1
|
Debès C, Papadakis A, Grönke S, Karalay Ö, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A, Brusius I, Sofiadis K, Lamprousi M, Lu YX, Huang W, Esmaillie R, Kubacki T, Späth MR, Schermer B, Benzing T, Müller RU, Antebi A, Partridge L, Papantonis A, Beyer A. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023; 616:814-821. [PMID: 37046086 PMCID: PMC10132977 DOI: 10.1038/s41586-023-05922-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.
Collapse
Affiliation(s)
- Cédric Debès
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Antonios Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Özlem Karalay
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hahn
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carina Weigelt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Isabell Brusius
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Konstantinos Sofiadis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mantha Lamprousi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Reza Esmaillie
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Adam Antebi
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Linda Partridge
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Linzer N, Trumbull A, Nar R, Gibbons MD, Yu DT, Strouboulis J, Bungert J. Regulation of RNA Polymerase II Transcription Initiation and Elongation by Transcription Factor TFII-I. Front Mol Biosci 2021; 8:681550. [PMID: 34055891 PMCID: PMC8155576 DOI: 10.3389/fmolb.2021.681550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription by RNA polymerase II (Pol II) is regulated by different processes, including alterations in chromatin structure, interactions between distal regulatory elements and promoters, formation of transcription domains enriched for Pol II and co-regulators, and mechanisms involved in the initiation, elongation, and termination steps of transcription. Transcription factor TFII-I, originally identified as an initiator (INR)-binding protein, contains multiple protein–protein interaction domains and plays diverse roles in the regulation of transcription. Genome-wide analysis revealed that TFII-I associates with expressed as well as repressed genes. Consistently, TFII-I interacts with co-regulators that either positively or negatively regulate the transcription. Furthermore, TFII-I has been shown to regulate transcription pausing by interacting with proteins that promote or inhibit the elongation step of transcription. Changes in TFII-I expression in humans are associated with neurological and immunological diseases as well as cancer. Furthermore, TFII-I is essential for the development of mice and represents a barrier for the induction of pluripotency. Here, we review the known functions of TFII-I related to the regulation of Pol II transcription at the stages of initiation and elongation.
Collapse
Affiliation(s)
- Niko Linzer
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Alexis Trumbull
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - David T Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
4
|
In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 2018; 28:654-665. [PMID: 29632087 PMCID: PMC5932606 DOI: 10.1101/gr.230219.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Cisplatin reacts with DNA and thereby likely generates a characteristic pattern of somatic mutations, called a mutational signature. Despite widespread use of cisplatin in cancer treatment and its role in contributing to secondary malignancies, its mutational signature has not been delineated. We hypothesize that cisplatin's mutational signature can serve as a biomarker to identify cisplatin mutagenesis in suspected secondary malignancies. Knowledge of which tissues are at risk of developing cisplatin-induced secondary malignancies could lead to guidelines for noninvasive monitoring for secondary malignancies after cisplatin chemotherapy. We performed whole genome sequencing of 10 independent clones of cisplatin-exposed MCF-10A and HepG2 cells and delineated the patterns of single and dinucleotide mutations in terms of flanking sequence, transcription strand bias, and other characteristics. We used the mSigAct signature presence test and nonnegative matrix factorization to search for cisplatin mutagenesis in hepatocellular carcinomas and esophageal adenocarcinomas. All clones showed highly consistent patterns of single and dinucleotide substitutions. The proportion of dinucleotide substitutions was high: 8.1% of single nucleotide substitutions were part of dinucleotide substitutions, presumably due to cisplatin's propensity to form intra- and interstrand crosslinks between purine bases in DNA. We identified likely cisplatin exposure in nine hepatocellular carcinomas and three esophageal adenocarcinomas. All hepatocellular carcinomas for which clinical data were available and all esophageal cancers indeed had histories of cisplatin treatment. We experimentally delineated the single and dinucleotide mutational signature of cisplatin. This signature enabled us to detect previous cisplatin exposure in human hepatocellular carcinomas and esophageal adenocarcinomas with high confidence.
Collapse
|
5
|
Huang MN, Yu W, Teoh WW, Ardin M, Jusakul A, Ng AWT, Boot A, Abedi-Ardekani B, Villar S, Myint SS, Othman R, Poon SL, Heguy A, Olivier M, Hollstein M, Tan P, Teh BT, Sabapathy K, Zavadil J, Rozen SG. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res 2017; 27:1475-1486. [PMID: 28739859 PMCID: PMC5580708 DOI: 10.1101/gr.220038.116] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/14/2017] [Indexed: 01/16/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene-this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.
Collapse
Affiliation(s)
- Mi Ni Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Willie Yu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Wei Wei Teoh
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Apinya Jusakul
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Alvin Wei Tian Ng
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore
| | - Arnoud Boot
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Behnoush Abedi-Ardekani
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Rashidah Othman
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Song Ling Poon
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University Langone Medical Center, New York, New York 10016, USA
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Kanaga Sabapathy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Steven G Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
6
|
Kuzmina A, Krasnopolsky S, Taube R. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb. Transcription 2017; 8:133-149. [PMID: 28340332 DOI: 10.1080/21541264.2017.1295831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb.
