1
|
Zeng WZ, Cha CH, Chung CY, Huang GJ, Uramaru N, Arai I, Wong FF. Oxidization synthesis and bioactivity study of tricyclic and tetracyclic genipin derivatives with collins reagent as anti-inflammatory agents. Bioorg Med Chem 2025; 124:118198. [PMID: 40253989 DOI: 10.1016/j.bmc.2025.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tricyclic and tetracyclic genipin derivatives were investigated with variety of oxidized agents to give the corresponding oxidized genipin products with α,β-unsaturated aldehyde moiety. Based on the experimental results, Collins reagent (complex of chromium(VI) oxide withpyridine in CH2Cl2) was examined as the better favorable oxidized selective agent. On the other hand, the oxidized tricyclic and tetracyclic genipins were also evaluated for stability using UV-visible spectroscopy and tested for their effects on NO production in LPS-induced RAW 264.7 cells. Most of oxidized tricyclic and tetracyclic genipin aldehyde derivatives were substantiallyimproved ≥4.0-fold inhibiting activity than allyl alcoholic genipin starting materials. On the other hand, SAR study indicated oxidized compound 3g possessed the best inhibitory activity (IC50 = 2.60 μM) in comparison with reference standard Celecoxib (IC50 = 22.6 μM) and Indomethacin (IC50 = 156 μM). Furthermore, potential compounds (IC50 ≤ 10 μM) were also chosen for safety profile study and oxidized compounds 3a-j showed significant safety, except for compound 3f possessed the cell toxicity (12.5 μM). The mechanism of compound 3g in reducing cyclooxygenase-2 (COX-2) during inflammation was further demonstrated through Western blot analysis. To sum-up, the potential drug candidate 3g, significantly exhibited better anti-inflammatory effect than Indomethacin.
Collapse
Affiliation(s)
- Wei-Zheng Zeng
- Department of Nutrition, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Chun-Han Cha
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820, San-Nomiya, Koshigaya, Saitama 343-8540, Japan
| | - Ichiro Arai
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281, Komuro, Inamachi, Kita-Adachigun, Saitama 362-0806, Japan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City 406040, Taiwan.
| |
Collapse
|
2
|
Bazany D, Greifova H, Zuscikova L, Tokarova K, Jambor T, Kovacik A, Lukac N. Can Bisphenols Alter the Inflammation Process? Life (Basel) 2025; 15:782. [PMID: 40430209 PMCID: PMC12113448 DOI: 10.3390/life15050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
This review's main purpose is to draw attention to the possible influence of widely used bisphenols on the inflammatory process. Bisphenols are endocrine-disrupting chemicals that are produced worldwide in great quantities. From this point of view, it is very important to clarify their influence on innate immune reactions, which protect the integrity of the body against the action of various pathogens on a daily basis. The inflammation process consists of several key factors that are produced at different levels of this reaction. Each of these levels can be affected by endocrine disruptors, from the point of view of modifying either the immune system cells that intervene in this process or the way in which they produce inflammatory mediators. The development of new recommendations for the use of bisphenols is a complex issue given their influence on inflammatory processes. Because the immune system and immune response are so intricate, bisphenols may pose more risk to humans than is presently recognized. This paper discusses the classification of bisphenols, the fundamental mechanism of inflammation, the characterization of inflammatory mediators, and the current knowledge of the molecular mechanisms behind the impact of bisphenols on the inflammatory response.
Collapse
Affiliation(s)
- Denis Bazany
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| | - Hana Greifova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Lucia Zuscikova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| | - Katarina Tokarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.B.); (L.Z.); (K.T.); (T.J.); (N.L.)
| |
Collapse
|
3
|
Soliman AM, Soliman M, Shah SSH, Baig HA, Gouda NS, Alenezi BT, Alenezy A, Hegazy AMS, Jan M, Eltom EH. Molecular dynamics of inflammation resolution: therapeutic implications. Front Cell Dev Biol 2025; 13:1600149. [PMID: 40406415 PMCID: PMC12095172 DOI: 10.3389/fcell.2025.1600149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
Inflammation is a critical part of innate immune response that is essential for exclusion of harmful stimuli and restoration of tissue homeostasis. Nonetheless, failure to resolve inflammation results in chronic inflammatory conditions, including autoimmune diseases. Conventionally, resolution of inflammation was deemed a passive process; however, evidence indicates that it entails active, highly regulated molecular and cellular events involving efferocytosis-driven macrophage reprogramming, post-transcriptional regulatory mechanisms and the production of specialized pro-resolving mediators (SPMs). These processes collectively restore tissue homeostasis and prevent chronic inflammation. Emerging therapeutic approaches targeting these pathways demonstrate promising results in preclinical studies and clinical trials, enhancing resolution and improving overall disease outcome. This resulted in a paradigm shift from conventional anti-inflammatory strategies to resolution-focused treatment. Yet, challenges remain due to the complexity of resolution mechanisms and tissue-specific differences. This review summarizes current advances in inflammation resolution, emphasizing emerging concepts of resolution pharmacology. By employing endogenous mechanisms facilitating resolution, novel therapeutic applications can effectively manage several chronic inflammatory disorders.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Syed Sajid Hussain Shah
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Habeeb Ali Baig
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Nawal Salama Gouda
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Bandar Theyab Alenezi
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Awwad Alenezy
- Department of Family and Community Medicine, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ahmed M. S. Hegazy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Muhammad Jan
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Elhassan Hussein Eltom
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Zhao M, Xiao X, Jin D, Zhai L, Li Y, Yang Q, Xing F, Qiao W, Yan X, Tang Q. Composition and Biological Activity of Colored Rice-A Comprehensive Review. Foods 2025; 14:1394. [PMID: 40282795 PMCID: PMC12026479 DOI: 10.3390/foods14081394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Colored rice (black, purple, red and brown) has been consumed in China for nearly 4000 years. Recent research has focused on exploring its nutritional and metabolomic profiles and associated health benefits. Due to the improvement in detection and quantification techniques for health-promoting compounds and their activities, the number of studies has increased significantly. In this regard, a timely and updated review of research on nutritional composition, phytochemistry, and metabolite content and composition can significantly enhance consumer awareness. Here, we present a detailed and up-to-date understanding and comparison of the nutritional and phytochemical (metabolite) composition of colored rice. While earlier literature reviews focus on either single type of colored rice or briefly present nutritional comparison or bioactivities, here we present more detailed nutrient profile comparison (carbohydrates, fats, proteins, amino acids, minerals, and vitamins), together with the most recent comparative data on phytochemicals/metabolites (flavonoids, anthocyanins, fatty acids, amino acids and derivatives, phenolic acids, organic acids, alkaloids, and others). We discuss how metabolomics has broadened the scope of research by providing an increasing number of detected compounds. Moreover, directions on the improvement in colored rice nutritional quality through breeding are also presented. Finally, we present the health-beneficial activities (antioxidant, anti-inflammatory, antimicrobial, hypoglycemic, neuroprotective, anti-aging, and antitumor activities) of different colored rice varieties, together with examples of the clinical trials, and discuss which bioactive substances are correlated with such activities.
