1
|
Hoeser F, Saura P, Harter C, Kaila VRI, Friedrich T. A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I. Chem Sci 2025; 16:7374-7386. [PMID: 40151474 PMCID: PMC11938283 DOI: 10.1039/d4sc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.
Collapse
Affiliation(s)
- Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | - Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | | |
Collapse
|
2
|
Panigrahi UK, Ramakrishnan VKM. Polynaphthoquinone mediated metal-free direct N-alkylation of (hetero)aryl amines using alcohols. Org Biomol Chem 2025; 23:3875-3880. [PMID: 40130607 DOI: 10.1039/d5ob00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Herein, we present polynaphthoquinone as an effective metal-free catalyst for the direct N-alkylation of aryl and heteroaryl amines using alcohols. Our experiments reveal that the optimal reaction conditions consist of 1.0 mmol of alcohol, 1.5 mmol of aniline, 0.8 equivalents of t-BuOK, and 30 wt% polynaphthoquinone catalyst in toluene at 135 °C under an inert atmosphere for 24 hours. Control experiments confirm that without a catalyst or base, the reaction fails to progress. Additionally, the reused catalyst in subsequent reactions yields good to excellent results. This methodology has also been extended to the dehydrogenative synthesis of quinolines and indoles.
Collapse
Affiliation(s)
- Uttam Kumar Panigrahi
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603 203, Tamil Nadu, India.
| | - Vengadesh Kumara Mangalam Ramakrishnan
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603 203, Tamil Nadu, India.
| |
Collapse
|
3
|
Manavi MA, Nourhashemi M, Emami S, Fathian Nasab MH, Dehnavi F, Küçükkılınç TT, Foroumadi A, Sharifzadeh M, Khoobi M. Lipoic acid scaffold applications in the design of multitarget-directed ligands against Alzheimer's disease. Bioorg Chem 2025; 157:108241. [PMID: 39922042 DOI: 10.1016/j.bioorg.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is becoming a fast-growing public health problem which can result in psychological problems as well as loss of speech, language, short-term memory, and motor coordination. Many medications were developed and produced to treat AD, however due to the complexity of the pathology involved in the illness, many of these medications often failed in clinical or preclinical studies. The main issue with the current anti-AD medications is their low efficacy since they use a single target. Multi-target-directed ligands (MTDLs) based on "one molecule; multiple targets" have been introduced to address these two fundamental issues. MTDLs have demonstrated improved efficacy and safety since they regulate many biological targets simultaneously. Alpha-lipoic acid (LA), a natural molecule with distinct properties, is a viable scaffold for developing new MTDLs in treating many neurodegenerative diseases, particularly AD. It is a key mitochondrial enzymes' cofactor and an organic molecule with disulfide functionality. It also has potent antioxidant characteristics that enhance mitochondrial activity. Considering the neuroprotective and anti-inflammatory effects of LA, various hybrids of LA with tacrine, rivastigmine, coumarin and chromone, ibuprofen, melatonin, niacin have been synthesized and biologically evaluated as the MTDLs. In this article, we review the design of LA-based hybrids or conjugates, their biological activities, and structure-activity relationship studies, to develop new MTDLs in the field of AD pharmacotherapy.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourhashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hosein Fathian Nasab
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Dehnavi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wu X, Zhan L, Storey KB, Zhang J, Yu D. Differential Mitochondrial Genome Expression of Four Skink Species Under High-Temperature Stress and Selection Pressure Analyses in Scincidae. Animals (Basel) 2025; 15:999. [PMID: 40218392 PMCID: PMC11988152 DOI: 10.3390/ani15070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
As ectotherms highly sensitive to environmental temperature fluctuations, skinks (a small lizard) are increasingly vulnerable to population instability due to global heatwaves. A clade model analysis of four Chinese skink species (Plestiodon capito, Plestiodon chinensis, Sphenomorphus indicus, and Scincella modesta) revealed positive selection acting on the ND6 gene in Sp. indicus. This species exhibits codon alterations in ND6, shifts its expression pathway and potentially decouples ND6 from high-temperature stress response mechanisms. To validate these findings, transcriptomic profiling was conducted to assess mitochondrial protein-coding gene (PCG) expression patterns under thermal stress. Using RT-qPCR, liver mitochondrial PCG transcript levels were compared between high-temperature (34 °C) and control (25 °C) groups in skink populations from distinct latitudes. Low-latitude species (P. chinensis and Sc. modesta) exhibited metabolic downregulation, characterized by a significant suppression of mitochondrial gene expression. Specifically, P. chinensis showed the downregulation of six mitochondrial genes (COII, COIII, ATP6, ND2, ND4, ND6) while upregulating one (ND1). By contrast, Sc. modesta showed the downregulation of nine genes (COI, COII, COIII, ATP8, ND1, ND3, ND4, ND4L, CYTB) and upregulated two (ND5, ND6). By contrast, high-latitude species exhibited divergent patterns: P. capito downregulated four genes (COI, COII, COIII, ND4L) and upregulated four others (ND1, ND2, ND3, ND4), whereas Sp. indicus downregulated six genes (COI, COII, ND2, ND3, ND4, ND4L) and upregulated one (ND5). These regulatory disparities suggest that low-latitude skinks have a greater capacity for metabolic depression to cope with chronic stress, whereas their high-latitude counterparts exhibit different adaptations. The findings provide valuable insights into assessing the adaptive potential of species in warming environments, particularly for ectotherms with limited thermoregulatory capacities.
Collapse
Affiliation(s)
- Xuxiang Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Meng Y, Lv L, Lin Z, Zhang D, Dong Y. Complete mitochondrial genomes of Sinonovacularivularis and Novaculinachinensis and their phylogenetic relationships within family Pharidae. Zookeys 2025; 1232:249-266. [PMID: 40151604 PMCID: PMC11947731 DOI: 10.3897/zookeys.1232.139844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025] Open
Abstract
Pharidae is one of the most ecologically and commercially significant families of marine Bivalvia; however, the taxonomy and phylogeny of Pharidae has been ongoing for quite some time and remains a contentious issue. Here, to resolve some problematical relationships among this family, the complete mitochondrial genomes (mitogenomes) of Sinonovacularivularis (17,159 bp) and Novaculinachinensis (15,957 bp) were assembled, and a comparative mitochondrial genomic analysis was conducted. Both mitogenomes contain 12 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. Among the published Pharidae mitogenomes, N.chinensis exhibited the smallest genome size but the highest AT content. The results of the phylogenetic trees confirmed the monophyly of the family Solenoidea, and indicated that N.chinensis and Sinonovacula (S.constricta and S.rivularis) were closely related in the family Pharidae. From the CREx analysis, we found that transposition and tandem duplication random losses (TDRLs) might have occurred between Pharidae and Solenidae. Moreover, positive selection was detected in nad5 of the foreground N.chinensis, and divergent evolution occurred at site 144 in the freshwater and marine lineages. Overall, our findings provide new molecular data on the phylogenetic and evolutionary relationships of Pharidae, and contribute to unraveling the salinity adaptations of Pharidae.
