1
|
Li X, Bai Y, Wang N, Feng H. Identification and breeding exploitation of dBrGMSP related to early bolting in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109873. [PMID: 40203557 DOI: 10.1016/j.plaphy.2025.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Bolting is an important agronomic trait for stalk type of vegetable crops. Early bolting is a favorable characteristic for stalk type of Chinese cabbage variety, which has the advantage of early market supply. In the present study, we screened an EMS-mutagenized Chinese cabbage population and isolated a dominant gain-of-function early bolting mutant ebm16 which exhibited remarkable earlier bolting trait than its WT. BrGMSP, encoding a galactose mutarotase-like superfamily protein, was identified as the candidate gene via MutMap and KASP analysis. A C-T mutation existed in exon of BrGMSP in ebm16. Both transient overexpression in the WT and stable transgenic overexpression in Arabidopsis thaliana for the mutated gene dBrGMSP verified the function of BrGMSP in regulating early bolting. BrGMSP was localized in the nucleus. LCA proved that BrGMSP could interact with BrPGM1 controlling photosynthetic carbon flow. VIGS verified that BrPGM1 had the function on promoting bolting in Chinese cabbage. It was proved that dBrGMSP could be applied in breeding for stalk type of Chinese cabbage.
Collapse
Affiliation(s)
- Xue Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuanzhi Bai
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Nan Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Bessho-Uehara K, Omori T, Reuscher S, Nagai K, Agata A, Kojima M, Takebayashi Y, Suzuki T, Sakakibara H, Ashikari M, Hobo T. Spatio-Temporal Regulation of Gibberellin Biosynthesis Contributes to Optimal Rhizome Bud Development. RICE (NEW YORK, N.Y.) 2025; 18:39. [PMID: 40410625 DOI: 10.1186/s12284-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025]
Abstract
The perennial life cycle involves the reiterative development of sexual and asexual organs. Asexual structures such as rhizomes are found in various plant species, fostering extensive growth and competitive advantages. In the African wild rice Oryza longistaminata, we investigated the formation of rhizomes from axillary buds, which notably bend diagonally downward of the main stem, as the factors determining whether axillary buds become rhizomes or tillers are unclear. Our study revealed that rhizome buds initiate between the third and fifth nodes of seedlings beyond the 6-leaf stage, while the buds above the sixth node develop into tillers. We propose that precise regulation of gibberellin (GA) biosynthesis plays a pivotal role in optimal rhizome bud development, as demonstrated by a comparative transcriptome analysis between tiller buds and rhizome buds and quantification of phytohormones. Furthermore, GA4 treatment upregulated the expression of genes associated with flowering repression and cell wall modification. These findings highlight the integration of GA biosynthesis and flowering repression genes as crucial in asexual organ development, shedding new light on the molecular mechanisms governing rhizome bud development in O. longistaminata and deepening our understanding of asexual reproduction regulation in perennial plants.
Collapse
Affiliation(s)
- Kanako Bessho-Uehara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Tomoki Omori
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31. Postfach 1463, 37555, Einbeck, Germany
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Ayumi Agata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Aichi, 487- 8501, Kasugai, Japan
| | - Hitoshi Sakakibara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
3
|
Perrella G, Vellutini E, Beveridge A, Hamilton G, Herzyk P, Kaiserli E. TANDEM ZINC-FINGER/PLUS3 integrates light signaling and flowering regulatory pathways at the chromatin level. THE NEW PHYTOLOGIST 2025. [PMID: 40356194 DOI: 10.1111/nph.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Environmental and endogenous stimuli determine plant developmental transitions including flowering through multiple signaling cascades. Although the key activators and repressors of flowering initiation are defined, the components and mechanisms integrating light signaling and flowering pathways are not fully established. This study investigates the role of TANDEM ZINC-FINGER/PLUS3 (TZP), a light-integrating transcriptional regulator, to elucidate how light cues influence the epigenetic regulation of flowering in Arabidopsis thaliana. To dissect the molecular function of TZP, this study employed a combination of genetics, RNA sequencing, chromatin immunoprecipitation sequencing and phenotypic assays. These approaches were used to determine TZP's genomic binding sites, its downstream gene targets and its influence on flowering time and chromatin modifications. TANDEM ZINC-FINGER/PLUS3 was found to directly associate with the promoter regions of chromatin-modifying genes, including FLOWERING LOCUS D (a histone H3K4 demethylase) and histone deacetylase 6 (a histone deacetylase). This regulation promotes a chromatin environment that represses FLOWERING LOCUS C (FLC) transcription, thereby accelerating flowering. TANDEM ZINC-FINGER/PLUS3 thus functions upstream of multiple pathways integrating photoperiodic and autonomous floral cues. TANDEM ZINC-FINGER/PLUS3 mediates crosstalk between light signaling and flowering pathways by modulating chromatin structure at the FLC locus. This provides a mechanistic framework for understanding how environmental signals dynamically influence epigenetic regulation of developmental transitions.
Collapse
Affiliation(s)
- Giorgio Perrella
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Elisa Vellutini
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Allan Beveridge
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Graham Hamilton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Pawel Herzyk
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Parajuli S, Adhikari B, Nepal MP. Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors. Sci Rep 2025; 15:5297. [PMID: 39939686 PMCID: PMC11822109 DOI: 10.1038/s41598-025-88880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.
Collapse
Affiliation(s)
- Sanam Parajuli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Bibek Adhikari
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
5
|
Ma T, Xu S, Wang Y, Zhang L, Liu Z, Liu D, Jin Z, Pei Y. Exogenous hydrogen sulphide promotes plant flowering through the Arabidopsis splicing factor AtU2AF65a. PLANT, CELL & ENVIRONMENT 2024; 47:1782-1796. [PMID: 38315745 DOI: 10.1111/pce.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Alternative splicing (AS) is an important regulatory mode at the post-transcriptional level, through which many flowering genes regulate floral transition by producing multiple transcripts, and splicing factors have essential roles in this process. Hydrogen sulphide (H2S) is a newly found gasotransmitter that has critical physiological roles in plants, and one of its potential modes of action is via persulfidation of target proteins at specific cysteine sites. Previously, it has been shown that both the splicing factor AtU2AF65a and H2S are involved in the regulation of plant flowering. This study found that, in Arabidopsis, the promoting effect of H2S on flowering was abolished in atu2af65a-4 mutants. Transcriptome analyses showed that when AtU2AF65a contained mutations, the regulatory function of H2S during the AS of many flowering genes (including SPA1, LUH, LUG and MAF3) was inhibited. The persulfidation assay showed that AtU2AF65a can be persulfidated by H2S, and the RNA immunoprecipitation data indicated that H2S could alter the binding affinity of AtU2AF65a to the precursor messenger RNA of the above-mentioned flowering genes. Overall, our results suggest that H2S may regulate the AS of flowering-related genes through persulfidation of splicing factor AtU2AF65a and thus lead to early flowering in plants.
Collapse
Affiliation(s)
- Tian Ma
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Shutian Xu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Yaqin Wang
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Liping Zhang
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Zhiqiang Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Danmei Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Zhuping Jin
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Yanxi Pei
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Kaur H, Manchanda P, Sidhu GS, Chhuneja P. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina. BMC Genom Data 2024; 25:20. [PMID: 38378481 PMCID: PMC10880302 DOI: 10.1186/s12863-024-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India.
