1
|
Hua L, Song R, Hao X, Zhang J, Liu Y, Luo J, Ren X, Li H, Wang G, Rehman SU, Wu J, Fu D, Dong Y, Wang X, Zhang C, Chen S. Manipulation of the brown glume and internode 1 gene leads to alterations in the colouration of lignified tissues, lignin content and pathogen resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1548-1564. [PMID: 39905983 DOI: 10.1111/pbi.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Lignin is a crucial component of the cell wall, providing mechanical support and protection against biotic and abiotic stresses. However, little is known about wheat lignin-related mutants and their roles in pathogen defence. Here, we identified an ethyl methanesulfonate (EMS)-derived Aegilops tauschii mutant named brown glume and internode 1 (bgi1), which exhibits reddish-brown pigmentation in various tissues, including internodes, spikes and glumes. Using map-based cloning and single nucleotide polymorphism (SNP) analysis, we identified AET6Gv20438400 (BGI1) as the leading candidate gene, encoding the TaCAD1 protein. The mutation occurred in the splice acceptor site of the first intron, resulting in a premature stop codon in BGI1. We validated the function of BGI1 using loss-of-function EMS and gene editing knockout mutants, both of which displayed reddish-brown pigmentation in lignified tissues. BGI1 knockout mutants exhibited reduced lignin content and shearing force relative to wild type, while BGI1 overexpression transgenic plants showed increased lignin content and enhanced disease resistance against common root rot and Fusarium crown rot. We confirmed that BGI1 exhibits CAD activity both in vitro and in vivo, playing an important role in lignin biosynthesis. BGI1 was highly expressed in the stem and spike, with its localisation observed in the cytoplasm. Transcriptome analysis revealed the regulatory networks associated with BGI1. Finally, we demonstrated that BGI1 interacts with TaPYL-1D, potentially involved in the abscisic acid signalling pathway. The identification and functional characterisation of BGI1 significantly advance our understanding of CAD proteins in lignin biosynthesis and plant defence against pathogen infection in wheat.
Collapse
Affiliation(s)
- Lei Hua
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Rui Song
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Xiaohua Hao
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Yanna Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Jing Luo
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongna Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Guiping Wang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Shams Ur Rehman
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Daolin Fu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yuxiu Dong
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Chaozhong Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Shandong, China
| |
Collapse
|
2
|
Tsuzuki K, Suzuki T, Nishiyama K, Seto Y. Investigation of trans-to-cis isomerization of cinnamic acid in Arabidopsis using stable-isotope-labeled cinnamic acid. Biosci Biotechnol Biochem 2025; 89:743-749. [PMID: 39993920 DOI: 10.1093/bbb/zbaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Cinnamic acid (CA) is a widely distributed metabolite in plant species and is a precursor of many important plant molecules such as lignin and flavonoids. CA exists as both trans and cis isomers; the trans isomer is more common in nature. Previous reports have revealed that the cis isomer of CA (cis-CA) has auxin-like activity when exogenously applied. Moreover, cis-CA was found as an endogenous compound in planta. Here, we report the chemical synthesis of stable-isotope-labeled trans- and cis-CA. Using these labeled compounds as internal standards, we developed a quantification method of CA using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry (LC-MS/MS). We identified cis-CA in diverse plant species, including liverwort, moss, and lycophyte, implying an important role of cis-CA in the terrestrial plant kingdom.
Collapse
Affiliation(s)
- Kei Tsuzuki
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Taiki Suzuki
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Kotaro Nishiyama
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
3
|
Choolaei Z, Khusnutdinova AN, Skarina T, Stogios P, Diep P, Lemak S, Edwards EA, Savchenko A, Yakunin AF. Structural and Biochemical Insights into Lignin-Oxidizing Activity of Bacterial Peroxidases against Soluble Substrates and Kraft Lignin. ACS Chem Biol 2025; 20:830-844. [PMID: 40145573 DOI: 10.1021/acschembio.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Great interest has recently been drawn to the production of value-added products from lignin; however, its recalcitrance and high chemical complexity have made this challenging. Dye-decolorizing peroxidases and catalase-peroxidases are among the enzymes that are recognized to play important roles in environmental lignin oxidation. However, bacterial lignin-oxidizing enzymes remain less characterized compared to related proteins from fungi. In this study, screening of 18 purified bacterial peroxidases against the general chromogenic substrate 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) revealed the presence of peroxidase activity in all proteins. Agarose plate-based screens with kraft lignin identified detectable and high lignin oxidation activity in 15 purified proteins. Crystal structures were determined for the DyP-type peroxidases FC2591 from Frankia casuarinae, PF3257 from Pseudomonas fluorescens, and PR9465 from Pseudomonas rhizosphaerae. The structures revealed the presence of hemes with bound oxygens coordinated by conserved His, Arg, and Asp residues as well as three molecular tunnels connecting the heme with the protein surface. Structure-based site-directed mutagenesis of FC2591 identified at least five active site residues as essential for oxidase activity against both ABTS and lignin, whereas the S370A mutant protein showed a three- to 4-fold activity increase with both substrates. HPLC analysis of reaction products of the wild-type FC2591 and S370A mutant proteins with the model lignin dimer guaiacylglycerol-β-guaiacyl ether and kraft lignin revealed the formation of products consistent with the radical coupling of the reaction intermediates. Thus, this study identified novel bacterial heme peroxidases with lignin oxidation activity and provided further insights into our understanding of these enzymes.
Collapse
Affiliation(s)
- Zahra Choolaei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, Calgary T2N 4N1, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| |
Collapse
|
4
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Chu LY, Liu T, Xia PL, Li JP, Tang ZR, Zheng YL, Wang XP, Zhang JM, Xu RB. NtWRKY28 orchestrates flavonoid and lignin biosynthesis to defense aphid attack in tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109673. [PMID: 39987621 DOI: 10.1016/j.plaphy.2025.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
WRKY transcript factors(TFs) play crucial roles in plant response to biotic and abiotic stresses. However, how WRKY TFs response to aphid feeding are still poorly understood. Herein, NtWRKY28, a tobacco WRKY transcript factor gene induced by Myzus persicae feeding, was identified, and its regulatory roles were characterized in response to Myzus persicae feeding. The results showed that NtWRKY28 expression was induced by infestation of Myzus persicae, mechanical injury and MeJA treatment in tobacco plants. Overexpression of NtWRKY28 enhanced tobacco plant resistance to Myzus persicae, while silence of NtWRKY28 rendered tobacco plants more susceptible to infestation of Myzus persicae. Additionally, NtWRKY28 promoted the content of flavonoids and lignin through positively modulating the expression of genes involved in phenylpropanoid pathway, flavonoid and lignin biosynthesis. Our results not only provide new insights into the mechanism that WRKY TFs regulate tobacoo resistance to aphids, but also lay a theoretical foundation for breeding new tobacco varieties against aphids.
Collapse
Affiliation(s)
- Long-Yan Chu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Ting Liu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China; Tobacco Monopoly Bureau of Hefeng County, Enshi, Hubei Province, 445800, China
| | - Peng-Liang Xia
- Enshi Tobacco Company in Hubei Province, Enshi, Hubei Hubei Province, 445000, China
| | - Jian-Ping Li
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zi-Ru Tang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Yu-Ling Zheng
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Xiang-Ping Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Jian-Min Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests/ College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China.
| | - Ru-Bing Xu
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
6
|
Guo LN, Gao Q, Ding JW, Xiong ZW, Chen S, Li X, Li DQ, Li J, Liu ZQ. Lignin: Dissolution, modification, and derived materials. Int J Biol Macromol 2025; 309:142748. [PMID: 40180084 DOI: 10.1016/j.ijbiomac.2025.142748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Global environmental issues and energy dilemmas have made renewable and sustainable technologies become on the cutting edge. Lignin, the most abundant non-petroleum polyhydroxy aromatic macromolecule, has been widely studied to convert to platform chemicals via violent cleavage. This makes good use of lignin, which can effectively remit environmental and energy problems. However, the self-contained three-dimensional structure was wasted in this process, and thus, the synthesis of lignin-based materials has become another important research direction. Meanwhile, the value-added utilization of technical lignin is still a problem at present. There are some limitations in taking advantage of lignin due to the different sources and isolation routes, resulting in poor solubility and compatibility in application. Technical lignins contain aliphatic hydroxyl, phenolic hydroxyl, methoxyl, and other oxygen-containing functional groups, which can be further chemically modified to adjust the technical lignins of physicochemical properties for forming available materials rather than just being used as fuel. Here, we summarized the development of technical lignins, including the following aspects: (1) the chemical structures of lignins, the critical factors that influenced the dissolution of lignin, which induced different dispersion states of lignin in the as-prepared materials; (2) the dissolution behavior and mechanism for lignins; (3) the potential chemical modification routes for lignin; and (4) preparation and properties of lignin-based hybrid and composite materials. This comprehensive review can provide valuable information on lignin dissolution, chemical modification, and further employment in the fabrication of materials.
Collapse
Affiliation(s)
- Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Sheng Chen
- Beijing Key Laboratory of lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Zun-Qi Liu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| |
Collapse
|
7
|
Zhang M, Li X, Wang X, Jiang S, Zhang J, Sun M, Zhou Z, Zhang J, Li M, Lv Y, Qi E, Tian Z, Zhu H, Zhang X, Zhao X, Xu C, Lübberstedt T, Zhang X, Yang X, Zhou C, Liu H. Modulation of lignin and anthocyanin homeostasis by GTP cyclohydrolase1 in maize. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40154978 DOI: 10.1111/pbi.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Maize is a key biomass resource with wide agricultural applications. Anthocyanins, potent antioxidants, offer health benefits like reducing oxidative stress. The biosynthesis of anthocyanins competes with that of lignin for shared metabolic precursors, which can lead to trade-offs in plant growth and feed quality. Higher lignin content can decrease silage digestibility, posing challenges for livestock feed. The maize brown midrib 6 (bm6) mutant, known for reduced lignin, has an unclear genetic basis. Here, we identify ZmGCH1 as the candidate gene for bm6 through fine mapping. Mutations in ZmGCH1 shift precursors from lignin to anthocyanin biosynthesis. Furthermore, we show that ZmGCH1 interacts with ZmPEBP15 to modulate chalcone synthase activity, thereby stabilizing the allocation of precursors between lignin and anthocyanin pathways. To evaluate the practical implications of our findings, we introduced the bm6 mutation into Zhengdan958 and Xianyu335. In vitro rumen digestion assays confirmed that the introduction of the bm6 mutation significantly improved silage digestibility. This discovery not only holds great potential for enhancing silage digestibility but also provides a broader strategy for optimizing maize production to better meet the increasing demands of both the food and livestock feed.