Collapse
Affiliation(s)
- Mingchao Zhao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiaorong Xiao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Dingsha Jin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Linan Zhai
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
| | - Yapeng Li
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingwen Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Funeng Xing
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Weihua Qiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaowei Yan
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingjie Tang
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
5
|
Anıl S, Ersoy E, Tavlı ÖF, Daci A, Topal G, Dönmez AA, Demirci Kayıran S, Eroğlu Özkan E, Melikoğlu G. Innovative findings on three endemic Crataegus spp. from Türkiye: flavonoid-enriched extracts with cardiovascular benefits demonstrated by reduction of oxidative and inflammatory markers on rat aorta tissue. Nat Prod Res 2025:1-12. [PMID: 40232171 DOI: 10.1080/14786419.2025.2490053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Türkiye is a significant genetic diversity center for Crataegus species. The fruits, leaves, flowers, and sprouts of Crataegus sp. are widely used in traditional medicine, mainly for cardiovascular diseases. Products containing Crataegus monogyna Jacq. subsp. monogyna ("alıç") are recognized as therapeutic agents used alongside conventional treatments. Thus, investigating the chemical composition and biological activity of other Crataegus species is essential to explore their medicinal potential. This study provides the first report on total flavonoid content and detailed phytochemical profiling of leaf and immature fruit extracts from three endemic species-Crataegus peshmenii Dönmez, Crataegus petrodavisii Dönmez, and Crataegus christensenii Dönmez-using High-Performance Liquid Chromatography (HPLC). A comparative analysis with C. monogyna subsp. monogyna was also included. Notably, C. peshmenii leaf extract was the richest in compounds linked to cardiovascular benefits, including vitexin and hyperoside. Its anti-inflammatory and antioxidant properties were further evaluated using isolated rat thoracic aortas. The release of inflammatory and oxidative markers was measured by enzyme-linked immunosorbent assay (ELISA). C. peshmenii leaf extract significantly reduced the levels of oxidative and inflammatory markers (MDA, MPO, TNF-α, and IL-1β) in isolated aortas, supporting its potential as a cardiovascular protective agent.
Collapse
Affiliation(s)
- Sezin Anıl
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye
| | - Ömerül F Tavlı
- Department of Pharmacognosy, Institute of Health Sciences, Istanbul University, Istanbul, Türkiye
- Department of Pharmacognosy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Armond Daci
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Gökçe Topal
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Ali A Dönmez
- Department of Biology, Faculty of Science, Molecular Plant Systematic Laboratory (MOBIS), Hacettepe University, Ankara, Türkiye
| | - Serpil Demirci Kayıran
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Cukurova University, Adana, Türkiye
| | - Esra Eroğlu Özkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Gülay Melikoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
6
|
Zahoor I, Bala R, Wani SN, Chauhan S, Madaan R, Kumar R, Hakeem KR, Malik IA. Potential role of NSAIDs loaded nano-formulations to treat inflammatory diseases. Inflammopharmacology 2025; 33:1189-1207. [PMID: 39953360 DOI: 10.1007/s10787-025-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2024] [Indexed: 02/17/2025]
Abstract
Inflammation is a necessary immunological response that promotes survival and preserves tissue homeostasis, a common characteristic linked to various diseases. However, in some circumstances, the inflammatory response is deleterious and contributes to disease pathogenesis. Anti-inflammatory substances have poor affinity for inflamed tissues, resulting in low concentrations in the target tissue and a higher incidence of severe adverse effects. To address this issue, several potential approaches have been proposed, such as chemical modification of drug molecules and the development of nanocarriers for drug delivery. Since the development of nanotechnology at the beginning of the twenty-first century, researchers have been using the pathophysiological characteristics of inflammation, primarily leaky vasculature, and biomarker overexpression to develop nanomedicines that can deliver therapeutics via passive and active targeting mechanisms to sites of inflammation and produce therapeutic effects. Drug carriers based on nanoparticles can enhance the safety and efficacy of drugs by increasing their capacity, enhancing their solubility, combining several drugs, protecting them from metabolism, and regulating their release. An approach that shows promise in the treatment of various inflammatory diseases is the application of nanomedicines. Nanomedicine involves nanoparticles that have been loaded with a therapeutically active component. Nanomedicines can target inflammation by recognizing molecules highly expressed on endothelial cells or activated macrophage surfaces, enhancing the permeability of vessels, or even by biomimicry. A review of the research findings shows significant potential for the use of nanotechnology to enhance the quality of life for people using NSAIDs for chronic disorders by minimizing drug side effects or the duration of administration. After a brief introduction to inflammation, its various forms- acute and chronic inflammation, and the pathophysiology of inflammation, this review highlights the main innovative nanocarriers utilized for carrying various nonsteroidal anti-inflammatory drugs that have been utilized in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat-Bhara University, Kharar, Punjab, India
| | - Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Aman Pharmacy College, Dholakhera Udaipurwati, Jhunjhunu, Rajasthan, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Adesh College of Pharmacy, NH1 Shahabad Kurukshetra, Haryana, India
| | - Rajesh Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Adualaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Irfan Ahmad Malik
- Department of Pharmacology, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, 423603, Maharashtra, India
| |
Collapse
|
7
|
Xiang Z, Chen H, Wu F, Pan H. Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment. Macromol Biosci 2025; 25:e2400336. [PMID: 39513645 DOI: 10.1002/mabi.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Indexed: 11/15/2024]
Abstract
Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.
Collapse
Affiliation(s)
- Zehong Xiang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Honghong Chen
- Chen, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Feng Wu
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
8
|
Yu M, Wang S, Lin D. Mechanism and Application of Biomaterials Targeting Reactive Oxygen Species and Macrophages in Inflammation. Int J Mol Sci 2024; 26:245. [PMID: 39796102 PMCID: PMC11720555 DOI: 10.3390/ijms26010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, an adaptive reaction to harmful stimuli, is a necessary immune system response and can be either acute or chronic. Since acute inflammation tends to eliminate harmful stimuli and restore equilibrium, it is generally advantageous to the organism. Chronic inflammation, however, is caused by either increased inflammatory signaling or decreased pro-anti-inflammatory signaling. According to current studies, inflammation is thought to be a major factor in a number of chronic diseases, including diabetes, cancer, arthritis, inflammatory bowel disease, and obesity. Consequently, reducing inflammation is essential for both preventing and delaying diseases. The application of biomaterials in the treatment of inflammatory illnesses has grown in recent years. A variety of biomaterials can be implanted either by themselves or in conjunction with other bioactive ingredients and therapeutic agents. The mechanisms of action and therapeutic applications of well-known anti-inflammatory biomaterials are the main topics of this article.