Collapse
Affiliation(s)
- Yiping Meng
- School of Marine Sciences, Ningbo University, Ningbo 315010, ChinaNingbo UniversityNingboChina
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, ChinaZhejiang Wanli UniversityNingboChina
| | - Liyuan Lv
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, ChinaZhejiang Wanli UniversityNinghaiChina
| | - Zhihua Lin
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, ChinaZhejiang Wanli UniversityNingboChina
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315010, ChinaNingbo UniversityNingboChina
| | - Yinghui Dong
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, ChinaZhejiang Wanli UniversityNingboChina
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, ChinaZhejiang Wanli UniversityNinghaiChina
| |
Collapse
|
6
|
Yin W, Mai W, Hu W, Li Y, Cui D, Sun J, Li J, Zhan Y, Chang Y. Molecular response to CO 2-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106951. [PMID: 39826434 DOI: 10.1016/j.marenvres.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In order to explore the impact of CO2-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pHNBS = 7.98) or in three laboratory-controlled OA conditions (ΔpHNBS = -0.3, -0.4, -0.5 units) based on the projections of the Intergovernmental Panel on Climate Change (IPCC) for 2100. Four-armed larval specimens were collected, and comparative transcriptome analysis was then performed. The results showed that 58 differentially expressed genes (DEGs) were identified in OA-treated groups as compared to the control. Moreover, more transition and transversion SNPs were observed in OA-treated groups than those in the control indicating a potential occurrence of adaption to OA in H. pulcherrimus larvae. Six candidate DEGs shared among OA-treated groups were identified as potential biomarkers correlated with low pH tolerance, mainly enriched in nine pathways associated with Notch signaling, dorso-ventral axis formation, oxidative phosphorylation, lysine degradation, valine, leucine and isoleucine degradation, lysosome, cell adhesion molecules, glutathione metabolism and PPAR signaling pathway. These results will not only enrich our knowledge of the impacts of OA on sea urchin larvae from the aspect of gene expression, provide a better understanding on larval forms coping with OA, but also offer more clues and biomarkers for developing protection or management strategies for sea urchins under near-future OA conditions.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jiaxiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
7
|
van de Wal MAE, Doornbos C, Bibbe JM, Homberg JR, van Karnebeek C, Huynen MA, Keijer J, van Schothorst EM, 't Hoen PAC, Janssen MCH, Adjobo-Hermans MJW, Wieckowski MR, Koopman WJH. Ndufs4 knockout mice with isolated complex I deficiency engage a futile adaptive brain response. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141055. [PMID: 39395749 DOI: 10.1016/j.bbapap.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Paediatric Leigh syndrome (LS) is an early-onset and fatal neurodegenerative disorder lacking treatment options. LS is frequently caused by mutations in the NDUFS4 gene, encoding an accessory subunit of mitochondrial complex I (CI), the first complex of the oxidative phosphorylation (OXPHOS) system. Whole-body Ndufs4 knockout (KO) mice (WB-KO mice) are widely used to study isolated CI deficiency, LS pathology and interventions. These animals develop a brain-specific phenotype via an incompletely understood pathomechanism. Here we performed a quantitative analysis of the sub-brain proteome in six-weeks old WB-KO mice vs. wildtype (WT) mice. Brain regions comprised of a brain slice (BrSl), cerebellum (CB), cerebral cortex (CC), hippocampus (HC), inferior colliculus (IC), and superior colliculus (SC). Proteome analysis demonstrated similarities between CC/HC, and between IC/SC, whereas BrSl and CB differed from these two groups and each other. All brain regions displayed greatly reduced levels of two CI structural subunits (NDUFS4, NDUFA12) and an increased level of the CI assembly factor NDUFAF2. The level of CI-Q module subunits was significantly more reduced in IC/SC than in BrSl/CB/CC/HC, whereas other OXPHOS complex levels were not reduced. Gene ontology and pathway analysis demonstrated specific and common proteome changes between brain regions. Across brain regions, upregulation of cold-shock-associated proteins, mitochondrial fatty acid (FA) oxidation and synthesis (mtFAS) were the most prominent. FA-related pathways were predominantly upregulated in CB and HC. Based upon these results, we argue that stimulation of these pathways is futile and pro-pathological and discuss alternative strategies for therapeutic intervention in LS. SIGNIFICANCE: The Ndufs4 knockout mouse model is currently the most relevant and most widely used animal model to study the brain-linked pathophysiology of human Leigh Syndrome (LS) and intervention strategies. We demonstrate that the Ndufs4 knockout brain engages futile and pro-pathological responses. These responses explain both negative and positive outcomes of intervention studies in Leigh Syndrome mice and patients, thereby guiding novel intervention opportunities.
Collapse
Affiliation(s)
- Melissa A E van de Wal
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cenna Doornbos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janne M Bibbe
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Martijn A Huynen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | | | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Gisdon FJ, Ackermann J, Welsch C, Koch I. Graph-Theoretical Prediction and Analysis of Biologically Relevant Substructures in an Open and Closed Conformation of Respiratory Complex I. Methods Mol Biol 2025; 2870:289-314. [PMID: 39543041 DOI: 10.1007/978-1-0716-4213-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein complexes are functional modules within the hierarchy of the cellular organization. Large protein complexes often consist of smaller functional modules, which are biologically relevant substructures with specific functions. The first protein complex of the respiratory chain, complex I, consists of functional modules for the electron transfer from NADH to quinone and the translocation of protons across the inner mitochondrial membrane. Complex I is well-characterized and biological modules have been experimentally assigned. Nevertheless, there is an ongoing discussion about the coupling of the electron transfer and the proton translocation, and about the proton translocation pathways.We modelled a mammalian complex I in open and closed conformations as complex graphs, with vertices representing protein chains and edges representing chain-chain contacts. Using a graph-theoretical method, we computed the structural modules of complex I, which indicated functional, biological substructures. We described characteristic structural features of complex I and observed a rearrangement of the structural modules. The changes in the structural modules indicated the formation of a functional module in the membrane arm of complex I during the conformational change.
Collapse
Affiliation(s)
- Florian J Gisdon
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany.