Collapse
Affiliation(s)
- Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaohan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zixian Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jinxiao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanxiao Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Enlong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziang Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongjie Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| |
Collapse
|
8
|
Wang N, Takada M, Sakamoto S, Vanholme R, Goeminne G, Kim H, Nagano S, Takata N, Kamimura N, Uesugi M, Izumi-Nakagawa A, Masai E, Mitsuda N, Boerjan W, Ralph J, Kajita S. Effects of feruloyl-CoA 6'-hydroxylase 1 overexpression on lignin and cell wall characteristics in transgenic hybrid aspen. FRONTIERS IN PLANT SCIENCE 2025; 16:1543168. [PMID: 40225026 PMCID: PMC11985793 DOI: 10.3389/fpls.2025.1543168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
In plant cell walls, lignin, cellulose, and the hemicelluloses form intricate three-dimensional structures. Owing to its complexity, lignin often acts as a bottleneck for the efficient utilization of polysaccharide components as biochemicals and functional materials. A promising approach to mitigate and/or overcome lignin recalcitrance is the qualitative and quantitative modification of lignin by genetic engineering. Feruloyl-CoA 6'-hydroxylase (F6'H1) is a 2-oxoglutarate-dependent dioxygenase that catalyzes the conversion of feruloyl-CoA, one of the intermediates of the lignin biosynthetic pathway, into 6'-hydroxyferuloyl-CoA, the precursor of scopoletin (7-hydroxy-6-methoxycoumarin). In a previous study with Arabidopsis thaliana, we demonstrated that overexpression of F6'H1 under a xylem-preferential promoter led to scopoletin incorporation into the cell wall. This altered the chemical structure of lignin without affecting lignin content or saccharification efficiency. In the present study, the same F6'H1 construct was introduced into hybrid aspen (Populus tremula × tremuloides T89), a model woody plant, and its effects on plant morphology, lignin chemical structure, global gene expression, and phenolic metabolism were examined. The transgenic plants successfully overproduced scopoletin while exhibiting severe growth retardation, a phenotype not previously observed in Arabidopsis. Scopoletin accumulation was most pronounced in the secondary walls of tracheary elements and the compound middle lamella, with low levels in the fiber cell walls. Overexpression of F6'H1 also affected the metabolism of aromatics, including lignin precursors. Heteronuclear single-quantum coherence (HSQC) NMR spectroscopy revealed that scopoletin in cell walls was bound to lignin, leading to a reduction in lignin content and changes in its monomeric composition and molar mass distribution. Furthermore, the enzymatic saccharification efficiency of the transgenic cell walls was more than three times higher than that of the wild-type plants, even without pretreatment. Although addressing growth inhibition remains a priority, incorporating scopoletin into lignin demonstrates significant potential for improving woody biomass utilization.
Collapse
Affiliation(s)
- Naning Wang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masatsugu Takada
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Hoon Kim
- United States (US) Department of Energy, Great Lakes Bioenergy Research Center, and The Department of Biochemistry, Wisconsin Energy Institute, Madison, WI, United States
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Mikiko Uesugi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Akiko Izumi-Nakagawa
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- United States (US) Department of Energy, Great Lakes Bioenergy Research Center, and The Department of Biochemistry, Wisconsin Energy Institute, Madison, WI, United States
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
9
|
Rivera-Toro DM, de Folter S, Alvarez-Venegas R. CRISPR/dCas12a-mediated activation of SlPAL2 enhances tomato resistance against bacterial canker disease. PLoS One 2025; 20:e0320436. [PMID: 40138366 PMCID: PMC11940823 DOI: 10.1371/journal.pone.0320436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Crop protection is essential for maintaining and improving agricultural productivity. While pesticides are commonly used to control pests, they pose several challenges, including environmental harm and health risks. Alternative strategies to pesticides include breeding resistant crop varieties, biological control, and utilizing genome-editing tools like CRISPR/Cas. However, the application of epigenome editing, particularly CRISPR activation (CRISPRa), in plants remains underexplored. Phenylalanine ammonia-lyase (PAL), a key enzyme in the phenylpropanoid pathway, plays a pivotal role in plant defense by producing lignin and other secondary metabolites essential for pathogen resistance. In this study, we engineered tomato plants by fusing the SET-domain of the SlATX1 coding gene, a histone H3 lysine 4 tri-methyltransferase, to dCas12a, targeting the SlPAL2 promoter with the aim to increase PAL2 gene expression. CRISPRa-edited plants demonstrated increased deposition of the H3K4me3 epigenetic mark and significantly upregulated SlPAL2 expression. This enhanced lignin accumulation and conferred increased resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) without significant reduction in plant height or fruit yield. Disease resistance was also associated with reduced pathogen load and lesion size, and higher lignin levels persisted even after SlPAL2 expression declined post-infection. These findings highlight the potential of CRISPRa for reprogramming plant defense responses through targeted histone modifications, offering a sustainable approach for crop improvement. Furthermore, CRISPRa could also be applied to enhance crop resilience in other contexts, such as addressing food security challenges by enhancing productivity.
Collapse
Affiliation(s)
- Diana Marcela Rivera-Toro
- Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, México,
| | - Stefan de Folter
- Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Advanced Genomics Unit, Irapuato, Guanajuato, México
| | - Raúl Alvarez-Venegas
- Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, México,
| |
Collapse
|
10
|
Cai XY, Tang HT, Wang YZ, Ul Haq I, Wang JD, Hou YM. Salivary effector SfPDI modulates plant defense responses to enhance foraging efficiency of Spodoptera frugiperda. Int J Biol Macromol 2025; 308:142548. [PMID: 40147661 DOI: 10.1016/j.ijbiomac.2025.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Research on the interactions between herbivorous insects and plants, facilitated by insect secretions, has increasingly emphasized species with chewing mandibles over time. However, the molecular mechanisms underlying the interaction between Spodoptera frugiperda and plants remain poorly understood. In this study, we identified a protein disulfide isomerase (SfPDI) from the salivary glands of S. frugiperda that regulates the interaction between S. frugiperda and plants. We found that SfPDI is highly expressed in the salivary glands of S. frugiperda and is secreted into plants as a secretory protein. The RNAi revealed that SfPDI contributes to the growth and development of S. frugiperda on host plants, while its overexpression in tobacco induces necrosis in tobacco leaves and triggers a burst of reactive oxygen species (ROS). Differentially expressed genes suggested that SfPDI may suppresses the expression of plant JA by positively regulating MYC2 and TIFYs and negatively regulating WRKYs. Notably, SfPDI may modulate these high expression of receptors (NB-LRR, GL-RLK, and RLK) lead to hypersensitive response (HR) cell death and the accumulation of lignification of plant. This study provides a foundation for further exploring insect-plant interaction mechanisms and a theoretical basis for developing insect-resistant germplasm and environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua-Tao Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Zhou Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Da Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - You-Ming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Lü XP, Lü ZL, Zhang YM, Li YH, Li JL, Shao KZ, Ren W, Rensing C, Zhang H, Zhang JL. Lignin synthesis plays an essential role in the adaptation of Haloxylon ammodendron to adverse environments. Int J Biol Macromol 2025; 308:142321. [PMID: 40139589 DOI: 10.1016/j.ijbiomac.2025.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Haloxylon ammodendron is a desert shrub exhibiting remarkable tolerance to adverse environments, making it an excellent model for studying the mechanisms by which plants adapt to harsh environmental conditions. Lignin, a crucial component of plants, has been shown to play an important role in the adaptation of H. ammodendron to osmotic and salt stress. Therefore, this study was focused on the role of lignin synthesis by H. ammodendron in its adaptation to osmotic and salt stress (imposed by 0.4 % sorbitol and 350 mM NaCl, respectively). We investigated lignin deposition, the polymerization of lignin monomers, water content and adjustment of osmotic potential in assimilating branches of H. ammodendron, as well as gene expression and small molecules related to lignin biosynthesis. The results indicated that osmotic and salt stress induced the activity of peroxidase (POD) and laccase (LAC), while H2O2 concentration also increased. The genes encoding functions associated with lignin biosynthesis in both shoots and roots were upregulated and lignin accumulation in H. ammodendron increased, thereby maintaining osmotic potential and shoot water content under stress. These results showed that osmotic and salt stresses significantly increased lignin production in H. ammodendron, polymerization of lignin monomers, and the expression of genes encoding functions correlated to lignin synthesis. In addition, under osmotic stress, phenylalanine and p-coumaric acid increased in the shoots and roots, as did coniferyl alcohol and sinapyl alcohol. Overall, this study confirmed the role of lignin biosynthesis in the stress resistance of H. ammodendron, providing further insights into its adaptive strategies to adversity, and suggesting new ideas for improving the resistance of cultivated plants.
