1
|
Sogl G, Pilling S, Fischer LFJ, Ludwig J, Mihretu N, Bashtrykov P, Jeltsch A. Systematic analysis of specificities and flanking sequence preferences of bacterial DNA-(cytosine C5)-methyltransferases reveals mechanisms of enzyme- and sequence-specific DNA readout. Nucleic Acids Res 2025; 53:gkaf126. [PMID: 40037710 DOI: 10.1093/nar/gkaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
DNA-(cytosine C5)-methyltransferases (MTases) represent a large group of evolutionary related enzymes with specific DNA interaction. We systematically investigated the specificity and flanking sequence preferences of six bacterial enzymes of this class and many MTase mutants. We observed high (>1000-fold) target sequence specificity reflecting strong evolutionary pressure against unspecific DNA methylation. Strong flanking sequence preferences (∼100-fold) were observed which changed for methylation of near-cognate sites suggesting that the DNA structures in the transition states of the methylation of these sites differ. Mutation of amino acids involved in DNA contacts led to local changes of specificity and flanking sequence preferences, but also global effects indicating that larger conformational changes occur upon transition state formation. Based on these findings, we conclude that the transition state of the DNA methylation reaction precedes the covalent enzyme-DNA complex conformations with flipped target base that are resolved in structural studies. Moreover, our data suggest that alternative catalytically active conformations exist whose occupancy is modulated by enzyme-DNA contacts. Sequence dependent DNA shape analyses suggest that MTase flanking sequence preferences are caused by flanking sequence dependent modulation of the DNA conformation. Likely, many of these findings are transferable to other DNA MTases and DNA interacting proteins.
Collapse
Affiliation(s)
- Greta Sogl
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sabrina Pilling
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lukas F J Fischer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jan Ludwig
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nahom Mihretu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Shao Z, Lu J, Khudaverdyan N, Song J. Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation. Nat Commun 2024; 15:6815. [PMID: 39122718 PMCID: PMC11315935 DOI: 10.1038/s41467-024-51246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.
Collapse
Affiliation(s)
- Zengyu Shao
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
4
|
Engal E, Sharma A, Aviel U, Taqatqa N, Juster S, Jaffe-Herman S, Bentata M, Geminder O, Gershon A, Lewis R, Kay G, Hecht M, Epsztejn-Litman S, Gotkine M, Mouly V, Eiges R, Salton M, Drier Y. DNMT3B splicing dysregulation mediated by SMCHD1 loss contributes to DUX4 overexpression and FSHD pathogenesis. SCIENCE ADVANCES 2024; 10:eadn7732. [PMID: 38809976 PMCID: PMC11135424 DOI: 10.1126/sciadv.adn7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is a noncanonical SMC protein and an epigenetic regulator. Mutations in SMCHD1 cause facioscapulohumeral muscular dystrophy (FSHD), by overexpressing DUX4 in muscle cells. Here, we demonstrate that SMCHD1 is a key regulator of alternative splicing in various cell types. We show how SMCHD1 loss causes splicing alterations of DNMT3B, which can lead to hypomethylation and DUX4 overexpression. Analyzing RNA sequencing data from muscle biopsies of patients with FSHD and Smchd1 knocked out cells, we found mis-splicing of hundreds of genes upon SMCHD1 loss. We conducted a high-throughput screen of splicing factors, revealing the involvement of the splicing factor RBM5 in the mis-splicing of DNMT3B. Subsequent RNA immunoprecipitation experiments confirmed that SMCHD1 is required for RBM5 recruitment. Last, we show that mis-splicing of DNMT3B leads to hypomethylation of the D4Z4 region and to DUX4 overexpression. These results suggest that DNMT3B mis-splicing due to SMCHD1 loss plays a major role in FSHD pathogenesis.
Collapse
Affiliation(s)
- Eden Engal
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Aveksha Sharma
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uria Aviel
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shiri Jaffe-Herman
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mercedes Bentata
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Gershon
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Reyut Lewis
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Vincent Mouly
- UPMC University Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne University,75252 Paris, France
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Lu J, Guo Y, Yin J, Chen J, Wang Y, Wang GG, Song J. Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations. Nat Commun 2024; 15:3111. [PMID: 38600075 PMCID: PMC11006857 DOI: 10.1038/s41467-024-47398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Sankar S, Preeti P, Ravikumar K, Kumar A, Prasad Y, Pal S, Rao DN, Savithri HS, Chandra N. Structural similarities between SAM and ATP recognition motifs and detection of ATP binding in a SAM binding DNA methyltransferase. Curr Res Struct Biol 2023; 6:100108. [PMID: 38106461 PMCID: PMC10724544 DOI: 10.1016/j.crstbi.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
S-adenosylmethionine (SAM) is a ubiquitous co-factor that serves as a donor for methylation reactions and additionally serves as a donor of other functional groups such as amino and ribosyl moieties in a variety of other biochemical reactions. Such versatility in function is enabled by the ability of SAM to be recognized by a wide variety of protein molecules that vary in their sequences and structural folds. To understand what gives rise to specific SAM binding in diverse proteins, we set out to study if there are any structural patterns at their binding sites. A comprehensive analysis of structures of the binding sites of SAM by all-pair comparison and clustering, indicated the presence of 4 different site-types, only one among them being well studied. For each site-type we decipher the common minimum principle involved in SAM recognition by diverse proteins and derive structural motifs that are characteristic of SAM binding. The presence of the structural motifs with precise three-dimensional arrangement of amino acids in SAM sites that appear to have evolved independently, indicates that these are winning arrangements of residues to bring about SAM recognition. Further, we find high similarity between one of the SAM site types and a well known ATP binding site type. We demonstrate using in vitro experiments that a known SAM binding protein, HpyAII.M1, a type 2 methyltransferase can bind and hydrolyse ATP. We find common structural motifs that explain this, further supported through site-directed mutagenesis. Observation of similar motifs for binding two of the most ubiquitous ligands in multiple protein families with diverse sequences and structural folds presents compelling evidence at the molecular level in favour of convergent evolution.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Preeti Preeti
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Kavya Ravikumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Amrendra Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Yedu Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Sukriti Pal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Handanahal S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of BioEngineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
7
|
Francis JW, Shao Z, Narkhede P, Trinh AT, Lu J, Song J, Gozani O. The FAM86 domain of FAM86A confers substrate specificity to promote EEF2-Lys525 methylation. J Biol Chem 2023; 299:104842. [PMID: 37209825 PMCID: PMC10285254 DOI: 10.1016/j.jbc.2023.104842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
FAM86A is a class I lysine methyltransferase (KMT) that generates trimethylation on the eukaryotic translation elongation factor 2 (EEF2) at Lys525. Publicly available data from The Cancer Dependency Map project indicate high dependence of hundreds of human cancer cell lines on FAM86A expression. This classifies FAM86A among numerous other KMTs as potential targets for future anticancer therapies. However, selective inhibition of KMTs by small molecules can be challenging due to high conservation within the S-adenosyl methionine (SAM) cofactor binding domain among KMT subfamilies. Therefore, understanding the unique interactions within each KMT-substrate pair can facilitate developing highly specific inhibitors. The FAM86A gene encodes an N-terminal FAM86 domain of unknown function in addition to its C-terminal methyltransferase domain. Here, we used a combination of X-ray crystallography, the AlphaFold algorithms, and experimental biochemistry to identify an essential role of the FAM86 domain in mediating EEF2 methylation by FAM86A. To facilitate our studies, we also generated a selective EEF2K525 methyl antibody. Overall, this is the first report of a biological function for the FAM86 structural domain in any species and an example of a noncatalytic domain participating in protein lysine methylation. The interaction between the FAM86 domain and EEF2 provides a new strategy for developing a specific FAM86A small molecule inhibitor, and our results provide an example in which modeling a protein-protein interaction with AlphaFold expedites experimental biology.