| | - Jörg Ackermann
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| | - Christoph Welsch
- Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Ina Koch
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Tóth Z. Analysis of Plant Physiological Parameters and Gene Transcriptional Changes Under the Influence of Humic Acid and Humic Acid-Amino Acid Combinations in Maize. Int J Mol Sci 2024; 25:13280. [PMID: 39769045 PMCID: PMC11676358 DOI: 10.3390/ijms252413280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role. Maize plants showed significant positive yield changes after two priming treatments. Genome-wide transcriptomic analysis revealed the activation of photosynthetic and cellular respiration processes, as well as protein synthesis pathways, which explains the increased yield even under extreme precipitation conditions. The results show that the HA treatment helped in water management and increased the chlorophyll content, while the HA+AA treatment led to higher protein and dry matter contents. The post-harvest tests also show that the HA+AA treatment resulted in the highest yield parameters. Functional annotation of the maize super transcriptome revealed genes related to translation processes, photosynthesis, and cellular respiration. The combined pathway analysis showed that the HA and combined treatments activated genes related to photosynthesis, carbon fixation, and cellular respiration, providing valuable in-depth insight into the usefulness of the HA and HA+AA treatments in priming. Based on the studies, we believe that the use of natural-based humic acid plant conditioners may provide a beneficial opportunity to promote renewable, regenerative agriculture.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Zoltán Tóth
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| |
Collapse
|
10
|
Li BG, Wu WJ, Wang LH, Wang X, Liu C, Du YK, Li BC, Hu JT, Sun SZ. Identification of a novel pathogenic gene, NDUFA3, in Leigh Syndrome through whole exome sequencing. Neurogenetics 2024; 26:13. [PMID: 39661167 PMCID: PMC11634931 DOI: 10.1007/s10048-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Leigh syndrome is a common mitochondrial disorder caused by gene mutations in the nucleus and mitochondria. When building mitochondrial complex I, the main subunit ND1 combines with the Q module to form a 273 kDa complex, which then adds Ndufa3, Ndufa8, and Ndufa13 to create an intermediate product of about 283 kDa called Q/Pp-a. Although Ndufa8 and Ndufa13 have been linked to mitochondrial diseases, the role of Ndufa3 in disease development is still not fully understood. METHODS A family suspected of having Leigh syndrome was examined. Subjects (two brothers and a sister) underwent brain imaging, and their clinical symptoms were evaluated. Also, whole exome sequencing and minigene testing were performed by examining peripheral blood samples (2 ml) collected from the proband, his parents, and brothers. RESULTS Three affected children showed early-onset symptoms, including abnormalities in muscle tone and delayed motor and language development. Symptoms were relatively mild. The second child of the second pregnancy experienced worsened muscle tone abnormalities after injury, slow wound healing, and sustained increased muscle tone up to a year after wound closure. His brain scans revealed lesions in the basal ganglia and brainstem, consistent with Leigh syndrome diagnosis. Genetic analysis identified compound heterozygous mutations in the Ndufa3 gene in all affected family members. CONCLUSION This is the first report of a family affected by Leigh syndrome associated with mutations in the Ndufa3 gene. Our analyses of clinical symptoms, radiological scans, and genetic investigations broaden our understanding of Ndufa3 gene mutations and their role in the development of Leigh syndrome.
Collapse
Affiliation(s)
- Bao-Guang Li
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China
| | - Wen-Juan Wu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China
| | - Li-Hui Wang
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Xin Wang
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Chong Liu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Ya-Kun Du
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Bao-Chi Li
- Department of Respiratory, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Jin-Tong Hu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Su-Zhen Sun
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China.
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
11
|
González-Montalvo MA, Sorescu JM, Baltes G, Juárez O, Tuz K. The respiratory chain of Klebsiella aerogenes in urine-like conditions: critical roles of NDH-2 and bd-terminal oxidases. Front Microbiol 2024; 15:1479714. [PMID: 39568993 PMCID: PMC11576283 DOI: 10.3389/fmicb.2024.1479714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Klebsiella aerogenes is an opportunistic nosocomial bacterial pathogen that commonly causes urinary tract infections. Over the past decades, K. aerogenes strains have acquired resistance to common antibiotics that has led to the rise of multidrug-resistant and even pandrug-resistant strains. Infections produced by these strains are nearly impossible to treat, which makes K. aerogenes a global priority to develop new antibiotics and there is an urgent need to identify targets to treat infections against this pathogen. However, very little is known about the metabolism and metabolic adaptations of this bacterium in infection sites. In this work, we investigated the respiratory metabolism of K. aerogenes in conditions that resemble human urine, allowing us to identify novel targets for antibiotic development. Here we describe that, unlike other gram-negative pathogens, K. aerogenes utilizes the type-2 NADH dehydrogenase (NDH-2) as the main entry point for electrons in the respiratory chain in all growth conditions evaluated. Additionally, in urine-like media, the aerobic metabolism as a whole is upregulated, with significant increases in succinate and lactate dehydrogenase activity. Moreover, our data show that the bd-I type oxidoreductases are the main terminal oxidases of this microorganism. Our findings support an initial identification of NDH-2 and bd-I oxidase as attractive targets for the development of new drugs against K. aerogenes as they are not found in human hosts.
Collapse
Affiliation(s)
| | - Jennifer M Sorescu
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Gabriella Baltes
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| |
Collapse
|
12
|
Göppert-Asadollahpour S, Wohlwend D, Friedrich T. Structural robustness of the NADH binding site in NADH:ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149491. [PMID: 38960077 DOI: 10.1016/j.bbabio.2024.149491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. Mutations in genes encoding subunits of human complex I may lead to its dysfunction resulting in a diverse clinical pattern. The effect of mutations on the protein structure is not known. Here, we focus on mutations R88G, E246K, P252R and E377K that are found in subunit NDUFV1 comprising the NADH binding site of complex I. Homologous mutations were introduced into subunit NuoF of Aquifex aeolicus complex I and it was attempted to crystallize variants of the electron input module, NuoEF, with bound substrates in the oxidized and reduced state. The E377K variant did not form crystals most likely due to an improper protein assembly. The architecture of the NADH binding site is hardly affected by the other mutations indicating its unexpected structural robustness. The R88G, E246K and P252R mutations led to small local structural rearrangements that might be related to their pathogenicity. These minor structural changes involve substrate binding, product release and the putative formation of reactive oxygen species. The structural consequences of the mutations as obtained with the bacterial enzyme might thus help to contribute to the understanding of disease causing mutations.
Collapse
Affiliation(s)
| | - Daniel Wohlwend
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany.
| |
Collapse
|
13
|
de Jong SI, Wissink M, Yildirim K, Pabst M, van Loosdrecht MCM, McMillan DGG. Quantitative proteomics reveals oxygen-induced adaptations in Caldalkalibacillus thermarum TA2.A1 microaerobic chemostat cultures. Front Microbiol 2024; 15:1468929. [PMID: 39529675 PMCID: PMC11551716 DOI: 10.3389/fmicb.2024.1468929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
The thermoalkaliphile Caldalkalibacillus thermarum possesses a highly branched respiratory chain. These primarily facilitate growth at a wide range of dissolved oxygen levels. The aim of this study was to investigate the regulation of C. thermarum respiratory chain. C. thermarum was cultivated in chemostat bioreactors with a range of oxygen levels (0.25% O2-4.2% O2). Proteomic analysis unexpectedly showed that both the type I and the type II NADH dehydrogenase present are constitutive. The two terminal oxidases detected were the cytochrome c:oxygen aa 3 oxidase, whose abundance was highest at 4.2% O2. The cytochrome c:oxygen ba 3 oxidase was more abundant at most other O2 levels, but its abundance started to decline below 0.42% O2. We expected this would result in the emergence of the cytochrome c:oxygen bb 3 complex or the menaquinol:oxygen bd complex, the other two terminal oxidases of C. thermarum; but neither was detected. Furthermore, the sodium-proton antiporter complex Mrp was downregulated under the lower oxygen levels. Normally, in alkaliphiles, this enzyme is considered crucial for sodium homeostasis. We propose that the existence of a sodium:acetate exporter decreases the requirement for Mrp under strong oxygen limitation.
Collapse
Affiliation(s)
- Samuel I. de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Martijn Wissink
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Kadir Yildirim
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Duncan G. G. McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- School of Biological Sciences, University of Reading, Whiteknights, United Kingdom
| |
Collapse
|
14
|
Beghiah A, Saura P, Badolato S, Kim H, Zipf J, Auman D, Gamiz-Hernandez AP, Berg J, Kemp G, Kaila VRI. Dissected antiporter modules establish minimal proton-conduction elements of the respiratory complex I. Nat Commun 2024; 15:9098. [PMID: 39438463 PMCID: PMC11496545 DOI: 10.1038/s41467-024-53194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.