Collapse
Affiliation(s)
- Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Ming Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Jia-Lü Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Kun-Zhong Shao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Ghosh S, Pramanik K. Extraction of lignin from sustainable lignocellulosic food waste resources using a green deep eutectic solvent system and its property characterization. Int J Biol Macromol 2025; 307:142094. [PMID: 40101818 DOI: 10.1016/j.ijbiomac.2025.142094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Food waste, an abundant and widely available lignocellulosic biomass is a potential feedstock for recovering value-added products like lignin possessing various valuable properties through valorisation thereby minimizing its disposal and hence detrimental impact to the environment. The present study investigates the efficacy of the choline chloride-oxalic acid DES system for extracting lignin biomaterial from a variety of food wastes namely potato peel, onion skin, tea residues, banana peel and pomegranate peel wastes and its properties. The extraction experiments were carried out at 100°C for 6h using DES with a solid-to-liquid ratio of 1: 10 (w/v). The yield and purity of the extracted lignin from different biowastes were determined. A varied yield and purity of lignin was obtained depending on the sources of waste biomass. However, the highest lignin yield of 22.439 ± 4.38 % and purity of 77 ± 1.95 % was obtained with pomegranate peel. A comparable lignin yield (21.348 ± 2.40 %) and purity (75 ± 1.26 %) was also achieved with banana peel. UV-Visible and FTIR analyses revealed the existence of aromatic and major functional groups of lignin. XRD analysis confirmed its amorphous nature and its spherical or ellipsoidal morphology revealed by FESEM image analysis. The presence of hydroxyl ions, phenols, and carboxylic acids, and protons in the methoxy group and aliphatic and aromatic moieties in the lignin were identified by negative zeta potential values and 1H NMR spectra analysis respectively. The quantity of major linkages like β-O-4', β - 5' and β - β' in the lignin was determined by 2D-HSQC NMR. The lignin also exhibited antimicrobial and antioxidant activities. The elemental composition and higher heating values were determined by CHNSO analysis. Overall, pomegranate and banana peels are the most prospective food wastes found in this study for extracting lignin with high yield. The study further demonstrated the potentiality of the green DES for food waste valorisation to extract lignin.
Collapse
Affiliation(s)
- Sayantan Ghosh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
13
|
Li X, Huang S, Wu X, Deng J, Lian H, Liimatainen H. Reactive amino acid-derived deep eutectic solvents for tailored lignin modification. Int J Biol Macromol 2025; 307:142003. [PMID: 40086554 DOI: 10.1016/j.ijbiomac.2025.142003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The heterogeneous structure and characteristic variability of industrial lignin present key challenges that hinder its use in numerous advanced scenarios. Herein, we explore amino acid-derived deep eutectic solvents (AADESs) featuring diverse side chain structures (glycine, alanine, valine, lysine (Lys), and proline) and serving as reactive media for modifying alkali lignin. For the first time, quantum chemistry and molecular dynamics simulations were employed to demonstrate the formation mechanism of AADESs. Among all the considered systems, the Lys-based system proved to be the most stable system owing to its strong nucleophilicity. Unlike choline chloride-based DES, the strong nucleophilicity of Lys could induce nanocrystallization and targeted modification of α-OH to attach phenolic hydroxyl in lignin. Breaking the β-O-4 and β-β linkages within lignin increased the phenolic hydroxyl content of the lignin by up to ~50 %. Additionally, the -NH2 of amino acids can further increase the reactive sites of lignin, improve thermal stability, and facilitate further chemical modification. The reactivity of AADESs was notably influenced by the nucleophilicity of the side chains of amino acids, as also supported by the simulations. Overall, this research provides in-depth insights into lignin modification within sustainable and reactive solvents, advancing lignin valorization for high-end applications.
Collapse
Affiliation(s)
- Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Simiao Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Henrikki Liimatainen
- Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland.
| |
Collapse
|
14
|
Liu D, He J, Li Q, Zhang X, Wang Y, Sun Q, Wang W, Zhang M, Wang Y, Xu H, Fang L, Jiang L, Liu S, Chen L, Tian Y, Liu X, Wang R, Zhang Z, Chern M, Dong X, Wang H, Liu Y, Ronald PC, Wan J. A WRKY transcription factor confers broad-spectrum resistance to biotic stresses and yield stability in rice. Proc Natl Acad Sci U S A 2025; 122:e2411164122. [PMID: 40042898 PMCID: PMC11912400 DOI: 10.1073/pnas.2411164122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Plants are subject to attack by diverse pests and pathogens. Few genes conferring broad-spectrum resistance to both insects and pathogens have been identified. Because of the growth-defense tradeoff, it is often challenging to balance biotic stress resistance and yield for crops. Here, we report that OsWRKY36 suppresses the resistance to insects and pathogens via transcriptional repression of Phenylalanine Ammonia Lyases (PALs), a key enzyme in phenylpropanoid pathway in rice. Knocking out OsWRKY36 causes elevated lignin biosynthesis and increased sclerenchyma thickness of leaf sheath, leading to enhanced resistance to multiple pests and pathogens. Additionally, loss of OsWRKY36 also derepresses the transcription of Ideal Plant Architecture 1 (IPA1) and MONOCULM2 (MOC2), resulting in increased spikelet number per panicle and tiller number. These findings provide mechanistic insights into biotic stress tolerance in rice and offer a promising strategy to breed rice cultivars with broad-spectrum resistance to insects and pathogens while maintaining stable yield.
Collapse
Affiliation(s)
- Daoming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Qi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Yongsheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Quanguang Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Wenhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Menglong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Haosen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
| | - Liang Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 211800, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- Joint BioEnergy Institute, Emeryville, CA 94608
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Observation and Research Station of Rice Germplasm Resources, Sanya Institute of Nanjing Agricultural University, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 211800, China
- Biological Breeding Zhongshan Laboratory, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Cui S, Takeda-Kimura Y, Wakatake T, Luo J, Tobimatsu Y, Yoshida S. Striga hermonthica induces lignin deposition at the root tip to facilitate prehaustorium formation and obligate parasitism. PLANT COMMUNICATIONS 2025:101294. [PMID: 40033692 DOI: 10.1016/j.xplc.2025.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/18/2024] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Striga hermonthica, an obligate parasitic plant that causes severe agricultural damage, recognizes its hosts by sensing haustorium-inducing factors (HIFs). Perception of HIFs induces the rapid transformation of S. hermonthica radicles into prehaustoria, structures that enable host invasion and mature into haustoria. HIFs consist of various aromatic compounds, including quinones, lignin monomers, and flavonoids. However, the downstream molecular pathways that orchestrate these developmental events are largely unknown. Here, we report that S. hermonthica root-tip cells rapidly deposit lignin, a major cell wall component, in response to HIFs. In addition to enhancing lignin levels, HIFs strongly induce genes involved in lignin monomer biosynthesis and polymerization, including several respiratory burst oxidase homologs (RBOHs) and class III peroxidases. Disruption of lignin monomer biosynthesis compromises prehaustorium formation, whereas HIF-induced class III peroxidases facilitate the process by promoting lignification. Our study demonstrates that cell wall lignification is a converged cellular process downstream of various HIFs that guides root meristematic cells in prehaustorium development.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; State Key Laboratory of Plant Diversity and Prominent Crops, Beijing, China.
| | | | - Takanori Wakatake
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Jun Luo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
16
|
Mottiar Y, Tschaplinski T, Ralph J, Mansfield S. Suppression of Chorismate Mutase 1 in Hybrid Poplar to Investigate Potential Redundancy in the Supply of Lignin Precursors. PLANT DIRECT 2025; 9:e70053. [PMID: 40084040 PMCID: PMC11897905 DOI: 10.1002/pld3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Chorismate is an important branchpoint metabolite in the biosynthesis of lignin and a wide array of metabolites in plants. Chorismate mutase (CM), the enzyme responsible for transforming chorismate into prephenate, is a key regulator of metabolic flux towards the synthesis of aromatic amino acids and onwards to lignin. We examined three CM genes in hybrid poplar (Populus alba × grandidentata; P39, abbreviated as Pa×g) and used RNA interference (RNAi) to suppress the expression of Pa×gCM1, the most highly expressed isoform found in xylem tissue. Although this strategy was successful in disrupting Pa×gCM1 transcripts, there was also an unanticipated increase in lignin content, a shift towards guaiacyl lignin units, and more xylem vessels with smaller lumen areas, at least in the most severely affected transgenic line. This was accompanied by compensatory expression of the other two CM isoforms, Pa×gCM2 and Pa×gCM3, as well as widespread changes in gene expression and metabolism. This study investigates potential redundancy within the CM gene family in the developing xylem of poplar and highlights the pivotal role of chorismate in plant metabolism, development, and physiology.
Collapse
Affiliation(s)
- Yaseen Mottiar
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - John Ralph
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
17
|
Wang SX, Waite JH. Catechol redox maintenance in mussel adhesion. Nat Rev Chem 2025; 9:159-172. [PMID: 39809861 DOI: 10.1038/s41570-024-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones. Mussel byssus has a typical 'core-shell' architecture in which the core is a degradable fibrous block copolymer consisting of collagen and fibroin coated by robust protein networks stabilized by bis-catecholato-metal and tris-catecholato-metal ion complexes. The coating is well-adapted to protect the core against abrasion, hydrolysis and microbial attack, but it is not impervious to oxidative damage, which, during function, is promptly repaired by redox poise via coacervated catechol-rich and thiol-rich reducing interlayers and inclusions. However, when the e- and H+ equivalents from these reducing reservoirs are depleted, coating damage accumulates, leading to exposure of the vulnerable core to environmental attack. Heeding and translating these strategies is essential for deploying catechols with longer service lifetimes and designing more sustainable next-generation polymeric adhesives.
Collapse
Affiliation(s)
- Stephanie X Wang
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cell & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
18
|
Sheraz M, Sun XF, Siddiqui A, Hu S, Song Z. Research Advances in Natural Polymers for Environmental Remediation. Polymers (Basel) 2025; 17:559. [PMID: 40076053 PMCID: PMC11902826 DOI: 10.3390/polym17050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The search for sustainable and efficient remediation techniques is required to control increasing environmental pollution caused by synthetic dyes, heavy metal ions, and other harmful pollutants. From this point of view, natural polymers like chitosan, cellulose, lignin, and pectin have been found highly promising due to their biodegradability, availability, and possibility of chemical functionalization. Natural polymers possess inherent adsorption properties that can be further enhanced by cross-linking and surface activation. This review discusses the main properties, adsorption mechanisms, and functional groups such as hydroxyl, carboxyl, and amino groups responsible for pollutant sequestration. The paper also emphasizes the effectiveness of natural polymers in removing heavy metals and dyes from wastewater and discusses recent advances in polymer modifications, including ionic crosslinking and grafting. This study underlines the ecological potential of natural polymer-based adsorbents in the treatment of wastewater and the protection of the environment as a sustainable solution to pollution challenges.