Collapse
Affiliation(s)
| | - Zengyu Shao
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Pradnya Narkhede
- Department of Biology, Stanford University, Stanford, California, USA
| | - Annie Truc Trinh
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
8
|
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
10
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
11
|
Nielsen TK, Forero-Junco LM, Kot W, Moineau S, Hansen LH, Riber L. Detection of nucleotide modifications in bacteria and bacteriophages: Strengths and limitations of current technologies and software. Mol Ecol 2023; 32:1236-1247. [PMID: 36052951 DOI: 10.1111/mec.16679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
RNA and DNA modifications occur in eukaryotes and prokaryotes, as well as in their viruses, and serve a wide range of functions, from gene regulation to nucleic acid protection. Although the first nucleotide modification was discovered almost 100 years ago, new and unusual modifications are still being described. Nucleotide modifications have also received more attention lately because of their increased significance, but also because new sequencing approaches have eased their detection. Chiefly, third generation sequencing platforms PacBio and Nanopore offer direct detection of modified bases by measuring deviations of the signals. These unusual modifications are especially prevalent in bacteriophage genomes, the viruses of bacteria, where they mostly appear to protect DNA against degradation from host nucleases. In this Opinion article, we highlight and discuss current approaches to detect nucleotide modifications, including hardwares and softwares, and look onward to future applications, especially for studying unusual, rare, or complex genome modifications in bacteriophages. The ability to distinguish between several types of nucleotide modifications may even shed new light on metagenomic studies.
Collapse
Affiliation(s)
- Tue Kjaergaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Quebec, Canada
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2022; 42:2459-2472. [PMID: 34383231 PMCID: PMC11421617 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
13
|
Martin LJ, Adams DA, Niedzwiecki MV, Wong M. Aberrant DNA and RNA Methylation Occur in Spinal Cord and Skeletal Muscle of Human SOD1 Mouse Models of ALS and in Human ALS: Targeting DNA Methylation Is Therapeutic. Cells 2022; 11:3448. [PMID: 36359844 PMCID: PMC9657572 DOI: 10.3390/cells11213448] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. Skeletal muscles and motor neurons (MNs) degenerate. ALS is a complex disease involving many genes in multiple tissues, the environment, cellular metabolism, and lifestyles. We hypothesized that epigenetic anomalies in DNA and RNA occur in ALS and examined this idea in: (1) mouse models of ALS, (2) human ALS, and (3) mouse ALS with therapeutic targeting of DNA methylation. Human superoxide dismutase-1 (hSOD1) transgenic (tg) mice were used. They expressed nonconditionally wildtype (WT) and the G93A and G37R mutant variants or skeletal muscle-restricted WT and G93A and G37R mutated forms. Age-matched non-tg mice were controls. hSOD1 mutant mice had increased DNA methyltransferase enzyme activity in spinal cord and skeletal muscle and increased 5-methylcytosine (5mC) levels. Genome-wide promoter CpG DNA methylation profiling in skeletal muscle of ALS mice identified hypermethylation notably in cytoskeletal genes. 5mC accumulated in spinal cord MNs and skeletal muscle satellite cells in mice. Significant increases in DNA methyltransferase-1 (DNMT1) and DNA methyltransferase-3A (DNMT3A) levels occurred in spinal cord nuclear and chromatin bound extracts of the different hSOD1 mouse lines. Mutant hSOD1 interacted with DNMT3A in skeletal muscle. 6-methyladenosine (6mA) RNA methylation was markedly increased or decreased in mouse spinal cord depending on hSOD1-G93A model, while fat mass and obesity associated protein was depleted and methyltransferase-like protein 3 was increased in spinal cord and skeletal muscle. Human ALS spinal cord had increased numbers of MNs and interneurons with nuclear 5mC, motor cortex had increased 5mC-positive neurons, while 6mA was severely depleted. Treatment of hSOD1-G93A mice with DNMT inhibitor improved motor function and extended lifespan by 25%. We conclude that DNA and RNA epigenetic anomalies are prominent in mouse and human ALS and are potentially targetable for disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Danya A. Adams
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark V. Niedzwiecki
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Papaleo S, Alvaro A, Nodari R, Panelli S, Bitar I, Comandatore F. The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. Front Microbiol 2022; 13:957901. [PMID: 36188005 PMCID: PMC9520237 DOI: 10.3389/fmicb.2022.957901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.