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| |
Collapse
|
7
|
Lee HT, Park HY, Lee KC, Lee JH, Kim JK. Two Arabidopsis Splicing Factors, U2AF65a and U2AF65b, Differentially Control Flowering Time by Modulating the Expression or Alternative Splicing of a Subset of FLC Upstream Regulators. PLANTS (BASEL, SWITZERLAND) 2023; 12:1655. [PMID: 37111878 PMCID: PMC10145705 DOI: 10.3390/plants12081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
We investigated the transcriptomic changes in the shoot apices during floral transition in Arabidopsis mutants of two closely related splicing factors: AtU2AF65a (atu2af65a) and AtU2AF65b (atu2af65b). The atu2af65a mutants exhibited delayed flowering, while the atu2af65b mutants showed accelerated flowering. The underlying gene regulatory mechanism of these phenotypes was unclear. We performed RNA-seq analysis using shoot apices instead of whole seedlings and found that the atu2af65a mutants had more differentially expressed genes than the atu2af65b mutants when they were compared to wild type. The only flowering time gene that was significantly up- or down-regulated by more than two-fold in the mutants were FLOWERING LOCUS C (FLC), a major floral repressor. We also examined the expression and alternative splicing (AS) patterns of several FLC upstream regulators, such as COOLAIR, EDM2, FRIGIDA, and PP2A-b'ɤ, and found that those of COOLAIR, EDM2, and PP2A-b'ɤ were altered in the mutants. Furthermore, we demonstrated that AtU2AF65a and AtU2AF65b genes partially influenced FLC expression by analyzing these mutants in the flc-3 mutant background. Our findings indicate that AtU2AF65a and AtU2AF65b splicing factors modulate FLC expression by affecting the expression or AS patterns of a subset of FLC upstream regulators in the shoot apex, leading to different flowering phenotypes.
Collapse
Affiliation(s)
- Hee Tae Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Keh Chien Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Li C, Liu XJ, Yan Y, Alam MS, Liu Z, Yang ZK, Tao RF, Yue EK, Duan MH, Xu JH. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111145. [PMID: 35067308 DOI: 10.1016/j.plantsci.2021.111145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Flowering time (or heading date in crops) is a critical agronomic trait for rice reproduction and adaptation. The circadian clock is an endogenous oscillator that is involved in controlling photoperiodic flowering. The rice LATE ELONGATED HYPOCOTYL (OsLHY), the core oscillator component of circadian clock, is a homolog of the LHY/CCA1 in Arabidopsis. Here we showed that CRISPR/Cas9-engineered mutations in OsLHY caused late flowering in rice only under natural long-day (nLD) and short-day (nSD) conditions, but not artificial SD (10 h light/14 h dark) conditions. In the oslhy mutant, the diurnal expression of circadian clock-related genes was seriously affected under both LD and SD conditions. Furthermore, the expression of the flowering activators Ehd1, Hd3a and RFT1 was down-regulated and flowering repressors Hd1 and Ghd7 was up-regulated in the oslhy mutant under LD conditions. While the transcripts of flowering-related genes were not dramatically influenced under SD conditions. Dual-luciferase assays showed that OsLHY repressed the transcription of OsGI, Hd1, Ghd7, Hd3a, RFT1 and OsELF3, and activated the transcription of Ehd1. Moreover, the yeast one hybrid assay and electrophoretic mobility shift assay confirmed that OsLHY directly repressed OsGI, RFT1 and OsELF3 by binding to their promoters, which is consistent with that in Arabidopsis. These results suggested that the OsLHY can promote rice flowering mainly through regulating Hd1 and Ehd1.
Collapse
Affiliation(s)
- Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China
| | - Xue-Jiao Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China.
| |
Collapse
|
9
|
Crowley LM, Sadler JP, Pritchard J, Hayward SAL. Elevated CO 2 Impacts on Plant-Pollinator Interactions: A Systematic Review and Free Air Carbon Enrichment Field Study. INSECTS 2021; 12:insects12060512. [PMID: 34206033 PMCID: PMC8227562 DOI: 10.3390/insects12060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Climate change is having a profound impact on pollination systems, yet we still do not know to what extent increasing concentrations of carbon dioxide (CO2) will directly affect the interactions between plants and their pollinators. We review all the existing published literature on the effect of elevated CO2 (eCO2) on flowering time, nectar and pollen production and plant–pollinator interactions. We also conduct a field experiment to test the effect of eCO2 on bluebells and their pollinators. We found that few studies have assessed the impact of eCO2 on pollination, and our field data found that bluebells flowered on average 6 days earlier under eCO2 conditions. Hoverflies and bumble bees were the main visitors to bluebell flowers, but insect activity was low early in the flowing period. Although we did not find a difference in the number of visits made by insects to bluebell flowers under eCO2, or the amount of seeds those flowers produced, the change in the timing of flowering could mean that a mismatch could develop between bluebells and their pollinators in the future, which would affect pollination success. Abstract The impact of elevated CO2 (eCO2) on plant–pollinator interactions is poorly understood. This study provides the first systematic review of this topic and identifies important knowledge gaps. In addition, we present field data assessing the impact of eCO2 (150 ppm above ambient) on bluebell (Hyacinthoides non-scripta)–pollinator interactions within a mature, deciduous woodland system. Since 1956, only 71 primary papers have investigated eCO2 effects on flowering time, floral traits and pollination, with a mere 3 studies measuring the impact on pollination interactions. Our field experiment documented flowering phenology, flower visitation and seed production, as well as the abundance and phenology of dominant insect pollinators. We show that first and mid-point flowering occurred 6 days earlier under eCO2, but with no change in flowering duration. Syrphid flies and bumble bees were the dominant flower visitors, with peak activity recorded during mid- and late-flowering periods. Whilst no significant difference was recorded in total visitation or seed set between eCO2 and ambient treatments, there were clear patterns of earlier flowering under eCO2 accompanied by lower pollinator activity during this period. This has implications for potential loss of synchrony in pollination systems under future climate scenarios, with associated long-term impacts on abundance and diversity.
Collapse
Affiliation(s)
- Liam M. Crowley
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Correspondence: (L.M.C.); (S.A.L.H.); Tel.: +44-(0)121-414-7147 (S.A.L.H.)
| | - Jonathan P. Sadler
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jeremy Pritchard
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Scott A. L. Hayward
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Correspondence: (L.M.C.); (S.A.L.H.); Tel.: +44-(0)121-414-7147 (S.A.L.H.)
