1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Zeghal M, Matte K, Venes A, Patel S, Laroche G, Sarvan S, Joshi M, Rain JC, Couture JF, Giguère PM. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J Biol Chem 2023; 299:105107. [PMID: 37517699 PMCID: PMC10470007 DOI: 10.1016/j.jbc.2023.105107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shivani Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monika Joshi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Levy SA, Zuniga G, Gonzalez EM, Butler D, Temple S, Frost B. Tau LUM, an in vivo Drosophila sensor of tau multimerization, identifies neuroprotective interventions in tauopathy. CELL REPORTS METHODS 2022; 2:100292. [PMID: 36160048 PMCID: PMC9500001 DOI: 10.1016/j.crmeth.2022.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/23/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Tau protein aggregates are a defining neuropathological feature of "tauopathies," a group of neurodegenerative disorders that include Alzheimer's disease. In the current study, we develop a Drosophila split-luciferase-based sensor of tau-tau interaction. This model, which we term "tauLUM," allows investigators to quantify tau multimerization at individual time points or longitudinally in adult, living animals housed in a 96-well plate. TauLUM causes cell death in the adult Drosophila brain and responds to both pharmacological and genetic interventions. We find that transgenic expression of an anti-tau intrabody or pharmacological inhibition of HSP90 reduces tau multimerization and cell death in tauLUM flies, establishing the suitability of this system for future drug and genetic modifier screening. Overall, our studies position tauLUM as a powerful in vivo discovery platform that leverages the advantages of the Drosophila model organism to better understand tau multimerization.
Collapse
Affiliation(s)
- Simon A. Levy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Elias M. Gonzalez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - David Butler
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Challa S, Ryu KW, Whitaker AL, Abshier JC, Camacho CV, Kraus WL. Development and characterization of new tools for detecting poly(ADP-ribose) in vitro and in vivo. eLife 2022; 11:e72464. [PMID: 35476036 PMCID: PMC9045816 DOI: 10.7554/elife.72464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
ADP-ribosylation (ADPRylation) is a reversible post-translation modification resulting in the covalent attachment of ADP-ribose (ADPR) moieties on substrate proteins. Naturally occurring protein motifs and domains, including WWEs, PBZs, and macrodomains, act as 'readers' for protein-linked ADPR. Although recombinant, antibody-like ADPR detection reagents containing these readers have facilitated the detection of ADPR, they are limited in their ability to capture the dynamic nature of ADPRylation. Herein, we describe and characterize a set of poly(ADP-ribose) (PAR) Trackers (PAR-Ts)-optimized dimerization-dependent or split-protein reassembly PAR sensors in which a naturally occurring PAR binding domain, WWE, was fused to both halves of dimerization-dependent GFP (ddGFP) or split Nano Luciferase (NanoLuc), respectively. We demonstrate that these new tools allow the detection and quantification of PAR levels in extracts, living cells, and living tissues with greater sensitivity, as well as temporal and spatial precision. Importantly, these sensors detect changes in cellular ADPR levels in response to physiological cues (e.g., hormone-dependent induction of adipogenesis without DNA damage), as well as xenograft tumor tissues in living mice. Our results indicate that PAR Trackers have broad utility for detecting ADPR in many different experimental and biological systems.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Keun W Ryu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Amy L Whitaker
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jonathan C Abshier
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
5
|
Analysis of transient membrane protein interactions by single-molecule diffusional mobility shift assay. Exp Mol Med 2021; 53:291-299. [PMID: 33603128 PMCID: PMC8080847 DOI: 10.1038/s12276-021-00567-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
Various repertoires of membrane protein interactions determine cellular responses to diverse environments around cells dynamically in space and time. Current assays, however, have limitations in unraveling these interactions in the physiological states in a living cell due to the lack of capability to probe the transient nature of these interactions on the crowded membrane. Here, we present a simple and robust assay that enables the investigation of transient protein interactions in living cells by using the single-molecule diffusional mobility shift assay (smDIMSA). Utilizing smDIMSA, we uncovered the interaction profile of EGFR with various membrane proteins and demonstrated the promiscuity of these interactions depending on the cancer cell line. The transient interaction profile obtained by smDIMSA will provide critical information to comprehend the crosstalk among various receptors on the plasma membrane.
Collapse
|
6
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Wu AM. Protein Engineering for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Massoud TF, Paulmurugan R. Molecular Imaging of Protein–Protein Interactions and Protein Folding. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Gammon ST, Liu TW, Piwnica-Worms D. Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters. Radiol Imaging Cancer 2020; 2:e190053. [PMID: 32803164 PMCID: PMC7398120 DOI: 10.1148/rycan.2020190053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 04/14/2023]
Abstract
Cells continuously communicate changes in their microenvironment, both locally and globally, with other cells in the organism. Integration of information arising from signaling networks impart continuous, time-dependent changes of cell function and phenotype. Use of genetically encoded reporters enable researchers to noninvasively monitor time-dependent changes in intercellular and intracellular signaling, which can be interrogated by macroscopic and microscopic optical imaging, nuclear medicine imaging, MRI, and even photoacoustic imaging techniques. Reporters enable noninvasive monitoring of changes in cell-to-cell proximity, transcription, translation, protein folding, protein association, protein degradation, drug action, and second messengers in real time. Because of their positive impact on preclinical research, attempts to improve the sensitivity and specificity of these reporters, and to develop new types and classes of reporters, remain an active area of investigation. A few reporters have migrated to proof-of-principle clinical demonstrations, and recent advances in genome editing technologies may enable the use of reporters in the context of genome-wide analysis and the imaging of complex genomic regulation in vivo that cannot be readily investigated through standard methodologies. The combination of genetically encoded imaging reporters with continuous improvements in other molecular biology techniques may enhance and expedite target discovery and drug development for cancer interventions and treatment. © RSNA, 2020.