Collapse
|
9
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
10
|
Kowalczyk T, Piekarski J, Merecz-Sadowska A, Muskała M, Sitarek P. Investigation of the molecular mechanisms underlying the anti-inflammatory and antitumour effects of isorhapontigenin: Insights from in vitro and in vivo studies. Biomed Pharmacother 2024; 180:117479. [PMID: 39326106 DOI: 10.1016/j.biopha.2024.117479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Isorhapontigenin (ISO), a naturally-occurring stilbene derivative, has garnered significant attention due to its potent anticancer and anti-inflammatory properties. This review synthesizes current knowledge regarding the mechanisms of action, efficacy, and potential therapeutic applications of Isorhapontigenin acquired in vitro and in vivo. It systematically analyzes its effects on various cancer cell lines, tumor models, and inflammatory conditions, examining its impact on cell proliferation, apoptosis, metastasis, and inflammatory mediators. In vitro studies reveal that Isorhapontigenin induces cell cycle arrest, promotes apoptosis, and inhibits cancer cell migration through modulation of key signaling pathways, including EGFR-PI3K-Akt and NF-κB. It also demonstrates potent antioxidant and anti-inflammatory effects by enhancing Nrf2 signaling and suppressing pro-inflammatory cytokine production. These findings are corroborated by in vivo studies confirming its ability to inhibit tumor growth in xenograft models and attenuate inflammatory responses in various disease models. Notably, Isorhapontigenin exhibits superior pharmacokinetic profiles then resveratrol, with higher oral bioavailability. Isorhapontigenin demonstrates multi-target actions, including epigenetic modulation through microRNA regulation, which highlight its potential as a versatile therapeutic agent. This review also identifies current limitations in Isorhapontigenin research that require further investigation. Overall, Isorhapontigenin offers promise as a multi-faceted compound for the treatment of cancer, inflammatory diseases, and metabolic disorders, providing a solid foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 251 Pomorska St. Lodz 93-513, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Lodz 90-725, Poland
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
11
|
Poli PP, Manfredini M, Oliva N, Bettini S, Damiani G, Goldoni R, Strambini L, Casati S, Del Fabbro M, Tartaglia GM. Detection and sensing of oral xenobiotics in edentulous patients rehabilitated with titanium dental implants: Insights from a scoping review. J Prosthet Dent 2024; 132:913-920. [PMID: 37423787 DOI: 10.1016/j.prosdent.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
STATEMENT OF PROBLEM Titanium has been considered the standard element in implant manufacturing. Recent studies have evaluated the role of titanium as a biological modulator of oral health. However, evidence regarding the association between the release of metal particles and peri-implantitis is lacking. PURPOSE The purpose of this scoping review was to evaluate the literature regarding the release of metal particles in peri-implant tissues correlated with the methods of detection and the local and systemic implications. MATERIAL AND METHODS The study was performed in adherence with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines and was registered with the National Institute for Health Research PROSPERO (Submission No. 275576; ID: CRD42021275576). A systematic search was conducted in the Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE via PubMed, Scopus, and Web of Science bibliographic databases, complemented by a manual evaluation. Only in vivo human studies written in the English language and published between January 2000 and June 2022 were included. RESULTS In total, 10 studies were included according to eligibility criteria. Different tissues and analytic techniques were reported: the characterization technique most used was inductively coupled plasma mass spectrometry. All 10 studies analyzed the release of metal particles in patients with dental implants, continuously detecting titanium. None of the studies reported a significant association between metal particles and biological effects. CONCLUSIONS Titanium is still considered the material of choice in implant dentistry, despite the detection of metal particles in peri-implant tissues. Further studies are necessary to evaluate the association between analytes and local health or inflammatory status.
Collapse
Affiliation(s)
- Pier Paolo Poli
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Research Fellow, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mattia Manfredini
- PhD Student, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; PhD Student, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nadim Oliva
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Sofia Bettini
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Resident, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Damiani
- Assistant Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Assistant Professor, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Assistant Professor, Division of Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Riccardo Goldoni
- PhD Student, Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy; PhD Student, National Research Council, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Lucanos Strambini
- Research Fellow, National Research Council, Department of Electronics, Computer and Telecommunication Engineering (CNR-IEIIT), Milan, Italy
| | - Sara Casati
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
DeLano FA, Schmid-Schönbein GW. Aging by autodigestion. PLoS One 2024; 19:e0312149. [PMID: 39418235 PMCID: PMC11486419 DOI: 10.1371/journal.pone.0312149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanism that triggers the progressive dysregulation of cell functions, inflammation, and breakdown of tissues during aging is currently unknown. We propose here a previously unknown mechanism due to tissue autodigestion by the digestive enzymes. After synthesis in the pancreas, these powerful enzymes are activated and transported inside the lumen of the small intestine to which they are compartmentalized by the mucin/epithelial barrier. We hypothesize that this barrier leaks active digestive enzymes (e.g. during meals) and leads to their accumulation in tissues outside the gastrointestinal tract. Using immune-histochemistry we provide evidence in young (4 months) and old (24 months) rats for significant accumulation of pancreatic trypsin, elastase, lipase, and amylase in peripheral organs, including liver, lung, heart, kidney, brain, and skin. The mucin layer density on the small intestine barrier is attenuated in the old and trypsin leaks across the tip region of intestinal villi with depleted mucin. The accumulation of digestive enzymes is accompanied in the same tissues of the old by damage to collagen, as detected with collagen fragment hybridizing peptides. We provide evidence that the hyperglycemia in the old is accompanied by proteolytic cleavage of the extracellular domain of the insulin receptor. Blockade of pancreatic trypsin in the old by a two-week oral treatment with a serine protease inhibitor (tranexamic acid) serves to significantly reduce trypsin accumulation in organs outside the intestine, collagen damage, as well as hyperglycemia and insulin receptor cleavage. These results support the hypothesis that the breakdown of tissues in aging is due to autodigestion and a side-effect of the fundamental requirement for digestion.
Collapse
Affiliation(s)
- Frank A. DeLano
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| | - Geert W. Schmid-Schönbein
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
13
|
Yu X, Pu H, Voss M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br J Nutr 2024; 132:898-918. [PMID: 39411832 PMCID: PMC11576095 DOI: 10.1017/s0007114524001405] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 11/20/2024]
Abstract
An anti-inflammatory diet is characterised by incorporating foods with potential anti-inflammatory properties, including fruits, vegetables, whole grains, nuts, legumes, spices, herbs and plant-based protein. Concurrently, pro-inflammatory red and processed meat, refined carbohydrates and saturated fats are limited. This article explores the effects of an anti-inflammatory diet on non-communicable diseases (NCD), concentrating on the underlying mechanisms that connect systemic chronic inflammation, dietary choices and disease outcomes. Chronic inflammation is a pivotal contributor to the initiation and progression of NCD. This review provides an overview of the intricate pathways through which chronic inflammation influences the pathogenesis of conditions including obesity, type II diabetes mellitus, CVD, autoinflammatory diseases, cancer and cognitive disorders. Through a comprehensive synthesis of existing research, we aim to identify some bioactive compounds present in foods deemed anti-inflammatory, explore their capacity to modulate inflammatory pathways and, consequently, to prevent or manage NCD. The findings demonstrated herein contribute to an understanding of the interplay between nutrition, inflammation and chronic diseases, paving a way for future dietary recommendations and research regarding preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu610106, People’s Republic of China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Margaret Voss
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY13244, USA
| |
Collapse
|
14
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
15
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
16
|
