLife 2024; 12:RP87611. [PMID: 38206122 PMCID: PMC10945586 DOI: 10.7554/elife.87611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Drew T Dunham
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Hou C, Wang X, Guo J, Qi C, Zhang Y, Chen Y, Feng J, Zhao B, Li F. Isolation, characterization, and genomic analysis of BUCT627: a lytic bacteriophage targeting Stenotrophomonas maltophilia. FEMS Microbiol Lett 2024; 371:fnae076. [PMID: 39349986 DOI: 10.1093/femsle/fnae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Stenotrophomonas infections pose significant therapeutic challenges due to escalating resistance to antibiotics and chemotherapeutic agents. Phages offer a potential solution by virtue of their specific bacterial targeting capabilities. In this study, we isolated a new Stenotrophomonas bacteriophage, named BUCT627, from hospital sewage. Phage BUCT627 exhibited a 30-min latent period and demonstrated a burst size of 46 plaque forming unit (PFU)/cell. Remarkably, this phage displayed robust stability across a wide pH range (pH 3-13) and exhibited resilience under varying thermal conditions. The receptor of phage BUCT627 on Stenotrophomonas maltophilia No. 826 predominantly consist of surface proteins. The complete genome of phage BUCT627 is a 61 860-bp linear double-stranded DNA molecule with a GC content of 56.3%, and contained 99 open reading frames and two tRNAs. Notably, no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters was identified in BUCT627. Transmission electron microscopy and phylogeny analysis indicated that this phage was a new member within the Siphoviridae family. The results of this study will enhance our understanding of phage diversity and hold promise for the development of alternative therapeutic strategies against S. maltophilia infections.
Collapse
Affiliation(s)
- Chenrui Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuexue Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianguang Guo
- Office of Taian Central Blood Station of Shandong Province, Taian, 271000, China
| | - Chunling Qi
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Yun Chen
- Department of Minimally Invasive Cancer, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Bin Zhao
- Pediatric Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Post-doctoral Programme, Shandong Runde Biotechnology Co. Ltd, Taian, 271000, China
| |
Collapse
|
22
|
Chu Yuan Kee MJ, Chen J. Phage Transduction of Staphylococcus aureus. Methods Mol Biol 2024; 2738:263-275. [PMID: 37966605 DOI: 10.1007/978-1-0716-3549-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophage transduction is the major mechanism of horizontal gene transfer (HGT) among many bacteria. In Staphylococcus aureus, the phage-mediated acquisition of mobile genetic elements (MGEs) that encode virulence and antibiotic resistance genes largely contribute to its evolutionary adaptation and genetic plasticity. In molecular biology, generalized transduction is routinely used as a technique to manipulate and construct bacterial strains. Here, we describe optimized protocols for generalized transduction, applicable for the transfer of plasmid or chromosomal deoxyribonucleic acid (DNA) from donor to recipient S. aureus strains.
Collapse
Affiliation(s)
- Melissa-Jane Chu Yuan Kee
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
San Martín C. Architecture and Assembly of Structurally Complex Viruses. Subcell Biochem 2024; 105:431-467. [PMID: 39738954 DOI: 10.1007/978-3-031-65187-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral particles consist essentially of a proteinaceous capsid that protects the genome and is also involved in many functions during the virus life cycle. In structurally simple viruses, the capsid consists of a number of copies of the same, or a few different proteins organized into a symmetric oligomer. Structurally complex viruses present a larger variety of components in their capsids than simple viruses. They may contain accessory proteins with specific architectural or functional roles, or incorporate non-proteic elements such as lipids. They present a range of geometrical variability, from slight deviations from the icosahedral symmetry to complete asymmetry or even pleomorphism. Putting together the many different elements in the virion requires an extra effort to achieve correct assembly, and thus complex viruses require sophisticated mechanisms to regulate morphogenesis. This chapter provides a general view of the structure and assembly of complex viruses.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
24
|
Kiss B, Kellermayer M. Packing up the genome. eLife 2023; 12:e94128. [PMID: 38095555 PMCID: PMC10721213 DOI: 10.7554/elife.94128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Nucleotide and force-dependent mechanisms control how the viral genome of lambda bacteriophage is inserted into capsids.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis UniversityBudapestHungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis UniversityBudapestHungary
| |
Collapse
|
25
|