Collapse
|
10
|
Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies. Int J Mol Sci 2018; 19:ijms19041180. [PMID: 29649180 PMCID: PMC5979328 DOI: 10.3390/ijms19041180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO/cyclic guanosine monophosphate (cGMP)-regulated cellular mechanisms are involved in a variety of (patho-) physiological processes. One of the main effector molecules in this system, proteinkinase G (PKG), serves as a molecular switch by phosphorylating different target proteins and thereby turning them on or off. To date, only a few interaction partners of PKG have been described although the identification of protein–protein interactions (PPI) is indispensable for the understanding of cellular processes and diseases. Conventionally used methods to detect PPIs exhibit several disadvantages, e.g., co-immunoprecipitations, which depend on suitable high-affinity antibodies. Therefore, we established a cell-based protein-fragment complementation assay (PCA) for the identification of PKG target proteins. Here, a reporter protein (click beetle luciferase) is split into two fragments and fused to two different possible interaction partners. If interaction occurs, the reporter protein is functionally complemented and the catalyzed reaction can then be quantitatively measured. By using this technique, we confirmed the regulator of G-Protein signaling 2 (RGS2) as an interaction partner of PKGIα (a PKG-isoform) following stimulation with 8-Br-cGMP and 8-pCPT-cGMP. Hence, our results support the conclusion that the established approach could serve as a novel tool for the rapid, easy and cost-efficient detection of novel PKG target proteins.
Collapse
|
11
|
Moosavi B, Mousavi B, Yang WC, Yang GF. Yeast-based assays for detecting protein-protein/drug interactions and their inhibitors. Eur J Cell Biol 2017. [PMID: 28645461 DOI: 10.1016/j.ejcb.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding cellular processes at molecular levels in health and disease requires the knowledge of protein-protein interactions (PPIs). In line with this, identification of PPIs at genome-wide scale is highly valuable to understand how different cellular pathways are interconnected, and it eventually facilitates designing effective drugs against certain PPIs. Furthermore, investigating PPIs at a small laboratory scale for deciphering certain biochemical pathways has been demanded for years. In this regard, yeast two hybrid system (Y2HS) has proven an extremely useful tool to discover novel PPIs, while Y2HS derivatives and novel yeast-based assays are contributing significantly to identification of protein-drug/inhibitor interaction at both large- and small-scale set-ups. These methods have been evolving over time to provide more accurate, reproducible and quantitative results. Here we briefly describe different yeast-based assays for identification of various protein-protein/drug/inhibitor interactions and their specific applications, advantages, shortcomings, and improvements. The broad range of yeast-based assays facilitates application of the most suitable method(s) for each specific need.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
12
|
Hsu WCJ, Wildburger NC, Haidacher SJ, Nenov MN, Folorunso O, Singh AK, Chesson BC, Franklin WF, Cortez I, Sadygov RG, Dineley KT, Rudra JS, Taglialatela G, Lichti CF, Denner L, Laezza F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol 2017; 295:1-17. [PMID: 28522250 DOI: 10.1016/j.expneurol.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive impairment in humans with Alzheimer's disease (AD) and in animal models of Aβ-pathology can be ameliorated by treatments with the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, such as rosiglitazone (RSG). Previously, we demonstrated that in the Tg2576 animal model of AD, RSG treatment rescued cognitive deficits and reduced aberrant activity of granule neurons in the dentate gyrus (DG), an area critical for memory formation. METHODS We used a combination of mass spectrometry, confocal imaging, electrophysiology and split-luciferase assay and in vitro phosphorylation and Ingenuity Pathway Analysis. RESULTS Using an unbiased, quantitative nano-LC-MS/MS screening, we searched for potential molecular targets of the RSG-dependent rescue of DG granule neurons. We found that S226 phosphorylation of fibroblast growth factor 14 (FGF14), an accessory protein of the voltage-gated Na+ (Nav) channels required for neuronal firing, was reduced in Tg2576 mice upon treatment with RSG. Using confocal microscopy, we confirmed that the Tg2576 condition decreased PanNav channels at the AIS of the DG, and that RSG treatment of Tg2576 mice reversed the reduction in PanNav channels. Analysis from previously published data sets identified correlative changes in action potential kinetics in RSG-treated T2576 compared to untreated and wildtype controls. In vitro phosphorylation and mass spectrometry confirmed that the multifunctional kinase GSK-3β, a downstream target of insulin signaling highly implicated in AD, phosphorylated FGF14 at S226. Assembly of the FGF14:Nav1.6 channel complex and functional regulation of Nav1.6-mediated currents by FGF14 was impaired by a phosphosilent S226A mutation. Bioinformatics pathway analysis of mass spectrometry and biochemistry data revealed a highly interconnected network encompassing PPARγ, FGF14, SCN8A (Nav 1.6), and the kinases GSK-3 β, casein kinase 2β, and ERK1/2. CONCLUSIONS These results identify FGF14 as a potential PPARγ-sensitive target controlling Aβ-induced dysfunctions of neuronal activity in the DG underlying memory loss in early AD.