Collapse
Affiliation(s)
- Muhammad Sheraz
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Adeena Siddiqui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Zhengcang Song
- Powerchina Northwest Engineering, Xi’an Port Navigation Shipbuilding Technology Corporation Limited, Xi’an 710065, China;
| |
Collapse
|
19
|
Huda NU, Ul-Hamid A, Zaheer M. A silica-supported palladium oxide catalyst (PdO@MCM-41) selectively cleaves ether linkages in lignin model compounds and alkali lignin via intramolecular hydrogen transfer. RSC Adv 2025; 15:5989-5999. [PMID: 39995450 PMCID: PMC11848713 DOI: 10.1039/d4ra08934k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Lignin is a potential renewable feedstock for the production of aromatic chemicals but due to the recalcitrant nature of its aryl ether bonds (C-O), and recondensation of depolymerized products, it is challenging to produce aromatic compounds with selectivity in high yield. Here we present that a heterogeneous catalyst containing highly dispersed palladium oxide (PdO) particles supported on mesoporous silica (MCM-41) catalyzes oxidant-free oxidation (dehydrogenation) of hydroxyl group at α-carbon of β-O-4 linkage in lignin model compounds and alkali lignin. The catalyst was synthesized via a molecular approach utilizing molecular designed dispersion of palladium diketonate complex followed by calcination. The oxidized lignin models provide high individual yields of monomeric products such as phenol (97%) at moderate temperature (120 °C) through intramolecular hydrogen transfer in green solvents (ethanol and water). The process, therefore, doesn't require any external oxidant, or reductant for cleaving the most abundant β-O-4 linkage of lignin model compounds and tolerates electron donating or withdrawing substitutes at the benzene ring. The approach was successfully extended to alkali lignin where 89% of lignin oil was produced from alkali lignin containing high yield (26 wt%) of monomeric products such as vanillin (2 wt%), benzaldehyde (12 wt%) and benzoic acid (12 wt%).
Collapse
Affiliation(s)
- Noor Ul Huda
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| |
Collapse
|
20
|
Kim J, Lee SH, Yang J. Revealing the Calcium Assisted Partial Catalytic Graphitization of Lignin-Derived Hard Carbon Anode and Its Electrochemical Behaviors in Sodium Ion Batteries. Polymers (Basel) 2025; 17:540. [PMID: 40006204 PMCID: PMC11859861 DOI: 10.3390/polym17040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Among the various contenders for next-generation sodium-ion battery anodes, hard carbons stand out for their notable reversible capacity, extended cycle life, and cost-effectiveness. Their economic advantage can be further enhanced by using inexpensive precursors, such as biomass waste. Lignin, one of the most abundant natural biopolymers on Earth, which can be readily obtained from wood, possesses a three-dimensional amorphous polymeric structure, making it a suitable candidate for producing carbonaceous materials through appropriate carbonization processes for energy storage applications. In this work, we synthesized hard carbon using lignin containing CaSO4 to facilitate partial catalytic graphitization to improve the microstructural features, such as interlayer spacing, degree of disorder, and surface defects. Partial catalytic graphitization enables hard carbon to develop an ordered structure compared with hard carbon carbonized without CaSO4 as analyzed by X-ray diffraction, Raman spectroscopy, scanning/transmission electron microscopy, and X-ray photoelectron spectroscopy. The CaSO4-aided partially catalytic graphitized hard carbon (CCG-HC) exhibited improved electrochemical performance, showing a larger portion of the low-voltage plateau-an indicator typically associated with a highly ordered structure-compared to simply carbonized hard carbon (HC). Notably, CCG-HC delivered a reversible capacity of 237 mAh g-1, retained 95.6% of its capacity over 100 cycles at 50 mA g-1, and exhibited 127 mAh g-1 at 1.0 A g-1.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea;
| | | | - Junghoon Yang
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea;
| |
Collapse
|
21
|
Allemann MN, Kato R, Carper DL, Hochanadel LH, Alexander WG, Giannone RJ, Kamimura N, Masai E, Michener JK. Laboratory evolution in Novosphingobium aromaticivorans enables rapid catabolism of a model lignin-derived aromatic dimer. Appl Environ Microbiol 2025; 91:e0208124. [PMID: 39846750 PMCID: PMC11837543 DOI: 10.1128/aem.02081-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated. Here, we used experimental evolution to identify mutant strains of Novosphingobium aromaticivorans with improved catabolism of a model aromatic dimer containing a β-O-4 linkage, guaiacylglycerol-β-guaiacyl ether (GGE). We identified several parallel causal mutations, including a single nucleotide polymorphism in the promoter of an uncharacterized gene that roughly doubled the growth yield with GGE. We characterized the associated enzyme and demonstrated that it oxidizes an intermediate in GGE catabolism, β-hydroxypropiovanillone, to vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers our understanding of catabolic pathways for lignin-derived aromatic compounds.IMPORTANCELignin degradation is a key step for both carbon cycling in nature and biomass conversion to fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the complexity of lignin means that full mineralization requires numerous catabolic pathways and often results in slow growth. Using experimental evolution, we identified an uncharacterized enzyme for the catabolism of a lignin-derived aromatic monomer, β-hydroxypropiovanillone. A single nucleotide polymorphism in the promoter of the associated gene significantly increased bacterial growth with either β-hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-derived aromatic compounds may be due to misregulation under laboratory conditions rather than inherent catabolic challenges.
Collapse
Affiliation(s)
- Marco N. Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
22
|
Lv S, Yang Y, Zhang X, He Y, Wang G, Hong N, Wang L. PcMYB44 regulated host resistance to Botryosphaeria dothidea through activation of lignin biosynthesis and disease-resistance gene expression in pear. Int J Biol Macromol 2025; 306:141255. [PMID: 39978501 DOI: 10.1016/j.ijbiomac.2025.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Pear ring rot disease, the pathogen of Botryosphaeria dothidea causes significant threat to the healthy development of the pear industry, therefore the exploration of disease-resistant gene resources is crucial for disease prevention and control. Members of the R2R3-MYB subfamily play important roles in regulating pathogen resistance in plants, however the gene function in regulating host resistance in pear remains unclear. In this study, the role of PcMYB44 were investigated in regulating host resistance disease in pear calli using both forward and reverse genetic approaches. Overexpression of PcMYB44 positively regulates the disease resistance, whereas knockout of PcMYB44 results in a phenotype with decreased resistance. Our results further demonstrated that PcMYB44 could directly affect lignin content and resistance to fungal diseases by regulating the PcmiR397-PcLACs module and lignin biosynthesis gene expression levels. Additionally, overexpressing PcMYB44 also elevated expression levels of key genes of JA/SA/ET pathway. The obtained results revealed that PcMYB44 regulated host resistance to ring rot disease through synergistic regulation the lignification and activating disease-resistance gene expression of JA/SA/ET defense pathways as a underlying secondary mechanism, which provide valuable genetic resources for molecular breeding for disease resistance.
Collapse
Affiliation(s)
- Shamei Lv
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuekun Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang Fruit Tree Research Institute, Shijiazhuang 050061, China
| | - Xiaoyan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Hellinger J, Ralph J, Karlen SD. p-Coumaroylated Lignins Are Natively Produced in Three Rosales Families. ACS OMEGA 2025; 10:6220-6227. [PMID: 39989774 PMCID: PMC11840785 DOI: 10.1021/acsomega.4c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Carbon-rich plant cell walls contain biopolymers that, with some processing, could replace fossil fuels as a major component of the current petrochemical production. To realize this, biorefineries need to be paired with biomass that during the deconstruction and fractionation processes transforms into the desired products. One component of interest is p-coumarate that, in some species, can account for up to 1% of the biomass' dry weight. When p-coumarate is present in eudicot cell walls, it is mostly part of the suberin (bark and root), acylates the γ-hydroxy group of the lignin, in part of the tannins, or is a metabolite. The current understanding of eudicot plant cell wall composition is that the lignin is sometimes acylated with acetate and rarely with hydroxycinnamates (p-coumarate or ferulate). This study identified a clear division in the Rosales in which three families produce p-coumaroylated lignins whereas the other six families showed no evidence of the trait.
Collapse
Affiliation(s)
- Jan Hellinger
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - John Ralph
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steven D. Karlen
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
24
|
Wang S, Li X, Ma R, Song G. Catalytic Hydrogenolysis of Lignin into Serviceable Products. Acc Chem Res 2025; 58:529-542. [PMID: 39908014 DOI: 10.1021/acs.accounts.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
ConspectusLignin, a major component of lignocellulosic biomass, accounts for nearly 30% of organic carbon on Earth, making it the most abundant renewable source of aromatic carbon. The valorization of lignin beyond low-value heat and power has been one of the foremost challenges for a long time. On the other hand, aromatic compounds, constituting a substantial segment of the chemical industry and projected to reach a market value of $382 billion by 2030, are predominantly derived from fossil resources, contributing to increased CO2 emissions. Integrating lignin into the aromatic chemical supply chain will offer a promising strategy to reduce the carbon footprint and boost the economic viability of biorefineries. Thus, depolymerizing lignin biopolymers into aromatic chemicals suitable for downstream processing is an important starting point for its valorization. However, owing to lignin's complexity and heterogeneity, achieving efficient and selective depolymerization that yields desirable, isolable aromatic monomers remains a significant scientific challenge.The structure of lignins varies significantly in terms of subunits and linkages across plant species, leading to considerable differences in their reactivity, in the distribution of resulting monomers, and in their subsequent utilization. In this context, this Account highlights our recent studies on the catalytic hydrogenolysis of lignin into serviceable products for preparing valuable materials, fuels, and chemicals. First, we designed a series of catalytic systems for lignin hydrogenolysis specifically tailored to the structural features of lignin from wood, grass, and certain seed coats. To reduce reliance on expensive commercial catalysts like Pd/C, Ru/C, and Pt/C, we advanced heterogeneous metal catalysts by shifting from high-loaded nanostructured metals to low-loaded, atomically dispersed metals and replacing precious metals with nonprecious alternatives. This approach significantly reduces the cost of catalysts, enhances their atomic economy, and improves their catalytic activity and/or selectivity. Then, using the developed catalysts, phenolic monomers tethering a distinct side chain were selectively generated from the hydrogenolysis of lignin (from various plants), achieving yields close to the theoretical maximum. The high selectivity allowed the separation and purification of monomeric phenols from lignin reaction mixtures readily. To gain deeper insights into the cleavage of lignin C-O bonds, we designed deuterium-incorporated β-O-4 mimics (dimers and one polymer) for a mechanistic study, which excluded the pathways involving the loss of linkage protons and led to the proposal of a concerted hydrogenolysis process for β-O-4 cleavage. Finally, to enable the utilization of depolymerized lignin phenolic monomers, unconventional feedstocks in the current chemical industry, we developed a series of methods to transform them into valuable bioactive molecules, functional materials, and high-energy fuels. Overall, these contributions opened new avenues for converting lignin into serviceable products, encompassing upstream processing and downstream applications.