Heymann JB. Structural Studies of Bacteriophage Φ6 and Its Transformations during Its Life Cycle. Viruses 2023; 15:2404. [PMID: 38140645 PMCID: PMC10747372 DOI: 10.3390/v15122404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the first isolation of the cystovirus bacteriophage Φ6 from Pseudomonas syringae 50 years ago, we have progressed to a better understanding of the structure and transformations of many parts of the virion. The three-layered virion, encapsulating the tripartite double-stranded RNA (dsRNA) genome, breaches the cell envelope upon infection, generates its own transcripts, and coopts the bacterial machinery to produce its proteins. The generation of a new virion starts with a procapsid with a contracted shape, followed by the packaging of single-stranded RNA segments with concurrent expansion of the capsid, and finally replication to reconstitute the dsRNA genome. The outer two layers are then added, and the fully formed virion released by cell lysis. Most of the procapsid structure, composed of the proteins P1, P2, P4, and P7 is now known, as well as its transformations to the mature, packaged nucleocapsid. The outer two layers are less well-studied. One additional study investigated the binding of the host protein YajQ to the infecting nucleocapsid, where it enhances the transcription of the large RNA segment that codes for the capsid proteins. Finally, I relate the structural aspects of bacteriophage Φ6 to those of other dsRNA viruses, noting the similarities and differences.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA; ; Tel.: +1-301-846-6924
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
26
|
Idrees S, Paudel KR, Sadaf T, Hansbro PM. How different viruses perturb host cellular machinery via short linear motifs. EXCLI JOURNAL 2023; 22:1113-1128. [PMID: 38054205 PMCID: PMC10694346 DOI: 10.17179/excli2023-6328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The virus interacts with its hosts by developing protein-protein interactions. Most viruses employ protein interactions to imitate the host protein: A viral protein with the same amino acid sequence or structure as the host protein attaches to the host protein's binding partner and interferes with the host protein's pathways. Being opportunistic, viruses have evolved to manipulate host cellular mechanisms by mimicking short linear motifs. In this review, we shed light on the current understanding of mimicry via short linear motifs and focus on viral mimicry by genetically different viral subtypes by providing recent examples of mimicry evidence and how high-throughput methods can be a reliable source to study SLiM-mediated viral mimicry.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Tayyaba Sadaf
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Mukherjee A, Kizziah JL, Hawkins NC, Nasef MO, Parker LK, Dokland T. Structure of the portal complex from Staphylococcus aureus pathogenicity island 1 transducing particles in situ and in solution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557803. [PMID: 37786723 PMCID: PMC10541612 DOI: 10.1101/2023.09.18.557803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal in solution and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
Collapse
Affiliation(s)
| | | | | | - Mohamed O. Nasef
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura K. Parker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Boyd CM, Subramanian S, Dunham DT, Parent KN, Seed KD. A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodeling hijacked phage coat proteins into small capsids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530633. [PMID: 36909475 PMCID: PMC10002752 DOI: 10.1101/2023.03.01.530633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, PLE, remodels the capsid it has been predicted to steal from the phage ICP1 (1). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like-particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold, that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (2). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
Collapse
Affiliation(s)
- Caroline M. Boyd
- Department of Plant and Microbial Biology, Seed Lab, University of California – Berkeley, CA 94720
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State University, East Lansing, MI, 48824
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, Seed Lab, University of California – Berkeley, CA 94720
| | - Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State University, East Lansing, MI, 48824
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, Seed Lab, University of California – Berkeley, CA 94720
| |
Collapse
|
29
|
Šimoliūnas E, Šimoliūnienė M, Laskevičiūtė G, Kvederavičiūtė K, Skapas M, Kaupinis A, Valius M, Meškys R, Kuisienė N. Characterization of Parageobacillus Bacteriophage vB_PtoS_NIIg3.2-A Representative of a New Genus within Thermophilic Siphoviruses. Int J Mol Sci 2023; 24:13980. [PMID: 37762288 PMCID: PMC10530707 DOI: 10.3390/ijms241813980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Gintarė Laskevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Nomeda Kuisienė
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
30
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging. Nucleic Acids Res 2023; 51:8060-8069. [PMID: 37449417 PMCID: PMC10450192 DOI: 10.1093/nar/gkad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of 'clogging' in soft matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Šimoliūnas E, Šimoliūnienė M, Laskevičiūtė G, Kvederavičiūtė K, Skapas M, Kaupinis A, Valius M, Meškys R, Kuisienė N. Geobacillus Bacteriophages from Compost Heaps: Representatives of Three New Genera within Thermophilic Siphoviruses. Viruses 2023; 15:1691. [PMID: 37632033 PMCID: PMC10459684 DOI: 10.3390/v15081691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Gintarė Laskevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Nomeda Kuisienė
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
32
|
Cobián Güemes AG, Le T, Rojas MI, Jacobson NE, Villela H, McNair K, Hung SH, Han L, Boling L, Octavio JC, Dominguez L, Cantú VA, Archdeacon S, Vega AA, An MA, Hajama H, Burkeen G, Edwards RA, Conrad DJ, Rohwer F, Segall AM. Compounding Achromobacter Phages for Therapeutic Applications. Viruses 2023; 15:1665. [PMID: 37632008 PMCID: PMC10457797 DOI: 10.3390/v15081665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections.