Collapse
Affiliation(s)
- Wei-Chun J Hsu
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Sigmund J Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Brent C Chesson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Whitney F Franklin
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Ibdanelo Cortez
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Rovshan G Sadygov
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Kelly T Dineley
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jay S Rudra
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Cheryl F Lichti
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Larry Denner
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
13
|
Jiang C, Kaul N, Campbell J, Meyhofer E. A novel dual-color bifocal imaging system for single-molecule studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:053705. [PMID: 28571404 DOI: 10.1063/1.4983648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we report the design and implementation of a dual-color bifocal imaging (DBI) system that is capable of acquiring two spectrally distinct, spatially registered images of objects located in either same or two distinct focal planes. We achieve this by separating an image into two channels with distinct chromatic properties and independently focusing both images onto a single CCD camera. The two channels in our device are registered with subpixel accuracy, and long-term stability of the registered images with nanometer-precision was accomplished by reducing the drift of the images to ∼5 nm. We demonstrate the capabilities of our DBI system by imaging biomolecules labeled with spectrally distinct dyes and micro- and nano-sized spheres located in different focal planes.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Neha Kaul
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jenna Campbell
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edgar Meyhofer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Woo J, Hong J, Dinesh‐Kumar SP. Bioluminescence Resonance Energy Transfer (BRET)‐Based Synthetic Sensor Platform for Drug Discovery. ACTA ACUST UNITED AC 2017; 88:19.30.1-19.30.12. [DOI: 10.1002/cpps.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| | - Jason Hong
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| |
Collapse
|
15
|
Li L, Feng L, Shi M, Zeng J, Chen Z, Zhong L, Huang L, Guo W, Huang Y, Qi W, Lu C, Li E, Zhao K, Gu J. Split luciferase-based biosensors for characterizing EED binders. Anal Biochem 2017; 522:37-45. [PMID: 28111304 DOI: 10.1016/j.ab.2017.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
The EED (embryonic ectoderm development) subunit of the Polycomb repressive complex 2 (PRC2) plays an important role in the feed forward regulation of the PRC2 enzymatic activity. We recently identified a new class of allosteric PRC2 inhibitors that bind to the H3K27me3 pocket of EED. Multiple assays were developed and used to identify and characterize this type of PRC2 inhibitors. One of them is a genetically encoded EED biosensor based on the EED[G255D] mutant and the split firefly luciferase. This EED biosensor can detect the compound binding in the transfected cells and in the in vitro biochemical assays. Compared to other commonly used cellular assays, the EED biosensor assay has the advantage of shorter compound incubation with cells. The in vitro EED biosensor is much more sensitive than other label-free biophysical assays (e.g. DSF, ITC). Based on the crystal structure, the DSF data as well as the biosensor assay data, it's most likely that compound-induced increase in the luciferase activity of the EED[G255D] biosensor results from the decreased non-productive interactions between the EED subdomain and other subdomains within the biosensor construct. This new insight of the mechanism might help to broaden the use of the split luciferase based biosensors.
Collapse
Affiliation(s)
- Ling Li
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China.
| | - Lijian Feng
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Minlong Shi
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Jue Zeng
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Zijun Chen
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Li Zhong
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Li Huang
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Weihui Guo
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Ying Huang
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Wei Qi
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Chris Lu
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Kehao Zhao
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Justin Gu
- China Novartis Institutes for Biomedical Research, 4218 Jinke Road, Shanghai 201203, China.
| |
Collapse
|
16
|
Steinhardt RC, O'Neill JM, Rathbun CM, McCutcheon DC, Paley MA, Prescher JA. Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging. Chemistry 2016; 22:3671-5. [PMID: 26784889 DOI: 10.1002/chem.201503944] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/20/2023]
Abstract
Herein, the synthesis and characterization of an alkyne-modified luciferin is reported. This bioluminescent probe was accessed using C-H activation methodology and was found to be stable in solution and capable of light production with firefly luciferase. The luciferin analogue was also cell permeant and emitted more redshifted light than d-luciferin, the native luciferase substrate. Based on these features, the alkynyl luciferin will be useful for a variety of imaging applications.
Collapse
Affiliation(s)
| | - Jessica M O'Neill
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Colin M Rathbun
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - David C McCutcheon
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Miranda A Paley
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Target Gene Discovery for Novel Therapeutic Agents in Cancer Treatment. Methods Mol Biol 2015. [PMID: 26667461 DOI: 10.1007/978-1-4939-3204-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Target identification of novel therapeutic drugs is pivotal for the establishment of (1) new anticancer regiments, (2) to control side effects of the drugs, and (3) to identify appropriate combinations with established drugs. Here, we describe several in vitro assays applicable to characterize different characteristics of tumor cells. Furthermore, we present a protocol for establishing a reporter gene system for in vivo imaging, allowing for the study of drug effects in small animal models.