| |
Collapse
|
10
|
Cheng X, Li G, Krom N, Tang Y, Wen J. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:161-178. [PMID: 33631796 PMCID: PMC8133602 DOI: 10.1093/plphys/kiaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 05/29/2023]
Abstract
Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Guifen Li
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
11
|
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2937-2948. [PMID: 32656681 DOI: 10.1007/s00122-020-03647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Mapping and resequencing of two allelic early bolting mutants ebm5-1 and ebm5-2 revealed that the BrSDG8 gene is related to bolting in Chinese cabbage (Brassica rapa ssp. pekinensis). Bolting influences the leafy head formation and seed yield of Chinese cabbage therefore being an important agronomic trait. Herein, two allelic early bolting mutants, ebm5-1 and ebm5-2, stably inherited in Chinese cabbage were obtained from wild-type 'FT' seeds by ethyl methane sulfonate mutagenesis. Both mutants flowered significantly earlier than 'FT,' and genetic analysis revealed that the early bolting of the two mutants was controlled by one recessive nuclear gene. With BSR-seq, the mutations originating lines ebm5-1 and ebm5-2 were located to the same region in chromosome A07. Using the 1741 F2 individuals with the ebm5-1 phenotype as the mapping population, this region was narrowed to 56.24 kb between markers InDel18 and InDel45. A single-nucleotide polymorphism (SNP) was aligned to the BraA07g040740.3C (BrSDG8) region by whole-genome resequencing of ebm5-1 mutant and 'FT.' BrSDG8 is a homolog of Arabidopsis thaliana SDG8 encoding a histone methyltransferase affecting H3K4 trimethylation in FLOWERING LOCUS C chromatin. Comparative sequencing established that the SNP occurred on BrSDG8 17th exon in ebm5-1. Genotype analysis showed full co-segregation of the early bolting phenotype with this SNP. Cloning of allelic mutant ebm5-2 indicated that it harbors a deletion mutation on the 12th exon of BrSDG8. Quantitative real-time PCR analysis indicated that BrSDG8 expression level was observably lower in mutant ebm5-1 than in 'FT.' Overall, the present results provide strong evidence that BrSDG8 mutation leads to early bolting in Chinese cabbage, thereby providing a basis to understand the molecular mechanisms underlying this phenotype.
Collapse
Affiliation(s)
- Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Meidi Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| |
Collapse
|
12
|
Fan Z, Gao Y, Ren Y, Guan C, Liu R, Zhang Q. To bloom once or more times: the reblooming mechanisms of Iris germanica revealed by transcriptome profiling. BMC Genomics 2020; 21:553. [PMID: 32787785 PMCID: PMC7430825 DOI: 10.1186/s12864-020-06951-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The reblooming bearded iris (Iris germanica) can bloom twice a year, in spring and autumn. The extended ornamental period makes it more popular and brings additional commercial values. However, little is known about the reblooming mechanisms, making the breeding programs time-consuming and labor-wasting. Therefore, a comparative transcriptome profiling was conducted on once-bloomers and rebloomers from the same F1 generation on six development stages, and the candidate genes associated with reblooming were identified. RESULTS A total of 100,391 unigenes were generated, the mean length being 785 bp. In the three comparisons (the floral initiation stage of spring flowering in once-bloomers (OB-T1) vs the floral initiation stage of spring flowering in rebloomers (RB-T1); RB-T1 vs the floral initiation stage of autumn flowering in rebloomers (RB-T5); OB-T1 vs RB-T5), a total of 690, 3515 and 2941 differentially expressed genes (DEGs) were annotated against the public databases, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis focused on the photoperiod response, the temperature insensitivity and the growth speed, to remove the redundant DEGs and figure out the candidate key genes. As a result, the following four genes, PHYTOCHROME A (PHYA), GIGANTEA (GI), SHORT VEGETATIVE PERIOD (SVP) and AUXIN RESPONSE FACTOR (ARF), were considered to be involved in the second floral initiation of the rebloomers. CONCLUSION This research provides valuable information for the discovery of the reblooming-related genes. The insights into the molecular mechanisms of reblooming may accelerate the breeding of bearded iris and other perennials.
Collapse
Affiliation(s)
- Zhuping Fan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China.
| | - Yi Ren
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Chunjing Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Rong Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| |
Collapse
|
13
|
Suzuki M, Umeki K, Orman O, Shibata M, Tanaka H, Iida S, Nakashizuka T, Masaki T. When and why do trees begin to decrease their resource allocation to apical growth? The importance of the reproductive onset. Oecologia 2019; 191:39-49. [PMID: 31372895 DOI: 10.1007/s00442-019-04477-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Trees reduce their allocation to apical growth compared with that to radial growth during later life stages. This has often been attributed to hydraulic and mechanical limitations; however, a growth-reproduction tradeoff might also play an important role. To test whether the height-diameter (H-D) relationship in trees changes with the timing of the onset of reproduction, we analyzed the H-D relationship of 13 deciduous broad-leaved tree species in a Japanese old-growth temperate forest using linear and segmented-linear regression models. These models showed a better fit than common continuous models (simple allometry and saturating curve). For 11 out of 13 species having break points on the H-D lines, we assessed whether the height at the breakpoint (BPH) was related to the height at the onset of reproduction determined by multiyear observatory records on several trees. Although BPH estimates for these 11 species were highly variable, most were within 3.1 m of the stable flowering height (staFLH), or the height at which trees achieve the ability to flower regardless of their growth conditions. The interspecies mean value of the difference between staFLH and BPH was only 45 cm, which suggested a causal relationship between these parameters. BPHs of nine out of 11 species were within the canopy layer and, for the two remaining species, were within the subcanopy layer. These results suggest that several species in this forest begin to reduce their allocation to apical growth around the canopy layer at the onset of stable reproduction.
Collapse
Affiliation(s)
- Maki Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8563, Japan.
| | - Kiyoshi Umeki
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Olga Orman
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Silviculture, Forest Ecology and Silviculture Institute, Faculty of Forestry, University of Agriculture in Kraków, Kraków, Poland
| | - Mitsue Shibata
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Hiroshi Tanaka
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Shigeo Iida
- Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
| | | | - Takashi Masaki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Wang S, Gao J, Xue J, Xue Y, Li D, Guan Y, Zhang X. De novo sequencing of tree peony (Paeonia suffruticosa) transcriptome to identify critical genes involved in flowering and floral organ development. BMC Genomics 2019; 20:572. [PMID: 31296170 PMCID: PMC6624964 DOI: 10.1186/s12864-019-5857-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Tree peony (Paeonia suffruticosa Andrews) is a globally famous ornamental flower, with large and colorful flowers and abundant flower types. However, a relatively short and uniform flowering period hinders the applications and production of ornamental tree peony. Unfortunately, the molecular mechanism of regulating flowering time and floral organ development in tree peony has yet to be elucidated. Because of the absence of genomic information, 454-based transcriptome sequence technology for de novo transcriptomics was used to identify the critical flowering genes using re-blooming, non-re-blooming, and wild species of tree peonies. RESULTS A total of 29,275 unigenes were obtained from the bud transcriptome, with an N50 of 776 bp. The average length of unigenes was 677.18 bp, and the longest sequence was 5815 bp. Functional annotation showed that 22,823, 17,321, 13,312, 20,041, and 9940 unigenes were annotated by NCBI-NR, Swiss-Prot, COG, GO, and KEGG, respectively. Within the differentially expressed genes (DEGs) 64 flowering-related genes were identified and some important flowering genes were also characterized by bioinformatics methods, reverse transcript polymerase chain reaction (RT-PCR), and rapid-amplification of cDNA ends (RACE). Then, the putative genetic network of flowering induction pathways and a floral organ development model were put forward, according to the comparisons of DEGs in any two samples and expression levels of the important flowering genes in differentiated buds, buds from different developmental stages, and with GA or vernalization treated. In tree peony, five pathways (long day, vernalization, autonomous, age, and gibberellin) regulated flowering, and the floral organ development followed an ABCE model. Moreover, it was also found that the genes PsAP1, PsCOL1, PsCRY1, PsCRY2, PsFT, PsLFY, PsLHY, PsGI, PsSOC1, and PsVIN3 probably regulated re-blooming of tree peony. CONCLUSION This study provides a comprehensive report on the flowering-related genes in tree peony for the first time and investigated the expression levels of the critical flowering related genes in buds of different cultivars, developmental stages, differentiated primordium, and flower parts. These results could provide valuable insights into the molecular mechanisms of flowering time regulation and floral organ development.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jie Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Dandan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yanren Guan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China. .,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
15
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis. Biochem Biophys Res Commun 2017; 490:1162-1167. [PMID: 28668394 DOI: 10.1016/j.bbrc.2017.06.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.