Collapse
Affiliation(s)
- Ana Georgina Cobián Güemes
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tram Le
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Maria Isabel Rojas
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Helena Villela
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Marine Microbiomes Lab, Red Sea Research Center, King Abdullah University of Science and Technology, Building 2, Level 3, Room 3216 WS03, Thuwal 23955-6900, Saudi Arabia
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Shr-Hau Hung
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lili Han
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lance Boling
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jessica Claire Octavio
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lorena Dominguez
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Vito Adrian Cantú
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Sinéad Archdeacon
- College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Hamza Hajama
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Gregory Burkeen
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Robert A. Edwards
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Flinders Accelerator for Microbiome Exploration, Flinders University, Sturt Road, Bedford Park 5042, Australia
| | - Douglas J. Conrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 9500, USA
| | - Forest Rohwer
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
33
|
Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023; 14:2928. [PMID: 37253769 PMCID: PMC10229621 DOI: 10.1038/s41467-023-38364-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
34
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and non-equilibrium dynamics in viral genome ejection and packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535472. [PMID: 37066220 PMCID: PMC10104077 DOI: 10.1101/2023.04.03.535472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics, and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest it is connected to the phenomenon of "clogging" in soft-matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
|
35
|
Rao VB, Fokine A, Fang Q, Shao Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 2023; 15:527. [PMID: 36851741 PMCID: PMC9958956 DOI: 10.3390/v15020527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.
Collapse
Affiliation(s)
- Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
36
|
Feng J, Li F, Sun L, Dong L, Gao L, Wang H, Yan L, Wu C. Characterization and genome analysis of phage vB_KpnS_SXFY507 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Front Microbiol 2023; 14:1081715. [PMID: 36793879 PMCID: PMC9922705 DOI: 10.3389/fmicb.2023.1081715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is one of the primary bacterial pathogens that pose a significant threat to global public health because of the lack of available therapeutic options. Phage therapy shows promise as a potential alternative to current antimicrobial chemotherapies. In this study, we isolated a new Siphoviridae phage vB_KpnS_SXFY507 against KPC-producing K. pneumoniae from hospital sewage. It had a short latent period of 20 min and a large burst size of 246 phages/cell. The host range of phage vB_KpnS_SXFY507 was relatively broad. It has a wide range of pH tolerance and high thermal stability. The genome of phage vB_KpnS_SXFY507 was 53,122 bp in length with a G + C content of 49.1%. A total of 81 open-reading frames (ORFs) and no virulence or antibiotic resistance related genes were involved in the phage vB_KpnS_SXFY507 genome. Phage vB_KpnS_SXFY507 showed significant antibacterial activity in vitro. The survival rate of Galleria mellonella larvae inoculated with K. pneumoniae SXFY507 was 20%. The survival rate of K. pneumonia-infected G. mellonella larvae was increased from 20 to 60% within 72 h upon treatment with phage vB_KpnS_SXFY507. In conclusion, these findings indicate that phage vB_KpnS_SXFY507 has the potential to be used as an antimicrobial agent for the control of K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,*Correspondence: Jiao Feng, ✉
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Sun
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Liting Gao
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Han Wang
- Medical Imaging Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Liyong Yan
- Hospital Office, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,Liyong Yan, ✉
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,Changxin Wu, ✉
| |
Collapse
|
37
|
Yuan S, Shi J, Jiang J, Ma Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res 2022; 50:13183-13197. [PMID: 36511873 PMCID: PMC9825161 DOI: 10.1093/nar/gkac1168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Efforts have been made to reduce the genomes of living cells, but phage genome reduction remains challenging. It is of great interest to investigate whether genome reduction can make phages obtain new infectious properties. We developed a CRISPR/Cas9-based iterative phage genome reduction (CiPGr) approach and applied this to four distinct phages, thereby obtaining heterogeneous genome-reduced mutants. We isolated and sequenced 200 mutants with loss of up to 8-23% (3.3-35 kbp) of the original sequences. This allowed the identification of non-essential genes for phage propagation, although loss of these genes is mostly detrimental to phage fitness to various degrees. Notwithstanding this, mutants with higher infectious efficiency than their parental strains were characterized, indicating a trade-off between genome reduction and infectious fitness for phages. In conclusion, this study provides a foundation for future work to leverage the information generated by CiPGr in phage synthetic biology research.