Collapse
|
18
|
Wehr MC, Rossner MJ. Split protein biosensor assays in molecular pharmacological studies. Drug Discov Today 2015; 21:415-29. [PMID: 26610415 DOI: 10.1016/j.drudis.2015.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/14/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Cellular signalling is commonly mediated through dynamic protein-protein interactions (PPIs). When pivotal PPIs are deregulated, cellular signalling can be altered; it is therefore attractive to monitor regulated PPIs to understand their role in health and disease. Genetically encoded biosensors that rely on protein fragment complementation have made it feasible to monitor PPIs in living cells precisely and robustly. In particular, split protein biosensors using fluorescent proteins or luciferases are frequently applied. Further, split TEV and split ubiquitin biosensor platforms flexibly allow using readouts of choice, including transcriptional barcode reporters that are amenable to multiplexed high-throughput formats and next-generation sequencing. Combining these technologies will enable assessing drug target activities and cellular response profiles in parallel, thereby opening up new avenues in drug discovery.
Collapse
Affiliation(s)
- Michael C Wehr
- Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany.
| | - Moritz J Rossner
- Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany; Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| |
Collapse
|
19
|
Gγ recruitment systems specifically select PPI and affinity-enhanced candidate proteins that interact with membrane protein targets. Sci Rep 2015; 5:16723. [PMID: 26581329 PMCID: PMC4652169 DOI: 10.1038/srep16723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions (PPIs) are crucial for the vast majority of biological processes. We previously constructed a Gγ recruitment system to screen PPI candidate proteins and desirable affinity-altered (affinity-enhanced and affinity-attenuated) protein variants. The methods utilized a target protein fused to a mutated G-protein γ subunit (Gγcyto) lacking the ability to localize to the inner leaflet of the plasma membrane. However, the previous systems were adapted to use only soluble cytosolic proteins as targets. Recently, membrane proteins have been found to form the principal nodes of signaling involved in diseases and have attracted a great deal of interest as primary drug targets. Here, we describe new protocols for the Gγ recruitment systems that are specifically designed to use membrane proteins as targets to overcome previous limitations. These systems represent an attractive approach to exploring novel interacting candidates and affinity-altered protein variants and their interactions with proteins on the inner side of the plasma membrane, with high specificity and selectivity.
Collapse
|
20
|
Kaur G, Singh S, Singh H, Chawla M, Dutta T, Kaur H, Bender K, Snedden WA, Kapoor S, Pareek A, Singh P. Characterization of Peptidyl-Prolyl Cis-Trans Isomerase- and Calmodulin-Binding Activity of a Cytosolic Arabidopsis thaliana Cyclophilin AtCyp19-3. PLoS One 2015; 10:e0136692. [PMID: 26317213 PMCID: PMC4552658 DOI: 10.1371/journal.pone.0136692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022] Open
Abstract
Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation. Although Arabidopsis genome is predicted to contain 35 cyclophilin genes, biochemical characterization, imperative for understanding their cellular function(s), has been carried only for few of the members. The present study reports the biochemical characterization of an Arabidopsis cyclophilin, AtCyp19-3, which demonstrated that this protein is enzymatically active and possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that is specifically inhibited by CsA with an inhibition constant (Ki) of 18.75 nM. The PPIase activity of AtCyp19-3 was also sensitive to Cu(2+), which covalently reacts with the sulfhydryl groups, implying redox regulation. Further, using calmodulin (CaM) gel overlay assays it was demonstrated that in vitro interaction of AtCyp19-3 with CaM is Ca(2+)-dependent, and CaM-binding domain is localized to 35-70 amino acid residues in the N-terminus. Bimolecular fluorescence complementation assays showed that AtCyp19-3 interacts with CaM in vivo also, thus, validating the in vitro observations. However, the PPIase activity of the Arabidopsis cyclophilin was not affected by CaM. The implications of these findings are discussed in the context of Ca(2+) signaling and cyclophilin activity in Arabidopsis.
Collapse
Affiliation(s)
- Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidayalaya, Jalandhar, Punjab, India
| | - Mrinalini Chawla
- Interdiscipinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Tanima Dutta
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Harsimran Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Kyle Bender
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - W. A. Snedden
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Sanjay Kapoor
- Interdiscipinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal, Nehru University, New Delhi, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| |
Collapse
|
21
|
Jones KA, Li DJ, Hui E, Sellmyer MA, Prescher JA. Visualizing cell proximity with genetically encoded bioluminescent reporters. ACS Chem Biol 2015; 10:933-8. [PMID: 25643167 DOI: 10.1021/cb5007773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions underlie diverse physiological processes ranging from immune function to cell migration. Dysregulated cellular crosstalk also potentiates numerous pathologies, including infections and metastases. Despite their ubiquity in organismal biology, cell-cell interactions are difficult to examine in tissues and whole animals without invasive procedures. Here, we report a strategy to noninvasively image cell proximity using engineered bioluminescent probes. These tools comprise "split" fragments of Gaussia luciferase (Gluc) fused to the leucine zipper domains of Fos and Jun. When cells secreting the fragments draw near one another, Fos and Jun drive the assembly of functional, light-emitting Gluc. Photon production thus provides a readout on the distance between two cell types. We used the split fragments to visualize cell-cell interactions over time in vitro and in macroscopic models of cell migration. Further application of these tools in live organisms will refine our understanding of cell contacts relevant to basic biology and disease.
Collapse
Affiliation(s)
| | | | | | - Mark A. Sellmyer
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
22
|
Paley MA, Prescher JA. Bioluminescence: a versatile technique for imaging cellular and molecular features. MEDCHEMCOMM 2014; 5:255-267. [PMID: 27594981 PMCID: PMC5006753 DOI: 10.1039/c3md00288h] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.