Collapse
Affiliation(s)
- Stella Papaleo
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandro Alvaro
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Bioscience, University of Milan, Milan, Italy
| | - Riccardo Nodari
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simona Panelli
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Francesco Comandatore
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- *Correspondence: Francesco Comandatore
| |
Collapse
|
15
|
Rajendran A, Krishnamurthy K, Park S, Nakata E, Kwon Y, Morii T. Topologically‐Interlocked Minicircles as Probes of DNA Topology and DNA‐Protein Interactions. Chemistry 2022; 28:e202200108. [DOI: 10.1002/chem.202200108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Seojeong Park
- College of Pharmacy Ewha Womans University Seoul 120-750 Republic of Korea
| | - Eiji Nakata
- Institute of Advanced Energy Kyoto University Uji Kyoto, 611–0011 Japan
| | - Youngjoo Kwon
- College of Pharmacy Ewha Womans University Seoul 120-750 Republic of Korea
| | - Takashi Morii
- Institute of Advanced Energy Kyoto University Uji Kyoto, 611–0011 Japan
| |
Collapse
|
16
|
Jiang B, Cai T, Yang X, Dai Y, Yu K, Zhang P, Li P, Wang C, Liu N, Li B, Lian S. Comparative transcriptome analysis reveals significant differences in gene expression between pathogens of apple Glomerella leaf spot and apple bitter rot. BMC Genomics 2022; 23:246. [PMID: 35354401 PMCID: PMC8969349 DOI: 10.1186/s12864-022-08493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Apple Glomerella leaf spot (GLS) and apple bitter rot (ABR) are two devastating foliar and fruit diseases on apples. The different symptoms of GLS and ABR could be related to different transcriptome patterns. Thus, the objectives of this study were to compare the transcriptome profiles of Colletotrichum gloeosporioides species complex isolates GC20190701, FL180903, and FL180906, the pathogen of GLS and ABR, and to evaluate the involvement of the genes on pathogenicity. Results A relatively large difference was discovered between the GLS-isolate GC20190701 and ABR-isolates FL180903, FL180906, and quite many differential expression genes associated with pathogenicity were revealed. The DEGs between the GLS- and ABR-isolate were significantly enriched in GO terms of secondary metabolites, however, the categories of degradation of various cell wall components did not. Many genes associated with secondary metabolism were revealed. A total of 17 Cytochrome P450s (CYP), 11 of which were up-regulated while six were down-regulated, and five up-regulated methyltransferase genes were discovered. The genes associated with the secretion of extracellular enzymes and melanin accumulation were up-regulated. Four genes associated with the degradation of the host cell wall, three genes involved in the degradation of cellulose, and one gene involved in the degradation of xylan were revealed and all up-regulated. In addition, genes involved in melanin syntheses, such as tyrosinase and glucosyltransferase, were highly up-regulated. Conclusions The penetration ability, pathogenicity of GLS-isolate was greater than that of ABR-isolate, which might indicate that GLS-isolate originated from ABR-isolates by mutation. These results contributed to highlighting the importance to investigate such DEGs between GLS- and ABR-isolate in depth. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08493-w.
Collapse
Affiliation(s)
- Bowen Jiang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Ting Cai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Xiaoying Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Yuya Dai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Kaixuan Yu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Pingping Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Pingliang Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Caixia Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Sen Lian
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China. .,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China.
| |
Collapse
|
17
|
Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:1-19. [DOI: 10.1007/978-3-031-11454-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
DNA Methylation in Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:21-43. [DOI: 10.1007/978-3-031-11454-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Characterization of the Type I Restriction Modification System Broadly Conserved among Group A Streptococci. mSphere 2021; 6:e0079921. [PMID: 34787444 PMCID: PMC8597746 DOI: 10.1128/msphere.00799-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although prokaryotic DNA methylation investigations have long focused on immunity against exogenous DNA, it has been recently recognized that DNA methylation impacts gene expression and phase variation in Streptococcus pneumoniae and Streptococcus suis. A comprehensive analysis of DNA methylation is lacking for beta-hemolytic streptococci, and thus we sought to examine DNA methylation in the major human pathogen group A Streptococcus (GAS). Using a database of 224 GAS genomes encompassing 80 emm types, we found that nearly all GAS strains encode a type I restriction modification (RM) system that lacks the hsdS′ alleles responsible for impacting gene expression in S. pneumoniae and S. suis. The GAS type I system is located on the core chromosome, while sporadically present type II orphan methyltransferases were identified on prophages. By combining single-molecule real-time (SMRT) analyses of 10 distinct emm types along with phylogenomics of 224 strains, we were able to assign 13 methylation patterns to the GAS population. Inactivation of the type I RM system, occurring either naturally through phage insertion or through laboratory-induced gene deletion, abrogated DNA methylation detectable via either SMRT or MinION sequencing. Contrary to a previous report, inactivation of the type I system did not impact transcript levels of the gene (mga) encoding the key multigene activator protein (Mga) or Mga-regulated genes. Inactivation of the type I system significantly increased plasmid transformation rates. These data delineate the breadth of the core chromosomal type I RM system in the GAS population and clarify its role in immunity rather than impacting Mga regulon expression. IMPORTANCE The advent of whole-genome approaches capable of detecting DNA methylation has markedly expanded appreciation of the diverse roles of epigenetic modification in prokaryotic physiology. For example, recent studies have suggested that DNA methylation impacts gene expression in some streptococci. The data described herein are from the first systematic analysis of DNA methylation in a beta-hemolytic streptococcus and one of the few analyses to comprehensively characterize DNA methylation across hundreds of strains of the same bacterial species. We clarify that DNA methylation in group A Streptococcus (GAS) is primarily due to a type I restriction modification (RM) system present in the core genome and does not impact mga-regulated virulence gene expression, but does impact immunity against exogenous DNA. The identification of the DNA motifs recognized by each type I RM system may assist with optimizing methods for GAS genetic manipulation and help us understand how bacterial pathogens acquire exogenous DNA elements.