Collapse
Affiliation(s)
- Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiancheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Kurc B, Gross X, Pigłowska M, Kołodziejczak-Radzimska A, Klapiszewski Ł. Lignin activation with selected ionic liquids based on kinetic and thermodynamic analyses. Int J Biol Macromol 2025; 305:141144. [PMID: 39971071 DOI: 10.1016/j.ijbiomac.2025.141144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Herein, the potential of lignin activation with selected ionic liquids (ILs) was investigated to enhance the usefulness of lignin in materials science and electrochemical systems. The main objective was to increase the carbonyl content in lignin through selective oxidation, which would enable its use as a sustainable alternative, for example, in electrode materials and composite systems. Using ILs as activators, the modification process focused on maintaining the structural integrity of lignin while increasing its functional group profile. The research included the precise control of air supply as the oxidant and regulation of the process temperature to prevent lignin depolymerization. Advanced kinetic and thermodynamic analyses of thermal decomposition were performed using thermogravimetric analysis, differential thermogravimetric analysis, and differential thermal analysis, with kinetic modeling based on the Coats-Redfern method. These methodologies facilitated a detailed understanding of the thermal stability, degradation kinetics, and reactivity of the material. Results revealed that the activation of lignin with ILs significantly increases the carbonyl (quinone) group content, enhancing its potential as a reversible proton and electron acceptor in electrochemical applications. The study highlights the importance of balancing degradation kinetics and structural properties of lignin to optimize its reactivity and functional performance. Mechanisms such as F1 and D4 effectively describe the degradation process, with the activation energy (Ea) ranging from 66.691 to 309.389 kJ/mol. The enthalpy (ΔH) ranges from 62.488 to 302.950 kJ/mol, while the ΔS values, both positive and negative, reflect the heterogeneity of the reaction depending on the system and ionic liquid conditions.
Collapse
Affiliation(s)
- Beata Kurc
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Electrochemistry, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Xymena Gross
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Electrochemistry, Berdychowo 4, PL-60965 Poznan, Poland
| | - Marita Pigłowska
- ACC-Automotive Cells Company, Opelkreisel 1, DE-67663 Kaiserslautern, Germany
| | - Agnieszka Kołodziejczak-Radzimska
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
26
|
Oliveira DM, Saleme MDLS, Smith RA, Vangeel T, Lima MDF, Chanoca AA, Mota TR, Vanhevel Y, Coussens G, Van Aelst K, Geerts J, Cornet I, Vaneechoutte D, Vandepoele K, Pauwels L, Goeminne G, Morreel K, Sels BF, Ralph J, Vanholme R, Boerjan W. CRISPR/Cas9 editing of p-COUMAROYL-CoA:MONOLIGNOL TRANSFERASE 1 in maize alters phenolic metabolism, lignin structure, and lignin-first biomass processing. Trends Biotechnol 2025:S0167-7799(25)00006-X. [PMID: 39955231 DOI: 10.1016/j.tibtech.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Valorization of lignocellulosic biomass for sustainable production of high-value chemicals is challenged by the complexity of lignin, a phenolic biopolymer. Beyond the classical lignin monomers derived from p-coumaryl, coniferyl, and sinapyl alcohol, grass lignins incorporate substantial amounts of monolignol p-coumarates that are produced by p-COUMAROYL-CoA:MONOLIGNOL TRANSFERASE (PMT). Here, the CRISPR/Cas9-mediated mutation of ZmPMT1 in maize enabled the design of biomass depleted in p-coumaroylated lignin and enriched in guaiacyl lignin. Lignin-first biorefining of stem biomass from zmpmt1 mutants by reductive catalytic fractionation (RCF) generated a lignin oil depleted in carboxylates and enriched in guaiacyl-derived alcohols, which are desirable substrates for bio-based polyurethane synthesis. The reported lignin engineering in maize is a promising strategy for designing a dual-purpose crop, providing both food and feed, along with a renewable feedstock for the production of plant-based chemicals.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marina de L S Saleme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca A Smith
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Thijs Vangeel
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marcelo de F Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alexandra A Chanoca
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thatiane R Mota
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Korneel Van Aelst
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jordi Geerts
- Biochemical Wastewater Valorization and Engineering Group, University of Antwerp, Antwerp, Belgium
| | - Iris Cornet
- Biochemical Wastewater Valorization and Engineering Group, University of Antwerp, Antwerp, Belgium
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - John Ralph
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
27
|
Monteiro LMO, Del Cerro C, Kijpornyongpan T, Yaguchi A, Bennett A, Donohoe BS, Ramirez KJ, Benson AF, Mitchell HD, Purvine SO, Markillie LM, Burnet MC, Bloodsworth KJ, Bowen BP, Harwood TV, Louie K, Northen T, Salvachúa D. Metabolic profiling of two white-rot fungi during 4-hydroxybenzoate conversion reveals biotechnologically relevant biosynthetic pathways. Commun Biol 2025; 8:224. [PMID: 39939400 PMCID: PMC11822028 DOI: 10.1038/s42003-025-07640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
White-rot fungi are efficient organisms for the mineralization of lignin and polysaccharides into CO2 and H2O. Despite their biotechnological potential, WRF metabolism remains underexplored. Building on recent findings regarding the utilization of lignin-related aromatic compounds as carbon sources by WRF, we aimed to gain further insights into these catabolic processes. For this purpose, Trametes versicolor and Gelatoporia subvermispora were incubated in varying conditions - in static and agitation modes and different antioxidant levels - during the conversion of 4-hydroxybenzoic acid (a lignin-related compound) and cellobiose. Their metabolic responses were assessed via transcriptomics, proteomics, lipidomics, metabolomics, and microscopy analyses. These analyses reveal the significant impact of cultivation conditions on sugar and aromatic catabolic pathways, as well as lipid composition of the fungal mycelia. Additionally, this study identifies biosynthetic pathways for the production of extracellular fatty acids and phenylpropanoids - both products with relevance in biotechnological applications - and provides insights into carbon fate in nature.
Collapse
Affiliation(s)
| | - Carlos Del Cerro
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Teeratas Kijpornyongpan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Allison Yaguchi
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Anna Bennett
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Alex F Benson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan C Burnet
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kent J Bloodsworth
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin P Bowen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas V Harwood
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
28
|
Yu L, Wang Y, Wang X, Han S, Wang L, Wang X. Transcriptomic, metabonomic and proteomic analyses reveal that terpenoids and flavonoids are required for Pinus koraiensis early defence against Bursaphelenchus xylophilus infection. BMC PLANT BIOLOGY 2025; 25:185. [PMID: 39934660 DOI: 10.1186/s12870-025-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, threatens Pinus seriously. Pinus koraiensis is one of the most important pine species in China and is the host for PWN. However, our understanding of the defence-regulating process following infection by B. xylophilus at the molecular level remains limited. To understand the mechanisms that P. koraiensis responds to B. xylophilus invasion, P. koraiensis was inoculated with B. xylophilus solutions and observed no obvious symptoms during the early stage; symptoms began to appear at 5 dpi. Therefore, we conducted comparative transcriptomic, metabonomic and proteomic analyses between P. koraiensis 5dpi and 0 dpi. In infected plants, 1574 genes were significantly up-regulated, including 17 terpenoid-, 41 phenylpropanoid- and 22 flavonoid-related genes. According to GO and KEGG enrichment analyses of significantly up-regulated genes, 86 GO terms and 16 KEGG pathways were significantly enriched. Most terms and pathways were associated with terpenoid-, phenylpropanoid-, flavonoid- and carbohydrate-related events. Similarly, the abundance of 36 and 30 metabolites, significantly increased in positive and negative polarity modes, respectively. Among them, naringenin and 3-methyl-2-oxovaleric acid exhibited significant toxic effects on B. xylophilus. According to functional analysis of significantly up-regulated metabolites, most terms were enriched in above pathways, in addition to alkaloid biosynthesis. Although the abundance of few proteins changed, response to stress term was significantly enriched in significant up-regulated proteins. Furthermore, plant receptor-like serine/threonine kinases, pectin methylation modulators, pinosylvin O-methyltransferase and arabinogalactan/proline-rich proteins were significantly up-regulated in the infected P. koraiensis compared to healthy plants. These proteins were not abundant in the healthy plant. Overall, these results indicate that P. koraiensis can actively response to PWN via various defense strategies, including events related to terpenoids, flavonoids, phenylpropanoids, lipids and alkaloids. Particularly, terpenoids and flavonoids are required for the early defence of P. koraiensis against B. xylophilus infection.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanna Wang
- Chinese Society of Forestry, Beijing, 100091, China
| | - Xiang Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Sichuan, 611130, China
| | - Laifa Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xizhuo Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
29
|
Hyvärinen L, Fuchs C, Utz-Pugin A, Gully K, Megies C, Holbein J, Iwasaki M, Demonsais L, Capitão MB, Barberon M, Franke RB, Nawrath C, Loubéry S, Lopez-Molina L. Temperature-dependent polar lignification of a seed coat suberin layer promoting dormancy in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2025; 122:e2413627122. [PMID: 39918953 PMCID: PMC11831162 DOI: 10.1073/pnas.2413627122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
The seed is a landmark plant adaptation where the embryo is sheltered by a protective seed coat to facilitate dispersion. In Arabidopsis, the seed coat, derived from ovular integuments, plays a critical role in maintaining dormancy, ensuring germination occurs during a favorable season. Dormancy is enhanced by cold temperatures during seed development by affecting seed coat permeability through changes in apoplastic barriers. However, their localization and composition are poorly understood. This study identifies and investigates a polar barrier in the seed coat's outer integument (oi1) cells. We present histological, biochemical, and genetic evidence showing that cold promotes polar seed coat lignification of the outer integument 1 (oi1) cells and suberization throughout the entire oi1 cell boundary. The polar oi1 barrier is regulated by the transcription factors MYB107 and MYB9. MYB107, in particular, is crucial for the lignified polar oi1 barrier formation under cold temperatures. The absence of the oi1 barrier in mutant seeds correlates with increased permeability and reduced dormancy. Our findings elucidate how temperature-induced modifications in seed coat composition regulate dormancy, highlighting the roles of suberin and lignin in this process.