Collapse
Affiliation(s)
- Miranda A. Paley
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
23
|
Monitoring Notch activation in cultured mammalian cells: luciferase complementation imaging assays. Methods Mol Biol 2014; 1187:155-68. [PMID: 25053488 DOI: 10.1007/978-1-4939-1139-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Notch activation and cleavage releases the Notch intracellular domain (NICD), which translocates to the nucleus, where it associates with its DNA-binding partner CSL to recruit the coactivator MAML and additional cofactors to ultimately activate target gene expression. Taking advantage of the specific interaction between NICD and these factors, we have developed a luciferase complementation imaging (LCI)-based reporter system to quantitatively monitor Notch activation in real time in live cells. In this chapter, we describe the use of Notch LCI reporters for measuring protein interactions and performing detailed kinetic analyses of receptor activation and its responses to various stimuli.
Collapse
|
24
|
Waadt R, Schlücking K, Schroeder JI, Kudla J. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations. Methods Mol Biol 2014; 1062:629-58. [PMID: 24057390 PMCID: PMC4073779 DOI: 10.1007/978-1-62703-580-4_33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The analyses of protein-protein interactions are crucial for understanding cellular processes including signal transduction, protein trafficking, and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further, we discuss different BiFC applications and provide examples for proper BiFC analyses in planta.
Collapse
Affiliation(s)
- Rainer Waadt
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Kathrin Schlücking
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| | - Julian I. Schroeder
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Jörg Kudla
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
25
|
Verma SC, Cai Q, Kreider E, Lu J, Robertson ES. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence. PLoS One 2013; 8:e74662. [PMID: 24040311 PMCID: PMC3770571 DOI: 10.1371/journal.pone.0074662] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi’s sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman’s Disease (MCD). KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA). LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs). We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET) to demonstrate their association.
Collapse
Affiliation(s)
- Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ESR); (SCV)
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine of Fudan University, Shanghai, China
| | - Edward Kreider
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ESR); (SCV)
| |
Collapse
|
26
|
Lewis MA, Richer E, Slavine NV, Kodibagkar VD, Soesbe TC, Antich PP, Mason RP. A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research. Diagnostics (Basel) 2013; 3:325-43. [PMID: 26824926 PMCID: PMC4665465 DOI: 10.3390/diagnostics3030325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/13/2013] [Accepted: 06/26/2013] [Indexed: 01/11/2023] Open
Abstract
Bioluminescent imaging (BLI) of cells expressing luciferase is a valuable noninvasive technique for investigating molecular events and tumor dynamics in the living animal. Current usage is often limited to planar imaging, but tomographic imaging can enhance the usefulness of this technique in quantitative biomedical studies by allowing accurate determination of tumor size and attribution of the emitted light to a specific organ or tissue. Bioluminescence tomography based on a single camera with source rotation or mirrors to provide additional views has previously been reported. We report here in vivo studies using a novel approach with multiple rotating cameras that, when combined with image reconstruction software, provides the desired representation of point source metastases and other small lesions. Comparison with MRI validated the ability to detect lung tumor colonization in mouse lung.
Collapse
Affiliation(s)
- Matthew A Lewis
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Edmond Richer
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| | - Nikolai V Slavine
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Vikram D Kodibagkar
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Todd C Soesbe
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
- Advanced Imaging Research Center, UT Southwestern, Dallas, TX 75390, USA.
| | - Peter P Antich
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Ralph P Mason
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Kocher B, Piwnica-Worms D. Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 2013; 3:616-29. [PMID: 23585416 DOI: 10.1158/2159-8290.cd-12-0503] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bioluminescent imaging (BLI) is a powerful noninvasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMM) of cancer, which permit investigation of cellular and molecular events associated with oncogenic transcription, posttranslational processing, protein-protein interactions, transformation, and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a noninvasive, repetitive, longitudinal, and physiologic means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal.
Collapse
Affiliation(s)
- Brandon Kocher
- Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Boulevard, Box 8225, St. Louis, MO 63110, USA
| | | |
Collapse
|
28
|
Pinto da Silva L, Esteves da Silva JCG. Theoretical fingerprinting of the photophysical properties of four firefly bioluminophores. Photochem Photobiol Sci 2013; 12:2028-35. [DOI: 10.1039/c3pp50203a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Abstract
Bioluminescence imaging (BLI) takes advantage of the light-emitting properties of luciferase enzymes, which produce light upon oxidizing a substrate (i.e., D-luciferin) in the presence of molecular oxygen and energy. Photons emitted from living tissues can be detected and quantified by a highly sensitive charge-coupled device camera, enabling the investigator to noninvasively analyze the dynamics of biomolecular reactions in a variety of living model organisms such as transgenic mice. BLI has been used extensively in cancer research, cell transplantation, and for monitoring of infectious diseases, but only recently experimental models have been designed to study processes and pathways in neurological disorders such as Alzheimer disease, Parkinson disease, or amyotrophic lateral sclerosis. In this review, we highlight recent applications of BLI in neuroscience, including transgene expression in the brain, longitudinal studies of neuroinflammatory responses to neurodegeneration and injury, and in vivo imaging studies of neurogenesis and mitochondrial toxicity. Finally, we highlight some new developments of BLI compounds and luciferase substrates with promising potential for in vivo studies of neurological dysfunctions.