Collapse
Affiliation(s)
- Alona Kuzmina
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| | - Simona Krasnopolsky
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| | - Ran Taube
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| |
Collapse
|
7
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
8
|
Fan AX, Papadopoulos GL, Hossain MA, Lin IJ, Hu J, Tang TM, Kilberg MS, Renne R, Strouboulis J, Bungert J. Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress. Nucleic Acids Res 2014; 42:7625-41. [PMID: 24875474 PMCID: PMC4081084 DOI: 10.1093/nar/gku467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed transcription factor TFII-I exerts both positive and negative effects on transcription. Using biotinylation tagging technology and high-throughput sequencing, we determined sites of chromatin interactions for TFII-I in the human erythroleukemia cell line K562. This analysis revealed that TFII-I binds upstream of the transcription start site of expressed genes, both upstream and downstream of the transcription start site of repressed genes, and downstream of RNA polymerase II peaks at the ATF3 and other stress responsive genes. At the ATF3 gene, TFII-I binds immediately downstream of a Pol II peak located 5 kb upstream of exon 1. Induction of ATF3 expression increases transcription throughout the ATF3 gene locus which requires TFII-I and correlates with increased association of Pol II and Elongin A. Pull-down assays demonstrated that TFII-I interacts with Elongin A. Partial depletion of TFII-I expression caused a reduction in the association of Elongin A with and transcription of the DNMT1 and EFR3A genes without a decrease in Pol II recruitment. The data reveal different interaction patterns of TFII-I at active, repressed, or inducible genes, identify novel TFII-I interacting proteins, implicate TFII-I in the regulation of transcription elongation and provide insight into the role of TFII-I during the response to cellular stress.
Collapse
Affiliation(s)
- Alex Xiucheng Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Giorgio L Papadopoulos
- Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - I-Ju Lin
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Jianhong Hu
- Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Tommy Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Rolf Renne
- Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - John Strouboulis
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| |
Collapse
|
9
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
10
|
Cosgrove MS, Ding Y, Rennie WA, Lane MJ, Hanes SD. The Bin3 RNA methyltransferase targets 7SK RNA to control transcription and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:633-47. [PMID: 22740346 DOI: 10.1002/wrna.1123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bicoid-interacting protein 3 (Bin3) is a conserved RNA methyltransferase found in eukaryotes ranging from fission yeast to humans. It was originally discovered as a Bicoid (Bcd)-interacting protein in Drosophila, where it is required for anterior-posterior and dorso-ventral axis determination in the early embryo. The mammalian ortholog of Bin3 (BCDIN3), also known as methyl phosphate capping enzyme (MePCE), plays a key role in repressing transcription. In transcription, MePCE binds the non-coding 7SK RNA, which forms a scaffold for an RNA-protein complex that inhibits positive-acting transcription elongation factor b, an RNA polymerase II elongation factor. MePCE uses S-adenosyl methionine to transfer a methyl group onto the γ-phosphate of the 5' guanosine of 7SK RNA generating an unusual cap structure that protects 7SK RNA from degradation. Bin3/MePCE also has a role in translation regulation. Initial studies in Drosophila indicate that Bin3 targets 7SK RNA and stabilizes a distinct RNA-protein complex that assembles on the 3'-untranslated region of caudal mRNAs to prevent translation initiation. Much remains to be learned about Bin3/MeCPE function, including how it recognizes 7SK RNA, what other RNA substrates it might target, and how widespread a role it plays in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
11
|
Han J, Li Q, McCullough L, Kettelkamp C, Formosa T, Zhang Z. Ubiquitylation of FACT by the cullin-E3 ligase Rtt101 connects FACT to DNA replication. Genes Dev 2010; 24:1485-90. [PMID: 20634314 DOI: 10.1101/gad.1887310] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
FACT plays important roles in both gene transcription and DNA replication. However, how this protein complex is targeted to these two distinct cellular processes remains largely unknown. Here we show that ubiquitylation of the Spt16 subunit of FACT by Rtt101, the cullin subunit of an E3 ubiquitin ligase in Saccharomyces cerevisiae, links FACT to DNA replication. We find Rtt101 interacts with and ubiquitylates Spt16 in vitro and in vivo. Deletion of RTT101 leads to reduced association of both FACT and the replicative helicase MCM with replication origins. Loss of Rtt101 also reduces binding of FACT to MCM, but not the association of FACT with Leo1 and Spt5, two proteins involved in transcription. Origin function is compromised in cells lacking Rtt101 or with an Spt16 mutation. These findings identify Spt16 as an Rtt101 substrate, and suggest that Spt16 ubiquitylation is important for FACT to function during DNA replication.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010; 38:439-51. [PMID: 20471949 DOI: 10.1016/j.molcel.2010.04.012] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 04/08/2010] [Indexed: 01/16/2023]
Abstract
HIV-1 transactivator Tat has greatly contributed to our understanding of transcription elongation by RNAPII. We purified HIV-1 Tat-associated factors from HeLa nuclear extract and show that Tat forms two distinct and stable complexes. Tatcom1 consists of the core active P-TEFb, MLL-fusion partners involved in leukemia (AF9, AFF4, AFF1, ENL, and ELL), and PAF1 complex. Importantly, Tatcom1 formation relies on P-TEFb while optimal CDK9 CTD-kinase activity is AF9 dependent. MLL-fusion partners and PAF1 are required for Tat transactivation. Tatcom2 is composed of CDK9, CycT1, and 7SK snRNP lacking HEXIM. Tat remodels 7SK snRNP by interacting directly with 7SK RNA, leading to the formation of a stress-resistant 7SK snRNP particle. Besides the identification of factors required for Tat transactivation and important for P-TEFb function, our data show a coordinated control of RNAPII elongation by different classes of transcription elongation factors associated in a single complex and acting at the same promoter.
Collapse
Affiliation(s)
- Bijan Sobhian
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1378-88. [PMID: 20417176 DOI: 10.1016/j.bbabio.2010.04.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Mitochondria are organelles whose main function is to generate power by oxidative phosphorylation. Some of the essential genes required for this energy production are encoded by the mitochondrial genome, a small circular double stranded DNA molecule. Human mtDNA is replicated by a specialized machinery distinct from the nuclear replisome. Defects in the mitochondrial replication machinery can lead to loss of genetic information by deletion and/or depletion of the mtDNA, which subsequently may cause disturbed oxidative phosphorylation and neuromuscular symptoms in patients. We discuss here the different components of the mitochondrial replication machinery and their role in disease. We also review the mode of mammalian mtDNA replication.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
14
|
Rajala T, Häkkinen A, Healy S, Yli-Harja O, Ribeiro AS. Effects of transcriptional pausing on gene expression dynamics. PLoS Comput Biol 2010; 6:e1000704. [PMID: 20300642 PMCID: PMC2837387 DOI: 10.1371/journal.pcbi.1000704] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 02/04/2010] [Indexed: 11/19/2022] Open
Abstract
Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.