Collapse
|
21
|
Zhou J, Horton JR, Blumenthal RM, Zhang X, Cheng X. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun 2021; 12:3436. [PMID: 34103525 PMCID: PMC8187626 DOI: 10.1038/s41467-021-23693-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile infections are an urgent medical problem. The newly discovered C. difficile adenine methyltransferase A (CamA) is specified by all C. difficile genomes sequenced to date (>300), but is rare among other bacteria. CamA is an orphan methyltransferase, unassociated with a restriction endonuclease. CamA-mediated methylation at CAAAAA is required for normal sporulation, biofilm formation, and intestinal colonization by C. difficile. We characterized CamA kinetic parameters, and determined its structure bound to DNA containing the recognition sequence. CamA contains an N-terminal domain for catalyzing methyl transfer, and a C-terminal DNA recognition domain. Major and minor groove DNA contacts in the recognition site involve base-specific hydrogen bonds, van der Waals contacts and the Watson-Crick pairing of a rearranged A:T base pair. These provide sufficient sequence discrimination to ensure high specificity. Finally, the surprisingly weak binding of the methyl donor S-adenosyl-L-methionine (SAM) might provide avenues for inhibiting CamA activity using SAM analogs.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Differential Epigenetic Signature of Corticospinal Motor Neurons in ALS. Brain Sci 2021; 11:brainsci11060754. [PMID: 34200232 PMCID: PMC8230084 DOI: 10.3390/brainsci11060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Corticospinal motor neurons (CSMN) are an indispensable neuron population for the motor neuron circuitry. They are excitatory projection neurons, which collect information from different regions of the brain and transmit it to spinal cord targets, initiating and controlling motor function. CSMN degeneration is pronounced cellular event in motor neurons diseases, such as amyotrophic lateral sclerosis (ALS). Genetic mutations contribute to only about ten percent of ALS. Thus understanding the involvement of other factors, such as epigenetic controls, is immensely valuable. Here, we investigated epigenomic signature of CSMN that become diseased due to misfolded SOD1 toxicity and TDP-43 pathology, by performing quantitative analysis of 5-methylcytosine (5mC) and 5-hydroxymethycytosine (5hmC) expression profiles during end-stage of the disease in hSOD1G93A, and prpTDP-43A315T mice. Our analysis revealed that expression of 5mC was specifically reduced in CSMN of both hSOD1G93A and prpTDP-43A315T mice. However, 5hmC expression was increased in the CSMN that becomes diseased due to misfolded SOD1 and decreased in CSMN that degenerates due to TDP-43 pathology. These results suggest the presence of a distinct difference between different underlying causes. These differential epigenetic events might modulate the expression profiles of select genes, and ultimately contribute to the different paths that lead to CSMN vulnerability in ALS.
Collapse
|
23
|
Wolffgramm J, Buchmuller B, Palei S, Muñoz‐López Á, Kanne J, Janning P, Schweiger MR, Summerer D. Light-Activation of DNA-Methyltransferases. Angew Chem Int Ed Engl 2021; 60:13507-13512. [PMID: 33826797 PMCID: PMC8251764 DOI: 10.1002/anie.202103945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/27/2022]
Abstract
5-Methylcytosine (5mC), the central epigenetic mark of mammalian DNA, plays fundamental roles in chromatin regulation. 5mC is written onto genomes by DNA methyltransferases (DNMT), and perturbation of this process is an early event in carcinogenesis. However, studying 5mC functions is limited by the inability to control individual DNMTs with spatiotemporal resolution in vivo. We report light-control of DNMT catalysis by genetically encoding a photocaged cysteine as a catalytic residue. This enables translation of inactive DNMTs, their rapid activation by light-decaging, and subsequent monitoring of de novo DNA methylation. We provide insights into how cancer-related DNMT mutations alter de novo methylation in vivo, and demonstrate local and tuneable cytosine methylation by light-controlled DNMTs fused to a programmable transcription activator-like effector domain targeting pericentromeric satellite-3 DNA. We further study early events of transcriptome alterations upon DNMT-catalyzed cytosine methylation. Our study sets a basis to dissect the order and kinetics of diverse chromatin-associated events triggered by normal and aberrant DNA methylation.
Collapse
Affiliation(s)
- Jan Wolffgramm
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Shubhendu Palei
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Álvaro Muñoz‐López
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical FacultyUniversity of CologneKerpener Str. 6250937KölnGermany
| | - Petra Janning
- Max-Planck-Institute for Molecular PhysiologyOtto-Hahn-Str. 1144227DortmundGermany
| | - Michal R. Schweiger
- Department of Epigenetics and Tumor Biology, Medical FacultyUniversity of CologneKerpener Str. 6250937KölnGermany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| |
Collapse
|
24
|
Wolffgramm J, Buchmuller B, Palei S, Muñoz‐López Á, Kanne J, Janning P, Schweiger MR, Summerer D. Light‐Activation of DNA‐Methyltransferases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Shubhendu Palei
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Álvaro Muñoz‐López
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Petra Janning
- Max-Planck-Institute for Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Michal R. Schweiger
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
25
|
Fang J, Leichter SM, Jiang J, Biswal M, Lu J, Zhang ZM, Ren W, Zhai J, Cui Q, Zhong X, Song J. Substrate deformation regulates DRM2-mediated DNA methylation in plants. SCIENCE ADVANCES 2021; 7:eabd9224. [PMID: 34078593 PMCID: PMC8172135 DOI: 10.1126/sciadv.abd9224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
DNA methylation is a major epigenetic mechanism critical for gene expression and genome stability. In plants, domains rearranged methyltransferase 2 (DRM2) preferentially mediates CHH (H = C, T, or A) methylation, a substrate specificity distinct from that of mammalian DNA methyltransferases. However, the underlying mechanism is unknown. Here, we report structure-function characterization of DRM2-mediated methylation. An arginine finger from the catalytic loop intercalates into the nontarget strand of DNA through the minor groove, inducing large DNA deformation that affects the substrate preference of DRM2. The target recognition domain stabilizes the enlarged major groove via shape complementarity rather than base-specific interactions, permitting substrate diversity. The engineered DRM2 C397R mutation introduces base-specific contacts with the +2-flanking guanine, thereby shifting the substrate specificity of DRM2 toward CHG DNA. Together, this study uncovers DNA deformation as a mechanism in regulating the specificity of DRM2 toward diverse CHH substrates and illustrates methylome complexity in plants.