Collapse
Affiliation(s)
- Lena Hyvärinen
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Christelle Fuchs
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Anne Utz-Pugin
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | - Christian Megies
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Julia Holbein
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn53115, Germany
| | - Mayumi Iwasaki
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Lara Demonsais
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | | | - Marie Barberon
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Rochus B. Franke
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn53115, Germany
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | - Sylvain Loubéry
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
| | - Luis Lopez-Molina
- Department of Plant Sciences, University of Geneva, Geneva1211, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
30
|
Rese M, van Erven G, Veersma RJ, Alfredsen G, Eijsink VGH, Kabel MA, Tuveng TR. Detailed Characterization of the Conversion of Hardwood and Softwood Lignin by a Brown-Rot Basidiomycete. Biomacromolecules 2025; 26:1063-1074. [PMID: 39760416 DOI: 10.1021/acs.biomac.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Wood-degrading brown-rot fungi primarily target carbohydrates, leaving the lignin modified and potentially valuable for valorization. Here, we report a comprehensive comparison of how Gloeophyllum trabeum in vitro degrades hardwood and softwood, which have fundamentally different lignin structures. By harnessing the latest advancements in analytical methodologies, we show that G. trabeum removes more lignin from wood (up to 36%) than previously reported. The brown-rot decayed lignin appeared substantially Cα-oxidized, O-demethylated, with a reduction in interunit linkages, leading to formation of substructures indicative of Cα-Cβ, β-O, and O-4 cleavage. Our work shows that the G. trabeum conversion of hardwood and softwood lignin results in similar modifications, despite the structural differences. Furthermore, lignin modification by G. trabeum enhances the antioxidant capacity of the lignin and generates an extractable lower molecular weight fraction. These findings improve our understanding of lignin conversion by brown-rot fungi and highlight their biotechnological potential for the development of lignin-based products.
Collapse
Affiliation(s)
- Morten Rese
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, Ås 1433, Norway
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Romy J Veersma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Gry Alfredsen
- Department of Wood Technology, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås NO-1431, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, Ås 1433, Norway
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Tina R Tuveng
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, Ås 1433, Norway
| |
Collapse
|
31
|
Zhong P, Chen P, Huo P, Ma L, Xu Z, Li F, Cai C. Characterization of cotton stalk as a lignocellulosic feedstock for single-cell protein production. BIORESOURCE TECHNOLOGY 2025; 417:131797. [PMID: 39580094 DOI: 10.1016/j.biortech.2024.131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Cotton stalk, an important by-product of cotton farming, is challenging in lignocellulosic feedstock application due to the limited understanding of their compositional and lignin structural characteristics. This study elucidates the composition of lignocellulose components and fundamental lignin structural features of cotton stalk. Lignocellulosic hydrolysates were prepared from various cotton stalk parts and used for single-cell protein production. As a proof of concept, cotton stalk hydrolysates were successfully converted into single-cell protein using the superior microbial host, Candida utilis ACCC20060, owing to its favorable sugar consumption efficiency and high protein quality. The highest SCP concentration of 5.74 g/L was obtained, yielding 0.23 g/g from the lignocellulose-derived sugars released from cotton stalk roots. This study provides valuable references for cotton stalk utilization toward lignocellulosic feedstock application and introduces a promising microbial host for single-cell protein production from such feedstocks.
Collapse
Affiliation(s)
- Pingxiang Zhong
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengyun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Pengju Huo
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Chenggu Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
32
|
Amigo NL, Arias LA, Marchetti F, D'Ippólito S, Cascallares M, Lorenzani S, Frik J, Lombardo MC, Terrile MC, Casalongue CA, Pagnussat GC, Fiol DF. The DC1 domain protein Vacuoleless Gametophytes regulates stamen development in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109372. [PMID: 39647230 DOI: 10.1016/j.plaphy.2024.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Vacuoleless Gametophytes (VLG) is a DC1 domain protein that was initially characterized as essential for early female and male gametophytes development in Arabidopsis. However, VLG expression was also detected in stamens, pistils and other sporophytic tissues, implying a broader role for this protein. As homozygous insertional VLG lines resulted unviable, we generated Arabidopsis amiRNA VLG knock-down plants to study the role of VLG in sporophyte development. The phenotypic characterization of VLG knock-down plants showed reduced seed set and indehiscent anthers with shorter filaments and stigma exsertion. Moreover, amiRNA VLG knock-down plants displayed unbroken stomia and septa, markedly reduced endothecium lignification, diminished ROS accumulation, and lower transcript levels of genes involved in jasmonic acid and lignin biosynthesis. The indehiscent phenotype was rescued by exogenous application of either jasmonic acid or H2O2. Altogether, our results suggest that VLG is involved in lignin and jasmonic acid biosynthesis pathways, and that proper levels of VLG are required in the process that leads to stomium breakage and anther dehiscence. Our findings shed light on the mechanisms underlying stamen development and provide new insights into the roles of a DC1 domain protein in plant reproduction.
Collapse
Affiliation(s)
- Natalia L Amigo
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Leonardo A Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Fernanda Marchetti
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Salvador Lorenzani
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Jesica Frik
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - María Cristina Lombardo
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - María Cecilia Terrile
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Claudia A Casalongue
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Diego F Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Nguyen NY, Luong HVT, Pham DT, Cao LNH, Nguyen TT, Le TP. Drug-loaded Fe 3O 4/lignin nanoparticles to treat bacterial infections. Int J Biol Macromol 2025; 289:138868. [PMID: 39701259 DOI: 10.1016/j.ijbiomac.2024.138868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Lignin is a biopolymer employed for various biomedical applications. Nevertheless, the drug loading and release mechanism of Fe3O4 nanoparticles with surface functionalization by lignin has yet to be described. Hence, this study functionalizes Fe3O4 nanoparticles surface with lignin (Fe3O4/Lig) for ciprofloxacin delivery and examines its adsorption-release mechanisms. The presence of lignin and ciprofloxacin on Fe3O4 nanoparticles were verified using FT-IR that shows distinct peaks for each functional group of lignin and ciprofloxacin. The study has proved selective adsorption of ciprofloxacin ions via electrostatic interactions. The optimal adsorption efficiency in the examined region was 65 %, with a capacity of 9.55 mg/g. Drug release efficiency was evaluated in buffer at pH 7.4 and pH 1.2-6.8, yielding ∼66 % and ∼100 %, respectively. The release profile fits Peppas's model, which uses a diffusion and disintegration mechanism. Furthermore, the HET-CAM model study presented that the substance does not irritate the cell membranes of the egg, indicating that it is safe for mucosa and tissues. The IC50 value for antibacterial activity against Gram-negative Salmonella enterica and Escherichia coli was 10.00 ± 0.76 μg/mL and 1.87 ± 0.06 μg/mL, respectively. In summary, the study effectively prepared Fe3O4/Lig-CIP nanoparticles, as well as remained antibacterial properties against both Gram (+) and Gram (-) microorganisms.
Collapse
Affiliation(s)
- Ngoc Yen Nguyen
- Applied Chemical Engineering Laboratory, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam; Department of Health Sciences, College of Natural Sciences, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam
| | - Huynh Vu Thanh Luong
- Applied Chemical Engineering Laboratory, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam; Faculty of Chemical Engineering, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam.
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam
| | - Luu Ngoc Hanh Cao
- Faculty of Chemical Engineering, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam
| | - Trong Tuan Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam
| | - Thanh Phu Le
- Applied Chemical Engineering Laboratory, Can Tho University, 3/2 street, Ninh Kieu district, Can Tho 94000, Viet Nam
| |
Collapse
|
34
|
Jin J, Ma H, Liang H, Zhang Y. Biopolymer-Derived Carbon Materials for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414620. [PMID: 39871757 DOI: 10.1002/adma.202414620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics. This review aims to discuss the carbonization mechanisms, carbonization techniques, and processes, as well as the diverse applications of biopolymer-derived carbon materials (BioCMs) in wearable electronics. First, the characteristics of four representative biopolymers, including cellulose, lignin, chitin, and silk fibroin, and their carbonization processes are discussed. Then, typical carbonization techniques, including pyrolysis carbonization, laser-induced carbonization, Joule heating carbonization, hydrothermal transformation, and salt encapsulation carbonization are discussed. The influence of the processes on the morphology and properties of the resultant BioCMs are summarized. Subsequently, applications of BioCMs in wearable devices, including physical sensors, chemical sensors, energy devices, and display devices are discussed. Finally, the challenges currently facing the field and the future opportunities are discussed.
Collapse
Affiliation(s)
- Jiongke Jin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoxuan Ma
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
35
|
Barker-Rothschild D, Chen J, Wan Z, Renneckar S, Burgert I, Ding Y, Lu Y, Rojas OJ. Lignin-based porous carbon adsorbents for CO 2 capture. Chem Soc Rev 2025; 54:623-652. [PMID: 39526409 DOI: 10.1039/d4cs00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A major driver of global climate change is the rising concentration of atmospheric CO2, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations. Moreover, porous carbons can be synthesized from readily available organic (waste) streams, reducing costs and promoting circularity. Lignin, a renewable and abundant by-product of the forest products industry and emerging biorefineries, is a complex organic polymer with a high carbon content, making it a suitable precursor for carbon-based adsorbents. This review explores lignin's sources, structure, and thermal properties, as well as traditional and emerging methods for producing lignin-based porous adsorbents. We examine the physicochemical properties, CO2 adsorption mechanisms, and performance of lignin-derived materials. Additionally, the review highlights recent advances in lignin valorization and provides critical insights into optimizing the design of lignin-based adsorbents to enhance CO2 capture efficiency. Finally, it addresses the prospects and challenges in the field, emphasizing the significant role that lignin-derived materials could play in advancing sustainable carbon capture technologies and mitigating climate change.