Collapse
Affiliation(s)
- Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Badolato
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johanna Zipf
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johan Berg
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Grant Kemp
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
15
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
17
|
Nguyen VH. Genomic investigations of diverse corbiculate bee gut-associated Gilliamella reveal conserved pathways for energy metabolism, with diverse and variable energy sources. Access Microbiol 2024; 6:000793.v3. [PMID: 39148688 PMCID: PMC11325843 DOI: 10.1099/acmi.0.000793.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Gilliamella is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through in vivo and in vitro experiments focused on the type species Gilliamella apicola. This study examined 95 publicly available genomes representing at least 18 Gilliamella species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the Gilliamella but also other members of the family Orbaceae. Evidence suggests Gilliamella are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all Gilliamella and acetoin for some G. apicola strains. According to genomic evidence examined, all Gilliamella are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all Gilliamella species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phosphoenol-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Project Genomes To Functional, Ecological, and Evolutionary Characterizations (Project G2FEEC), Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Zhan L, Chen Y, He J, Guo Z, Wu L, Storey KB, Zhang J, Yu D. The Phylogenetic Relationships of Major Lizard Families Using Mitochondrial Genomes and Selection Pressure Analyses in Anguimorpha. Int J Mol Sci 2024; 25:8464. [PMID: 39126033 PMCID: PMC11312734 DOI: 10.3390/ijms25158464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Anguimorpha, within the order Squamata, represents a group with distinct morphological and behavioral characteristics in different ecological niches among lizards. Within Anguimorpha, there is a group characterized by limb loss, occupying lower ecological niches, concentrated within the subfamily Anguinae. Lizards with limbs and those without exhibit distinct locomotor abilities when adapting to their habitats, which in turn necessitate varying degrees of energy expenditure. Mitochondria, known as the metabolic powerhouses of cells, play a crucial role in providing approximately 95% of an organism's energy. Functionally, mitogenomes (mitochondrial genomes) can serve as a valuable tool for investigating potential adaptive evolutionary selection behind limb loss in reptiles. Due to the variation of mitogenome structures among each species, as well as its simple genetic structure, maternal inheritance, and high evolutionary rate, the mitogenome is increasingly utilized to reconstruct phylogenetic relationships of squamate animals. In this study, we sequenced the mitogenomes of two species within Anguimorpha as well as the mitogenomes of two species in Gekkota and four species in Scincoidea. We compared these data with the mitogenome content and evolutionary history of related species. Within Anguimorpha, between the mitogenomes of limbless and limbed lizards, a branch-site model analysis supported the presence of 10 positively selected sites: Cytb protein (at sites 183 and 187), ND2 protein (at sites 90, 155, and 198), ND3 protein (at site 21), ND5 protein (at sites 12 and 267), and ND6 protein (at sites 72 and 119). These findings suggested that positive selection of mitogenome in limbless lizards may be associated with the energy requirements for their locomotion. Additionally, we acquired data from 205 mitogenomes from the NCBI database. Bayesian inference (BI) and Maximum Likelihood (ML) trees were constructed using the 13 mitochondrial protein-coding genes (PCGs) and two rRNAs (12S rRNA and 16S rRNA) from 213 mitogenomes. Our phylogenetic tree and the divergence time estimates for Squamata based on mitogenome data are consistent with results from previous studies. Gekkota was placed at the root of Squamata in both BI and ML trees. However, within the Toxicofera clade, due to long-branch attraction, Anguimorpha and (Pleurodonta + (Serpentes + Acrodonta)) were closely related groupings, which might indicate errors and also demonstrate that mitogenome-based phylogenetic trees may not effectively resolve long-branch attraction issues. Additionally, we reviewed the origin and diversification of Squamata throughout the Mesozoic era, suggesting that Squamata originated in the Late Triassic (206.05 Mya), with the diversification of various superfamilies occurring during the Cretaceous period. Future improvements in constructing squamate phylogenetic relationships using mitogenomes will rely on identifying snake and acrodont species with slower evolutionary rates, ensuring comprehensive taxonomic coverage of squamate diversity, and increasing the number of genes analyzed.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lian Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
19
|
Willemin MS, Armand F, Hamelin R, Maillard J, Holliger C. Conditional essentiality of the 11-subunit complex I-like enzyme in strict anaerobes: the case of Desulfitobacterium hafniense strain DCB-2. Front Microbiol 2024; 15:1388961. [PMID: 38993499 PMCID: PMC11238625 DOI: 10.3389/fmicb.2024.1388961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
In oxidative phosphorylation, respiratory complex I serves as an entry point in the electron transport chain for electrons generated in catabolic processes in the form of NADH. An ancestral version of the complex, lacking the NADH-oxidising module, is encoded in a significant number of bacterial genomes. Amongst them is Desulfitobacterium hafniense, a strict anaerobe capable of conserving energy via organohalide respiration. This study investigates the role of the complex I-like enzyme in D. hafniense energy metabolism using rotenone as a specific complex I inhibitor under different growth conditions. The investigation revealed that the complex I-like enzyme was essential for growth with lactate and pyruvate but not in conditions involving H2 as an electron donor. In addition, a previously published proteomic dataset of strain DCB-2 was analysed to reveal the predominance of the complex under different growth conditions and to identify potential redox partners. This approach revealed seven candidates with expression patterns similar to Nuo homologues, suggesting the use of diverse electron sources. Based on these results, we propose a model where the complex I-like enzyme serves as an electron entry point into the respiratory chain for substrates delivering electrons within the cytoplasm, such as lactate or pyruvate, with ferredoxins shuttling electrons to the complex.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Yang X, Chen X, Liu C, Wang Z, Lei W, Li Q, Zhao Y, Wang X. Dynamic Alternative Polyadenylation during Litopenaeus Vannamei Metamorphosis Development. Genes (Basel) 2024; 15:837. [PMID: 39062616 PMCID: PMC11275414 DOI: 10.3390/genes15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As an important mechanism in the post-transcriptional regulation of eukaryotic gene expression, alternative polyadenylation (APA) plays a key role in biological processes such as cell proliferation and differentiation. However, the role and dynamic pattern of APA during Litopenaeus vannamei metamorphosis are poorly understood. Here, RNA-seq data covering from the embryo to the maturation (16 time points) of L. vannamei were utilized. We identified 247 differentially expressed APA events between early and adult stages, and through fuzzy mean clustering analysis, we discovered five dynamic APA patterns. Among them, the gradual elongation of the 3'UTR is the major APA pattern that changes over time, and its genes are enriched in the pathways of protein and energy metabolism. Finally, we constructed mRNA-miRNA and PPI networks and detected several central miRNAs that may regulate L. vannamei development. Our results revealed the complex APA mechanisms in L. vannamei metamorphosis, shedding new light on post-transcriptional regulation of crustacean metamorphosis.