Collapse
|
17
|
Conti L. Hormonal control of the floral transition: Can one catch them all? Dev Biol 2017; 430:288-301. [PMID: 28351648 DOI: 10.1016/j.ydbio.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/05/2023]
Abstract
The transition to flowering marks a key adaptive developmental switch in plants which impacts on their survival and fitness. Different signaling pathways control the floral transition, conveying both endogenous and environmental cues. These cues are often relayed and/or modulated by different hormones, which might confer additional developmental flexibility to the floral process in the face of varying conditions. Among the different hormonal pathways, the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting modules for different signaling proteins. In this review, I will highlight the role of DELLAs as spatial and temporal modulators of different consolidated floral pathways. Next, building on recent data, I will provide an update on some emerging themes connecting other hormone signaling cascades to flowering time control. I will finally provide examples for some established as well as potential cross-regulatory mechanisms between hormonal pathways mediated by the DELLA proteins.
Collapse
Affiliation(s)
- Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
18
|
Fekih R, Yamagishi N, Yoshikawa N. Apple latent spherical virus vector-induced flowering for shortening the juvenile phase in Japanese gentian and lisianthus plants. PLANTA 2016; 244:203-14. [PMID: 27016250 DOI: 10.1007/s00425-016-2498-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/29/2016] [Indexed: 05/02/2023]
Abstract
Infection by apple latent spherical virus (ALSV) vectors that promote the expression of Arabidopsis thaliana FLOWERING LOCUS T ( AtFT ) or Gentiana triflora GtFT s accelerates flowering in gentian and lisianthus plants. Apple latent spherical virus (ALSV) has isometric virus particles (25 nm in diameter) that contain two ssRNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp20, and Vp24). ALSV vectors are used for foreign gene expression and virus-induced gene silencing in a broad range of plant species. Here, we report the infection by ALSV vectors that express FLOWERING LOCUS T (AtFT) from Arabidopsis thaliana or its homolog GtFT1 from Gentiana triflora in three gentian cultivars ('Iwate Yume Aoi' [early flowering], 'Iwate' [medium flowering], and 'Alta' [late flowering]), and two lisianthus cultivars ('Newlination Pink ver. 2' and 'Torukogikyou daburu mikkusu') promotes flowering within 90 days post-inoculation using particle bombardment. Additionally, seedlings from the progeny of the early-flowering plants were tested by tissue blot hybridization, and the results showed that ALSV was not transmitted to the next generation. The promotion of flowering in the family Gentianaceae by ALSV vectors shortened the juvenile phase from 1-3 years to 3-5 months, and thus, it could be considered as a new plant breeding technique in ornamental gentian and lisianthus plants.
Collapse
Affiliation(s)
- Rym Fekih
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Noriko Yamagishi
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| |
Collapse
|
19
|
Shekhawat MS, Manokari M. Somatic embryogenesis and in vitro flowering in Hybanthus enneaspermus (L.) F. Muell. – A rare multipotent herb. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Abstract
Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of
phyA-105 (SPA) proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO), a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3) indirectly modulate
CO expression via the degradation of GIGANTEA (GI). Here, we summarize the current understanding of the molecular mechanisms underlying COP1’s role in controlling of photoperiodic flowering.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Martínková J, Klimešová J. Enforced Clonality Confers a Fitness Advantage. FRONTIERS IN PLANT SCIENCE 2016; 7:2. [PMID: 26858732 PMCID: PMC4726766 DOI: 10.3389/fpls.2016.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/06/2016] [Indexed: 05/24/2023]
Abstract
In largely clonal plants, splitting of a maternal plant into potentially independent plants (ramets) is usually spontaneous; however, such fragmentation also occurs in otherwise non-clonal species due to application of external force. This process might play an important yet largely overlooked role for otherwise non-clonal plants by providing a mechanism to regenerate after disturbance. Here, in a 5-year garden experiment on two short-lived, otherwise non-clonal species, Barbarea vulgaris and Barbarea stricta, we compared the fitness of plants fragmented by simulated disturbance ("enforced ramets") both with plants that contemporaneously originate in seed and with individuals unscathed by the disturbance event. Because the ability to regrow from fragments is related to plant age and stored reserves, we compared the effects of disturbance applied during three different ontogenetic stages of the plants. In B. vulgaris, enforced ramet fitness was higher than the measured fitness values of both uninjured plants and plants established from seed after the disturbance. This advantage decreased with increasing plant age at the time of fragmentation. In B. stricta, enforced ramet fitness was lower than or similar to fitness of uninjured plants and plants grown from seed. Our results likely reflect the habitat preferences of the study species, as B. vulgaris occurs in anthropogenic, disturbed habitats where body fragmentation is more probable and enforced clonality thus more advantageous than in the more natural habitats preferred by B. stricta. Generalizing from our results, we see that increased fitness yielded by enforced clonality would confer an evolutionary advantage in the face of disturbance, especially in habitats where a seed bank has not been formed, e.g., during invasion or colonization. Our results thus imply that enforced clonality should be taken into account when studying population dynamics and life strategies of otherwise non-clonal species in disturbed habitats.
Collapse
|
22
|
Sreeharsha RV, Sekhar KM, Reddy AR. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:82-93. [PMID: 25575994 DOI: 10.1016/j.plantsci.2014.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/19/2023]
Abstract
In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Kalva Madhana Sekhar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India.
| |
Collapse
|
23
|
Banday ZZ, Nandi AK. Interconnection between flowering time control and activation of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:174. [PMID: 25852723 PMCID: PMC4365546 DOI: 10.3389/fpls.2015.00174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/04/2015] [Indexed: 05/06/2023]
Abstract
The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.
Collapse
Affiliation(s)
| | - Ashis K. Nandi
- *Correspondence: Ashis K. Nandi, School of Life Sciences, Jawaharlal Nehru University, Room 415, New Delhi-110067, Delhi, India
| |
Collapse
|
24
|
Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y. In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 2014; 15:1291-306. [PMID: 25475561 DOI: 10.1002/pmic.201400049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 10/24/2014] [Accepted: 11/28/2014] [Indexed: 11/07/2022]
Abstract
In Dendrocalamus hamiltonii, conversion of vegetative meristem to a floral meristem was successfully achieved on flower induction medium. A total of 128 differentially expressed proteins were evidenced by 2DE in floral meristem protein profiles. Analysis of 103 proteins through PMF revealed change in abundance in the content of 79 proteins, disappearance and new appearance in the content of 7 and 17 proteins, respectively. MS/MS and subsequent homology search identified 65 proteins that were involved in metabolism (22 proteins), regulatory (11 proteins), signaling and transportation (12 proteins), stress (6 proteins), flowering (8 proteins), and unknown functions (6 proteins). The data suggested that change in metabolism related proteins might be providing nutrient resources for floral initiation in D. hamiltonii. Further, interactive effects of various proteins like bHLH145, B-4c transcription factors (heat stress transcription factor), maturase K, MADS box, zinc finger proteins, and scarecrow-like protein 21 (flowering related), a key enzyme of ethylene biosynthesis SAMS (S-adenosylmethionine synthase) and aminocyclopropane-1-carboxylate synthase, improved calcium signaling related proteins (CML36), and change in phytohormone related proteins such as phosphatase proteins (2c3 and 2c55), which are the positive regulators of gibberellic acid and phytochrome regulation related proteins (DASH, LWD1) might be the possible major regulators of floral transition in this bamboo.