Collapse
Affiliation(s)
- Daniel Barker-Rothschild
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yong Ding
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
36
|
Wang W, Zhou X, Hu Q, Wang Q, Zhou Y, Yu J, Ge S, Zhang L, Guo H, Tang M, Li X. Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. PLANTS (BASEL, SWITZERLAND) 2025; 14:260. [PMID: 39861613 PMCID: PMC11768230 DOI: 10.3390/plants14020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Tambocerus elongatus (Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of Camellia sinensis, significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to T. elongatus. This study aims to explore the responses of tea trees to different levels of T. elongatus infestation. We first focused on the primary metabolism and found that the amino acid levels decreased significantly with increasing T. elongatus infestation, while sugar accumulation showed an opposite trend. Moreover, secondary metabolite analysis showed a significant increase in flavonoid compounds and lignin content after T. elongatus infestation. Metabolomics analysis of the flavonoid compounds revealed a decrease in the proanthocyanidin level and an increase in anthocyanidin glycosides (anthocyanins and their derivatives) after T. elongatus infestation. T. elongatus infestation also caused a decrease in the abundance of non-ester catechins and an increase in the abundance of ester catechins. Furthermore, the gene expression analysis revealed that transcripts of genes involved in flavonoid biosynthesis, such as CsCHI, CsF3H, CsF3'H, CsFNS, CsFLS, and CsUFGT, were down-regulated, while genes involved in the lignin pathway were up-regulated by insect infestation, suggesting that lignin probably plays a pivotal role in tea plant response to T. elongatus infestation. Analysis of the expression of related genes indicates that the jasmonate (JA) pathway primarily responds to leafhopper damage. These findings suggest that the lignin pathway and JA play a preferential role in tea plant response to T. elongatus. Furthermore, the production of saccharides and the accumulation of anthocyanin glycosides in the flavonoid metabolic pathway are critical during this stress response. Further exploration of the roles of anthocyanin glycosides and lignin in tea tree resistance could provide a theoretical basis for understanding the defense mechanism of tea trees against T. elongatus damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China (X.Z.); (X.L.)
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China (X.Z.); (X.L.)
| | | |
Collapse
|
37
|
Zhou Y, Singh SK, Patra B, Liu Y, Pattanaik S, Yuan L. Mitogen-activated protein kinase-mediated regulation of plant specialized metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:262-276. [PMID: 39305223 DOI: 10.1093/jxb/erae400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 01/11/2025]
Abstract
Post-transcriptional and post-translational modification of transcription factors (TFs) and pathway enzymes significantly affect the stress-stimulated biosynthesis of specialized metabolites (SMs). Protein phosphorylation is one of the conserved and ancient mechanisms that critically influences many biological processes including specialized metabolism. The phosphorylation of TFs and enzymes by protein kinases (PKs), especially the mitogen-activated protein kinases (MAPKs), is well studied in plants. While the roles of MAPKs in plant growth and development, phytohormone signaling, and immunity are well elucidated, significant recent advances have also been made in understanding the involvement of MAPKs in specialized metabolism. However, a comprehensive review highlighting the significant progress in the past several years is notably missing. This review focuses on MAPK-mediated regulation of several important SMs, including phenylpropanoids (flavonoids and lignin), terpenoids (artemisinin and other terpenoids), alkaloids (terpenoid indole alkaloids and nicotine), and other nitrogen- and sulfur-containing SMs (camalexin and indole glucosinolates). In addition to MAPKs, other PKs also regulate SM biosynthesis. For comparison, we briefly discuss the regulation by other PKs, such as sucrose non-fermenting-1 (SNF)-related protein kinases (SnRKs) and calcium-dependent protein kinases (CPKs). Furthermore, we provide future perspectives in this active area of research.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
38
|
Xiao X, Ma Z, Zhou K, Niu Q, Luo Q, Yang X, Chu X, Shan G. Elucidating the Underlying Allelopathy Effects of Euphorbia jolkinii on Arundinella hookeri Using Metabolomics Profiling. PLANTS (BASEL, SWITZERLAND) 2025; 14:123. [PMID: 39795383 PMCID: PMC11723091 DOI: 10.3390/plants14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Euphorbia jolkinii dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying E. jolkinii allelopathy were investigated using Arundinella hookeri as a receptor plant. The treatment of A. hookeri seedlings with E. jolkinii aqueous extract (EJAE) disrupted their growth by inhibiting photosynthesis, disrupting oxidation systems, and increasing soluble sugar accumulation and chlorophyll synthesis. Collectively, this causes severe impairment accompanied by abnormal photosynthesis and reduced biomass accumulation. Moreover, EJAE treatment suppressed gibberellin, indoleacetic acid, zeatin, salicylic acid, and jasmonic acid levels while promoting abscisic acid accumulation. Further metabolomic analyses identified numerous differentially abundant metabolites primarily enriched in the α-linolenic, phenylpropanoid, and flavonoid biosynthesis pathways in EJAE-treated A. hookeri seedlings. This study demonstrated that E. jolkinii exhibits potent and comprehensive allelopathic effects on receptor plants, including a significant disruption of endogenous hormone synthesis, the inhibition of photosynthesis, an impairment of membrane and oxidation systems, and changes in crucial metabolic processes associated with α-linolenic, phenylpropanoid, and flavonoid biosynthesis. Thus, our study provides a solid theoretical foundation for understanding the regulatory mechanisms underlying E. jolkinii allelopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohui Chu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (Z.M.); (K.Z.); (Q.N.); (Q.L.); (X.Y.)
| | - Guilian Shan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (Z.M.); (K.Z.); (Q.N.); (Q.L.); (X.Y.)
| |
Collapse
|
39
|
Yuan Y, Ma X, Li C, Zhong X, Li Y, Zhao J, Zhang X, Zhou Z. Integration of transcriptome and metabolome reveals key regulatory defense pathways associated with high temperature stress in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2025; 25:6. [PMID: 39748295 PMCID: PMC11694469 DOI: 10.1186/s12870-024-05876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied. In this study, we identified a heat-tolerant cucumber Gy14 and a heat-sensitive cucumber 32X. RNA-seq analysis of Gy14 and 32X under high temperature stress showed that some differentially expressed genes (DEGs) were related to the biosynthesis of secondary metabolites. Metabolomic analysis revealed that there were more phenylpropanoids and their downstream derivatives in Gy14 compared to that in 32X under Re_2d condition (2 normal days recovery after heat). Integrated analysis of transcriptome and metabolome revealed that these upregulated genes played a pivotal role in flavonoid biosynthesis. Moreover, high temperature stress significantly induced the expression of the gibberellin (GA) biosynthesis genes and exogenous application of GA3 alleviated the damage of high temperature to cucumber seedlings. Together, these findings provided new insights into the transcriptome response and metabolomic reprogramming of cucumber against high temperature stress.
Collapse
Affiliation(s)
- Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xiao Ma
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Chuang Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xitong Zhong
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yuyan Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jianyu Zhao
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Maeda N, Aoki D, Fujiyasu S, Matsushita Y, Yoshida M, Hiraide H, Mitsuda H, Tobimatsu Y, Fukushima K. The distribution of monolignol glucosides coincides with lignification during the formation of compression wood in Pinus thunbergii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17209. [PMID: 39673723 PMCID: PMC11776043 DOI: 10.1111/tpj.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections. Variations in storage amounts of CF and PG in the stem of P. thunbergii agreed with lignification stages of the tracheid, supporting the idea that MLGs act as a storage and transportation form of lignin precursors. The imaging of monolignol (ML)-dependent active lignification sites using fluorescence-tagged MLs supported distinct distribution patterns of MLGs for lignification in compression and opposite woods. Methylation-thioacidolysis was applied to compression and opposite wood samples to examine the structural difference between the guaiacyl (G) and p-hydroxyphenyl (H) units in lignin. Most of the H units in compression wood were detected as lignin end groups via thioacidolysis. PG was detected in opposite wood by HPLC; however, the H unit was not detected by thioacidolysis. The differences in ML and MLG distributions, enzyme activity, and resultant lignin structures between the G and H units suggest the possibility of individual mechanisms regulating the heterogeneous structures of G and H unit in lignin.
Collapse
Affiliation(s)
- Naoki Maeda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Dan Aoki
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Syunya Fujiyasu
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yasuyuki Matsushita
- Institute of AgricultureTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
41
|
Khodayari A, Vats S, Mertz G, Schnell CN, Rojas CF, Seveno D. Electrospinning of cellulose nanocrystals; procedure and optimization. Carbohydr Polym 2025; 347:122698. [PMID: 39486938 DOI: 10.1016/j.carbpol.2024.122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
Cellulose nanocrystals (CNCs) and cellulose microfibrils (CMFs) are promising materials with the potential to significantly enhance the mechanical properties of electrospun nanofibers. However, the crucial aspect of optimizing their integration into these nanofibers remains a challenge. In this work, we present a method to prepare and electrospin a cellulosic solution, aiming to overcome the existing challenges and realize the optimized incorporation of CNCs into nanofibers. The solution parameters of electrospinning were explored using a combined experimental and simulation (molecular dynamics) approach. Experimental results emphasize the impact of polymer solution concentration on fiber morphology, reinforcing the need for further optimization. Simulations highlight the intricate factors, including the molecular weight of cellulose acetate (CA) polymer chains, electrostatic fields, and humidity, that impact the alignment of CNCs and CMFs. Furthermore, efforts were made to study CNCs/CMFs alignment rate and quality optimization. It is predicted that pure CNCs benefit more from electrostatic alignment, while lower molecular weight CA enables better CNC/CMF alignment.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Shameek Vats
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Grégory Mertz
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carla N Schnell
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carlos Fuentes Rojas
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium; Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| |
Collapse
|
42
|
Djikanović D, Jovanović J, Kalauzi A, Maksimović JD, Radotić K. Effects of Silicon Concentration and Synthesis Duration on Lignin Structure: A Spectroscopic and Microscopic Study. Biopolymers 2025; 116:e23640. [PMID: 39614829 DOI: 10.1002/bip.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
Silicon (Si) is a highly abundant mineral in Earth's crust. It plays a vital role in plant growth, providing mechanical support, enhancing grain yield, facilitating mineral nutrition, and aiding stress response mechanisms. The intricate relationship between silicification and lignin chemistry significantly impacts cell wall structure. Yet, the precise influence of Si on lignin synthesis remains elusive. This study investigated the interaction between Si and lignin model compounds during in vitro synthesis. Employing spectroscopic and microscopic analyses, we delineated how Si concentrations modulate lignin polymerization dynamics, particularly affecting molecular conformation and aggregation behavior over time. Fluctuations in the polymer structure are directly related to both the synthesis time and the concentration of silica. Our results demonstrate that lower Si concentrations promote the aggregation of lignin oligomers into larger particles, while higher concentrations increase the possibility of oligomer repulsion, thus preventing particle growth. These findings elucidate the intricate interplay between Si and lignin, which is crucial for understanding plant cell wall structure and stress resilience. Moreover, the results provide insights for developing lignin-silica materials with increasing applications in industry and medicine.