Collapse
Affiliation(s)
- Xueqin Yang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Xiuli Chen
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Zezhong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Wei Lei
- Department of Pharmaceutical and Graduate Life Sciences, College of Pharmacy, Natural & Health Sciences, Manchester University, Fort Wayne, IN 46845, USA;
| | - Qiangyong Li
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Yongzhen Zhao
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Xia Wang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
21
|
Wohlwend D, Mérono L, Bucka S, Ritter K, Jessen HJ, Friedrich T. Structures of 3-acetylpyridine adenine dinucleotide and ADP-ribose bound to the electron input module of respiratory complex I. Structure 2024; 32:715-724.e3. [PMID: 38503292 DOI: 10.1016/j.str.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is a major enzyme of energy metabolism that couples NADH oxidation and ubiquinone reduction with proton translocation. The NADH oxidation site features different enzymatic activities with various nucleotides. While the kinetics of these reactions are well described, only binding of NAD+ and NADH have been structurally characterized. Here, we report the structures of the electron input module of Aquifex aeolicus complex I with bound ADP-ribose and 3-acetylpyridine adenine dinucleotides at resolutions better than 2.0 Å. ADP-ribose acts as inhibitor by blocking the "ADP-handle" motif essential for nucleotide binding. The pyridine group of APADH is minimally offset from flavin, which could contribute to its poorer suitability as substrate. A comparison with other nucleotide co-structures surprisingly shows that the adenine ribose and the pyrophosphate moiety contribute most to nucleotide binding, thus all adenine dinucleotides share core binding modes to the unique Rossmann-fold in complex I.
Collapse
Affiliation(s)
- Daniel Wohlwend
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Luca Mérono
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sarah Bucka
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kevin Ritter
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Zheng R, Feng Y, Kong L, Wu X, Zhou J, Zhang L, Liu S. Blue-light irradiation induced partial nitrification. WATER RESEARCH 2024; 254:121381. [PMID: 38442606 DOI: 10.1016/j.watres.2024.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Liguo Zhang
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
23
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
24
|
Gisdon FJ, Zunker M, Wolf JN, Prüfer K, Ackermann J, Welsch C, Koch I. Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes. Bioinformatics 2024; 40:btae112. [PMID: 38449296 PMCID: PMC11212496 DOI: 10.1093/bioinformatics/btae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. RESULTS We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain-chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. AVAILABILITY AND IMPLEMENTATION Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.
Collapse
Affiliation(s)
- Florian J Gisdon
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Mariella Zunker
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Jan Niclas Wolf
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Kai Prüfer
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Jörg Ackermann
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Christoph Welsch
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, 60590 Frankfurt am Main, Germany
| | - Ina Koch
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Chen Z, Shi Z, Zhang Y, Shi Y, Sun M, Cui Y, Zhang S, Luo G. Metagenomic analysis towards understanding the effects of ammonia on chain elongation process for medium chain fatty acids production. BIORESOURCE TECHNOLOGY 2024; 395:130413. [PMID: 38310979 DOI: 10.1016/j.biortech.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The production of medium chain fatty acids (MCFAs) through chain elongation (CE) from organic wastes/wastewater has attracted much attention, while the effects of a common inhibitor-ammonia has not been elucidated. The mechanism of ammonia affecting CE was studied by metagenomic. The lag phase duration of caproate production was increased, and the maximum caproate production rate was decreased by 43.4 % at 4 g-N/L, as compared to 0 g-N/L. And hydrochar (HC) alleviated the inhibition of ammonia at 4 g-N/L. Metagenomic analysis indicated that ammonia induced UBA4085 sp.FDU78 as the dominant microorganism, and metabolic reconstruction revealed its potential CE ability. Furthermore, ammonia inhibited the reverse β oxidation pathway and Acetyl-CoA production pathway. The tolerance of UBA4085 sp.FDU78 to ammonia was associated with the uptake of inorganic ions, energy conservation, and synthesis of osmoprotectants. The present study provided a deep-insight on the ammonia tolerance mechanism on the CE process.
Collapse
Affiliation(s)
- Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Cui
- Shanghai Wujiaochang Environmental Technology Co., Ltd, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
26
|
Parmar G, Fong-McMaster C, Pileggi CA, Patten DA, Cuillerier A, Myers S, Wang Y, Hekimi S, Cuperlovic-Culf M, Harper ME. Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation. J Biol Chem 2024; 300:105626. [PMID: 38211818 PMCID: PMC10862015 DOI: 10.1016/j.jbc.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.
Collapse
Affiliation(s)
- Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | - Alexanne Cuillerier
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephanie Myers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | - Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada; National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Yin Z, Agip ANA, Bridges HR, Hirst J. Structural insights into respiratory complex I deficiency and assembly from the mitochondrial disease-related ndufs4 -/- mouse. EMBO J 2024; 43:225-249. [PMID: 38177503 PMCID: PMC10897435 DOI: 10.1038/s44318-023-00001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.
Collapse
Affiliation(s)
- Zhan Yin
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Max-Planck-Institute of Biophysics, Frankfurt, 60438, Germany
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
- Structura Biotechnology Inc., Toronto, Canada.
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
28
|
Lu Z, Lin Q, Zhang H. Characterization of the Complete Mitochondrial Genome of Agelas nakamurai from the South China Sea. Int J Mol Sci 2023; 25:357. [PMID: 38203529 PMCID: PMC10779334 DOI: 10.3390/ijms25010357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The Agelas genus sponges are widely distributed and provide shelter for organisms that inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges. Additionally, only one Agelas mitochondrial genome has been documented, leaving the characteristics of the Agelas genus's mitogenome in need of further clarification. To address this research gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length, encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and duplication and remodeling of the trnL gene in the Agelas nakamurai's mitogenome. Our evolutionary analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas sponges' mitogenome. These findings shed light on the gene rearrangement events and positive selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the evolutionary processes of this genus.
Collapse
Affiliation(s)
- Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
29
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
30
|
Luo Q, Sun W, Li Z, Sun J, Xiao Y, Zhang J, Zhu C, Liu B, Ding J. Biomaterials-mediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials 2023; 303:122368. [PMID: 37977009 DOI: 10.1016/j.biomaterials.2023.122368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Reperfusion therapy is widely used to treat acute myocardial infarction. However, its efficacy is limited by myocardial ischemia-reperfusion injury (MIRI), which occurs paradoxically due to the reperfusion therapy and contributes to the high mortality rate of acute myocardial infarction. Systemic administration of drugs, such as antioxidant and anti-inflammatory agents, to reduce MIRI is often ineffective due to the inadequate release at the pathological sites. Functional biomaterials are being developed to optimize the use of drugs by improving their targetability and bioavailability and reducing side effects, such as gastrointestinal irritation, thrombocytopenia, and liver damage. This review provides an overview of controlled drug delivery biomaterials for treating MIRI by triggering antioxidation, calcium ion overload inhibition, and/or inflammation regulation mechanisms and discusses the challenges and potential applications of these treatments clinically.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Jinfeng Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yu Xiao
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jichang Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
31
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
32
|
Castellano M, Kaspar C, Thoss M, Koslowski T. Protein charge transfer far from equilibrium: a theoretical perspective. Phys Chem Chem Phys 2023; 25:30887-30896. [PMID: 37953728 DOI: 10.1039/d3cp03847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Potential differences for protein-assisted electron transfer across lipid bilayers or in bio-nano setups can amount to several 100 mV; they lie far outside the range of linear response theory. We describe these situations by Pauli-master equations that are based on Marcus theory of charge transfer between self-trapped electrons and that obey Kirchhoff's current law. In addition, we take on-site blockade effects and a full non-linear response of the local potentials into account. We present analytical and numerical current-potential curves and electron populations for multi-site model systems and biological electron transfer chains. Based on these, we provide empirical rules for electron populations and chemical potentials along the chain. The Pauli-master mean-field results are validated by kinetic Monte Carlo simulations. We briefly discuss the biochemical and evolutionary aspects of our findings.