Collapse
Affiliation(s)
- Katja Hochgräfe
- DZNE (German Center for Neurodegenerative Diseases), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | | |
Collapse
|
30
|
Kim SB, Ito Y, Torimura M. Bioluminescent Capsules for Live-Cell Imaging. Bioconjug Chem 2012; 23:2221-8. [DOI: 10.1021/bc300323x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute
of Advanced Industrial Science and Technology (AIST), Onogawa 16-1,
Tsukuba, Ibaraki 305-8569, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering, National Institute of Advanced
Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba,
Ibaraki 305-8562, Japan
| | - Masaki Torimura
- Research Institute for Environmental Management Technology, National Institute
of Advanced Industrial Science and Technology (AIST), Onogawa 16-1,
Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
31
|
Torkzadeh-Mahani M, Ataei F, Nikkhah M, Hosseinkhani S. Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis. Biosens Bioelectron 2012; 38:362-8. [DOI: 10.1016/j.bios.2012.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
|
32
|
Hatzios SK, Ringgaard S, Davis BM, Waldor MK. Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition. PLoS One 2012; 7:e43175. [PMID: 22905225 PMCID: PMC3419657 DOI: 10.1371/journal.pone.0043175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/20/2012] [Indexed: 12/13/2022] Open
Abstract
The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology.
Collapse
Affiliation(s)
- Stavroula K. Hatzios
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Simon Ringgaard
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rutkowska A, Schultz C. Protein Tango: The Toolbox to Capture Interacting Partners. Angew Chem Int Ed Engl 2012; 51:8166-76. [DOI: 10.1002/anie.201201717] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 11/07/2022]
|
34
|
|
35
|
Chen MR, Kao VYY, Liu SW, Wu TC, Yu HC, Hsu CH, Chen CT, Lin KM. NONINVASIVE OPTICAL IMAGING FOR TRACKING GENE DELIVERY AND RECOMBINATION IN TUMOR. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237209001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here, we report the generation of optical imaging reporter breast tumor cells that allow the longitudinal, in vivo, noninvasive imaging of gene recombination in tumor. Tumor-gene targeting is a promising approach of treating cancers, and a suitable gene delivery method is the criteria for success. By using the cre lox genetic engineering tool, we targeted stable green fluorescent protein expression in metastatic-prone human breast cancer MDA-MB231 cells that switch to express firefly luciferase upon the exogenous delivery and expression of cre DNA recombinase. We tested this model in vivo by intratumor injection of cre adenovirus and demonstrated the usefulness of this model to achieve longitudinal bioluminescence imaging of DNA recombination in tumor. This optical imaging vector and tumor model will facilitate the research for biomaterial solutions for carriers in gene therapy, and in studies on tumor targeting, tracking for tumor metastasis and migration of tumor stem cells, and for determining the anticancer drug efficacy.
Collapse
Affiliation(s)
- Mei-Ru Chen
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
| | - Vivia Yu-Ying Kao
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shan-Wen Liu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Chin Wu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
| | - Hsiao-Chi Yu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
| | - Chin-Han Hsu
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Tu Chen
- Department of Radiology and Committee on Medical Physics, University of Chicago, IL, USA
| | - Kurt M. Lin
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
| |
Collapse
|
36
|
Kim SB. Labor-effective manipulation of marine and beetle luciferases for bioassays. Protein Eng Des Sel 2012; 25:261-9. [PMID: 22514115 DOI: 10.1093/protein/gzs016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineering of luciferases with designed properties and functionalities collects great interest in bioassays. However, such an engineering including mutagenesis accompanies great consumption of time-and-labor. Here, I review an empirical approach to efficiently manipulate marine and beetle luciferases for bioassays, where a putative active site of luciferases is initially assigned with an in silico analysis, prior to the practical engineering, e.g. a hydrophilicity search reveals a characteristic hydrophilic region of luciferases as an engineering target. Amino acids in the hydrophilic region are recommended for a mutagenesis target to generate superluminescent variants of marine luciferases with prolonged bioluminescence. Empirical data suggest that a consecutive fragmentation to the assigned hydrophilic site greatly reduces time-and-labors on construction of single-chain probes. This review summarizes how to relieve the efforts for fabricating single-chain probes and potent variants of luciferases with excellent optical properties.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan.
| |
Collapse
|
37
|
Piwnica-Worms D. On in vivo imaging in cancer. Cold Spring Harb Perspect Biol 2012; 4:4/3/a013409. [PMID: 22383756 DOI: 10.1101/cshperspect.a013409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David Piwnica-Worms
- BRIGHT Institute, Department of Cell Biology & Physiology, St. Louis, Missouri 63110, USA.
| |
Collapse
|
38
|
Brogan J, Li F, Li W, He Z, Huang Q, Li CY. Imaging molecular pathways: reporter genes. Radiat Res 2012; 177:508-13. [PMID: 22348248 DOI: 10.1667/rr2918.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecular imaging is a rapidly advancing field that allows cancer biologists to look deeper into the complex inner workings of tumor cells, or whole tumors, in a non-invasive manner. In this review, we will summarize some recent advances that enable investigators to study various important biological processes in tumors in vivo. We will discuss novel imaging approaches that allow investigators to visualize and quantify molecular pathways, such as receptor tyrosine kinase activation, hypoxia signal transduction, apoptosis, and DNA double-strand breaks. Select examples of these applications will be discussed. Because of the limited scope of this review, we will only focus on natural reporters, such as bioluminescence and fluorescent proteins.