Collapse
Affiliation(s)
- Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Shi
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianrong Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- To whom correspondence should be addressed. Tel: +86 755 8639 2674;
| |
Collapse
|
38
|
Hawkins NC, Kizziah JL, Hatoum-Aslan A, Dokland T. Structure and host specificity of Staphylococcus epidermidis bacteriophage Andhra. SCIENCE ADVANCES 2022; 8:eade0459. [PMID: 36449623 PMCID: PMC9710869 DOI: 10.1126/sciadv.ade0459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/14/2022] [Indexed: 05/28/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen of the human skin, often associated with infections of implanted medical devices. Staphylococcal picoviruses are a group of strictly lytic, short-tailed bacteriophages with compact genomes that are attractive candidates for therapeutic use. Here, we report the structure of the complete virion of S. epidermidis-infecting phage Andhra, determined using high-resolution cryo-electron microscopy, allowing atomic modeling of 11 capsid and tail proteins. The capsid is a T = 4 icosahedron containing a unique stabilizing capsid lining protein. The tail includes 12 trimers of a unique receptor binding protein (RBP), a lytic protein that also serves to anchor the RBPs to the tail stem, and a hexameric tail knob that acts as a gatekeeper for DNA ejection. Using structure prediction with AlphaFold, we identified the two proteins that comprise the tail tip heterooctamer. Our findings elucidate critical features for virion assembly, host recognition, and penetration.
Collapse
Affiliation(s)
- N’Toia C. Hawkins
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James L. Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
39
|
CryoEM structure and assembly mechanism of a bacterial virus genome gatekeeper. Nat Commun 2022; 13:7283. [PMID: 36435855 PMCID: PMC9701221 DOI: 10.1038/s41467-022-34999-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Numerous viruses package their dsDNA genome into preformed capsids through a portal gatekeeper that is subsequently closed. We report the structure of the DNA gatekeeper complex of bacteriophage SPP1 (gp612gp1512gp166) in the post-DNA packaging state at 2.7 Å resolution obtained by single particle cryo-electron microscopy. Comparison of the native SPP1 complex with assembly-naïve structures of individual components uncovered the complex program of conformational changes leading to its assembly. After DNA packaging, gp15 binds via its C-terminus to the gp6 oligomer positioning gp15 subunits for oligomerization. Gp15 refolds its inner loops creating an intersubunit β-barrel that establishes different types of contacts with six gp16 subunits. Gp16 binding and oligomerization is accompanied by folding of helices that close the portal channel to keep the viral genome inside the capsid. This mechanism of assembly has broad functional and evolutionary implications for viruses of the prokaryotic tailed viruses-herpesviruses lineage.