Kowalczyk T, Muskała M, Merecz-Sadowska A, Sikora J, Picot L, Sitarek P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:1143. [PMID: 39334802 PMCID: PMC11428540 DOI: 10.3390/antiox13091143] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, a class of flavonoid compounds responsible for the vibrant colors of many fruits and vegetables, have received considerable attention in recent years due to their potential health benefits. This review, focusing on evidence from both in vitro and in vivo studies, provides a comprehensive overview of the current state of knowledge regarding the health-promoting properties of anthocyanins. The chemical structure and diversity of anthocyanins, their bioavailability, and their mechanisms of action at the cellular and molecular level are examined. Research on the antioxidant, anti-inflammatory, anticancer, and neuroprotective effects of anthocyanins is critically reviewed. Special emphasis is placed on the role of anthocyanins in the prevention and treatment of chronic diseases such as cardiovascular diseases, diabetes, and neurodegenerative diseases. This review also discusses the challenges of translating in vitro findings to in vivo and highlights the importance of considering dose, bioavailability, and metabolism when assessing the therapeutic potential of anthocyanins. This review concludes with the identification of gaps in current research and suggestions for future directions for anthocyanin studies, including the need for more long-term clinical trials and investigations into potential synergistic effects with other phytochemicals. This comprehensive analysis highlights the promising role of anthocyanins in promoting human health and provides valuable insights for researchers, health professionals, and the nutraceutical industry. This study provides new insights, as it comprehensively investigates the dual anti-inflammatory and anticancer effects of anthocyanins in both in vitro and in vivo models. By uncovering the biological properties of anthocyanins from a variety of natural sources, this research not only expands our knowledge of the action of these compounds at the cellular level, but also enhances their clinical relevance through in vivo validation. Furthermore, the innovative use of anthocyanins may lead to important advances in their therapeutic application in the future.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
17
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Jacobs RD, Grum D, Trible B, Ayala DI, Karnezos TP, Gordon ME. Oral probiotic administration attenuates postexercise inflammation in horses. Transl Anim Sci 2024; 8:txae124. [PMID: 39281311 PMCID: PMC11401344 DOI: 10.1093/tas/txae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Probiotics are commonly incorporated into equine diets to impart health and performance benefits; however, peer-reviewed evidence supporting their efficacy in horses is limited. Interestingly, bacteria from the Bacillus genus are gaining interest for their unique ability to impact metabolic, immune, and inflammatory pathways. The objective of this trial was to evaluate a selection of Bacilli for their role in altering the inflammatory response in horses to exercise. Eighteen horses were utilized in a randomized cross-over trial. Horses were randomly assigned to one of 6 starting treatments including a negative and positive control, and groups that received one of 4 probiotics (Bacillus coagulans GBI-30, 6086, Bacillus subtilis-1, Bacillus subtilis-2, or Bacillus amyloliquefaciens) top dressed to their daily ration at a rate of 8 billion CFU/d mixed into dried whey powder. All horses received a similar base diet of grass hay offered at 2.0% of bodyweight daily along with 4.54 kg of a commercially available textured horse feed. Each 3-wk phase of the trial consisted of a 2-wk dietary acclimation followed by a 1-wk exercise challenge and sample collection. Between phases, horses were offered only their base diet. On the day of exercise, horses were offered their 0700 ration and then subjected to a 2-h standardized exercise test. Blood samples were obtained prior to starting exercise and then again at 0, 2, 4, 6, 8, 24, 48, and 72-h postexercise. Horses in the positive control group were administered 0.23 mg/kg BW flunixin meglumine immediately following the 0-h sampling. Samples were analyzed for serum amyloid A (SAA), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) concentrations. Data were evaluated via ANOVA using the MIXED procedure in SAS 9.4. Exercise-induced inflammation as evidenced by SAA, IL-6, and PGE2 increases postexercise. Horses consuming B. coagulans GBI-30, 6086 had reduced production of SAA, IL-6, and PGE2 compared to all other probiotic-fed groups and the negative control (P < 0.001). The positive control successfully ameliorated the postexercise inflammatory response. These data highlight the potential for B. coagulans GBI-30, 6086 to be incorporated into equine rations as a method to support optimal response to exercise or other inflammation-inducing challenges. Additional research is ongoing to elucidate the methodology by which these results occur.
Collapse
Affiliation(s)
- Robert D Jacobs
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Daniel Grum
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Benjamin Trible
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Diana I Ayala
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | | | - Mary E Gordon
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| |
Collapse
|
19
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Loukili EH, Moubchir T, Allali A, Amine khoulati, Bellaouchi R, Asehraou A, Addi M, Salamatullah AM, Bourhia M, Siddique F, El Guerrouj B, Chaabane K. Phytochemical characterization and multifaceted bioactivity assessment of essential oil from Ptychotis verticillata Duby: Anti-diabetic, anti-tyrosinase, and anti-inflammatory activity. Heliyon 2024; 10:e29459. [PMID: 38699706 PMCID: PMC11063393 DOI: 10.1016/j.heliyon.2024.e29459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % β-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 μg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Euro-Mediterranean University of Fes (UEMF), Fes, Morocco
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | | | - Tarik Moubchir
- Polyvalent Team in Research and Development, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal, 23000, Morocco
| | - Aimad Allali
- High Institute of Nursing Professions and Health Techniques Annex Taza, Fez, Morocco
| | - Amine khoulati
- Faculté de Médecine et de Pharmacie, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| |
Collapse
|
20
|
Ku H, Chen JJY, Chen W, Tien PT, Lin HJ, Wan L, Xu G. The role of transforming growth factor beta in myopia development. Mol Immunol 2024; 167:34-42. [PMID: 38340674 DOI: 10.1016/j.molimm.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Myopia is widely recognized as an epidemic. Studies have found a link between Transforming Growth Factor-beta (TGF-β) and myopia, but the specific molecular mechanisms are not fully understood. In this study, a monocular model in tree shrews (Tupaia belangeri) was established to verify the molecular mechanism of TGF-β in myopia. The results indicated that there were significant changes in TGF-βs during the treatment of myopia, which could enhance the refractive ability and axial length of the eye. Immunohistochemical staining, real-time fluorescent quantitative PCR, and immunoblotting results showed a significant upregulation of MMP2 and NF-κB levels, and a significant downregulation of COL-I expression in the TGF-β treated eyes, suggesting that NF-κB and MMP2 are involved in the signaling pathways of TGF-βs induced myopia and axial elongation. Moreover, the expression levels of IL-6, IL-8, MCP-1, IL-1β, TNF-α, TAK1, and NF-κB in the retina were all significantly elevated. This indicates that TGF-β stimulates the inflammatory response of retinal pigment epithelial cells through the TAK1-NF-κB signaling pathway. In conclusion, this study suggests that TGF-β promotes the progression of myopia by enhancing intraocular inflammation.
Collapse
Affiliation(s)
- Hsiangyu Ku
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China; Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, China
| | | | - Wei Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- Eye Center, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| | - Gezhi Xu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China.
| |
Collapse
|
21
|
Mohanty D, Padhee S, Sahoo C, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Integrating network pharmacology and experimental verification to decipher the multitarget pharmacological mechanism of Cinnamomum zeylanicum essential oil in treating inflammation. Heliyon 2024; 10:e24120. [PMID: 38298712 PMCID: PMC10828654 DOI: 10.1016/j.heliyon.2024.e24120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1β and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| |
Collapse
|
22
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
23
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
24
|
Chaudhary T, Upadhyay PK. A Bird's Eye Review of Recent Reports on 1,3,4-oxadiazoles' Anti-inflammatory Insights Perspectives. Curr Org Synth 2024; 21:595-606. [PMID: 37157211 DOI: 10.2174/1570179420666230508124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
Anti-inflammatory agents suppress inflammatory mediators such as prostaglandins, prostacyclins, cytokines, thromboxane, histamine, bradykinins, COX-I and COX-II, 5-LOX, and other substances. These inflammatory chemicals create inflammatory responses when tissue is injured by trauma, bacteria, heat, toxins, or other factors. These inflammatory reactions may result in fluid flow from the blood vessels into the tissues, resulting in swelling. When the therapeutic importance of these clinically beneficial medications in treating inflammation was recognized, it spurred the invention of even more powerful and important molecules. Oxadiazole derivatives are exceptionally potent NSAIDs, and they are widely used. Comprehensive biochemical, structure-activity-relationship and pharmacological investigations have demonstrated that these 1,3,4-oxadiazole compounds exhibit anti-inflammatory properties. This review article outlines the synthesis scheme for 1,3,4-oxadiazole used in treating inflammation.