Collapse
Affiliation(s)
- Tiina Rajala
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Antti Häkkinen
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Shannon Healy
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Olli Yli-Harja
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Andre S. Ribeiro
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
- * E-mail:
| |
Collapse
|
15
|
Chen H, Contreras X, Yamaguchi Y, Handa H, Peterlin BM, Guo S. Repression of RNA polymerase II elongation in vivo is critically dependent on the C-terminus of Spt5. PLoS One 2009; 4:e6918. [PMID: 19742326 PMCID: PMC2735033 DOI: 10.1371/journal.pone.0006918] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
The stalling of RNA polymerase II (RNAPII) at the promoters of many genes, including developmental regulators, stress-responsive genes, and HIVLTR, suggests transcription elongation as a critical regulatory step in addition to initiation. Spt5, the large subunit of the DRB sensitivity-inducing factor (DSIF), represses or activates RNAPII elongation in vitro. How RNAPII elongation is repressed in vivo is not well understood. Here we report that CTR1 and CTR2CT, the two repeat-containing regions constituting the C-terminus of Spt5, play a redundant role in repressing RNAPII elongation in vivo. First, mis-expression of Spt5 lacking CTR1 or CTR2CT is inconsequential, but mis-expression of Spt5 lacking the entire C-terminus (termed NSpt5) dominantly impairs embryogenesis in zebrafish. Second, NSpt5 de-represses the transcription of hsp70-4 in zebrafish embryos and HIVLTR in cultured human cells, which are repressed at the RNAPII elongation step under non-inducible conditions. Third, NSpt5 directly associates with hsp70-4 chromatin in vivo and increases the occupancy of RNAPII, positive transcription elongation factor b (P-TEFb), histone H3 Lys 4 trimethylation (H3K4Me3), and surprisingly, the negative elongation factor A (NELF-A) at the locus, indicating a direct action of NSpt5 on the elongation repressed locus. Together, these results reveal a dominant activity of NSpt5 to de-repress RNAPII elongation, and suggest that the C-terminus of Spt5 is critical for repressing RNAPII elongation in vivo.
Collapse
Affiliation(s)
- Hui Chen
- Department of Biopharmaceutical Sciences, and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Xavier Contreras
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Handa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Su Guo
- Department of Biopharmaceutical Sciences, and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Krishnan K, Salomonis N, Guo S. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo. PLoS One 2008; 3:e3621. [PMID: 18978947 PMCID: PMC2575381 DOI: 10.1371/journal.pone.0003621] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022] Open
Abstract
Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8) zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8) and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.
Collapse
Affiliation(s)
- Keerthi Krishnan
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
| | - Nathan Salomonis
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Su Guo
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
17
|
Monitoring RNA transcription in real time by using surface plasmon resonance. Proc Natl Acad Sci U S A 2008; 105:3315-20. [PMID: 18299563 DOI: 10.1073/pnas.0712074105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The decision to elongate or terminate the RNA chain at specific DNA template positions during transcription is kinetically regulated, but the methods used to measure the rates of these processes have not been sufficiently quantitative to permit detailed mechanistic analysis of the steps involved. Here, we use surface plasmon resonance (SPR) technology to monitor RNA transcription by Escherichia coli RNA polymerase (RNAP) in solution and in real time. We show that binding of RNAP to immobilized DNA templates to form active initiation or elongation complexes can be resolved and monitored by this method, and that changes during transcription that involve the gain or loss of bound mass, including the release of the sigma factor during the initiation-elongation transition, the synthesis of the RNA transcript, and the release of core RNAP and nascent RNA at intrinsic terminators, can all be observed. The SPR method also permits the discrimination of released termination products from paused and other intermediate complexes at terminators. We have used this approach to show that the rate constant for transcript release at intrinsic terminators tR2 and tR' is approximately 2-3 s(-1) and that the extent of release at these terminators is consistent with known termination efficiencies. Simulation techniques have been used to fit the measured parameters to a simple kinetic model of transcription and the implications of these results for transcriptional regulation are discussed.
Collapse
|
18
|
Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M. Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 2008; 42:327-39. [PMID: 17917870 DOI: 10.1080/10409230701597717] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One of the experimental platforms to study programs increasing genetic diversity in cells under stressful or nondividing conditions is adaptive mutagenesis, also called stationary phase mutagenesis or stress-induced mutagenesis. In some model systems, there is evidence that mutagenesis occurs in genes that are actively transcribed. Some of those genes may be actively transcribed as a result of environmental stress giving the appearance of directed mutation. That is, cells under conditions of starvation or other stresses accumulate mutations in transcribed genes, including those transcribed because of the selective pressure. An important question concerns how, within the context of stochastic processes, a cell biases mutation to genes under selection pressure? Because the mechanisms underlying DNA transactions in prokaryotic cells are well conserved among the three domains of life, these studies are likely to apply to the examination of genetic programs in eukaryotes. In eukaryotes, increasing genetic diversity in differentiated cells has been implicated in neoplasia and cell aging. Historically, Escherichia coli has been the paradigm used to discern the cellular processes driving the generation of adaptive mutations; however, examining adaptive mutation in Bacillus subtilis has contributed new insights. One noteworthy contribution is that the B. subtilis' ability to accumulate chromosomal mutations under conditions of starvation is influenced by cell differentiation and transcriptional derepression, as well as by proteins homologous to transcription and repair factors. Here we revise and discuss concepts pertaining to genetic programs that increase diversity in B. subtilis cells under nutritional stress.