Collapse
Affiliation(s)
- Mike Castellano
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Christoph Kaspar
- Institut für Physik, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Michael Thoss
- Institut für Physik, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Thorsten Koslowski
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| |
Collapse
|
33
|
Kretzmer C, Reger K, Balassi V, Pham QL, Johns M, Peters ST, Petersen A, Mahadevan J, Gustin J, Borgschulte T, Razafsky D. Chemical and Genetic Modulation of Complex I of the Electron Transport Chain Enhances the Biotherapeutic Protein Production Capacity of CHO Cells. Cells 2023; 12:2661. [PMID: 37998396 PMCID: PMC10670226 DOI: 10.3390/cells12222661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein production, CHOZN® GS-/- cell lines were screened with 1280 small molecules, and two were identified, forskolin and BrdU, which increased productivity by ≥40%. While it is possible to incorporate these small molecules into a commercial-scale process, doing so may not be financially feasible or could raise regulatory concerns related to the purity of the final drug substance. To circumvent these issues, RNA-Seq was performed to identify transcripts which were up- or downregulated upon BrdU treatment. Subsequent Reactome pathway analysis identified the electron transport chain as an affected pathway. CRISPR/Cas9 was utilized to create missense mutations in two independent components of the electron transport chain and the resultant clones partially recapitulated the phenotypes observed upon BrdU treatment, including the productivity of recombinant therapeutic proteins. Together, this work suggests that BrdU can enhance the productivity of CHO cells by modulating cellular energetics and provides a blueprint for translating data from small molecule chemical screens into genetic engineering targets to improve the performance of CHO cells. This could ultimately lead to more productive host cell lines and a more cost-effective method of supplying medication to patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David Razafsky
- Upstream Research and Development, MilliporeSigma, Saint Louis, MO 63103, USA (A.P.); (J.G.); (T.B.)
| |
Collapse
|
34
|
Farleigh K, Ascanio A, Farleigh ME, Schield DR, Card DC, Leal M, Castoe TA, Jezkova T, Rodríguez-Robles JA. Signals of differential introgression in the genome of natural hybrids of Caribbean anoles. Mol Ecol 2023; 32:6000-6017. [PMID: 37861454 DOI: 10.1111/mec.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
35
|
Haxhija J, Guischard F, Koslowski T. A trick of the tail: computing the entropic contribution to the energetics of quinone-protein unbindung. Phys Chem Chem Phys 2023; 25:27498-27505. [PMID: 37800323 DOI: 10.1039/d3cp03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
We estimate the entropic contributions to the free energy of quinone unbinding in bacterial and mitochondrial respiratory chains using molecular dynamics (MD) and Monte Carlo (MC) computer simulations. For a varying length of the isoprenoid side chain, MD simulations in lipid bilayers and in unpolar solvents are used to assess the dihedral angle distributions along the chain. These form the basis of a MC estimate of the number of molecular structures that do not exhibit steric self-overlap and that are confined to the bilayer. We obtain an entropy drive of TΔS = 1.4 kcal mol-1 for each isoprene unit, which in sum is comparable to the redox potential differences involved in respiratory chain electron transfer. We postulate an entropy-driven zipper for quinone unbinding and discuss it in the context of the bioenergetics and the structure of complex I, and we indicate possible consequences of our findings for MD-based free energy computations.
Collapse
Affiliation(s)
- Jetmir Haxhija
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| | - Felix Guischard
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| | - Thorsten Koslowski
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
36
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
37
|
Jiao M, He W, Ouyang Z, Qin Q, Guo Y, Zhang J, Bai Y, Guo X, Yu Q, She J, Hwang PM, Zheng F, Wen Y. Mechanistic and structural insights into the bifunctional enzyme PaaY from Acinetobacter baumannii. Structure 2023; 31:935-947.e4. [PMID: 37329879 DOI: 10.1016/j.str.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
PaaY is a thioesterase that enables toxic metabolites to be degraded through the bacterial phenylacetic acid (PA) pathway. The Acinetobacter baumannii gene FQU82_01591 encodes PaaY, which we demonstrate to possess γ-carbonic anhydrase activity in addition to thioesterase activity. The crystal structure of AbPaaY in complex with bicarbonate reveals a homotrimer with a canonical γ-carbonic anhydrase active site. Thioesterase activity assays demonstrate a preference for lauroyl-CoA as a substrate. The AbPaaY trimer structure shows a unique domain-swapped C-termini, which increases the stability of the enzyme in vitro and decreases its susceptibility to proteolysis in vivo. The domain-swapped C-termini impact thioesterase substrate specificity and enzyme efficacy without affecting carbonic anhydrase activity. AbPaaY knockout reduced the growth of Acinetobacter in media containing PA, decreased biofilm formation, and impaired hydrogen peroxide resistance. Collectively, AbPaaY is a bifunctional enzyme that plays a key role in the metabolism, growth, and stress response mechanisms of A. baumannii.
Collapse
Affiliation(s)
- Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Bai
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaolong Guo
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun She
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
38
|
Zhu YC, Du Y, Yao J, Liu XF, Wang Y. Detect Cytochrome C Oxidase- and Glutathione-S-Transferase-Mediated Detoxification in a Permethrin-Resistant Population of Lygus lineolaris. TOXICS 2023; 11:342. [PMID: 37112569 PMCID: PMC10144699 DOI: 10.3390/toxics11040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Frequent sprays on cotton prompted resistance development in the tarnished plant bug (TPB). Knowledge of global gene regulation is highly desirable to better understand resistance mechanisms and develop molecular tools for monitoring and managing resistance. Novel microarray expressions of 6688 genes showed 3080 significantly up- or down-regulated genes in permethrin-treated TPBs. Among the 1543 up-regulated genes, 255 code for 39 different enzymes, and 15 of these participate in important pathways and metabolic detoxification. Oxidase is the most abundant and over-expressed enzyme. Others included dehydrogenases, synthases, reductases, and transferases. Pathway analysis revealed several oxidative phosphorylations associated with 37 oxidases and 23 reductases. One glutathione-S-transferase (GST LL_2285) participated in three pathways, including drug and xenobiotics metabolisms and pesticide detoxification. Therefore, a novel resistance mechanism of over-expressions of oxidases, along with a GST gene, was revealed in permethrin-treated TPB. Reductases, dehydrogenases, and others may also indirectly contribute to permethrin detoxification, while two common detoxification enzymes, P450 and esterase, played less role in the degradation of permethrin since none was associated with the detoxification pathway. Another potential novel finding from this study and our previous studies confirmed multiple/cross resistances in the same TPB population with a particular set of genes for different insecticide classes.