Collapse
|
40
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Davis CR, Backos D, Morais MC, Churchill MEA, Catalano CE. Characterization of a Primordial Major Capsid-Scaffolding Protein Complex in Icosahedral Virus Shell Assembly. J Mol Biol 2022; 434:167719. [PMID: 35820453 DOI: 10.1016/j.jmb.2022.167719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
Capsid assembly pathways are strongly conserved in the complex dsDNA viruses, where major capsid proteins (MCP) self-assemble into icosahedral procapsid shells, chaperoned by a scaffolding protein. Without a scaffold, the capsid proteins aggregate and form aberrant structures. This, coupled with the rapid co-polymerization of MCP and scaffolding proteins, has thwarted characterization of the earliest steps in shell assembly. Here we interrogate the structure and biophysical properties of a soluble, assembly-deficient phage lambda major capsid protein, MCP(W308A). The mutant protein is folded, soluble to high concentrations and binds to the scaffolding protein in an apparent SP2:MCP(W308A)1 stoichiometry but does not assemble beyond this initiating complex. The MCP(W308A) crystal structure was solved to 2.7 Å revealing the canonical HK97 fold in a "pre-assembly" conformation featuring the conserved N-arm and E-loops folded into the body of the protein. Structural, biophysical and computational analyses suggest that MCP(W308A) is thermodynamically trapped in this pre-assembly conformation precluding self-association interactions required for shell assembly. A model is described wherein dynamic interactions between MCP proteins play an essential role in high fidelity viral shell assembly. Scaffold-chaperoned MCP polymerization is a strongly conserved process in all the large dsDNA viruses and our results provide insight into this primordial complex in solution and have broad biological significance in our understanding of virus assembly mechanisms.
Collapse
Affiliation(s)
- Christal R Davis
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald Backos
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mair E A Churchill
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
42
|
Fang Q, Tang WC, Fokine A, Mahalingam M, Shao Q, Rossmann MG, Rao VB. Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly. Proc Natl Acad Sci U S A 2022; 119:e2203272119. [PMID: 36161892 PMCID: PMC9546572 DOI: 10.1073/pnas.2203272119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.
Collapse
Affiliation(s)
- Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wei-Chun Tang
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
43
|
Pajak J, Arya G. Molecular dynamics of DNA translocation by FtsK. Nucleic Acids Res 2022; 50:8459-8470. [PMID: 35947697 PMCID: PMC9410874 DOI: 10.1093/nar/gkac668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterial FtsK motor harvests energy from ATP to translocate double-stranded DNA during cell division. Here, we probe the molecular mechanisms underlying coordinated DNA translocation in FtsK by performing long timescale simulations of its hexameric assembly and individual subunits. From these simulations we predict signaling pathways that connect the ATPase active site to DNA-gripping residues, which allows the motor to coordinate its translocation activity with its ATPase activity. Additionally, we utilize well-tempered metadynamics simulations to compute free-energy landscapes that elucidate the extended-to-compact transition involved in force generation. We show that nucleotide binding promotes a compact conformation of a motor subunit, whereas the apo subunit is flexible. Together, our results support a mechanism whereby each ATP-bound subunit of the motor conforms to the helical pitch of DNA, and ATP hydrolysis/product release causes a subunit to lose grip of DNA. By ordinally engaging and disengaging with DNA, the FtsK motor unidirectionally translocates DNA.
Collapse
Affiliation(s)
- Joshua Pajak
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Dept. of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gaurav Arya
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
44
|
LeGault KN, Barth ZK, DePaola P, Seed KD. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res 2022; 50:8401-8417. [PMID: 35066583 PMCID: PMC9410903 DOI: 10.1093/nar/gkac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
PLEs (phage-inducible chromosomal island-like elements) are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism, PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1's genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1's genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro nuclease activity specifically for sites in ICP1's genome and we identify a motif that is necessary for NixI-mediated cleavage. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production, representing the most inhibitory PLE-encoded mechanism revealed to date. We identify distant NixI homologs in an expanded family of putative phage parasites in vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts' genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Peter DePaola
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
45
|
Villalta A, Schmitt A, Estrozi LF, Quemin ERJ, Alempic JM, Lartigue A, Pražák V, Belmudes L, Vasishtan D, Colmant AMG, Honoré FA, Couté Y, Grünewald K, Abergel C. The giant mimivirus 1.2 Mb genome is elegantly organized into a 30-nm diameter helical protein shield. eLife 2022; 11:e77607. [PMID: 35900198 PMCID: PMC9512402 DOI: 10.7554/elife.77607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.