Collapse
|
19
|
Li Y, Lin AW, Zhang X, Wang Y, Wang X, Goodrich DW. Cancer cells and normal cells differ in their requirements for Thoc1. Cancer Res 2007; 67:6657-64. [PMID: 17638875 PMCID: PMC2804983 DOI: 10.1158/0008-5472.can-06-3234] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The evolutionarily conserved TREX (Transcription/Export) complex physically couples transcription, messenger ribonucleoprotein particle biogenesis, RNA processing, and RNA export for a subset of genes. HPR1 encodes an essential component of the S. cerevisiae TREX complex. HPR1 loss compromises transcriptional elongation, nuclear RNA export, and genome stability. Yet, HPR1 is not required for yeast viability. Thoc1 is the recently discovered human functional orthologue of HPR1. Thoc1 is expressed at higher levels in breast cancer than in normal epithelia, and expression levels correlate with tumor size and metastatic potential. Depletion of Thoc1 protein (pThoc1) in human cancer cell lines compromises cell proliferation. It is currently unclear whether Thoc1 is essential for all mammalian cells or whether cancer cells may differ from normal cells in their dependence on Thoc1. To address this issue, we have compared the requirements for Thoc1 in the proliferation and survival of isogenic normal and oncogene-transformed cells. Neoplastic cells rapidly lose viability via apoptotic cell death on depletion of pThoc1. Induction of apoptotic cell death is coincident with increased DNA damage as indicated by the appearance of phosphorylated histone H2AX. In contrast, the viability of normal cells is largely unaffected by pThoc1 loss. Normal cells lacking Thoc1 cannot be transformed by forced expression of E1A and Ha-ras, suggesting that Thoc1 may be important for neoplastic transformation. In sum, our data are consistent with the hypothesis that cancer cells require higher levels of pThoc1 for survival than normal cells. If true, pThoc1 may provide a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Goodrich
- Correspondence to David W. Goodrich, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, 14263;
| |
Collapse
|
20
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16:92-106. [PMID: 17135274 DOI: 10.1093/hmg/ddl444] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AF4 gene, frequently translocated with mixed-lineage leukemia (MLL) in childhood acute leukemia, encodes a putative transcriptional activator of the AF4/LAF4/FMR2 (ALF) protein family previously implicated in lymphopoiesis and Purkinje cell function in the cerebellum. Here, we provide the first evidence for a direct role of AF4 in the regulation of transcriptional elongation by RNA polymerase II (Pol II). We demonstrate that mouse Af4 functions as a positive regulator of Pol II transcription elongation factor b (P-TEFb) kinase and, in complex with MLL fusion partners Af9, Enl and Af10, as a mediator of histone H3-K79 methylation by recruiting Dot1 to elongating Pol II. These pathways are interconnected and tightly regulated by the P-TEFb-dependent phosphorylation of Af4, Af9 and Enl which controls their transactivation activity and/or protein stability. Consistently, increased levels of phosphorylated Pol II and methylated H3-K79 are observed in the ataxic mouse mutant robotic, an over-expression model of Af4. Finally, we confirm the functional relevance of Af4, Enl and Af9 to the regulation of gene transcription as their over-expression strongly stimulates P-TEFb-dependent transcription of a luciferase reporter gene. Our findings uncover a central role for these proteins in the regulation of transcriptional elongation and coordinated histone methylation, providing valuable insight into their contribution to leukemogenesis and neurodegeneration. Since these activities likely extend to the entire ALF protein family, this study also significantly inputs our understanding of the molecular basis of FRAXE mental retardation syndrome in which FMR2 expression is silenced.
Collapse
Affiliation(s)
- Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
22
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
23
|
Tuo J, Ning B, Bojanowski CM, Lin ZN, Ross RJ, Reed GF, Shen D, Jiao X, Zhou M, Chew EY, Kadlubar FF, Chan CC. Synergic effect of polymorphisms in ERCC6 5' flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci U S A 2006; 103:9256-61. [PMID: 16754848 PMCID: PMC1474016 DOI: 10.1073/pnas.0603485103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigates age-related macular degeneration (AMD) genetic risk factors through identification of a functional single-nucleotide polymorphism (SNP) and its disease association. We chose ERCC6 because of its roles in the aging process, DNA repair, and ocular degeneration from the gene disruption. Bioinformatics indicated a putative binding-element alteration on the sequence containing C-6530>G SNP in the 5' flanking region of ERCC6 from Sp1 on the C allele to SP1, GATA-1, and OCT-1 on the G allele. Electrophoretic mobility shift assays displayed distinctive C and G allele-binding patterns to nuclear proteins. Luciferase expression was higher in the vector construct containing the G allele than that containing the C allele. A cohort of 460 advanced AMD cases and 269 age-matched controls was examined along with pathologically diagnosed 57 AMD and 18 age-matched non-AMD archived cases. ERCC6 C-6530>G was associated with AMD susceptibility, both independently and through interaction with an SNP (rs380390) in the complement factor H (CFH) intron reported to be highly associated with AMD. A disease odds ratio of 23 was conferred by homozygozity for risk alleles at both ERCC6 and CFH compared with homozygozity for nonrisk alleles. Enhanced ERCC6 expression was observed in lymphocytes from healthy donors bearing ERCC6 C-6530>G alleles. Intense immunostaining of ERCC6 was also found in AMD eyes from ERCC6 C-6530>G carriers. The strong AMD predisposition conferred by the ERCC6 and CFH SNPs may result from biological epistasis, because ERCC6 functions in universal transcription as a component of RNA pol I transcription complex.