Collapse
Affiliation(s)
- Jian Fang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Sarah M Leichter
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jixian Zhai
- Department of Biology and Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Prokaryotic DNA methylation and its functional roles. J Microbiol 2021; 59:242-248. [DOI: 10.1007/s12275-021-0674-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
|
27
|
Lemfack MC, Brandt W, Krüger K, Gurowietz A, Djifack J, Jung JP, Hopf M, Noack H, Junker B, von Reuß S, Piechulla B. Reaction mechanism of the farnesyl pyrophosphate C-methyltransferase towards the biosynthesis of pre-sodorifen pyrophosphate by Serratia plymuthica 4Rx13. Sci Rep 2021; 11:3182. [PMID: 33542330 PMCID: PMC7862628 DOI: 10.1038/s41598-021-82521-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Classical terpenoid biosynthesis involves the cyclization of the linear prenyl pyrophosphate precursors geranyl-, farnesyl-, or geranylgeranyl pyrophosphate (GPP, FPP, GGPP) and their isomers, to produce a huge number of natural compounds. Recently, it was shown for the first time that the biosynthesis of the unique homo-sesquiterpene sodorifen by Serratia plymuthica 4Rx13 involves a methylated and cyclized intermediate as the substrate of the sodorifen synthase. To further support the proposed biosynthetic pathway, we now identified the cyclic prenyl pyrophosphate intermediate pre-sodorifen pyrophosphate (PSPP). Its absolute configuration (6R,7S,9S) was determined by comparison of calculated and experimental CD-spectra of its hydrolysis product and matches with those predicted by semi-empirical quantum calculations of the reaction mechanism. In silico modeling of the reaction mechanism of the FPP C-methyltransferase (FPPMT) revealed a SN2 mechanism for the methyl transfer followed by a cyclization cascade. The cyclization of FPP to PSPP is guided by a catalytic dyad of H191 and Y39 and involves an unprecedented cyclopropyl intermediate. W46, W306, F56, and L239 form the hydrophobic binding pocket and E42 and H45 complex a magnesium cation that interacts with the diphosphate moiety of FPP. Six additional amino acids turned out to be essential for product formation and the importance of these amino acids was subsequently confirmed by site-directed mutagenesis. Our results reveal the reaction mechanism involved in methyltransferase-catalyzed cyclization and demonstrate that this coupling of C-methylation and cyclization of FPP by the FPPMT represents an alternative route of terpene biosynthesis that could increase the terpenoid diversity and structural space.
Collapse
Affiliation(s)
- Marie Chantal Lemfack
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.
| | - Katja Krüger
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.,Department of Internal Medicine I, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Alexandra Gurowietz
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.,Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Weinberg 10, 06120, Halle (Saale), Germany
| | - Jacky Djifack
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.,PIMAN Consultants, 12 Rue Barthelemy Danjou, 92100, Boulogne-Billancourt, France
| | - Jan-Philip Jung
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Marius Hopf
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.,Duale Hochschule Gera-Eisenach, Weg der Freundschaft 4, 07546, Gera, Germany
| | - Heiko Noack
- Institute of Pharmacy/Biosynthesis of Active Substances, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Björn Junker
- Institute of Pharmacy/Biosynthesis of Active Substances, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Stephan von Reuß
- Laboratory of Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| |
Collapse
|
28
|
Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:85-96. [PMID: 33155140 DOI: 10.1007/978-981-15-8104-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone modification stands for a vital genetic information form, which shows tight correlation with the modulation of normal physiological activities by genes. Abnormal regulation of histone methylation due to histone modification enzyme changes and histone mutations plays an important role in the development of cancer. Histone mutations, especially H3K27M and H3K36M, have been identified in various cancers such as pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively. "K to M" mutation results overall downregulation of methylation on these lysine residues. Also, "K to M" mutant histones can inhibit the enzymatic activity of the responsible HMT (histone methyltransferase); for instance, SETD2 indicates H3K36 methylation, and Ezh2 represents H3K27 methylation. In-depth analysis of the mechanism of tumor formation triggered by the K to M mutation results in possible targeted therapies. This chapter is going to briefly introduce the mechanism of histone lysine-to-methionine mutation and review the recently identified targeted therapeutic strategies.
Collapse
|
29
|
Nguyen ND, Matsuura T, Kato Y, Watanabe H. Caloric restriction upregulates the expression ofDNMT3.1, lacking the conserved catalytic domain, inDaphnia magna. Genesis 2020; 58:e23396. [DOI: 10.1002/dvg.23396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nhan Duc Nguyen
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| |
Collapse
|
30
|
Genetic Variation and Preliminary Indications of Divergent Niche Adaptation in Cryptic Clade II of Escherichia. Microorganisms 2020; 8:microorganisms8111713. [PMID: 33142902 PMCID: PMC7716201 DOI: 10.3390/microorganisms8111713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
The evolution, habitat, and lifestyle of the cryptic clade II of Escherichia, which were first recovered at low frequency from non-human hosts and later from external environments, were poorly understood. Here, the genomes of selected strains were analyzed for preliminary indications of ecological differentiation within their population. We adopted the delta bitscore metrics to detect functional divergence of their orthologous genes and trained a random forest classifier to differentiate the genomes according to habitats (gastrointestinal vs external environment). Model was built with inclusion of other Escherichia genomes previously demonstrated to have exhibited genomic traits of adaptation to one of the habitats. Overall, gene degradation was more prominent in the gastrointestinal strains. The trained model correctly classified the genomes, identifying a set of predictor genes that were informative of habitat association. Functional divergence in many of these genes were reflective of ecological divergence. Accuracy of the trained model was confirmed by its correct prediction of the habitats of an independent set of strains with known habitat association. In summary, the cryptic clade II of Escherichia displayed genomic signatures that are consistent with divergent adaptation to gastrointestinal and external environments.