Collapse
Affiliation(s)
- Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service, Jamie Whitten Delta States Research Center (USDA-ARS-JWDSRC), Stoneville, MS 38776, USA
| | - Yuzhe Du
- United States Department of Agriculture, Agricultural Research Service, Jamie Whitten Delta States Research Center (USDA-ARS-JWDSRC), Stoneville, MS 38776, USA
| | - Jianxiu Yao
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Xiaofen F. Liu
- United States Department of Agriculture, Agricultural Research Service, Jamie Whitten Delta States Research Center (USDA-ARS-JWDSRC), Stoneville, MS 38776, USA
| | - Yanhua Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| |
Collapse
|
39
|
Arroum T, Borowski MT, Marx N, Schmelter F, Scholz M, Psathaki OE, Hippler M, Enriquez JA, Busch KB. Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation. Biol Chem 2023; 404:399-415. [PMID: 36952351 DOI: 10.1515/hsz-2022-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.
Collapse
Affiliation(s)
- Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Marie-Theres Borowski
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Frank Schmelter
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Martin Scholz
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Michael Hippler
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
- Centro de Investigaciones Biomédicas en Red en Fraglidad y Envejecimiento Saludable (CIBERFES), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, E-28029 Madrid, Spain
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| |
Collapse
|
40
|
Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24065470. [PMID: 36982541 PMCID: PMC10049643 DOI: 10.3390/ijms24065470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.
Collapse
|
41
|
Qiu S, Xia W, Xu J, Li Z, Ge S. Impacts of 2-bromoethanesulfonic sodium on methanogenesis: Methanogen metabolism and community structure. WATER RESEARCH 2023; 230:119527. [PMID: 36580800 DOI: 10.1016/j.watres.2022.119527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Production of medium-chain carboxylic acids (MCCAs) by chain elongation (CE) presents a competitive alternative to conventional products of methane in anaerobic digestion treating organic waste streams, considering energy recovery, economic, and environmental profits. However, the system stability and performance largely rely on the selective suppression of methanogens while stimulation of CE bacteria. Commercial inhibitors such as 2-bromoethanesulfonic sodium (BES) was shown to be effective, but controversial conclusions exist on its inhibition characteristics and the inhibition mechanism remains unclear. Therefore, this study systematically investigated the responses of methanogenesis in granular sludge to various BES levels, focusing on methane production, methanogenic pathway, dynamic populations, electron transport and energy metabolism. Results showed that compared with the control, 3.0 g/L BES was sufficient to induce a 72.9% reduced level on accumulative methane production by the end of 4 cycles (28 days), which was likely to be attributed to the significantly suppressed metabolic pathways and intracellular regulations. Specifically, BES suppressed the electron transport via unproper electron carriers and reduced electron amount as indicated by the decreased level of enzymes and genes involved such as coenzyme F420, CO dehydrogenase and NADH:ubiquinone reductase (H+-translocating). Moreover, BES regulated the intracellular energy metabolism, leading to the impeded ATP synthesis but enhanced ATP consumption as evidenced by the variations on the activity or abundance of acetate kinase, A1Ao-ATP synthase, nitrogenase and ATP citrate synthase. Additionally, BES enriched hydrogenotrophic methanogenesis over acetoclastic one as supported by variations on the archaeal community structures and regulations of differentially expressed genes involved. Moreover, BES also reduced the contents of both protein and carbohydrate in extracellular polymeric substances (EPS). This study is expected to enhance understanding of BES contribution to methanogenesis inhibition but MCCAs production in CE bioreactors.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zimu Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
42
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
43
|
Kumari D, Singh Y, Singh S, Dogra V, Srivastava AK, Srivastava S, Garg I, Bargotya M, Hussain J, Ganju L, Varshney R. "Mitochondrial pathogenic mutations and metabolic alterations associated with COVID-19 disease severity". J Med Virol 2023; 95:e28553. [PMID: 36832542 DOI: 10.1002/jmv.28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused global pandemic and drastically affected the humankind. Mitochondrial mutations have been found to be associated with several respiratory diseases. Missense mutation and pathogenic mitochondrial variants might unveil the potential involvement of the mitochondrial genome in coronavirus disease 2019 (COVID-19) pathogenesis. The present study aims to elucidate the role of mitochondrial DNA (mtDNA) mutations, mitochondrial haplogroup, and energy metabolism in disease severity. The study was performed on 58 subjects comprising COVID-19-positive (n = 42) and negative (n = 16) individuals. COVID-19-positive subjects were further categorized into severe deceased (SD), severe recovered (SR), moderate (Mo), and mild (Mi) patients, while COVID-19-negative subjects were healthy control (HC) for the study. High throughput next-generation sequencing was done to investigate mtDNA mutations and haplogroups. The computational approach was applied to study the effect of mtDNA mutations on protein secondary structure. Real time polymerase chain reaction was used for mtDNA copy number determination and mitochondrial function parameters were also analyzed. We found 15 mtDNA mutations in MT-ND5, MT-ND4, MT-ND2, and MT-COI genes uniquely associated with COVID-19 severity affecting the secondary structure of proteins in COVID-19-positive subjects. Haplogroup analysis suggests that mtDNA haplogroups M3d1a and W3a1b might be potentially associated with COVID-19 pathophysiology. The mitochondrial function parameters were significantly altered in severe patients (SD and SR; p < 0.05). No significant relationship was found between mtDNA mutations and oxidative stress markers (p > 0.05). The study highlights the importance of mitochondrial reprogramming in COVID-19 patients and may provide a feasible approach toward finding a path for therapeutic interventions to COVID-19 disease.
Collapse
Affiliation(s)
- Diksha Kumari
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Vikas Dogra
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | | | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Iti Garg
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Mona Bargotya
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
44
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|
45
|
Wikström M, Djurabekova A, Sharma V. On the role of ubiquinone in the proton translocation mechanism of respiratory complex I. FEBS Lett 2023; 597:224-236. [PMID: 36180980 DOI: 10.1002/1873-3468.14506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/26/2023]
Abstract
Complex I converts oxidoreduction energy into a proton electrochemical gradient across the inner mitochondrial or bacterial cell membrane. This gradient is the primary source of energy for aerobic synthesis of ATP. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) by ubiquinone (Q) yields NAD+ and ubiquinol (QH2 ), which is tightly coupled to translocation of four protons from the negatively to the positively charged side of the membrane. Electrons from NADH oxidation reach the iron-sulfur centre N2 positioned near the bottom of a tunnel that extends circa 30 Å from the membrane domain into the hydrophilic domain of the complex. The tunnel is occupied by ubiquinone, which can take a distal position near the N2 centre or proximal positions closer to the membrane. Here, we review important structural, kinetic and thermodynamic properties of ubiquinone that define its role in complex I function. We suggest that this function exceeds that of a mere substrate or electron acceptor and propose that ubiquinone may be the redox element of complex I coupling electron transfer to proton translocation.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| | | | - Vivek Sharma
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland.,Department of Physics, University of Helsinki, Finland
| |
Collapse
|
46
|
Relative Importance of Different Elements of Mitochondrial Oxidative Phosphorylation in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-Associated Retinal Diseases. Cells 2022; 11:cells11244128. [PMID: 36552890 PMCID: PMC9776835 DOI: 10.3390/cells11244128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Mitochondrial dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to investigate the role of different mitochondrial constituents, specifically those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. METHODS Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components: capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: rotenone for complex I, oligomycin for complex V (ATP synthase), and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: Cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). RESULTS Rotenone (1 µM) produced the greatest reduction in Z, followed by FCCP (1 µM), whereas no reduction in Z was observed after oligomycin (1 µM) treatment. We then further deconvoluted the effects of these inhibitors on the Rb, α, and Cm parameters. Rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 h and increased Cm without a significant effect on α. Lastly, of all the inhibitors used, oligomycin had the lowest impact on Rb, as evidenced by the fact that this value became similar to that of the control group at the end of the experiment without noticeable effects on Cm or α. CONCLUSION Our study demonstrates the differential roles of complex I, complex V, and OxPhos coupling in maintaining the barrier functionality of HRECs. We specifically showed that complex I is the most important component in regulating HREC barrier integrity. These observed differences are significant since they could serve as the basis for future pharmacological and gene expression studies aiming to improve the activity of complex I and thereby provide avenues for therapeutic modalities in endothelial-associated retinal diseases.