Collapse
Affiliation(s)
- Alejandro Villalta
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Alain Schmitt
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Leandro F Estrozi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS)GrenobleFrance
| | - Emmanuelle RJ Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
| | - Jean-Marie Alempic
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Audrey Lartigue
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Lucid Belmudes
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Agathe MG Colmant
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Flora A Honoré
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Chantal Abergel
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| |
Collapse
|
46
|
Serwer P. A Perspective on Studies of Phage DNA Packaging Dynamics. Int J Mol Sci 2022; 23:ijms23147854. [PMID: 35887200 PMCID: PMC9324371 DOI: 10.3390/ijms23147854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022] Open
Abstract
The Special Issue “DNA Packaging Dynamics of Bacteriophages” is focused on an event that is among the physically simplest known events with biological character. Thus, phage DNA (and RNA) packaging is used as a relatively accessible model for physical analysis of all biological events. A similar perspective motivated early phage-directed work, which was a major contributor to early molecular biology. However, analysis of DNA packaging encounters the limitation that phages vary in difficulty of observing various aspects of their packaging. If a difficult-to-access aspect arises while using a well-studied phage, a counterstrategy is to (1) look for and use phages that provide a better access “window” and (2) integrate multi-phage-accessed information with the help of chemistry and physics. The assumption is that all phages are characterized by the same evolution-derived themes, although with variations. Universal principles will emerge from the themes. A spin-off of using this strategy is the isolation and characterization of the diverse phages needed for biomedicine. Below, I give examples in the areas of infectious disease, cancer, and neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
47
|
Li F, Li L, Zhang Y, Bai S, Sun L, Guan J, Zhang W, Cui X, Feng J, Tong Y. Isolation and characterization of the novel bacteriophage vB_SmaS_BUCT626 against Stenotrophomonas maltophilia. Virus Genes 2022; 58:458-466. [PMID: 35633495 DOI: 10.1007/s11262-022-01917-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Stenotrophomonas maltophilia has been recognized as an emerging global opportunistic pathogen, and it is intrinsically resistant to most antibiotics, which makes the limited choice for treating S. maltophilia infections. Bacteriophage with the proper characterization is considered as a promising alternative treatment option to control S. maltophilia infections. In this study, we isolated a novel Siphoviridae bacteriophage vB_SmaS_BUCT626 with lytic activity against S. maltophilia. Phage vB_SmaS_BUCT626 can lysis 10 of 20 S. maltophilia and was relatively stable at a wide range of temperatures (4-70 °C) and pH values (3.0-13.0) and exhibited good tolerance to chloroform. The genome of phage vB_SmaS_BUCT626 was a 61,662-bp linear double-stranded DNA molecule with a GC content of 56.2%, and contained 100 open-reading frames. It carried no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters. Together, these characteristics make phage vB_SmaS_BUCT626, a viable candidate as a biocontrol agent against S. maltophilia infection.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.,Taian City Central Hospital, Taian, 271000, China
| | - Lingxing Li
- Taian City Central Hospital, Taian, 271000, China
| | - Yong Zhang
- Taian City Central Hospital, Taian, 271000, China
| | - Shiyu Bai
- Taian City Central Hospital, Taian, 271000, China
| | - Li Sun
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jingli Guan
- Taian City Central Hospital, Taian, 271000, China
| | | | - Xiaogang Cui
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
48
|
Chen J, Gissendanner CR, Tikhe CV, Li HF, Sun Q, Husseneder C. Genomics and Geographic Diversity of Bacteriophages Associated With Endosymbionts in the Guts of Workers and Alates of Coptotermes Species (Blattodea: Rhinotermitidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subterranean termites depend nutritionally on their gut microbiota, which includes protozoa as well as taxonomically and functionally diverse bacteria. Our previous metavirome study revealed a high diversity and novel families of bacteriophages in the guts of Coptotermes formosanus workers from New Orleans, Louisiana, United States. Two assembled bacteriophage genomes (Phages TG-crAlp-04 and 06, family Podoviridae) existed in all colonies and showed similarity to a prophage (ProJPt-Bp1) previously sequenced from a bacterial endosymbiont (Candidatus Azobacteroides pseudotrichonymphae, CAP) of protozoa in the gut of a termite species of the genus Prorhinotermes from Taiwan. In this study the genomes of Phage TG-crAlp-04 and 06 were subjected to detailed functional annotation. Both phage genomes contained conserved genes for DNA packaging, head and tail morphogenesis, and phage replication. Approximately 30% of the amino acid sequences derived from genes in both genomes matched to those of ProJPt-Bp1 phage or other phages from the crAss-like phage group. No integrase was identified; the lack of a lysogeny module is a characteristic of crAss-like phages. Primers were designed to sequence conserved genes of the two phages and their putative host bacterium (CAP) to detect their presence in different termite species from native and introduced distribution ranges. Related strains of the host bacterium were found across different termite genera and geographic regions. Different termite species had separate CAP strains, but intraspecific geographical variation was low. These results together with the fact that CAP is an important intracellular symbiont of obligate cellulose-digesting protozoa, suggest that CAP is a core gut bacterium and co-evolved across several subterranean termite species. Variants of both crAss-like phages were detected in different Coptotermes species from the native and introduced range, but they did not differentiate by species or geographic region. Since similar phages were detected in different termite species, we propose the existence of a core virome associated with core bacterial endosymbionts of protozoa in the guts of subterranean termites. This work provides a strong basis for further study of the quadripartite relationship of termites, protozoa, bacteria, and bacteriophages.