Collapse
|
31
|
Woodcock CB, Horton JR, Zhou J, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Res 2020; 48:10329-10341. [PMID: 32663306 PMCID: PMC7544203 DOI: 10.1093/nar/gkaa604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The recently characterized mammalian writer (methyltransferase) and eraser (demethylase) of the DNA N6-methyladenine (N6mA) methyl mark act on single-stranded (ss) and transiently-unpaired DNA. As YTH domain-containing proteins bind N6mA-containing RNA in mammalian cells, we investigated whether mammalian YTH domains are also methyl mark readers of N6mA DNA. Here, we show that the YTH domain of YTHDC1 (known to localize in the nucleus) binds ssDNA containing N6mA, with a 10 nM dissociation constant. This binding is stronger by a factor of 5 than in an RNA context, tested under the same conditions. However, the YTH domains of YTHDF2 and YTHDF1 (predominantly cytoplasmic) exhibited the opposite effect with ∼1.5-2× stronger binding to ssRNA containing N6mA than to the corresponding DNA. We determined two structures of the YTH domain of YTHDC1 in complex with N6mA-containing ssDNA, which illustrated that YTHDC1 binds the methylated adenine in a single-stranded region flanked by duplexed DNA. We discuss the hypothesis that the writer-reader-eraser of N6mA-containining ssDNA is associated with maintaining genome stability. Structural comparison of YTH and SRA domains (the latter a DNA 5-methylcytosine reader) revealed them to be diverse members of a larger family of DNA/RNA modification readers, apparently having originated from bacterial modification-dependent restriction enzymes.
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Narayanan N, Banerjee A, Jain D, Kulkarni DS, Sharma R, Nirwal S, Rao DN, Nair DT. Tetramerization at Low pH Licenses DNA Methylation Activity of M.HpyAXI in the Presence of Acid Stress. J Mol Biol 2020; 432:324-342. [DOI: 10.1016/j.jmb.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022]
|
33
|
Goyvaerts V, Van Snick S, D'Huys L, Vitale R, Helmer Lauer M, Wang S, Leen V, Dehaen W, Hofkens J. Fluorescent SAM analogues for methyltransferase based DNA labeling. Chem Commun (Camb) 2020; 56:3317-3320. [DOI: 10.1039/c9cc08938a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, the preparation of new S-adenosyl-l-methionine (SAM) analogues for sequence specific DNA labeling is evaluated. Fluorescent cofactors were synthesized and their applicability in methyltransferase based optical mapping is demonstrated.
Collapse
Affiliation(s)
- Vince Goyvaerts
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Sven Van Snick
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Laurens D'Huys
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Raffaele Vitale
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Milena Helmer Lauer
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Su Wang
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Volker Leen
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Wim Dehaen
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Johan Hofkens
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
34
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
35
|
The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun 2019; 10:4600. [PMID: 31601797 PMCID: PMC6787082 DOI: 10.1038/s41467-019-12498-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
The Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM) methylates the adenine of hemimethylated GANTC after replication. Here we present the structure of CcrM in complex with double-stranded DNA containing the recognition sequence. CcrM contains an N-terminal methyltransferase domain and a C-terminal nonspecific DNA-binding domain. CcrM is a dimer, with each monomer contacting primarily one DNA strand: the methyltransferase domain of one molecule binds the target strand, recognizes the target sequence, and catalyzes methyl transfer, while the C-terminal domain of the second molecule binds the non-target strand. The DNA contacts at the 5-base pair recognition site results in dramatic DNA distortions including bending, unwinding and base flipping. The two DNA strands are pulled apart, creating a bubble comprising four recognized base pairs. The five bases of the target strand are recognized meticulously by stacking contacts, van der Waals interactions and specific Watson–Crick polar hydrogen bonds to ensure high enzymatic specificity. CcrM is a cell cycle-regulated DNA methyltransferase that methylates an adenine within a specific sequence following replication in the gram negative bacterium Caulobacter crescentus. Here the authors present a crystal structure of DNA-bound CcrM that reveals the molecular mechanism leading to sequence-specific methylation.
Collapse
|
36
|
Lv H, Dao FY, Guan ZX, Zhang D, Tan JX, Zhang Y, Chen W, Lin H. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Front Genet 2019; 10:793. [PMID: 31552096 PMCID: PMC6746913 DOI: 10.3389/fgene.2019.00793] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA N6-methyladenine (6mA) is a dominant DNA modification form and involved in many biological functions. The accurate genome-wide identification of 6mA sites may increase understanding of its biological functions. Experimental methods for 6mA detection in eukaryotes genome are laborious and expensive. Therefore, it is necessary to develop computational methods to identify 6mA sites on a genomic scale, especially for plant genomes. Based on this consideration, the study aims to develop a machine learning-based method of predicting 6mA sites in the rice genome. We initially used mono-nucleotide binary encoding to formulate positive and negative samples. Subsequently, the machine learning algorithm named Random Forest was utilized to perform the classification for identifying 6mA sites. Our proposed method could produce an area under the receiver operating characteristic curve of 0.964 with an overall accuracy of 0.917, as indicated by the fivefold cross-validation test. Furthermore, an independent dataset was established to assess the generalization ability of our method. Finally, an area under the receiver operating characteristic curve of 0.981 was obtained, suggesting that the proposed method had good performance of predicting 6mA sites in the rice genome. For the convenience of retrieving 6mA sites, on the basis of the computational method, we built a freely accessible web server named iDNA6mA-Rice at http://lin-group.cn/server/iDNA6mA-Rice.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiu-Xin Tan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. J Theor Biol 2019; 476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
|
38
|
Gurbanov R, Tunçer S, Mingu S, Severcan F, Gozen AG. Methylation, sugar puckering and Z-form status of DNA from a heavy metal-acclimated freshwater Gordonia sp. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111580. [DOI: 10.1016/j.jphotobiol.2019.111580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023]
|
39
|
Jensen TØ, Tellgren-Roth C, Redl S, Maury J, Jacobsen SAB, Pedersen LE, Nielsen AT. Genome-wide systematic identification of methyltransferase recognition and modification patterns. Nat Commun 2019; 10:3311. [PMID: 31427571 PMCID: PMC6700114 DOI: 10.1038/s41467-019-11179-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23 methyltransferase genes. Using our method, we characterize the 23 methyltransferases, assign motifs to the respective enzymes and verify activity for 11 of the 12 motifs. Single molecule real-time DNA sequencing allows genome-wide identification of DNA methylation patterns. Here, Jensen et al. present a high-throughput method that allows rapid coupling of DNA methylation patterns with their corresponding methyltransferase genes in bacteria.