Collapse
Affiliation(s)
- Jingsheng Tuo
- *Laboratory of Immunology, Section on Immunopathology
| | - Baitang Ning
- Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Jefferson, AR 72079
| | | | - Zhong-Ning Lin
- Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | - Defen Shen
- *Laboratory of Immunology, Section on Immunopathology
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Min Zhou
- *Laboratory of Immunology, Section on Immunopathology
| | | | - Fred F. Kadlubar
- Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Jefferson, AR 72079
| | - Chi-Chao Chan
- *Laboratory of Immunology, Section on Immunopathology
- To whom correspondence should be addressed at: Laboratory of Immunology, National Eye Institute, 10/10N103, 10 Center Drive, Bethesda, MD 20892-1857. E-mail:
| |
Collapse
|
24
|
Chu Y, Sutton A, Sternglanz R, Prelich G. The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol Cell Biol 2006; 26:3029-38. [PMID: 16581778 PMCID: PMC1446943 DOI: 10.1128/mcb.26.8.3029-3038.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BUR1 and BUR2 encode the catalytic and regulatory subunits of a cyclin-dependent protein kinase complex that is essential for normal growth and has a general role in transcription elongation. To gain insight into its specific role in vivo, we identified mutations that reverse the severe growth defect of bur1Delta cells. This selection identified mutations in SET2, which encodes a histone methylase that targets lysine 36 of histone H3 and, like BUR1, has a poorly characterized role during transcription elongation. This genetic relationship indicates that SET2 activity is required for the growth defect observed in bur1Delta strains. This SET2-dependent growth inhibition occurs via methylation of histone H3 on lysine 36, since a methylation-defective allele of SET2 or a histone H3 K36R mutation also suppressed bur1Delta. We have explored the relationship between BUR1 and SET2 at the biochemical level and find that histone H3 is monomethylated, dimethylated, and trimethylated on lysine 36 in wild-type cells, but trimethylation is significantly reduced in bur1 and bur2 mutant strains. A similar methylation pattern is observed in RNA polymerase II C-terminal domain truncation mutants and in an spt16 mutant strain. Chromatin immunoprecipitation assays reveal that the transcription-dependent increase in trimethylated K36 over open reading frames is significantly reduced in bur2Delta strains. These results establish links between a regulatory protein kinase and histone methylation and lead to a model in which the Bur1-Bur2 complex counteracts an inhibitory effect of Set2-dependent histone methylation.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
25
|
Scicchitano DA. Transcription past DNA adducts derived from polycyclic aromatic hydrocarbons. Mutat Res 2005; 577:146-54. [PMID: 15922365 DOI: 10.1016/j.mrfmmm.2005.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 12/20/2022]
Abstract
The ability of a DNA lesion to block transcription is a function of many variables: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; (5) and the local DNA sequence. Each of these parameters, either alone or in combination, can influence how a particular lesion in the genome will affect transcription elongation, resulting in potential clearance of the lesion via transcription-coupled DNA repair or in the formation of truncated or full-length transcripts that might encode defective proteins.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, 1009 Silver Center, 100 Washington Square East, New York University, New York, NY 10003, USA.
| |
Collapse
|
26
|
Jin Y, Mancuso JJ, Uzawa S, Cronembold D, Cande WZ. The fission yeast homolog of the human transcription factor EAP30 blocks meiotic spindle pole body amplification. Dev Cell 2005; 9:63-73. [PMID: 15992541 DOI: 10.1016/j.devcel.2005.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 03/22/2005] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
Centrosome aberrations caused by misregulated centrosome maturation result in defective spindle and genomic instability. Here we report that the fission yeast homolog of the human transcription factor EAP30, Dot2, negatively regulates meiotic spindle pole body (SPB, the yeast equivalent of centrosome) maturation. dot2 mutants show excess electron-dense material accumulating near SPBs, which we refer to as aberrant microtubule organization centers (AMtOCs). These AMtOCs assemble multipolar spindles, leading to chromosome missegregation. SPB aberrations were associated with elevated levels of Pcp1, the fission yeast ortholog of pericentrin/kentrin, and reducing pcp1(+) expression significantly suppressed AMtOCs in dot2-439 cells. Our findings, therefore, uncover meiosis-specific regulation of SPB maturation and provide evidence that a member of the conserved EAP30 family is required for maintenance of genome stability through regulation of SPB maturation. EAP30 is part of a transcription factor complex associated with acute myeloid leukemia, so these results may have relevance to human cancer.
Collapse
Affiliation(s)
- Ye Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
27
|
Chromatin Remodeling by RNA Polymerase II. Mol Biol 2005. [DOI: 10.1007/s11008-005-0071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Li M, Wu X, Zhuang F, Jiang S, Jiang M, Liu YH. Expression of murine ELL-associated factor 2 (Eaf2) is developmentally regulated. Dev Dyn 2004; 228:273-80. [PMID: 14517999 DOI: 10.1002/dvdy.10367] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eaf2, ELL-associated factor 2, encodes a protein that is homologous to the human EAF1, which was shown to interact with the transcriptional elongation factor MEN/ELL. During mouse embryogenesis, Eaf2 is preferentially expressed in the central nervous system and in sensory and neuroendocrine organs, including the brain, spinal cord, cranial and spinal ganglia, developing otocyst, the retina, and the pituitary. Eaf2 transcripts were also found in sites where active epithelium-mesenchymal interactions are occurring. These included the invaginating tooth buds, mammary gland anlage, submandibular glands, the lung, the pancreas, and the kidney. Other sites of expression included bladder and intestine. In the developing lens, Eaf2 transcripts were absent in the proliferating anterior lens epithelial cells but were present in the terminally differentiated primary lens fiber cells and also in nonproliferating lens fiber cells in the equatorial zone where lens epithelial cells withdraw from cell cycle and terminally differentiate into secondary lens fiber cells. This spatially restricted pattern of Eaf2 expression in the developing lens suggests that Eaf2 may play an important role in regulating lens maturation.