Collapse
|
49
|
Fallon AM. Muramidase, nuclease, or hypothetical protein genes intervene between paired genes encoding DNA packaging terminase and portal proteins in Wolbachia phages and prophages. Virus Genes 2022; 58:327-349. [PMID: 35538383 DOI: 10.1007/s11262-022-01907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
Abstract
Genomes of the obligate intracellular alpha proteobacterium Wolbachia pipientis often encode prophage-like regions, and in a few cases, purified particles have been recovered. Because the structure of a conserved WO phage genome has been difficult to establish, we examined paired terminase and portal genes in Wolbachia phages and prophages, relative to those encoded by the gene transfer agent RcGTA from the free-living alpha proteobacterium Rhodobacter capsulatus. Terminase and portal proteins from Wolbachia have higher similarity to orthologs encoded by RcGTA than to orthologs encoded by bacteriophage lambda. In lambdoid phages, these proteins play key roles in assembly of mature phage particles, while in less well-studied gene transfer agents, terminase and portal proteins package random fragments of bacterial DNA, which could confound elucidation of WO phage genomes. In WO phages and prophages, terminase genes followed by a short gpW gene may be separated from the downstream portal gene by open-reading frames encoding a GH_25 hydrolase/muramidase, a PD-(D/E)XK nuclease, a hypothetical protein and/or a RelE/ParE toxin-antitoxin module. These aspects of gene organization, coupled with evidence for a low, non-inducible yield of WO phages, and the small size of WO phage particles described in the literature raise the possibility that Wolbachia prophage regions participate in processes that extend beyond conventional bacteriophage lysogeny and lytic replication. These intervening genes, and their possible relation to functions associated with GTAs, may contribute to variability among WO phage genomes recovered from physical particles and impact the ability of WO phages to act as transducing agents.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
50
|
Enteric Chromosomal Islands: DNA Packaging Specificity and Role of λ-like Helper Phage Terminase. Viruses 2022; 14:v14040818. [PMID: 35458547 PMCID: PMC9026076 DOI: 10.3390/v14040818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The phage-inducible chromosomal islands (PICIs) of Gram-negative bacteria are analogous to defective prophages that have lost the ability to propagate without the aid of a helper phage. PICIs have acquired genes that alter the genetic repertoire of the bacterial host, including supplying virulence factors. Recent work by the Penadés laboratory elucidates how a helper phage infection or prophage induction induces the island to excise from the bacterial chromosome, replicate, and become packaged into functional virions. PICIs lack a complete set of morphogenetic genes needed to construct mature virus particles. Rather, PICIs hijack virion assembly functions from an induced prophage acting as a helper phage. The hijacking strategy includes preventing the helper phage from packaging its own DNA while enabling PICI DNA packaging. In the case of recently described Gram-negative PICIs, the PICI changes the specificity of DNA packaging. This is achieved by an island-encoded protein (Rpp) that binds to the phage protein (TerS), which normally selects phage DNA for packaging from a DNA pool that includes the helper phage and host DNAs. The Rpp–TerS interaction prevents phage DNA packaging while sponsoring PICI DNA packaging. Our communication reviews published data about the hijacking mechanism and its implications for phage DNA packaging. We propose that the Rpp–TerS complex binds to a site in the island DNA that is positioned analogous to that of the phage DNA but has a completely different sequence. The critical role of TerS in the Rpp–TerS complex is to escort TerL to the PICI cosN, ensuring appropriate DNA cutting and packaging.
Collapse
|