Collapse
Affiliation(s)
- Devinder Kaur
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | | | | | | | | | |
Collapse
|
25
|
Zhou H, Cheng FY, Wang R, Zhong Y, He C. Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies. PLoS One 2013; 8:e79996. [PMID: 24244590 PMCID: PMC3828231 DOI: 10.1371/journal.pone.0079996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/29/2013] [Indexed: 11/19/2022] Open
Abstract
Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants.
Collapse
Affiliation(s)
- Hua Zhou
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Fang-Yun Cheng
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- * E-mail: (FYC); (CYH)
| | - Rong Wang
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Yuan Zhong
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FYC); (CYH)
| |
Collapse
|
26
|
Nei M, Nozawa M. Roles of mutation and selection in speciation: from Hugo de Vries to the modern genomic era. Genome Biol Evol 2011; 3:812-29. [PMID: 21903731 PMCID: PMC3227404 DOI: 10.1093/gbe/evr028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most important problems in evolutionary biology is to understand how new species are generated in nature. In the past, it was difficult to study this problem because our lifetime is too short to observe the entire process of speciation. In recent years, however, molecular and genomic techniques have been developed for identifying and studying the genes involved in speciation. Using these techniques, many investigators have already obtained new findings. At present, however, the results obtained are complex and quite confusing. We have therefore attempted to understand these findings coherently with a historical perspective and clarify the roles of mutation and natural selection in speciation. We have first indicated that the root of the currently burgeoning field of plant genomics goes back to Hugo de Vries, who proposed the mutation theory of evolution more than a century ago and that he unknowingly found the importance of polyploidy and chromosomal rearrangements in plant speciation. We have then shown that the currently popular Dobzhansky–Muller model of evolution of reproductive isolation is only one of many possible mechanisms. Some of them are Oka’s model of duplicate gene mutations, multiallelic speciation, mutation-rescue model, segregation-distorter gene model, heterochromatin-associated speciation, single-locus model, etc. The occurrence of speciation also depends on the reproductive system, population size, bottleneck effects, and environmental factors, such as temperature and day length. Some authors emphasized the importance of natural selection to speed up speciation, but mutation is crucial in speciation because reproductive barriers cannot be generated without mutations.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University.
| | | |
Collapse
|
27
|
Estiarte M, Puig G, Peñuelas J. Large delay in flowering in continental versus coastal populations of a Mediterranean shrub, Globularia alypum. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2011; 55:855-865. [PMID: 21476130 DOI: 10.1007/s00484-011-0422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/16/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Globularia alypum is a perennial shrub typical of western Mediterranean thermophilous shrublands. Nine populations of G. alypum located in different localities of Catalonia (NE Spain) were surveyed for flowering phenology. Flower-head buds were present in all the populations in July. Flowering time in the area spans from the late summer-early autumn to the next spring depending on the populations; there are two groups of populations, early and late flowering. Early populations grow mostly in coastal localities and flower from September to November, whereas late flowering populations grow in inland localities and flower from February to April. The flowering order of the populations correlated with minimum temperature of most months except the warmest ones, and correlated with maximum and mean temperatures of the coldest months. Correlations were similar when tested with annual climate. The flowering order also correlated with the thermic interval for most months except the coldest and with the index of continentality. Early populations alone did not present correlations with any variable, whereas late populations alone correlated similarly to all populations together. Flowering order did not correlate with precipitation. Late populations are proposed to be regulated by temperature according to our results whereas early populations could be regulated by timing in precipitation after summer drought, according to published results. We discuss the possibilities of the two flowering patterns, early and late, being due to phenotypic plasticity or to genetic adaptation to local climates. We also discuss the consequences at the plant and ecosystem level of climate warming causing shifts from late to early patterns, a possibility that is likely in the warmest of the late populations if flowering is modulated phenotypically.
Collapse
Affiliation(s)
- Marc Estiarte
- Global Ecology Unit CREAF-CEAB-CSIC, CREAF-CSIC, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain.
| | | | | |
Collapse
|
28
|
Pastore JJ, Limpuangthip A, Yamaguchi N, Wu MF, Sang Y, Han SK, Malaspina L, Chavdaroff N, Yamaguchi A, Wagner D. LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development 2011; 138:3189-98. [PMID: 21750030 DOI: 10.1242/dev.063073] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The switch from producing vegetative structures (branches and leaves) to producing reproductive structures (flowers) is a crucial developmental transition that significantly affects the reproductive success of flowering plants. In Arabidopsis, this transition is in large part controlled by the meristem identity regulator LEAFY (LFY). The molecular mechanisms by which LFY orchestrates a precise and robust switch to flower formation is not well understood. Here, we show that the direct LFY target LATE MERISTEM IDENTITY2 (LMI2) has a role in the meristem identity transition. Like LFY, LMI2 activates AP1 directly; moreover, LMI2 and LFY interact physically. LFY, LMI2 and AP1 are connected in a feed-forward and positive feedback loop network. We propose that these intricate regulatory interactions not only direct the precision of this crucial developmental transition in rapidly changing environmental conditions, but also contribute to its robustness and irreversibility.
Collapse
Affiliation(s)
- Jennifer J Pastore
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater MM. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1006-17. [PMID: 21609362 DOI: 10.1111/j.1365-313x.2011.04653.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The floral transition is the switch from vegetative development to flowering. Proper timing of the floral transition is regulated by different pathways and is critical for the reproductive success of plants. Some of the flowering pathways are controlled by environmental signals such as photoperiod and vernalization, others by autonomous signals such as the developmental state of the plant and hormones, particularly gibberellin. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) acts in Arabidopsis as an integrative centre of these pathways, promoting the floral transition. In this work, we show that AGAMOUS-LIKE 42 (AGL42), AGAMOUS-LIKE 71 (AGL71) and AGAMOUS-LIKE 72 (AGL72), which encode MADS-box transcription factors phylogenetically closely related to SOC1, are also involved in the floral transition. They promote flowering at the shoot apical and axillary meristems and seem to act through a gibberellin-dependent pathway. Furthermore SOC1 directly controls the expression of AGL42, AGL71 and AGL72 to balance the expression level of these SOC1-like genes. Our data reveal roles for AGL42, AGL71 and AGL72 in the floral transition, demonstrate their genetic interactions with SOC1 and suggest that their roles differ in the apical and axillary meristems.