Collapse
Affiliation(s)
- John Brogan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
39
|
The detection and quantitation of protein oligomerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:19-41. [PMID: 22949109 DOI: 10.1007/978-1-4614-3229-6_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.
Collapse
|
40
|
Maguire CA, van der Mijn JC, Degeling MH, Morse D, Tannous BA. Codon-Optimized
Luciola Italica
Luciferase Variants for Mammalian Gene Expression in Culture and in Vivo. Mol Imaging 2012; 11:7290.2011.00022. [DOI: 10.2310/7290.2011.00022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Casey A. Maguire
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA; Department of Neurosurgery, VU Medical Center Cancer Center, Amsterdam, the Netherlands; and Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes C. van der Mijn
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA; Department of Neurosurgery, VU Medical Center Cancer Center, Amsterdam, the Netherlands; and Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marja H. Degeling
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA; Department of Neurosurgery, VU Medical Center Cancer Center, Amsterdam, the Netherlands; and Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle Morse
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA; Department of Neurosurgery, VU Medical Center Cancer Center, Amsterdam, the Netherlands; and Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Bakhos A. Tannous
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA; Department of Neurosurgery, VU Medical Center Cancer Center, Amsterdam, the Netherlands; and Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Mechanics of EGF receptor/ErbB2 kinase activation revealed by luciferase fragment complementation imaging. Proc Natl Acad Sci U S A 2011; 109:137-42. [PMID: 22190492 DOI: 10.1073/pnas.1111316109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of EGF to its receptor induces dimerization of the normally monomeric receptor. Activation of its intracellular tyrosine kinase then occurs through the formation of an asymmetric kinase dimer in which one subunit, termed the "receiver" kinase, is activated by interaction with the other subunit, termed the "activator" kinase [Zhang, et al. (2006) Cell 125: 1137-1149]. Although there is significant experimental support for this model, the relationship between ligand binding and the mechanics of kinase activation are not known. Here we use luciferase fragment complementation in EGF receptor (EGFR)/ErbB2 heterodimers to probe the mechanics of ErbB kinase activation. Our data support a model in which ligand binding causes the cis-kinase (the EGFR) to adopt the receiver position in the asymmetric dimer and to be activated first. If the EGF receptor is kinase active, this results in the phosphorylation of the trans-kinase (ErbB2). However, if the EGF receptor kinase is kinase dead, the ErbB2 kinase is never activated. Thus, activation of the kinases in the EGFR/ErbB2 asymmetric dimer occurs in a specific sequence and depends on the kinase activity of the EGF receptor.
Collapse
|
42
|
Krucker T, Sandanaraj BS. Optical imaging for the new grammar of drug discovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4651-4665. [PMID: 22006912 DOI: 10.1098/rsta.2011.0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optical technologies used in biomedical research have undergone tremendous development in the last decade and enabled important insight into biochemical, cellular and physiological phenomena at the microscopic and macroscopic level. Historically in drug discovery, to increase throughput in screening, or increase efficiency through automation of image acquisition and analysis in pathology, efforts in imaging were focused on the reengineering of established microscopy solutions. However, with the emergence of the new grammar for drug discovery, other requirements and expectations have created unique opportunities for optical imaging. The new grammar of drug discovery provides rules for translating the wealth of genomic and proteomic information into targeted medicines with a focus on complex interactions of proteins. This paradigm shift requires highly specific and quantitative imaging at the molecular level with tools that can be used in cellular assays, animals and finally translated into patients. The development of fluorescent targeted and activatable 'smart' probes, fluorescent proteins and new reporter gene systems as functional and dynamic markers of molecular events in vitro and in vivo is therefore playing a pivotal role. An enabling optical imaging platform will combine optical hardware refinement with a strong emphasis on creating and validating highly specific chemical and biological tools.
Collapse
Affiliation(s)
- Thomas Krucker
- Global Imaging Group, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | | |
Collapse
|
43
|
Molecular imaging in tumor angiogenesis and relevant drug research. Int J Biomed Imaging 2011; 2011:370701. [PMID: 21808639 PMCID: PMC3144661 DOI: 10.1155/2011/370701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging,
including fluorescence imaging (FMI),
bioluminescence imaging (BLI), positron emission
tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography
(CT), has a pivotal role in the
process of tumor and relevant drug research. CT,
especially Micro-CT, can provide the anatomic
information for a region of interest (ROI); PET
and SPECT can provide functional information for
the ROI. BLI and FMI can provide optical
information for an ROI. Tumor angiogenesis and
relevant drug development is a lengthy,
high-risk, and costly process, in which a novel
drug needs about 10–15 years of testing to
obtain Federal Drug Association (FDA) approval.
Molecular imaging can enhance the development
process by understanding the tumor mechanisms
and drug activity. In this paper, we focus on
tumor angiogenesis, and we review the
characteristics of molecular imaging modalities
and their applications in tumor angiogenesis and
relevant drug research.
Collapse
|
44
|
Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 2011; 108:12060-5. [PMID: 21730157 PMCID: PMC3141927 DOI: 10.1073/pnas.1100923108] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying protein-protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals. These BRET systems consist of the recently developed Renilla reniformis luciferase (RLuc) variants RLuc8 and RLuc8.6, used as BRET donors, combined with two red fluorescent proteins, TagRFP and TurboFP635, as BRET acceptors. In addition to the native coelenterazine luciferase substrate, we used the synthetic derivative coelenterazine-v, which further red-shifts the emission maxima of Renilla luciferases by 35 nm. We show the use of these BRET systems for ratiometric imaging of both cells in culture and deep-tissue small animal tumor models and validate their applicability for studying PPIs in mice in the context of rapamycin-induced FK506 binding protein 12 (FKBP12)-FKBP12 rapamycin binding domain (FRB) association. These red light-emitting BRET systems have great potential for investigating PPIs in the context of drug screening and target validation applications.