Collapse
Affiliation(s)
- Tarun Chaudhary
- Institute of Pharmaceutical Research, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Prabhat Kumar Upadhyay
- Institute of Pharmaceutical Research, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
25
|
Guan J, Yao L, Chung CR, Xie P, Zhang Y, Deng J, Chiang YC, Lee TY. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J Chem Inf Model 2023; 63:7886-7898. [PMID: 38054927 DOI: 10.1021/acs.jcim.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
26
|
Zhu M, Gao Y, Li Y, Xie F, Zhou J, Xu L, Lv D, Zhang X, Xu Z, Dong T, Shen T, Zhang J, Lou H. Novel Diterpenoids Incorporating Rearranged Labdanes from the Chinese Liverwort Anastrophyllum joergensenii and Their Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19551-19567. [PMID: 38032113 DOI: 10.1021/acs.jafc.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 μM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongxue Lv
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Dong
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
27
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
28
|
Dong X, Ma Y, Xie Y, Cui W, Zhou H, Zhou K, Xu F, Xu B. Identification and Mechanism Elucidation of Anti-Inflammatory Peptides in Jinhua Ham: An Integrative In Silico and In Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921432 DOI: 10.1021/acs.jafc.3c05132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
This study aimed to effectively identify anti-inflammatory peptides in Jinhua ham, a dry-cured meat product made from the hind legs of pigs by curing and fermenting processes, and elucidate their anti-inflammatory mechanism. The investigation involved a combination of chromatographic purification, in silico screening, and in vitro validation. The first peak of JHP (JHP-P1) was purified using two-part exchange chromatography, in which 3350 peptides were identified by nano-HPLC-MS/MS, among which QLEELKR and EAEERADIAESQVNKLR showed significant anti-inflammatory potential (prediction scores: 0.759 and 0.841). In molecular docking and in vitro RAW264.7 cell experiments, these peptides displayed a strong affinity for Toll-like receptor 4-myeloid differentiation-2 (TLR4-MD-2), specifically binding around Arg 380, Lys 475, His 401, Gln 423, Asp 426, etc. This binding inhibited TLR4 expression and prevented trimer formation about TLR4-MD-2 and lipopolysaccharide (LPS), strongly inhibiting the inflammatory cascade. JHP suppressed LPS-induced cytokine overproduction and partially inhibited the phosphorylation of proteins in the MAPK/NF-κB pathway. These results demonstrated that combining in silico methods (activity prediction and molecular docking) is an effective strategy for screening anti-inflammatory peptides. This study provided a theoretical basis for identifying more anti-inflammatory peptides and applying them in functional foods.
Collapse
Affiliation(s)
- Xinran Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wei Cui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Anhui Qingsong Food Co., Ltd., Hefei 231299, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
29
|
Xu R, Zheng J, Liu L, Zhang W. Effects of inflammation on myopia: evidence and potential mechanisms. Front Immunol 2023; 14:1260592. [PMID: 37849748 PMCID: PMC10577208 DOI: 10.3389/fimmu.2023.1260592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
As the most common type of refractive error, myopia has become one of the leading causes of visual impairment. With the increasing prevalence of myopia, there is a growing need to better understand the factors involved in its development. Inflammation, one of the most fundamental pathophysiological processes in humans, is a rapid response triggered by harmful stimuli and conditions. Although controlled inflammatory responses are necessary, over-activated inflammation is the common soil for many diseases. The impact of inflammation on myopia has received rising attention in recent years. Elevated inflammation may contribute to myopia progression either directly or indirectly by inducing scleral remodeling, and myopia development may also increase ocular inflammation. This article provides a comprehensive review of the interplay between inflammation and myopia and the potential biological mechanisms, which may present new targets for understanding the pathology of myopia and developing myopia therapies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Liu H, Tang Q, Yan X, Wang L, Wang J, Yang Q, Wei B, Li J, Qi J, Hu J, Hu B, Han C, Wang J, Li L. Mass spectrometry-based metabolic profiling for identification of biomarkers related to footpad dermatitis in ducks. Br Poult Sci 2023; 64:577-585. [PMID: 37254666 DOI: 10.1080/00071668.2023.2214884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
1. A new assessment method for duck footpad dermatitis (FPD) evaluation was developed, combining visual and histological characters using the images and sections of 400 ducks' feet at 340 d of age. All ducks were graded as G0 (healthy), G1 (mild), G2 (moderate) and G3 (severe) according to the degree of FPD.2. To reveal the potential biomarkers in serum related to duck FPD, non-targeted metabolomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore differential metabolites in each group.3. There were 57, 91 and 210 annotated differential metabolites in groups G1, G2 and G3 compared with G0, which meant that the severity of FPD increased in line with the number of metabolites. Four metabolites, L-phenylalanine, L-arginine, L-leucine and L-lysine, were considered potential biomarkers related to FPD.4. KEGG enrichment analysis showed that the FPD was mainly involved in glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway and amino acid metabolism. These are related to production metabolism and can affect the physiological activities of ducks, which might explain the decrease in production performance.
Collapse
Affiliation(s)
- H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Q Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Q Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - B Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
32
|
Hissen KL, He W, Wu G, Criscitiello MF. Immunonutrition: facilitating mucosal immune response in teleost intestine with amino acids through oxidant-antioxidant balance. Front Immunol 2023; 14:1241615. [PMID: 37841275 PMCID: PMC10570457 DOI: 10.3389/fimmu.2023.1241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
33
|
Lyu X, Hu Y, Shi S, Wang S, Li H, Wang Y, Zhou K. Hydrogel Bioelectronics for Health Monitoring. BIOSENSORS 2023; 13:815. [PMID: 37622901 PMCID: PMC10452556 DOI: 10.3390/bios13080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are considered an ideal platform for personalized healthcare due to their unique characteristics, such as their outstanding softness, appealing biocompatibility, excellent mechanical properties, etc. Owing to the high similarity between hydrogels and biological tissues, hydrogels have emerged as a promising material candidate for next generation bioelectronic interfaces. In this review, we discuss (i) the introduction of hydrogel and its traditional applications, (ii) the work principles of hydrogel in bioelectronics, (iii) the recent advances in hydrogel bioelectronics for health monitoring, and (iv) the outlook for future hydrogel bioelectronics' development.
Collapse
Affiliation(s)
- Xinyan Lyu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yan Hu
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Shuai Shi
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Siyuan Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Haowen Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| |
Collapse
|
34
|
Subhawa S, Arpornchayanon W, Jaijoy K, Chansakaow S, Soonthornchareonnon N, Sireeratawong S. Anti-Inflammatory, Antinociceptive, Antipyretic, and Gastroprotective Effects of Eurycoma longifolia Jack Ethanolic Extract. Life (Basel) 2023; 13:1465. [PMID: 37511840 PMCID: PMC10381342 DOI: 10.3390/life13071465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Tongkat ali (Eurycoma longifolia Jack) (ELJ) is a plant in the Simaroubaceae family. Its roots are used in traditional Thai medicine to treat inflammation, pain, and fever; however, the antiulcer abilities of its ethanolic extract have not been studied. This study examined the anti-inflammatory, antinociceptive, antipyretic, and gastroprotective effects of ethanolic ELJ extract in animal models and found that ELJ effectively reduced EPP-induced ear edema in a dose-dependent manner and that a high dose of ELJ inhibited carrageenan-induced hind paw edema formation. In cotton-pellet-induced granuloma formation, a high dose of ELJ suppressed the increases in wet granuloma weight but not dry or transudative weight. In the formalin-induced nociception study, ELJ had a significant dose-dependent inhibitory impact. Additionally, the study found that yeast-induced hyperthermia could be significantly reduced by antipyretic action at the highest dose of ELJ. In all the gastric ulcer models induced by chemical substances or physical activity, ELJ extracts at 150, 300, and 600 mg/kg also effectively prevented gastric ulcer formation. In the pyloric ligation model, however, the effects of ELJ extract on gastric volume, gastric pH, and total acidity were statistically insignificant. These findings support the current widespread use of Eurycoma longifolia Jack in traditional medicine, suggest the plant's medicinal potential for development of phytomedicines with anti-inflammatory, antinociceptive, and antipyretic properties, and support its use in the treatment of gastric ulcers due to its gastroprotective properties.