Collapse
|
47
|
Wang S, Kang Y, Wang R, Deng J, Yu Y, Yu J, Wang J. Emerging Roles of NDUFS8 Located in Mitochondrial Complex I in Different Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248754. [PMID: 36557887 PMCID: PMC9783039 DOI: 10.3390/molecules27248754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8) is an essential core subunit and component of the iron-sulfur (FeS) fragment of mitochondrial complex I directly involved in the electron transfer process and energy metabolism. Pathogenic variants of the NDUFS8 are relevant to infantile-onset and severe diseases, including Leigh syndrome, cancer, and diabetes mellitus. With over 1000 nuclear genes potentially causing a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. Currently, there are only several studies on pathogenic variants of the NDUFS8 in Leigh syndrome, and a lack of literature on its precise mechanism in cancer and diabetes mellitus exists. Therefore, NDUFS8-related diseases should be extensively explored and precisely diagnosed at the molecular level with the application of next-generation sequencing technologies. A more distinct comprehension will be needed to shed light on NDUFS8 and its related diseases for further research. In this review, a comprehensive summary of the current knowledge about NDUFS8 structural function, its pathogenic mutations in Leigh syndrome, as well as its underlying roles in cancer and diabetes mellitus is provided, offering potential pathogenesis, progress, and therapeutic target of different diseases. We also put forward some problems and solutions for the following investigations.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanbo Kang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruifeng Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Junqi Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Yupei Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Jun Yu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| |
Collapse
|
48
|
Müller J, Boubaker G, Imhof D, Hänggeli K, Haudenschild N, Uldry AC, Braga-Lagache S, Heller M, Ortega-Mora LM, Hemphill A. Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin. Biomedicines 2022; 10:biomedicines10112675. [PMID: 36359195 PMCID: PMC9687860 DOI: 10.3390/biomedicines10112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Noé Haudenschild
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
49
|
Hintze S, Baber L, Hofmeister F, Jarmusch S, Todorow V, Mehaffey S, Tanganelli F, Ferrari U, Neuerburg C, Teupser D, Bidlingmaier M, Marques JG, Koletzko B, Schoser B, Drey M, Meinke P. Exploration of mitochondrial defects in sarcopenic hip fracture patients. Heliyon 2022; 8:e11143. [PMID: 36303924 PMCID: PMC9593198 DOI: 10.1016/j.heliyon.2022.e11143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Severe cases of age-related loss of muscle function and mass are clinically unique to sarcopenia. Mitochondrial dysfunction has been associated with aging and sarcopenia, but the causal connection in this context is not well eluded. Here we investigated different aspects of mitochondrial respiration in sarcopenia. Open muscle biopsies were taken from a total of 31 hip fracture patients, older than 70 years. Patients were assigned a sarcopenia Z-score based on EWGSOP2 criteria. Primary myoblast cultures were generated from the muscle tissue samples and used for real time metabolic measurement. Muscle and serum samples showed correlation of high Z-scores with reduced mitochondrial complex I activity, increased tricarboxylic acid cycle (TCA) metabolites, reduced vitamin D3 levels, and signs of an altered iron metabolism. Primary myoblast cultures gained from the same muscle biopsies did not show significant mitochondrial defects. We hypothesize that a sum of external consequences, including vitamin D3 deficiency and iron deficiency caused by disturbances in the iron metabolism, result in complex I deficiency, which in turn affects the TCA and contributes to muscle weakness and loss.
Collapse
Affiliation(s)
- Stefan Hintze
- Friedrich-Baur-Institute at the Department of Neurology, LMU Klinikum, LMU Munich, Germany
| | - Lisa Baber
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Fabian Hofmeister
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Stefanie Jarmusch
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Vanessa Todorow
- Friedrich-Baur-Institute at the Department of Neurology, LMU Klinikum, LMU Munich, Germany
| | - Stefan Mehaffey
- Department of General-, Trauma- and Reconstructive Surgery, LMU Klinikum, LMU Munich, Germany
| | - Fabiana Tanganelli
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Uta Ferrari
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Carl Neuerburg
- Department of General-, Trauma- and Reconstructive Surgery, LMU Klinikum, LMU Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, LMU Klinikum, LMU Munich, Germany
| | | | - Jair Gonzalez Marques
- Department Pediatrics, Dr. von Hauner Children's Hospital, LMU Klinikum, LMU Munich, Germany
| | - Berthold Koletzko
- Department Pediatrics, Dr. von Hauner Children's Hospital, LMU Klinikum, LMU Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU Klinikum, LMU Munich, Germany
| | - Michael Drey
- Department of Medicine IV, Geriatrics, LMU Klinikum, LMU Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU Klinikum, LMU Munich, Germany
- Corresponding author.
| |
Collapse
|
50
|
Oppermann S, Seng K, Shweich L, Friedrich T. The gene order in the nuo-operon is not essential for the assembly of E. coli complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148592. [PMID: 35863511 DOI: 10.1016/j.bbabio.2022.148592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Energy-converting NADH: ubiquinone oxidoreductase, respiratory complex I, plays an important role in cellular energy metabolism. Bacterial complex I is generally composed of 14 different subunits, seven of which are membranous and the other seven are globular proteins. They are encoded by the nuo-operon, whose gene order is strictly conserved in bacteria. The operon starts with nuoA encoding a membranous subunit followed by genes encoding globular subunits. To test the idea that NuoA acts as a seed to initiate the assembly of the complex in the membrane, we generated mutants that either lacked nuoA or contain nuoA at a different position within the operon. To enable the detection of putative assembly intermediates, the globular subunit NuoF and the membranous subunit NuoM were individually decorated with the fluorescent protein mCherry. Deletion of nuoA led to the assembly of an inactive complex in the membrane containing NuoF and NuoM. Re-arrangement of nuoA within the nuo-operon led to a slightly diminished amount of complex I in the membrane that was fully active. Thus, nuoA but not its distinct position in the operon is required for the assembly of E. coli complex I. Furthermore, we detected a previously unknown assembly intermediate in the membrane containing NuoM that is present in greater amounts than complex I.
Collapse
Affiliation(s)
- S Oppermann
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - K Seng
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - L Shweich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - T Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|