Collapse
Affiliation(s)
- Anca Dragulescu-Andrasi
- Molecular Imaging Program at Stanford, Bio-X Program and Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Carmel T. Chan
- Molecular Imaging Program at Stanford, Bio-X Program and Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abhijit De
- The Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford, Bio-X Program and Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology and Department of Oncology, University of Cambridge School of Clinical Medicine, Cambridge CB2 2QQ, United Kingdom; and
| | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford, Bio-X Program and Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Bioengineering and Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
45
|
Ilagan MXG, Lim S, Fulbright M, Piwnica-Worms D, Kopan R. Real-time imaging of notch activation with a luciferase complementation-based reporter. Sci Signal 2011; 4:rs7. [PMID: 21775282 DOI: 10.1126/scisignal.2001656] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Notch signaling regulates many cellular processes during development and adult tissue renewal. Upon ligand binding, Notch receptors undergo ectodomain shedding followed by γ-secretase-mediated release of the Notch intracellular domain (NICD), which translocates to the nucleus and associates with the DNA binding protein CSL [CBF1/RBPjκ/Su(H)/Lag1] to activate gene expression. Mammalian cells contain four Notch receptors that can have both redundant and specific activities. To monitor activation of specific Notch paralogs in live cells and in real time, we developed luciferase complementation imaging (LCI) reporters for NICD-CSL association and validated them as a specific, robust, and sensitive assay system that enables structure-function and pharmacodynamic analyses. Detailed kinetic analyses of various mechanistic aspects of Notch signaling, including nuclear translocation and inhibition of the activities of γ-secretase and ADAM metalloproteases, as well as agonist- and ligand-dependent activation, were conducted in live cells. These experiments showed that Notch-LCI is an effective approach for characterizing modulators that target Notch signaling and for studying pathway dynamics in normal and disease contexts.
Collapse
Affiliation(s)
- Ma Xenia G Ilagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
46
|
Luo Y, Sun W, Liu C, Wang G, Fang N. Superlocalization of Single Molecules and Nanoparticles in High-Fidelity Optical Imaging Microfluidic Devices. Anal Chem 2011; 83:5073-7. [DOI: 10.1021/ac201056z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Luo
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Wei Sun
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Chang Liu
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Gufeng Wang
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Ning Fang
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
47
|
Johnson JR, Piwnica-Worms D. Standing Out in the Crowd: Signal-to-Background in Molecular Imaging. Aust J Chem 2011. [DOI: 10.1071/ch11126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract 2011; 20:397-415. [PMID: 21757928 PMCID: PMC7388590 DOI: 10.1159/000327655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Accurate and rapid detection of diseases is of great importance for assessing the molecular basis of pathogenesis, preventing the onset of complications, and implementing a tailored therapeutic regimen. The ability of optical imaging to transcend wide spatial imaging scales ranging from cells to organ systems has rejuvenated interest in using this technology for medical imaging. Moreover, optical imaging has at its disposal diverse contrast mechanisms for distinguishing normal from pathologic processes and tissues. To accommodate these signaling strategies, an array of imaging techniques has been developed. Importantly, light absorption, and emission methods, as well as hybrid optical imaging approaches are amenable to both small animal and human studies. Typically, complex methods are needed to extract quantitative data from deep tissues. This review focuses on the development of optical imaging platforms, image processing techniques, and molecular probes, as well as their applications in cancer diagnosis, staging, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Metasebya Solomon
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
49
|
Wolf F, Li W, Li F, Li CY. Novel luciferase-based reporter system to monitor activation of ErbB2/Her2/neu pathway noninvasively during radiotherapy. Int J Radiat Oncol Biol Phys 2011; 79:233-8. [PMID: 20934271 PMCID: PMC3005973 DOI: 10.1016/j.ijrobp.2010.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/31/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. METHODS AND MATERIALS Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. RESULTS We have shown that our reporter systems functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. CONCLUSIONS We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.
Collapse
Affiliation(s)
- Frank Wolf
- Department of Radiation Oncology, University of Colorado Denver School of Medicine, Aurora, CO 80111, USA.
| | | | | | | |
Collapse
|
50
|
Villalobos V, Naik S, Bruinsma M, Dothager RS, Pan MH, Samrakandi M, Moss B, Elhammali A, Piwnica-Worms D. Dual-color click beetle luciferase heteroprotein fragment complementation assays. CHEMISTRY & BIOLOGY 2010; 17:1018-29. [PMID: 20851351 PMCID: PMC2943495 DOI: 10.1016/j.chembiol.2010.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/26/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically relevant time scales. Herein, we describe a set of reversible multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discrete pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells.
Collapse
Affiliation(s)
- Victor Villalobos
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Snehal Naik
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Monique Bruinsma
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Robin S. Dothager
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Mei-Hsiu Pan
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Mustapha Samrakandi
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Britney Moss
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Adnan Elhammali
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - David Piwnica-Worms
- Department of Developmental Biology, and Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|