Collapse
Affiliation(s)
- Carmen Dorca-Fornell
- Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh JI, Nagato Y. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. THE PLANT CELL 2011; 23:2143-54. [PMID: 21705640 PMCID: PMC3160042 DOI: 10.1105/tpc.111.083436] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because plant reproductive development occurs only in adult plants, the juvenile-to-adult phase change is an indispensable part of the plant life cycle. We identified two allelic mutants, peter pan syndrome-1 (pps-1) and pps-2, that prolong the juvenile phase in rice (Oryza sativa) and showed that rice PPS is an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC1. The pps-1 mutant exhibits delayed expression of miR156 and miR172 and the suppression of GA biosynthetic genes, reducing the GA(3) content in this mutant. In spite of its prolonged juvenile phase, the pps-1 mutant flowers early, and this is associated with derepression of RAP1B expression in pps-1 plants independently of the Hd1-Hd3a/RFT1 photoperiodic pathway. PPS is strongly expressed in the fourth and fifth leaves, suggesting that it regulates the onset of the adult phase downstream of MORI1 and upstream of miR156 and miR172. Its ability to regulate the vegetative phase change and the time of flowering suggests that rice PPS acquired novel functions during the evolution of rice/monocots.
Collapse
Affiliation(s)
- Nobuhiro Tanaka
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hironori Itoh
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Naoki Sentoku
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | | | - Takeshi Izawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Address correspondence to
| |
Collapse
|
31
|
Colautti RI, Barrett SCH. POPULATION DIVERGENCE ALONG LINES OF GENETIC VARIANCE AND COVARIANCE IN THE INVASIVE PLANT LYTHRUM SALICARIA IN EASTERN NORTH AMERICA. Evolution 2011; 65:2514-29. [DOI: 10.1111/j.1558-5646.2011.01313.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. PLANTA 2011; 233:539-52. [PMID: 21113723 PMCID: PMC3043248 DOI: 10.1007/s00425-010-1316-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/04/2010] [Indexed: 05/20/2023]
Abstract
The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways.
Collapse
Affiliation(s)
| | - Irene Loef
- Botany Institute, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Linda Bartetzko
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Iain Searle
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Daniel Osuna
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
- Present Address: Dpto. de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
33
|
Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, Häggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. PLANT PHYSIOLOGY 2010; 153:1619-29. [PMID: 20566708 PMCID: PMC2923880 DOI: 10.1104/pp.110.158279] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with color development and anthocyanin-related gene expression. Virus-induced gene silencing was used to suppress VmTDR4 expression in bilberry, resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used as a positive control in the virus-induced gene silencing experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids was also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry, probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family.
Collapse
|
34
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
35
|
Albani MC, Coupland G. Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 2010; 91:323-48. [PMID: 20705187 DOI: 10.1016/s0070-2153(10)91011-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In plants the switch from vegetative growth to flowering involves a major transition in the development of the shoot apex. This transition can occur once, in annual species, or repeatedly, in perennial plants. In annuals, flowering is associated with senescence and death of the whole plant, whereas perennials flower in consecutive years and maintain vegetative development after flowering. The perennial life strategy depends on differential behavior of meristems on a single plant so that some remain in the vegetative state while others undergo the floral transition. A. thaliana provides a powerful model system for understanding the mechanisms of flowering in annuals. Here we review the events that occur in the meristem of A. thaliana during the floral transition and compare these with our understanding of flowering in perennial systems.
Collapse
Affiliation(s)
- Maria C Albani
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
36
|
Wang J, Chong K, Xu Y. Overexpression of OsRAA1 promotes flowering and hypocotyls elongation in Arabidopsis. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0627-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Toräng P, Ehrlén J, Ågren J. Habitat quality and among-population differentiation in reproductive effort and flowering phenology in the perennial herb Primula farinosa. Evol Ecol 2009. [DOI: 10.1007/s10682-009-9327-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Yuan Q, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:675-684. [PMID: 19495721 DOI: 10.2135/cropsci2002.3480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 05/18/2009] [Indexed: 05/22/2023]
Abstract
A late heading-time mutant line, HS276, which was induced by gamma-irradiation of seeds of the japonica rice (Oryza sativa L.) variety Gimbozu, exhibits an extremely long basic vegetative growth phase (BVP). A genetic analysis using the F(2) population from the cross between HS276 and Gimbozu revealed that the late heading of HS276 is governed by a single recessive mutant gene. The subsequent analysis on heading responses of HS276 and Gimbozu to four photoperiods (12, 13, 14, and 15 h) and to the photoperiodic transfer treatment from a short photoperiod to a long photoperiod revealed that the mutant gene confers an extremely long BVP and increases photoperiod sensitivity under long photoperiod (14 and 15 h). The BVP durations of HS276 and Gimbozu were estimated at 30.1 and 16.0 days, respectively; the mutant gene, compared with its wild type allele, elongates the duration of BVP by 14 days. Linkage analysis showed that the mutant gene is located in the 129 kb region between the two INDEL markers, INDELAP0399_6 and INDELAP3487_2, on the distal part of the short arm of chromosome 6. None of the other BVP genes are located in this region; therefore, we declared this a newly detected mutant gene and designated it ef7. A recently established program to breed rice suitable for low latitudes, where short photoperiodic conditions continue throughout the year, aims to develop varieties with extremely long BVPs and weak photoperiod sensitivities; the mutant gene ef7, therefore, will be quite useful in these programs because it confers an extremely long BVP and little enhances photoperiod sensitivity under short photoperiod.
Collapse
Affiliation(s)
- Qingbo Yuan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyou, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hou CJ, Yang CH. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. PLANT & CELL PHYSIOLOGY 2009; 50:1544-57. [PMID: 19570813 DOI: 10.1093/pcp/pcp099] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) genes play crucial roles in regulating the vegetative to reproductive phase transition. Orthologs of FT/TFL1 (OnFT and OnTFL1) were isolated and characterized from Oncidium Gower Ramsey. OnFT mRNA was detected in axillary buds, leaves, pseudobulb and flowers. In flowers, OnFT was expressed more in young flower buds than in mature flowers and was predominantly expressed in sepals and petals. The expression of OnFT was regulated by photoperiod, with the highest expression from the 8th to 12th hour of the light period and the lowest expression at dawn. In contrast, the expression of OnTFL1 was only detected in axillary bud and pseudobulb, and was not influenced by light. Ectopic expression of OnFT in transgenic Arabidopsis plants showed novel phenotypes by flowering early and losing inflorescence indeterminacy. In addition, ectopic expression of OnFT was able to partially complement the late flowering defect in transgenic Arabidopsis ft-1 mutants. In transgenic tfl1-11 mutant plants, 35S::OnTFL1 delayed flowering and rescued the phenotype of terminal flowers. Furthermore, substitution of the key single amino acid His85 by Tyr was able to convert the OnTFL1 function to OnFT by promoting flowering in 35S::OnTFL1-H85Y transgenic Arabidopsis plants. Further analysis indicated that the expression of APETALA1 (AP1) was significantly up-regulated in 35S::OnFT and 35S::OnTFL1-H85Y plants, and was down-regulated in 35S::OnTFL1 transgenic Arabidopsis plants. Our data indicated that OnFT and OnTFL1 are putative phosphatidylethanolamine-binding protein genes in orchids that regulate flower transition similar to their orthologs in Arabidopsis.