Collapse
Affiliation(s)
- Subhawat Subhawa
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanjana Jaijoy
- McCormick Faculty of Nursing, Payap University, Chiang Mai 50000, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Seewaboon Sireeratawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Preclinical Science, Division of Pharmacology, Faculty of Medicine, Rungsit Campus, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
35
|
Wang C, Kim IJ, Seong HR, Noh CH, Park S, Kim TM, Jeong HS, Kim KY, Kim ST, Yuk HG, Kwon SC, Choi EK, Kim YB. Antioxidative and Anti-Inflammatory Activities of Rosebud Extracts of Newly Crossbred Roses. Nutrients 2023; 15:2376. [PMID: 37242259 PMCID: PMC10223673 DOI: 10.3390/nu15102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress and inflammation are basic pathogenic factors involved in tissue injury and pain, as well as acute and chronic diseases. Since long-term uses of synthetic steroids and non-steroidal anti-inflammatory drugs (NSAIDs) cause severe adverse effects, novel effective materials with minimal side effects are required. In this study, polyphenol content and antioxidative activity of rosebud extracts from 24 newly crossbred Korean roses were analyzed. Among them, Pretty Velvet rosebud extract (PVRE) was found to contain high polyphenols and to show in vitro antioxidative and anti-inflammatory activities. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), PVRE down-regulated mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and thereby decreased nitric oxide (NO) and prostaglandin E2 (PGE2) production. In a subcutaneous air-pouch inflammation model, treatment with PVRE decreased λ-carrageenan-induced tissue exudation, infiltration of inflammatory cells, and inflammatory cytokines such as tumor necrosis factor-α and interleukin-1β concentrations, as achieved with dexamethasone (a representative steroid). Notably, PVRE also inhibited PGE2, similar to dexamethasone and indomethacin (a representative NSAID). The anti-inflammatory effects of PVRE were confirmed by microscopic findings, attenuating tissue erythema, edema, and inflammatory cell infiltration. These results indicate that PVRE exhibits dual (steroid- and NSAID-like) anti-inflammatory activities by blocking both the iNOS-NO and COX-2-PG pathways, and that PVRE could be a potential candidate as an anti-inflammatory material for diverse tissue injuries.
Collapse
Affiliation(s)
- Cuicui Wang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - In-Jeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hye-Rim Seong
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Chan Ho Noh
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Sangryong Park
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ka Young Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung Tae Kim
- Gumi Floriculture Research Institute, Gyeongsanbuk-do Agricultural Research & Extension Services, Gumi 39102, Republic of Korea
| | - Hyun-Gyun Yuk
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Sang-Chul Kwon
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
36
|
Kumar D, Shandilya AK, Srivastava S. The journey of F1000Research since inception: through bibliometric analysis. F1000Res 2023; 12:516. [PMID: 37274828 PMCID: PMC10238821 DOI: 10.12688/f1000research.134244.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Bibliometric analysis is an approach adopted by researchers to understand the various analytics such as year-wise publications, their citations, most impactful authors and their contributions, identification of emerging keywords, multiple themes (niche, motor, basic, and emerging or declining) etc. F1000Research is one of the Q1 category journals that publishes articles in various domains, but a detailed journal analysis is yet to be done. Methods: This study is an effort to extract the F1000Research journey information through bibliometric analysis using VOS-viewer and Biblioshiny (R-studio) interface. The F1000Research journal started its journey in 2012; since then, 5767 articles have been published until the end of 2022. Most of the published articles are from medical science, covering Biochemistry, Genetics & Molecular Biology, Immunology & Pharmacology, Toxicology & Pharmaceutics. To understand the research journey, various analyses such as publication & citation trends, leading authors, institutions, countries, most frequent keywords, bibliographic coupling between authors, countries and documents, emerging research themes, and trending keywords were performed. Results: The United States is the biggest contributor, and COVID-19 is the most commonly occurred keyword. Conclusions: The present study may help future researchers to understand the emerging medical science domain. It will also help the editors and journal to focus more on developing or emerging areas and to understand their importance towards society. Future researchers can contribute their quality research studies, focusing on emerging themes. These authors' research can guide future researchers to develop their research area around the most impacted articles. They can collaborate with them to bring that emerging theme forward.
Collapse
Affiliation(s)
- Dilip Kumar
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kumar Shandilya
- Department of Hotel Management and Catering Technology, Birla Institute of Technology, Ranchi, Jharkhand, 835215, India
| | - Sandeep Srivastava
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
37
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
38
|
Nakai A, Minematsu T, Nitta S, Hsu WJ, Tobe H, Sanada H. Development of a method to identify persistent and blanchable redness by skin blotting in mice. Int Wound J 2023; 20:1168-1182. [PMID: 36367160 PMCID: PMC10031224 DOI: 10.1111/iwj.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent and blanchable redness (PBR) is not currently included in category I pressure injury (PI), which is defined as non-blanchable redness (NBR). However, PBR progresses to PI in a clinical setting. Therefore, it should be clinically managed as category I PI, and a method to distinctly identify PBR is needed. This study aimed to examine whether PI-related biomarkers can distinguish PRB from transient redness (TR) and NBR using skin blotting. TR, PBR, and NBR models were established by the different conditions of dorsal skin compression. Redness observation and skin blotting were performed, and the skin tissue samples were subjected to histological and molecular biological analyses. The vascular endothelial growth factor (Vegf) b, heat shock protein (Hsp) 90aa1, tumour necrosis factor, interleukin (Il) 1b, and Il6 messenger ribonucleic acid levels were significantly different between the three models. The VEGF-A, VEGF-B, IL-1β, and IL-6 protein levels were different between the three models. Although the results of skin blot examinations were inconsistent with those of the expression analysis of tissue, HSP90α and IL-1β are suggested to be potential markers to distinguish PBR from TR and NBR.
Collapse
Affiliation(s)
- Ayano Nakai
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Faculty of Nursing, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Nitta
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wei-Jhen Hsu
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Tobe
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
PPARβ/δ Ligands Regulate Oxidative Status and Inflammatory Response in Inflamed Corpus Luteum-An In Vitro Study. Int J Mol Sci 2023; 24:ijms24054993. [PMID: 36902426 PMCID: PMC10003567 DOI: 10.3390/ijms24054993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammation in the female reproductive system causes serious health problems including infertility. The aim of this study was to determine the in vitro effects of peroxisome proliferator-activated receptor-beta/delta (PPARβ/δ) ligands on the transcriptomic profile of the lipopolysaccharide (LPS)-stimulated pig corpus luteum (CL) in the mid-luteal phase of the estrous cycle using RNA-seq technology. The CL slices were incubated in the presence of LPS or in combination with LPS and the PPARβ/δ agonist-GW0724 (1 μmol/L or 10 μmol/L) or the antagonist-GSK3787 (25 μmol/L). We identified 117 differentially expressed genes after treatment with LPS; 102 and 97 differentially expressed genes after treatment, respectively, with the PPARβ/δ agonist at a concentration of 1 μmol/L or 10 μmol/L, as well as 88 after the treatment with the PPARβ/δ antagonist. In addition, biochemical analyses of oxidative status were performed (total antioxidant capacity and activity of peroxidase, catalase, superoxide dismutase, and glutathione S-transferase). This study revealed that PPARβ/δ agonists regulate genes involved in the inflammatory response in a dose-dependent manner. The results indicate that the lower dose of GW0724 showed an anti-inflammatory character, while the higher dose seems to be pro-inflammatory. We propose that GW0724 should be considered for further research to alleviate chronic inflammation (at the lower dose) or to support the natural immune response against pathogens (at the higher dose) in the inflamed corpus luteum.