Collapse
Affiliation(s)
- Min Li
- Center for Craniofacial Molecular Biology, Division of Craniofacial Sciences and Therapeutics, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
30
|
Chromatin structure and dynamics: a historical perspective. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Howard SC, Hester A, Herman PK. The Ras/PKA Signaling Pathway May Control RNA Polymerase II Elongation via the Spt4p/Spt5p Complex in Saccharomyces cerevisiae. Genetics 2003; 165:1059-70. [PMID: 14668364 PMCID: PMC1462858 DOI: 10.1093/genetics/165.3.1059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Susie C Howard
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
32
|
Tamura K, Miyata K, Sugahara K, Onishi S, Shuin T, Aso T. Identification of EloA-BP1, a novel Elongin A binding protein with an exonuclease homology domain. Biochem Biophys Res Commun 2003; 309:189-95. [PMID: 12943681 DOI: 10.1016/s0006-291x(03)01556-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit, and two positive regulatory B and C subunits. Although the NH(2)-terminal approximately 120 amino acid region of Elongin A is dispensable for its transcriptional activity in vitro, it shares significant sequence similarity with the NH(2)-terminus of other class of transcription factors SII and CRSP70, suggesting that the NH(2)-terminus mediates interactions important for the regulation of transcription in vivo. To identify proteins that can bind to these conserved sequences, a human B cell cDNA library was screened using the NH(2)-terminus of Elongin A as bait in a yeast two-hybrid system. Here, we report on the cloning and characterization of a novel human exonuclease domain-containing protein, Elongin A-binding protein 1 (EloA-BP1). EloA-BP1 is composed of 1221 amino acids and its mRNA is ubiquitously expressed. Double immunofluorescence labeling in COS7 cells suggested that EloA-BP1 and Elongin A are colocalized to the cell nucleus. By using an in vitro binding assay, we show that EloA-BP1 is capable of binding not only the NH(2)-terminal approximately 120 amino acid region of Elongin A, but also that of SII. Although the purified EloA-BP1 had no detectable effect on the rate of transcription elongation in vitro, it may play some role in the regulation of elongation in vivo.
Collapse
Affiliation(s)
- Kenji Tamura
- Department of Functional Genomics, Faculty of Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
34
|
Gerber M, Shilatifard A. Transcriptional elongation by RNA polymerase II and histone methylation. J Biol Chem 2003; 278:26303-6. [PMID: 12764140 DOI: 10.1074/jbc.r300014200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA synthesis in eukaryotic organisms is a key biological process that is regulated at multiple levels. From the covalent modifications of chromatin by a number of chromatin remodeling complexes during the initiation and activation steps of transcription to the processing of mRNA transcripts, a very large consortium of proteins and multiprotein complexes is critical for gene expression by RNA polymerase II. The list of proteins essential for the successful synthesis of mRNA continues to grow at a rapid pace. Recent advances in this area of research have been focused on transcription through chromatin. In this article, we will review the recent literature linking the key biochemical process of transcriptional elongation by RNA polymerase II to histone methylation by COMPASS, Dot1p, and Set2 methyltransferases.
Collapse
Affiliation(s)
- Mark Gerber
- Department of Biochemistry and the St. Louis University Cancer Center, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
35
|
Singh SM, Lue NF. Ever shorter telomere 1 (EST1)-dependent reverse transcription by Candida telomerase in vitro: evidence in support of an activating function. Proc Natl Acad Sci U S A 2003; 100:5718-23. [PMID: 12716976 PMCID: PMC156267 DOI: 10.1073/pnas.1036868100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is an RNA-protein complex responsible for the extension of one strand of the telomere terminal repeats. Analysis of the telomerase complex in the budding yeast Saccharomyces cerevisiae has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The TERT subunit is essential for telomerase function, both in vitro and in vivo. In contrast, the Est1p and Est3p subunits, although required for telomere extension in vivo, have not been shown to affect enzyme activity in vitro. We recently identified orthologues of the Saccharomyces telomerase subunits in Candida albicans (named CaTERT, CaEst1p, and CaEst3p). Analysis of telomerase from the Candida Caest1-Delta strains revealed a primer-specific defect in its activity in vitro: The mutant enzyme was impaired in its ability to extend some, but not all, telomeric primers. The CaEst1p-responsive primers have 3' ends that are clustered in two loci within the 23-bp Candida telomere repeat. The degree of CaEst1p-dependence was modulated by the length and sequence of the 5' ends. For CaEst1p-dependent primers, the wild-type enzyme consistently exhibited a greater V(max) than the mutant enzyme in kinetic studies. These results suggest that CaEst1p augments the ability of telomerase to reverse-transcribe through selected barriers in the telomere repeat by acting as an allosteric activator and provide the basis for a functional in vitro assay for a noncatalytic protein component of the telomerase complex.
Collapse
Affiliation(s)
- Sunitha M Singh
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Perlow RA, Schinecker TM, Kim SJ, Geacintov NE, Scicchitano DA. Construction and purification of site-specifically modified DNA templates for transcription assays. Nucleic Acids Res 2003; 31:e40. [PMID: 12655028 PMCID: PMC152825 DOI: 10.1093/nar/gng040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical and physical agents can alter the structure of DNA by modifying the bases and the phosphate-sugar backbone, consequently compromising both replication and transcription. During transcription elongation, RNA polymerase complexes can stall at a damaged site in DNA and mark the lesion for repair by a subset of proteins that are utilized to execute nucleotide excision repair, a pathway commonly associated with the removal of bulky DNA damage from the genome. This RNA polymerase-induced repair pathway is called transcription-coupled nucleotide excision repair. Although our understanding of DNA lesion effects on transcription elongation and the associated effects of stalled transcription complexes on DNA repair is broadening, the attainment of critical data is somewhat impeded by labor-intensive, time- consuming processes that are required to prepare damaged DNA templates. Here, we describe an approach for building linear DNA templates that contain a single, site-specific DNA lesion and support transcription by human RNA polymerase II. The method is rapid, making use of biotin-avidin interactions and paramagnetic particles to purify the final product. Data are supplied demonstrating that these templates support transcription, and we emphasize the potential versatility of the protocol and compare it with other published methods.