Collapse
Affiliation(s)
- Cheng-Jing Hou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, ROC
| | | |
Collapse
|
40
|
Li K, Yang J, Liu J, Du X, Wei C, Su W, He G, Zhang Q, Hong F, Qian X. Cloning, Characterization And Tissue-specific Expression Of A Cdna Encoding A NovelEmbryonic Flower2 Gene (Osemf2) InOryza Sativa. ACTA ACUST UNITED AC 2009; 17:74-8. [PMID: 16753820 DOI: 10.1080/10425170500151961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
EMBRYONIC FLOWER 2 (EMF2) gene plays a major role in maintain vegetative development and repress flower development. Here, we present the cloning, characterization and tissue-specific expression of a putative EMF2 (OsEMF2) gene in Oryza sativa. The full-length cDNA of OsEMF2 was 1899 bp and contained an 1872 bp open reading frame (ORF) encoding a 624 amino acid protein. Homologous analysis showed that OsEMF2 contain a single conserved C2H2-type zinc finger motif. Sequence alignment shows that there is a homology between the deduced amino acid sequence of OsEMF2 and EMF2 in Zea mays (55%). Moreover, pI of OsEMF2 are predicted. The tissue-specific expression pattern of OsEMF2 reveals that it is abundant in shoot apical meristem and inflorescence meristem, while its expression level is much lower in leaf, root, immature seed and callus.
Collapse
Affiliation(s)
- Kegui Li
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zou YM, Yu SC, Zhang FL, Yu YJ, Zhao XY, Zhang DS. [cDNA-AFLP analysis on transcripts associated with bolting in Brassica rapa L. ssp. pekinensis]. YI CHUAN = HEREDITAS 2009; 31:755-62. [PMID: 19586882 DOI: 10.3724/sp.j.1005.2009.00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Premature bolting, caused by low temperature in spring and summer cultivation in low land and high land respectively, leads to reduction of the yield and quality of the harvested products in Chinese cabbage. Therefore, exploring genes involved in vernalization response is important to the improvement of Chinese cabbage varieties. Here, one extremely early bolting line (DH-54) and one extremely late bolting line (DH-43) were employed, and the cDNA-AFLP approach was used to identify key components involved in the low-temperature required vernalization response. Of 256 primer recombinations screened, a total of 191 differential expressed transcript-derived fragments (TDFs) were identified, and 82 TDFs were sequenced. BLAST and alignments showed that 52 candidate TDFs shared high levels of similarity with genes of known function, 22 TDFs of unknown function and 8 novel ESTs. The TDFs of known function were involved in genes encoding enzymes working in metabolism, proteins related to stress and defense, signal transduction, and transcription regulation, etc.
Collapse
Affiliation(s)
- Yan-Min Zou
- College of Life Science, Capital Normal University, Beijing 100037, China.
| | | | | | | | | | | |
Collapse
|
42
|
Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1299-308. [PMID: 19190098 PMCID: PMC2657548 DOI: 10.1093/jxb/erp010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/22/2008] [Accepted: 01/07/2009] [Indexed: 05/18/2023]
Abstract
FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its association with the flowering-time phenotype is reported. The analysis revealed that a G-->A polymorphism at the 5' splice site in intron 6 of BrFLC1 is associated with flowering phenotype. Three BrFLC1 alleles with alternative splicing patterns, including two with different parts of intron 6 retained and one with the entire exon 6 excluded from the transcript, were identified in addition to alleles with normal splicing. It was inferred that aberrant splicing of the pre-mRNA leads to loss-of-function of BrFLC1. A CAPS marker was developed for this locus to distinguish Pi6+1(G) and Pi6+1(A). The polymorphism detected with this marker was significantly associated with flowering time in a collection of 121 B. rapa accessions and in a segregating Chinese cabbage doubled-haploid population. These findings suggest that a naturally occurring splicing mutation in the BrFLC1 gene contributes greatly to flowering-time variation in B. rapa.
Collapse
Affiliation(s)
- Yu-Xiang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ri-Fei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao-Wei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dong-Hui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xiao-Wu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
43
|
Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng XW. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 2009; 32:617-30. [PMID: 19061637 DOI: 10.1016/j.molcel.2008.09.026] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 07/18/2008] [Accepted: 09/11/2008] [Indexed: 12/25/2022]
Abstract
Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses such as flowering time. Blue-light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI regulate this process, although the regulatory link between them is unclear. Here we present data showing that COP1 acts with ELF3 to mediate day length signaling from CRY2 to GI within the photoperiod flowering pathway. We found that COP1 and ELF3 interact in vivo and show that ELF3 allows COP1 to interact with GI in vivo, leading to GI degradation in planta. Accordingly, mutation of COP1 or ELF3 disturbs the pattern of GI cyclic accumulation. We propose a model in which ELF3 acts as a substrate adaptor, enabling COP1 to modulate light input signal to the circadian clock through targeted destabilization of GI.
Collapse
Affiliation(s)
- Jae-Woong Yu
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE. Microarray analysis of vegetative phase change in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:1045-57. [PMID: 18764925 DOI: 10.1111/j.1365-313x.2008.03661.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vegetative phase change is the developmental transition from the juvenile phase to the adult phase in which a plant becomes competent for sexual reproduction. The gain of ability to flower is often accompanied by changes in patterns of differentiation in newly forming vegetative organs. In maize, juvenile leaves differ from adult leaves in morphology, anatomy and cell wall composition. Whereas the normal sequence of juvenile followed by adult is repeated with every sexual generation, this sequence can be altered in maize by the isolation and culture of the shoot apex from an adult phase plant: an 'adult' meristem so treated reverts to forming juvenile vegetative organs. To begin to unravel the as-yet poorly understood molecular mechanisms underlying phase change in maize, we compared gene expression in two juvenile sample types, leaf 4 and culture-derived leaves 3 or 4, with an adult sample type (leaf 9) using cDNA microarrays. All samples were leaf primordia at plastochron 6. A gene was scored as 'phase induced' if it was up- or downregulated in both juvenile sample types, compared with the adult sample type, with at least a twofold change in gene expression at a P-value of < or =0.005. Some 221 expressed sequence tags (ESTs) were upregulated in juveniles, and 28 ESTs were upregulated in adults. The largest class of juvenile-induced genes was comprised of those involved in photosynthesis, suggesting that maize plants are primed for energy production early in vegetative growth by the developmental induction of photosynthetic genes.
Collapse
Affiliation(s)
- Josh Strable
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
45
|
Zalamea PC, Stevenson PR, Madriñán S, Aubert PM, Heuret P. Growth pattern and age determination for Cecropia sciadophylla (Urticaceae). AMERICAN JOURNAL OF BOTANY 2008; 95:263-271. [PMID: 21632351 DOI: 10.3732/ajb.95.3.263] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cecropia species, ranging from Mexico to northern Argentina and the West Indies, are pioneer trees that colonize cleared areas with high light. To determine their ages to help pinpoint the date of the area's disturbance, we need to understand their developmental and architectural changes over time. The simple architecture of Cecropia conforms to the model of Rauh; that is, it has orthotropic axes with lateral flowering and rhythmic branching. The axes are made of a succession of nodes and internodes whose length and associated lateral productions remain measurable for years. Thus, by describing the tree trunk node by node, we can depict the sequence of events involved in tree development. For 25 trees of C. sciadophylla, from two stations in French Guiana and Colombia, we recorded internode length and any presence of branches, and flowers for each node. Using autocorrelation coefficients, we found a high periodicity in flowering and branching, with inflorescences at every 25 nodes, stages of branches spaced by a multiple of 25 nodes, and alternation of long and short nodes every 25 nodes. Considering that flowering is annual for many Cecropia species, the main conclusion of this work is that C. sciadophylla has strong annual growth, branching, and flowering rhythms. In addition, the age of the tree can be estimated retrospectively by observing its adult morphology.