Collapse
Affiliation(s)
- Daniela Djikanović
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Jelena Jovanović
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Aleksandar Kalauzi
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | | | - Ksenija Radotić
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| |
Collapse
|
43
|
Wang L, Sun G, Wang J, Zhu H, Wu Y. Systematic characterization of cinnamyl alcohol dehydrogenase members revealed classification and function divergence in Haplomitrium mnioides. JOURNAL OF PLANT RESEARCH 2025; 138:173-187. [PMID: 39609336 DOI: 10.1007/s10265-024-01601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, which can catalyze cinnamyl aldehyde to produce cinnamyl alcohol. In this study, three putative CADs were characterized from the liverwort Haplomitrium mnioides. The sequence alignment and phylogenetic analysis revealed that HmCADs belonged to a multigene family, with three HmCADs belonging to class II, class III, and class IV, respectively. In vitro enzymatic studies demonstrated that HmCAD2 exhibited high affinity and catalytic activity towards five cinnamyl aldehydes, followed by HmCAD3 with poor catalytic activity, and HmCAD1 catalyzed only the reaction of p-coumaryl aldehyde and coniferyl aldehyde with extremely low catalytic capacity. Protein-substrate binding simulations were performed to investigate the differences in catalytic activity exhibited when proteins catalyzed different substrates. Furthermore, distinct expression patterns of three HmCADs were identified in different plant tissues. Subcellular localization tests confirmed that HmCAD1/2/3 was located in the cytoplasm. The simulated responses of HmCADs to different stresses showed that HmCAD1 played a positive role in coping with each stress, while HmCAD2/3 was weak. These findings demonstrate the diversity of CADs in liverwort, highlight the divergent role of HmCAD1/2/3 in substrate catalysis, and also suggest their possible involvement in stress response, thereby providing new insights into CAD evolution while emphasizing their potential distinctive and collaborative contributions to the normal growth of primitive liverworts.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Guohui Sun
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jia Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Hongyang Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yifeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
44
|
Guo X, Kang L. Phenotypic Plasticity in Locusts: Trade-Off Between Migration and Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:23-44. [PMID: 39227131 DOI: 10.1146/annurev-ento-013124-124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Locusts exhibit phenotypic plasticity in response to population density changes, with distinct phenotypes in the solitary and gregarious phases. In the past decade, many studies have revealed the molecular mechanisms underlying phase changes, which include the change of body coloration, pheromones, behavior, flight, fecundity, immunity, and aging. Our understanding of the molecular mechanisms related to these phenotypic differences has expanded in breadth and depth with the decoding of the locust genome, involving transcriptional, post-transcriptional, translational, and epigenetic regulation. Large-scale regulation networks composed of genes and noncoding RNAs reflect the systematic modifications of the locust phase transition in response to environmental changes. Gene manipulation techniques have verified the functions of specific genes and related pathways in phase changes. This review highlights the latest advances in studies of locust phase changes and suggests that the divergence of energy and metabolism allocation in gregarious and solitary locusts is an adaptive strategy for long-distance migration and local reproduction, respectively. Finally, we propose future research directions and discuss emerging questions in the area of phenotypic plasticity of locusts.
Collapse
Affiliation(s)
- Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
| | - Le Kang
- Institute of Life Science and Green Development/College of Life Science, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
| |
Collapse
|
45
|
Portilla Llerena JP, Kiyota E, dos Santos FRC, Garcia JC, de Lima RF, Mayer JLS, dos Santos Brito M, Mazzafera P, Creste S, Nobile PM. ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves. GM CROPS & FOOD 2024; 15:67-84. [PMID: 38507337 PMCID: PMC10956634 DOI: 10.1080/21645698.2024.2325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Julio C. Garcia
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
| | | | | | - Michael dos Santos Brito
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
46
|
Li K, Yu L, Gao L, Zhu L, Feng X, Deng S. Unveiling molecular mechanisms of pigment synthesis in gardenia ( Gardenia jasminoides) fruits through integrative transcriptomics and metabolomics analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100209. [PMID: 38973987 PMCID: PMC11225661 DOI: 10.1016/j.fochms.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
This study conducted a combined transcriptomics and metabolomics analysis in premature and mature developmental stages of Gardenia jasminoides Ellis fruits to identify the molecular mechanisms of pigment synthesis. The transcriptomics data produced high-quality clean data amounting to 46.98 gigabytes, exhibiting a mapping ratio of 86.36% to 91.43%. Transcriptomics analysis successfully identified about 3,914 differentially expressed genes which are associated with pivotal biological processes, including photosynthesis, chlorophyll, biosynthetic processes, and protein-chromophore linkage pathways. Functional diversity was clarified by the Clusters of Orthologous Groups (COG) classification, which focused mainly on pigment synthesis functions. Pathways analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) revealed critical pathways affecting pigment development. Metabolomics studies were carried out utilizing Ultra Performance Liquid Chromatography and mass spectrometry (UPLC-MS). About 480 metabolites were detected via metabolomics investigation, the majority of that were significantly involved in pigment synthesis. Cluster and pathway analyses revealed the importance of pathways such as plant secondary metabolite biosynthesis, biosynthesis of phenylpropanoids and plant hormone signal transduction in pigment synthesis. Current research advances our comprehension of the underlying mechanisms at the molecular level governing pigment synthesis in gardenia fruits, furnishing valuable insights for subsequent investigations.
Collapse
Affiliation(s)
- Kangqin Li
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Lixin Yu
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Liqin Gao
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - lingzhi Zhu
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Xiaotao Feng
- College of Forestry, Jiangxi Agricultural University, Jiangxi, Nanchang 330045, China
| | - Shaoyong Deng
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| |
Collapse
|
47
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
48
|
Zhou Z, Zhang H, Yao JL, Gao Q, Wang Y, Liu Z, Zhang Y, Tian Y, Yan Z, Zhu Y, Zhang H. The MdERF61-mdm-miR397b-MdLAC7b module regulates apple resistance to Fusarium solani via lignin biosynthesis. PLANT PHYSIOLOGY 2024; 197:kiae518. [PMID: 39374536 DOI: 10.1093/plphys/kiae518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Apple replant disease (ARD) is a worldwide problem that threatens the industry. However, the genetic mechanism underlying plant disease resistance against ARD remains unclear. In this study, a negative regulatory microRNA in Malus domestica, mdm-miR397b, and its direct target MdLAC7b (Laccase) was selected for examination based on our previous small RNA and degradome sequencing results. Overexpressing the mdm-miR397b-MdLAC7b module altered the lignin deposition and jasmonic acid contents in apple roots, which also led to increased resistance to Fusarium solani. Additionally, Y1H library screening using mdm-miR397b promoter recombinants identified a transcription factor, MdERF61, that represses mdm-miR397b transcriptional activity by directly binding to 2 GCC-boxes in the mdm-miR397b promoter. In summary, our results suggest that the MdERF61-mdm-miR397b-MdLAC7b module plays a crucial role in apple resistance to F. solani and offers insights for enhancing plant resistance to soil-borne diseases in apples.
Collapse
Affiliation(s)
- Zhe Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 450008, China
| | - Haiqing Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Qiming Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yarong Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Zhenzhen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yaru Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yi Tian
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Zhenli Yan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yanmin Zhu
- United States Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | - Hengtao Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 450008, China
| |
Collapse
|
49
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
50
|
Lv Y, Yun L, Jia M, Mu Y, Zhang Z. Exploring the mechanism of seed shattering in Psathyrostachys juncea through histological analysis and comparative transcriptomics. BMC PLANT BIOLOGY 2024; 24:1179. [PMID: 39695364 DOI: 10.1186/s12870-024-05881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Seed shattering (SS) negatively impacts seed yield in Psathyrostachys juncea. Understanding and improving the SS trait requires elucidating the regulatory mechanisms of SS and identifying the key genes involved. RESULTS This study presents a comprehensive analysis of the abscission zone (AZ) structures at four developmental stages in two P. juncea genotypes. High-SS P. juncea (H) exhibited a significantly higher SS rate than low-SS P. juncea (L) at all four developmental stages. Anatomical analysis revealed that the degree of lignification in the AZ cell walls is related to the integrity of the abscission structure. The degradation of the AZ in H occurred earlier and was more severe compared to L. At different developmental stages of the AZ, H exhibited higher cellulase and polygalacturonase activities and higher abscisic acid contents compared to L. Conversely, L showed higher lignin, cytokinin, auxin, and gibberellin contents than H. Transcriptomic analysis identified key metabolic pathways related to SS in P. juncea, such as phenylpropanoid biosynthesis, fructose and mannose metabolism, galactose metabolism, and pentose and glucuronate interconversions. The integration of morphological, histological, physiochemical, and metabolic data led to the identification of critical genes, including AUX1, CKX, ABF, GH3, 4CL, CCoAOMT, BGAL, Gal, and PG. The roles of these genes were involved in the regulation of plant hormones and in the synthesis and degradation of cell walls within the AZ. CONCLUSIONS This study provides an in-depth understanding of the regulatory mechanisms of SS in P. juncea through comparative transcriptomic analysis. The SS in P. juncea may result from the degradation of the cell wall regulated by cell wall hydrolases genes. The genes identified in this study provide a basis for the genetic improvement of SS traits and serve as a reference for research on other grass species.
Collapse
Affiliation(s)
- Yuru Lv
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China.
| | - Miaomiao Jia
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yixin Mu
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiqiang Zhang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China
| |
Collapse
|