Collapse
Affiliation(s)
- Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, SciLifeLab, SE-751 08, Uppsala, Sweden
| | - Stephanie Redl
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.,Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | | | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.
| |
Collapse
|
40
|
Deen J, Wang S, Van Snick S, Leen V, Janssen K, Hofkens J, Neely RK. A general strategy for direct, enzyme-catalyzed conjugation of functional compounds to DNA. Nucleic Acids Res 2019; 46:e64. [PMID: 29546351 PMCID: PMC6009647 DOI: 10.1093/nar/gky184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
The methyltransferase enzymes can be applied to deliver a range of modifications to pre-determined sites on large DNA molecules with exceptional specificity and efficiency. To date, however, a limited number of modifications have been delivered in this way because of the complex chemical synthesis that is needed to produce a cofactor analogue carrying a specific function, such as a fluorophore. Here, we describe a method for the direct transfer of a series of functional compounds (seven fluorescent dyes, biotin and polyethylene glycol) to the DNA duplex. Our approach uses a functional cofactor analogue, whose final preparative step is performed alongiside the DNA modification reaction in a single pot, with no purification needed. We show that fluorophore conjugation efficiency in these mixtures is significantly improved compared to two-step labeling approaches. Our experiments highlight the remarkable malleability and selectivity of the methyltransferases tested. Additional analysis using high resolution localization of the fluorophore distribution indicates that target sites for the methyltransferase are predominantly labeled on a single strand of their palindromic site and that a small and randomly-distributed probability of off-site labeling exists.
Collapse
Affiliation(s)
- Jochem Deen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Su Wang
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Sven Van Snick
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Volker Leen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Kris Janssen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
41
|
Bröhm A, Elsawy H, Rathert P, Kudithipudi S, Schoch T, Schuhmacher MK, Weirich S, Jeltsch A. Somatic Cancer Mutations in the SUV420H1 Protein Lysine Methyltransferase Modulate Its Catalytic Activity. J Mol Biol 2019; 431:3068-3080. [PMID: 31255706 DOI: 10.1016/j.jmb.2019.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023]
Abstract
SUV420H1 is a protein lysine methyltransferase that introduces di- and trimethylation of H4K20 and is frequently mutated in human cancers. We investigated the functional effects of eight somatic cancer mutations on SUV420H1 activity in vitro and in cells. One group of mutations (S255F, K258E, A269V) caused a reduction of the catalytic activity on peptide and nucleosome substrates. The mutated amino acids have putative roles in AdoMet binding and recognition of H4 residue D24. Group 2 mutations (E238V, D249N, E320K) caused a reduction of activity on peptide substrates, which was partially recovered when using nucleosomal substrates. The corresponding residues could have direct or indirect roles in peptide and AdoMet binding, but the effects of the mutations can be overcome by additional interactions between SUV420H1 and the nucleosome substrate. The third group of mutations (S283L, S304Y) showed enhanced activity with peptide substrates when compared with nucleosomal substrates, suggesting that these residues are involved in nucleosomal interaction or allosteric activation of SUV420H1 after nucleosome binding. Group 2 and 3 mutants highlight the role of nucleosomal contacts for SUV420H1 regulation in agreement with the high activity of this enzyme on nucleosomal substrates. Strikingly, seven of the somatic cancer mutations studied here led to a reduction of the catalytic activity of SUV420H1 in cells, suggesting that SUV420H1 activity might have a tumor suppressive function. This could be explained by the role of H4K20me2/3 in DNA repair, suggesting that loss or reduction of SUV420H1 activity could contribute to a mutator phenotype in cancer cells.
Collapse
Affiliation(s)
- Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, Tanta University, 31527 Tanta, El-Gharbia, Egypt
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Srikanth Kudithipudi
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Tabea Schoch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
42
|
Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 2019; 46:9044-9056. [PMID: 30102379 PMCID: PMC6158614 DOI: 10.1093/nar/gky715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ines Hanelt
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Schiffers
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Dukatz M, Requena CE, Emperle M, Hajkova P, Sarkies P, Jeltsch A. Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A. J Mol Biol 2019; 431:3139-3145. [PMID: 31229457 DOI: 10.1016/j.jmb.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Recently, it has been discovered that different DNA-(cytosine C5)-methyltransferases including DNMT3A generate low levels of 3mC [Rosic et al. (2018), Nat. Genet., 50, 452-459]. This reaction resulted in the co-evolution of DNMTs and ALKB2 DNA repair enzymes, but its mechanism remained elusive. Here, we investigated the catalytic mechanism of DNMT3A for cytosine N3 methylation. We generated several DNMT3A variants with mutated catalytic residues and measured their activities in 5mC and 3mC generation by liquid chromatography linked to tandem mass spectrometry. Our data suggest that the methylation of N3 instead of C5 is caused by an inverted binding of the flipped cytosine target base into the active-site pocket of the DNA methyltransferase, which is partially compatible with the arrangement of catalytic amino acid residues. Given that all DNA-(cytosine C5)-methyltransferases have a common catalytic mechanism, it is likely that other enzymes of this class generate 3mC following the same mechanism.
Collapse
Affiliation(s)
- Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristina E Requena
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Petra Hajkova
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
44
|
6mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda. Nat Commun 2019; 10:2219. [PMID: 31101825 PMCID: PMC6525185 DOI: 10.1038/s41467-019-10202-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
A long-standing question in the field of embryogenesis is how the zygotic genome is precisely activated by maternal factors, allowing normal early embryonic development. We have previously shown that N6-methyladenine (6mA) DNA modification is highly dynamic in early Drosophila embryos and forms an epigenetic mark. However, little is known about how 6mA-formed epigenetic information is decoded. Here we report that the Fox-family protein Jumu binds 6mA-marked DNA and acts as a maternal factor to regulate the maternal-to-zygotic transition. We find that zelda encoding the pioneer factor Zelda is marked by 6mA. Our genetic assays suggest that Jumu controls the proper zygotic genome activation (ZGA) in early embryos, at least in part, by regulating zelda expression. Thus, our findings not only support that the 6mA-formed epigenetic marks can be read by specific transcription factors, but also uncover a mechanism by which the Jumu regulates ZGA partially through Zelda in early embryos. N6-methyladenine (6mA) DNA modification is a dynamic epigenetic mark in Drosophila embryos, but how 6mA is decoded is unclear. Here, the authors show that the protein Jumu binds 6mA-marked DNA to regulate the maternal-to-zygotic transition, partly through regulation the expression of the 6mA marked pioneer factor zelda.