Collapse
|
40
|
Abdullah, Khan MA, Adhikari A. Radical Scavenging, Anti-Inflammatory, and Hepatoprotective Activities of Pentacyclic Triterpene isolated from Rosa webbiana. Curr Drug Targets 2023; 24:1282-1291. [PMID: 37957908 DOI: 10.2174/0113894501261030231101184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS A triterpene compound (3α, 21β-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 μg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.
Collapse
Affiliation(s)
- Abdullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mir Azam Khan
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Achyut Adhikari
- Central Department of Chemistry Tribhuvan University Kirtipur, Kathmandu, Nepal
| |
Collapse
|
41
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
42
|
Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 2022. [DOI: 10.1007/s12038-022-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Chen CS, Hsu YA, Lin CH, Wang YC, Lin ES, Chang CY, Chen JJY, Wu MY, Lin HJ, Wan L. Fallopia Japonica and Prunella vulgaris inhibit myopia progression by suppressing AKT and NFκB mediated inflammatory reactions. BMC Complement Med Ther 2022; 22:271. [PMID: 36242032 PMCID: PMC9563826 DOI: 10.1186/s12906-022-03747-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background The increased global incidence of myopia requires the establishment of therapeutic approaches. This study aimed to investigate the effect of Fallopia Japonica (FJ) and Prunella vulgaris (PV) extract on myopia caused by monocular form deprivation (MFD). Methods We used human retinal pigment epithelial cell to study the molecular mechanisms on how FJ extract (FJE) and PV extract (PVE) lowering the inflammation of the eye. The effect of FJE and PVE in MFD induced hamster model and explore the role of inflammation cytokines in myopia. Results FJE + PVE reduced IL-6, IL-8, and TNF-α expression in RPE cells. Furthermore, FJE and PVE inhibited inflammation by attenuating the phosphorylation of protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) pathway. In addition, we report two resveratrol + ursolic acid compounds from FJ and PV and their inhibitory activities against IL-6, IL-8, and TNF-α expression levels in RPE cells treated with IL-6 and TNF-α. FJE, PVE, and FJE + PVE were applied to MFD hamsters and their axial length was measured after 21 days. The axial length showed statistically significant differences between phosphate-buffered saline- and FJE-, PVE-, and FJE + PVE-treated MFD eyes. FJE + PVE suppressed expressions of IL-6, IL-8, and TNF-α. They also inhibited myopia-related transforming growth factor-beta (TGF)-β1, matrix metalloproteinase (MMP)-2, and NF-κB expression while increasing type I collagen expression. Conclusions Overall, these results suggest that FJE + PVE may have a therapeutic effect on myopia and be used as a potential treatment option. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03747-2.
Collapse
Affiliation(s)
- Chih-Sheng Chen
- grid.252470.60000 0000 9263 9645Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Yu-An Hsu
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Chia-Hung Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yao-Chien Wang
- grid.414692.c0000 0004 0572 899XDepartment of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - En-Shyh Lin
- grid.419772.e0000 0001 0576 506XDepartment of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Ching-Yao Chang
- grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Jamie Jiin-Yi Chen
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yen Wu
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Lei Wan
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
45
|
You L, Huang L, Jang J, Hong YH, Kim HG, Chen H, Shin CY, Yoon JH, Manilack P, Sounyvong B, Lee WS, Jeon MJ, Lee S, Lee BH, Cho JY. Callerya atropurpurea suppresses inflammation in vitro and ameliorates gastric injury as well as septic shock in vivo via TLR4/MyD88-dependent cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154338. [PMID: 35921773 DOI: 10.1016/j.phymed.2022.154338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Callerya atropurpurea is a traditional plant in a tropical zone discovered to have anti-inflammatory functions. PURPOSE we want to investigate the mechanism related to anti-inflammation of C. atropurpurea ethanol extract (Ca-EE) both in vitro and in vivo. STUDY DESIGN Murine macrophage cells and mouse models for gastritis and septic shock were conducted to evaluate the abilities of Ca-EE in anti-inflammation. METHODS Ca-EE was tested by HPLC and LC-MS/MS. NO outcome was checked by Griess reagent test. Cell viabilities were evaluated using MTT assay. Inflammatory cytokines were determined via RT-PCR and ELISA. The mechanism of Ca-EE in anti-inflammation was investigated by luciferase reporter gene assay and immunoblot in transcription level and protein level respectively. Gastric injury and septic shock administrated with Ca-EE were studied by H&E, PCR, and immunoblot. RESULTS Ca-EE significantly decreased LPS-induced NO production, but hardly stimulated the expression of NO itself. It not only showed no cytotoxicity, but also protected cells from LPS damage. Moreover, Ca-EE decreased TLR4 expression, altered MyD88 recruitment and TRAF6, and suppressed the phospho-Src/PI3K/AKT. Ca-EE inhibited downstream signaling P38, JNK and NF-κB. Finally, Ca-EE alleviated HCl/EtOH-induced gastritis and LPS/poly (I:C)-induced septic shock through the previously mentioned signaling cascades. CONCLUSION Ca-EE exhibited an integrated and promising mechanism against TLR4-related inflammation, which shows potential for treating gastritis, septic shock, and other inflammatory diseases.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hongxi Chen
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, PO Box 2932, Vientiane, Laos
| | - Bounthan Sounyvong
- Department of Forestry, Ministry of Agriculture and Forestry, PO Box 2932, Vientiane, Laos
| | - Woo-Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
46
|
Juanes‐Velasco P, García‐Vaquero ML, Landeira‐Viñuela A, Lopez‐Campos JL, Marín C, Lecrevisse Q, Arias‐Hidalgo C, Montalvillo E, Góngora R, Hernández Á, Fuentes M. Systematic evaluation of plasma signaling cascades by functional proteomics approaches: SARS-CoV-2 infection as model. Proteomics Clin Appl 2022; 16:e2100100. [PMID: 36168869 PMCID: PMC9537801 DOI: 10.1002/prca.202100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Acute phase reactants (APRs) play a critical role in inflammation. The difference in their physiological functions or the different dynamic ranges of these proteins in plasma makes it difficult to detect them simultaneously and to use several of these proteins as a tool in clinical practice. EXPERIMENTAL DESIGN A novel multiplex assay has been designed and optimized to carry out a high-throughput and simultaneous screening of APRs, allowing the detection of each of them at the same time and in their corresponding dynamic range. RESULTS Using Sars-CoV-2 infection as a model, it has been possible to profile different patterns of acute phase proteins that vary significantly between healthy and infected patients. In addition, severity profiles (acute respiratory distress syndrome and sepsis) have been established. CONCLUSIONS AND CLINICAL RELEVANCE Differential profiles in acute phase proteins can serve as a diagnostic and prognostic tool, among patient stratification. The design of this new platform for their simultaneous detection paves the way for them to be more extensive use in clinical practice.