Collapse
Affiliation(s)
- Rebecca A Perlow
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
In the past few months, several discoveries relating to the mechanism underlying transcription-coupled DNA repair (TCR) have been reported. These results make it timely to propose a hypothesis for how eukaryotic cells might deal with arrested RNA polymerase II (Pol II) complexes. In this model, the transcription-repair coupling factor Cockayne Syndrome B (or the yeast equivalent Rad26) uses DNA translocase activity to remodel the Pol II-DNA interface, possibly to push the polymerase past the obstruction or to remove it from the DNA so that repair can take place if the obstacle is a DNA lesion. However, when this action is not possible and Pol II is left irreversibly trapped on DNA, the polymerase is instead ubiquitylated and eventually removed by proteolysis.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
38
|
Lin PS, Marshall NF, Dahmus ME. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:333-65. [PMID: 12206456 DOI: 10.1016/s0079-6603(02)72074-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The repetitive C-terminal domain (CTD) of the largest RNA polymerase II subunit plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. A variety of CTD kinases act on RNA polymerase II at specific steps in the transcription cycle and preferentially phosphorylate distinct positions within the CTD consensus repeat. A single CTD phosphatase has been identified and characterized that in concert with CTD kinases establishes the level of CTD phosphorylation. The involvement of CTD phosphatase in controlling the progression of RNAP II around the transcription cycle, the mobilization of stored RNAP IIO, and the regulation of transcript elongation and RNA processing is discussed.
Collapse
|
39
|
Abstract
Transcription of protein-coding genes is one of the most fundamental processes that underlies all life and is a primary mechanism of biological regulation. In eukaryotic cells, transcription depends on the formation of a complex at the promoter region of the gene that minimally includes RNA polymerase II and several auxiliary proteins known as the general transcription factors. Transcription initiation follows at the promoter site given the availability of nucleoside triphosphates and ATP. Soon after the polymerase begins the synthesis of the nascent mRNA chain, it enters a critical stage, referred to as promoter escape, that is characterized by physical and functional instability of the transcription complex. These include formation of abortive transcripts, strong dependence on ATP cofactor, the general transcription factor TFIIH and downstream template. These criteria are no longer in effect when the nascent RNA reaches a length of 14-15 nucleotides. Towards the end of promoter escape, disruption or adjustment of protein-protein and protein-DNA interactions, including the release of some of the general transcription factors from the early transcription complex is to be expected, allowing the transition to the elongation stage of transcription. In this review, we examine the experimental evidence that defines promoter escape as a distinct stage in transcription, and point out areas where critical information is missing.
Collapse
MESH Headings
- HeLa Cells
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Transcription Factor TFIIH
- Transcription Factors, General/chemistry
- Transcription Factors, General/metabolism
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA.
| |
Collapse
|
40
|
Erie DA. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:224-39. [PMID: 12213654 DOI: 10.1016/s0167-4781(02)00454-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription is highly regulated both by protein factors and by specific RNA or DNA sequence elements. Central to this regulation is the ability of RNA polymerase (RNAP) to adopt multiple conformational states during elongation. This review focuses on the mechanism of transcription elongation and the role of different conformational states in the regulation of elongation and termination. The discussion centers primarily on data from structural and functional studies on Escherichia coli RNAP. To introduce the players, a brief introduction to the general mechanism of elongation, the regulatory proteins, and the conformational states is provided. The role of each of the conformational states in elongation is then discussed in detail. Finally, an integrated mechanism of elongation is presented, bringing together the panoply of experiments.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
41
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Gnatt A. Elongation by RNA polymerase II: structure-function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:175-90. [PMID: 12213651 DOI: 10.1016/s0167-4781(02)00451-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II is the eukaryotic enzyme that transcribes all the mRNA in the cell. Complex mechanisms of transcription and its regulation underlie basic functions including differentiation and morphogenesis. Recent evidence indicates the process of RNA chain elongation as a key step in transcription control. Elongation was therefore expected and found to be linked to human diseases. For these reasons, major efforts in determining the structures of RNA polymerases from yeast and bacteria, at rest and as active enzymes, were undertaken. These studies have revealed much information regarding the processes involved in transcription. Eukaryotic RNA polymerases and their homologous bacterial counterparts are flexible enzymes with domains that separate DNA and RNA, prevent the escape of nucleic acids during transcription, allow for extended pausing or "arrest" during elongation, allow for translocation of the DNA and more. Structural studies of RNA polymerases are described below within the context of the process of transcription elongation, its regulation and function.
Collapse
Affiliation(s)
- Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics and Department of Pathology, University of Maryland Baltimore, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
43
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
44
|
Yamaguchi Y, Deléhouzée S, Handa H. HIV and hepatitis delta virus: evolution takes different paths to relieve blocks in transcriptional elongation. Microbes Infect 2002; 4:1169-75. [PMID: 12361917 DOI: 10.1016/s1286-4579(02)01641-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The elongation step of transcription by RNA polymerase II (RNAPII) is controlled both positively and negatively by over a dozen cellular proteins. Recent findings suggest that two distinct viruses, human immunodeficiency virus type 1 and hepatitis delta virus, encode proteins that facilitate viral replication and transcription by targeting the same cellular transcription elongation machinery.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
45
|
Merino C, Reynaud E, Vázquez M, Zurita M. DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development. Mol Biol Cell 2002; 13:3246-56. [PMID: 12221129 PMCID: PMC124156 DOI: 10.1091/mbc.e02-02-0087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in XPB and XPD TFIIH helicases have been related with three hereditary human disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. The dual role of TFIIH in DNA repair and transcription makes it difficult to discern which of the mutant TFIIH phenotypes is due to defects in any of these different processes. We used haywire (hay), the Drosophila XPB homolog, to dissect this problem. Our results show that when hay dosage is affected, the fly shows defects in structures that require high levels of transcription. We found a genetic interaction between hay and cdk7, and we propose that some of these phenotypes are due to transcriptional deficiencies. We also found more apoptotic cells in imaginal discs and in the CNS of hay mutant flies than in wild-type flies. Because this abnormal level of apoptosis was not detected in cdk7 flies, this phenotype could be related to defects in DNA repair. In addition the apoptosis induced by p53 Drosophila homolog (Dmp53) is suppressed in heterozygous hay flies.