Collapse
|
45
|
Effect of Disease-Associated Germline Mutations on Structure Function Relationship of DNA Methyltransferases. Genes (Basel) 2019; 10:genes10050369. [PMID: 31091831 PMCID: PMC6562416 DOI: 10.3390/genes10050369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite a large body of evidence supporting the role of aberrant DNA methylation in etiology of several human diseases, the fundamental mechanisms that regulate the activity of mammalian DNA methyltransferases (DNMTs) are not fully understood. Recent advances in whole genome association studies have helped identify mutations and genetic alterations of DNMTs in various diseases that have a potential to affect the biological function and activity of these enzymes. Several of these mutations are germline-transmitted and associated with a number of hereditary disorders, which are potentially caused by aberrant DNA methylation patterns in the regulatory compartments of the genome. These hereditary disorders usually cause neurological dysfunction, growth defects, and inherited cancers. Biochemical and biological characterization of DNMT variants can reveal the molecular mechanism of these enzymes and give insights on their specific functions. In this review, we introduce roles and regulation of DNA methylation and DNMTs. We discuss DNMT mutations that are associated with rare diseases, the characterized effects of these mutations on enzyme activity and provide insights on their potential effects based on the known crystal structure of these proteins.
Collapse
|
46
|
KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat Struct Mol Biol 2019; 26:361-371. [PMID: 31061526 DOI: 10.1038/s41594-019-0219-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
Abstract
Histone lysine methylation is generally performed by SET domain methyltransferases and regulates chromatin structure and gene expression. Here, we identify human C21orf127 (HEMK2, N6AMT1, PrmC), a member of the seven-β-strand family of putative methyltransferases, as a novel histone lysine methyltransferase. C21orf127 functions as an obligate heterodimer with TRMT112, writing the methylation mark on lysine 12 of histone H4 (H4K12) in vitro and in vivo. We characterized H4K12 recognition by solving the crystal structure of human C21orf127-TRMT112, hereafter termed 'lysine methyltransferase 9' (KMT9), in complex with S-adenosyl-homocysteine and H4K12me1 peptide. Additional analyses revealed enrichment for KMT9 and H4K12me1 at the promoters of numerous genes encoding cell cycle regulators and control of cell cycle progression by KMT9. Importantly, KMT9 depletion severely affects the proliferation of androgen receptor-dependent, as well as that of castration- and enzalutamide-resistant prostate cancer cells and xenograft tumors. Our data link H4K12 methylation with KMT9-dependent regulation of androgen-independent prostate tumor cell proliferation, thereby providing a promising paradigm for the treatment of castration-resistant prostate cancer.
Collapse
|
47
|
Cuyàs E, Verdura S, Lozano-Sánchez J, Viciano I, Llorach-Parés L, Nonell-Canals A, Bosch-Barrera J, Brunet J, Segura-Carretero A, Sanchez-Martinez M, Encinar JA, Menendez JA. The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase. Food Chem Toxicol 2019; 128:35-45. [PMID: 30935952 DOI: 10.1016/j.fct.2019.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-O-methyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil (EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially. Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new dimension to the physiological and therapeutic utility of EVOO secoiridoids.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | | | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL) L'Hospitalet del Llobregat, Barcelona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO) Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
48
|
Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes (Basel) 2019; 10:genes10020102. [PMID: 30704115 PMCID: PMC6409601 DOI: 10.3390/genes10020102] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/04/2023] Open
Abstract
5-methylcytosine (m⁵C) is an abundant RNA modification that's presence is reported in a wide variety of RNA species, including cytoplasmic and mitochondrial ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as messenger RNAs (mRNAs), enhancer RNAs (eRNAs) and a number of non-coding RNAs. In eukaryotes, C5 methylation of RNA cytosines is catalyzed by enzymes of the NOL1/NOP2/SUN domain (NSUN) family, as well as the DNA methyltransferase homologue DNMT2. In recent years, substrate RNAs and modification target nucleotides for each of these methyltransferases have been identified, and structural and biochemical analyses have provided the first insights into how each of these enzymes achieves target specificity. Functional characterizations of these proteins and the modifications they install have revealed important roles in diverse aspects of both mitochondrial and nuclear gene expression. Importantly, this knowledge has enabled a better understanding of the molecular basis of a number of diseases caused by mutations in the genes encoding m⁵C methyltransferases or changes in the expression level of these enzymes.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Justus-von-Liebig-Weg 11, 37077 Germany.
| |
Collapse
|
49
|
Rustad SR, Papale LA, Alisch RS. DNA Methylation and Hydroxymethylation and Behavior. Curr Top Behav Neurosci 2019; 42:51-82. [PMID: 31392630 DOI: 10.1007/7854_2019_104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Environmentally sensitive molecular mechanisms in the brain, such as DNA methylation, have become a significant focus of neuroscience research because of mounting evidence indicating that they are critical in response to social situations, stress, threats, and behavior. The recent identification of 5-hydroxymethylcytosine (5hmC), which is enriched in the brain (tenfold over peripheral tissues), raises new questions as to the role of this base in mediating epigenetic effects in the brain. The development of genome-wide methods capable of distinguishing 5-methylcytosine (5mC) from 5hmC has revealed that a growing number of behaviors are linked to independent disruptions of 5mC and 5hmC levels, further emphasizing the unique importance of both of these modifications in the brain. Here, we review the recent links that indicate DNA methylation (both 5mC and 5hmC) is highly dynamic and that perturbations in this modification may contribute to behaviors related to psychiatric disorders and hold clinical relevance.
Collapse
Affiliation(s)
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA. .,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
50
|
Blaschke U, Suwono B, Zafari S, Ebersberger I, Skiebe E, Jeffries CM, Svergun DI, Wilharm G. Recombinant production of A1S_0222 from Acinetobacter baumannii ATCC 17978 and confirmation of its DNA-(adenine N6)-methyltransferase activity. Protein Expr Purif 2018; 151:78-85. [DOI: 10.1016/j.pep.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|