Collapse
Affiliation(s)
- Paul-Camilo Zalamea
- IRD, UMR AMAP (botAnique et bioinforMatique de l'Architecture des Plantes), Montpellier F-34000 France
| | | | | | | | | |
Collapse
|
46
|
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:573-94. [PMID: 18444908 DOI: 10.1146/annurev.arplant.59.032607.092755] [Citation(s) in RCA: 677] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transition from vegetative to reproductive growth is controlled by day length in many plant species. Day length is perceived in leaves and induces a systemic signal, called florigen, that moves through the phloem to the shoot apex. At the shoot apical meristem (SAM), florigen causes changes in gene expression that reprogram the SAM to form flowers instead of leaves. Analysis of flowering of Arabidopsis thaliana placed the CONSTANS/FLOWERING LOCUS T (CO/FT) module at the core of a pathway that promotes flowering in response to changes in day length. We describe progress in defining the molecular mechanisms that activate this module in response to changing day length and the increasing evidence that FT protein is a major component of florigen. Finally, we discuss conservation of FT function in other species and how variation in its regulation could generate different flowering behaviors.
Collapse
Affiliation(s)
- Franziska Turck
- Max Planck Institute for Plant Breeding, D 50829 Cologne, Germany
| | | | | |
Collapse
|
47
|
Endo M, Nagatani A. Flowering regulation by tissue specific functions of photoreceptors. PLANT SIGNALING & BEHAVIOR 2008; 3:47-8. [PMID: 19704768 PMCID: PMC2633958 DOI: 10.4161/psb.3.1.4863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/13/2007] [Indexed: 05/21/2023]
Abstract
Flowering is one of the most important steps in a plant life cycle. Plants utilize light as an informational source to determine the timing of flowering. In Arabidopsis, phytochrome A (phyA), phyB and cryptochrome2 (cry2) are major photoreceptors that regulate flowering. These photoreceptors perceive light stimuli by leaves for the regulation of flowering. A leaf is an organ consisting of different tissues such as epidermis, mesophyll and vascular bundles. In the present study, we examined in which tissue the light signals are perceived and how those signals are integrated within a leaf to regulate flowering. For this purpose, we established transgenic Arabidopsis lines that expressed a phyB-green fluorescent protein (GFP) fusion protein or a cry2-GFP fusion protein in organ/tissue-specific manners. Consequently, phyB was shown to perceive light stimuli in mesophyll. By contrast, cry2 functioned only in vascular bundles. We further confirmed that both phyB-GFP and cry2-GFP regulated flowering by altering the expression of a key flowering gene, FT, in vascular bundles. In summary, perception sites for different spectra of light are spatially separated within a leaf and the signals are integrated through the inter-tissue communication.
Collapse
Affiliation(s)
- Motomu Endo
- Laboratory of Plant Physiology; Graduate School of Science; Kyoto University; Kyoto, Japan
| | | |
Collapse
|
48
|
Wang C, Tian Q, Hou Z, Mucha M, Aukerman M, Olsen OA. The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. PLANT CELL REPORTS 2007; 26:1357-66. [PMID: 17380304 DOI: 10.1007/s00299-007-0336-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/16/2007] [Accepted: 02/27/2007] [Indexed: 05/14/2023]
Abstract
Flowering is regulated by a network integrated from four major pathways, including the photoperiod, vernalization, gibberellin, and autonomous pathways. RNA processing within the autonomous pathway is well known to regulate Arabidopsis thaliana flowering time. Here we identify a novel Arabidopsis gene, designated AT PRP39-1, that affects flowering time. Based on observations that homozygous at prp39-1 plants are late flowering under both long and short days and responsive to GA and vernalization treatment, we tentatively conclude that AT PRP39-1 may represent a new component of the autonomous pathway. Consistent with previous studies on genes of the autonomous pathway, knockout of AT PRP39-1 in Arabidopsis displays an upregulation of the steady state level of FLC, and simultaneous downregulation of FT and SOC1 transcript levels in adult tissues. AT PRP39-1 encodes a tetratricopeptide repeat protein with a similarity to a yeast mRNA processing protein Prp39p, suggesting that the involvement of these tetratricopeptide repeat proteins in RNA processing is conserved among yeast, human, and plants. Structure modeling suggests that AT PRP39-1 has two TPR superhelical domains suitable for target protein binding. We discuss how AT PRP39-1 may function in the control of flowering in the context of the autonomous pathway.
Collapse
Affiliation(s)
- Cunxi Wang
- Pioneer Hi-Bred International, Johnston, IA 50131, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Adamczyk BJ, Lehti-Shiu MD, Fernandez DE. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1007-19. [PMID: 17521410 DOI: 10.1111/j.1365-313x.2007.03105.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The developmental roles of AGL15 and AGL18, members of the AGL15-like clade of MADS domain regulatory factors, have not been defined previously. Analysis of transgenic Arabidopsis plants showed that overexpression of AGL18 produces the same phenotypic changes as overexpression of AGL15, and the two genes have partially overlapping expression patterns. Functional redundancy was confirmed through analysis of loss-of-function mutants. agl15 agl18 double mutants, but not single mutants, flower early under non-inductive conditions, indicating that AGL15 and AGL18 act in a redundant fashion as repressors of the floral transition. Further genetic analyses and expression studies were used to examine the relationship between AGL15 and AGL18 activity and other regulators of the floral transition. AGL15 and AGL18 act upstream of the floral integrator FT, and a combination of agl15 and agl18 mutations partially suppresses defects in the photoperiod pathway. agl15 agl18 mutations show an additive relationship with mutations in genes encoding other MADS domain floral repressors, and further acceleration of flowering is seen in triple and quadruple mutants under both inductive and non-inductive conditions. Thus, flowering time is determined by the additive effect of multiple MADS domain floral repressors, with important contributions from AGL15 and AGL18.
Collapse
Affiliation(s)
- Benjamin J Adamczyk
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
| | | | | |
Collapse
|
50
|
Deng W, Liu C, Pei Y, Deng X, Niu L, Cao X. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1660-1668. [PMID: 17416640 DOI: 10.1104/pp.107.095521] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis (Arabidopsis thaliana), the histone acetyltransferase AtHAC1 is homologous to animal p300/CREB (cAMP-responsive element-binding protein)-binding proteins, which are the main histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. The functions of p300/CREB-binding proteins in animals are well characterized, whereas little is known about the roles of AtHAC1 in developmental control in Arabidopsis. Lesions in AtHAC1 caused pleiotropic developmental defects, including delayed flowering, a shortened primary root, and partially reduced fertility. Analysis of the molecular basis of late flowering in hac1 mutants showed that the hac1 plants respond normally to day length, gibberellic acid treatment, and vernalization. Furthermore, the expression level of the flowering repressor FLOWERING LOCUS C (FLC) is increased in hac1 mutants, indicating that the late-flowering phenotype of hac1 mutants is mediated by FLC. Since histone acetylation is usually associated with the activation of gene expression, histone modifications of FLC chromatin are not affected by mutations in HAC1 and expression levels of all known autonomous pathway genes are unchanged in hac1 plants, we propose that HAC1 affects flowering time by epigenetic modification of factors upstream of FLC.
Collapse
Affiliation(s)
- WeiWei Deng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | | | | | | | | | | |
Collapse
|