Collapse
Affiliation(s)
- Pablo Juanes‐Velasco
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Marina L. García‐Vaquero
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Alicia Landeira‐Viñuela
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - José Luis Lopez‐Campos
- Unidad Médico‐Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/Universidad de SevillaSpain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos IIIMadridSpain
| | - Carmen Marín
- Instituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del RocíoSevillaSpain
| | - Quentin Lecrevisse
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Carlota Arias‐Hidalgo
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Rafael Góngora
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
| | - Ángela‐Patricia Hernández
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain,Department of Pharmaceutical Sciences: Organic Chemistry; Faculty of PharmacyUniversity of Salamanca, CIETUS, IBSALSalamanca37007Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service‐Nucleus, CIBERONCCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain,Proteomics UnitCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)Salamanca37007Spain
| |
Collapse
|
47
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Chang HM, Loh TC, Foo HL, Lim ETC. Lactiplantibacillus plantarum Postbiotics: Alternative of Antibiotic Growth Promoter to Ameliorate Gut Health in Broiler Chickens. Front Vet Sci 2022; 9:883324. [PMID: 35859810 PMCID: PMC9289564 DOI: 10.3389/fvets.2022.883324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
The postbiotic produced from Lactiplantibacillus plantarum has been revealed as a potential alternative to antibiotic growth promoters (AGP). It helps to stimulate growth performance, improve nutrient digestibility, intestinal histomorphology, immune response, and improve meat quality in livestock. However, there is a paucity of information on the effects of L. plantarum postbiotic produced by formulated media on the gut health and immune response. Therefore, this study was conducted by using three strains of dietary L. plantarum postbiotics to determine the growth performance, intestinal histomorphology, intestinal mucin production, and immune status in broiler chickens. A 245 male Cobb 500-day-old birds were assigned randomly to five treatments, namely, NC: basal diet only (negative control), OTC: basal diet + 0.01% (w/w) oxytetracycline (positive control), RG11: basal diet + 0.1% (v/w) Postbiotic RG11, RI11: basal diet + 0.1% (v/w) Postbiotic RI11, and RS5: basal diet + 0.1% (v/w) Postbiotic RS5. The body weight and feed intake were taken weekly. The small intestine and its mucus, ceca digesta were collected on days 21 and 42. Fresh excreta for crude mucin production were collected 3 days before slaughter on day 42. From the findings, RS5 recorded a significant highest (p < 0.05) final body weight, body weight gain, and significant lowest (p < 0.05) feed conversion ratio. The concentrations of glutathione peroxidase, superoxide dismutase (SOD), acidic mucin, sulfated mucin, and intestinal trefoil factor were significantly higher (p < 0.05) in the birds fed with RI11 and RS5. Postbiotics RI11 and RS5 had up-regulated expression of intestinal Mucin 2, occludin, and secretory immunoglobulin A. The antibiotic-fed chickens also showed a reduced (p < 0.05) total bacteria and Bifidobacterium population but a significantly increased (p < 0.05) the population of Escherichia coli in the jejunum. In conclusion, the supplementation of L. plantarum postbiotic can be used to substitute AGP as it promoted growth performance, mucin production, ameliorated tight junction permeability, and immune status in broiler chickens due to improved gut health and beneficial bacteria colonization.
Collapse
Affiliation(s)
- Hui Mei Chang
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Teck Chwen Loh
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Hooi Ling Foo
| | - Eric Teik Chung Lim
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
49
|
Costa MT, da Silva Goulart A, Salgueiro ACF, da Rosa HS, Perazzo GX, Folmer V. Cytotoxicity and inflammation induced by Philodryas patagoniensis venom. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109356. [PMID: 35490925 DOI: 10.1016/j.cbpc.2022.109356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
Abstract
The Green racer Philodryas patagoniensis is a snake species from South America and accidents with this genus are often neglected. Therefore, this study aimed to evaluate the toxicological, cytotoxic, and inflammatory potential of P. patagoniensis venom (PpV). The experimental model Artemia salina was used to determine toxicity through the median lethal dose (LD50). Cell viability and genotoxicity were evaluated in human mononuclear cells using the Trypan blue test and the Comet assay, respectively. To assess inflammation, mice had the ventral surface of the right hind paw injected with saline, formalin, and three different concentrations of venom (1, 1.5, and 2 μg. 50 μL-1). LD50 in A. salina was 461 μg. mL-1. PpV caused a significant increase in cell death and genotoxicity in human mononuclear cells at two concentrations (575 and 1150 μg. mL-1). PpV shown also to be a strong agent causing nociception in mice. Paw edema totaled four days at 1.5 μg. 50 μL-1. The hyperalgesia caused by the venom had a long duration in mice, lasting eight days at all concentrations evaluated. Thus, we evaluated for the first time the toxicological potential of PpV in A. salina model and in leukocytes. We concluded that systemic oxidative stress, which we infer to be in the genesis of cytotoxicity and genotoxicity observed in vitro, and the inflammatory process are part of the pathways that trigger the venom damage cascades. Relevant data for both scientific research and clinical medicine. Nonetheless, studies are needed to elucidate these mechanisms.
Collapse
Affiliation(s)
- Márcio Tavares Costa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| | - Aline da Silva Goulart
- Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Hemerson Silva da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Giselle Xavier Perazzo
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanderlei Folmer
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| |
Collapse
|
50
|
Khan A, Pervaiz A, Ansari B, Ullah R, Shah SMM, Khan H, Saeed Jan M, Hussain F, Ijaz Khan M, Albadrani GM, Altyar AE, Abdel-Daim MM. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules 2022; 27:4081. [PMID: 35807324 PMCID: PMC9268425 DOI: 10.3390/molecules27134081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of the current study was to evaluate the phytochemical and pharmacological potential of the Cornus macrophylla. C. macrophylla belongs to the family Cornaceae. It is locally known as khadang and is used for the treatment of different diseases such as analgesic, tonic, diuretic, malaria, inflammation, allergy, infections, cancer, diabetes, and lipid peroxidative. The crude extract and different fractions of C. macrophyll were evaluated by gas chromatography and mass spectroscopy (GC-MS), which identified the most potent bioactive phytochemicals. The antioxidant ability of C. macrophylla was studied by 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1 diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude and subsequent fractions of the C. macrophylla were also tested against anti-inflammatory enzymes using COX-2 (Cyclooxygenase-2) and 5-LOX (5-lipoxygenase) assays. The molecular docking was carried out using molecular operating environment (MOE) software. The GC-MS study of C. macrophylla confirmed forty-eight compounds in ethyl acetate (Et.AC) fraction and revealed that the Et.AC fraction was the most active fraction. The antioxidant ability of the Et.AC fraction showed an IC50 values of 09.54 μg/mL and 7.8 μg/mL against ABTS and DPPH assay respectively. Among all the fractions of C. macrophylla, Et.AC showed excellent activity against COX-2 and 5-LOX enzyme. The observed IC50 values were 93.35 μg/mL against COX-2 and 75.64 μg/mL for 5-LOX respectively. Molecular docking studies supported these in vitro results and confirmed the anti-inflammatory potential of C. macrophylla. C. macrophylla has promising potential as a source for the development of new drugs against inflammation in the future.
Collapse
Affiliation(s)
- Ali Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Aini Pervaiz
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Bushra Ansari
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Muhammad Mukarram Shah
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Haroon Khan
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Mohammad Ijaz Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Altyar
- Department Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|