Collapse
Affiliation(s)
- Carlos Merino
- Department of Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Morelos 62250, México
| | | | | | | |
Collapse
|
46
|
Brower CS, Sato S, Tomomori-Sato C, Kamura T, Pause A, Stearman R, Klausner RD, Malik S, Lane WS, Sorokina I, Roeder RG, Conaway JW, Conaway RC. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:10353-8. [PMID: 12149480 PMCID: PMC124918 DOI: 10.1073/pnas.162424199] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2001] [Indexed: 11/18/2022] Open
Abstract
The heterodimeric Elongin BC complex has been shown to interact in vitro and in cells with a conserved BC-box motif found in an increasing number of proteins including RNA polymerase II elongation factor Elongin A, suppressor of cytokine signaling (SOCS)-box proteins, and the von Hippel-Lindau tumor suppressor protein. Recently, the Elongin BC complex was found to function as an adaptor that links these BC-box proteins to a module composed of Cullin family members Cul2 or Cul5 and RING-H2 finger protein Rbx1 to reconstitute a family of E3 ubiquitin ligases that activate ubiquitylation by the E2 ubiquitin-conjugating enzyme Ubc5. As part of our effort to understand the functions of Elongin BC-based ubiquitin ligases, we exploited a modified yeast two-hybrid screen to identify a mammalian BC-box protein similar in sequence to Saccharomyces cerevisiae Mediator subunit Med8p. In this report we demonstrate (i) that mammalian MED8 is a subunit of the mammalian Mediator complex and (ii) that MED8 can assemble with Elongins B and C, Cul2, and Rbx1 to reconstitute a ubiquitin ligase. Taken together, our findings are consistent with the model that MED8 could function to recruit ubiquitin ligase activity directly to the RNA polymerase II transcriptional machinery.
Collapse
|
47
|
Craighead JL, Chang WH, Asturias FJ. Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA. Structure 2002; 10:1117-25. [PMID: 12176389 DOI: 10.1016/s0969-2126(02)00813-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An 18 A resolution structure of the 12-subunit yeast RNA polymerase II (RNAPII) calculated from electron microscope images of single particles preserved in amorphous ice reveals the conformation of the enzyme in solution. The Rpb4/Rpb7 polymerase subunit complex was localized and found to be ideally positioned to determine the path of the nascent RNA transcript. The RNAPII structure suggests a revised mode of interaction with promoter DNA and demonstrates that regulation of RNAPII must involve structural changes that render the enzyme competent for initiation.
Collapse
Affiliation(s)
- John L Craighead
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
48
|
Henkin TM, Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 2002; 24:700-7. [PMID: 12210530 DOI: 10.1002/bies.10125] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of gene expression by premature termination of transcription, or transcription attenuation, is a common regulatory strategy in bacteria. Various mechanisms of regulating transcription termination have been uncovered, each can be placed in either of two broad categories of termination events. Many mechanisms involve choosing between two alternative hairpin structures in an RNA transcript, with the decision dependent on interactions between ribosome and transcript, tRNA and transcript, or protein and transcript. In other examples, modification of the transcription elongation complex is the crucial event. This article will describe and compare several of these regulatory strategies, and will cite specific examples to illustrate the different mechanisms employed.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology, Ohio State University, USA
| | | |
Collapse
|
49
|
Yamazaki K, Guo L, Sugahara K, Zhang C, Enzan H, Nakabeppu Y, Kitajima S, Aso T. Identification and biochemical characterization of a novel transcription elongation factor, Elongin A3. J Biol Chem 2002; 277:26444-51. [PMID: 11994304 DOI: 10.1074/jbc.m202859200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, the latter binding stably to each other to form a binary complex that interacts with Elongin A and strongly induces its transcriptional activity. To further understand the role of Elongin A in transcriptional regulation by RNA polymerase II, we are attempting to identify Elongin A-related proteins. Here, we report on the molecular cloning, expression, and biochemical characterization of human Elongin A3, a novel transcription elongation factor that exhibits 49 and 81% identity to Elongin A and the recently identified Elongin A2, respectively. The mRNA of Elongin A3 is ubiquitously expressed, and the protein is localized to the nucleus of cells. Mechanistic studies have demonstrated that Elongin A3 possesses similar biochemical features to Elongin A2. Both stimulate the rate of transcription elongation by RNA polymerase II and are capable of forming a stable complex with Elongin BC. In contrast to Elongin A, however, their transcriptional activities are not activated by Elongin BC. Structure-function analyses using fusion proteins composed of Elongin A3 and Elongin A revealed that the COOH-terminal region of Elongin A is important for the activation by Elongin BC.
Collapse
Affiliation(s)
- Katsuhisa Yamazaki
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Artsimovitch I, Landick R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 2002; 109:193-203. [PMID: 12007406 DOI: 10.1016/s0092-8674(02)00724-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcriptional regulatory protein RfaH controls expression of several operons that encode extracytoplasmic components in bacteria. Regulation by RfaH occurs during transcript elongation and depends on a 5'-proximal, transcribed nucleic acid sequence called ops that induces transcriptional pausing in vitro and in vivo. We report that RfaH recognizes RNA polymerase transcribing RfaH-regulated operons by interacting with the ops sequence in the exposed nontemplate DNA strand of ops-paused transcription complexes. Although RfaH delays escape from the ops pause, once escape occurs, RfaH enhances elongation by suppressing pausing and rho-dependent termination without apparent involvement of other accessory proteins. This activity predicts a cumulative antitermination model for RfaH's regulation of ops-containing operons in vivo.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli Proteins
- Evolution, Molecular
- Gene Expression Regulation, Bacterial/genetics
- Genes, Regulator/genetics
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factors/genetics
- Peptide Elongation Factors/metabolism
- Phylogeny
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- Templates, Genetic
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|