1
|
Raigawali R, Vishweshwara SS, Anand S, Kikkeri R. Synthesis of Sulfated Carbohydrates - Glycosaminoglycans. Handb Exp Pharmacol 2025. [PMID: 40102244 DOI: 10.1007/164_2025_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Glycosaminoglycans (GAG) are polysaccharides that are ubiquitous on the surface of all mammalian cells, interacting with a multitude of proteins and orchestrating essential physiological and pathological processes. Among various GAG structures, heparan sulfate (HS) stands out for its intricate structure, positioning it as a significant cell-surface molecule capable of regulating wide range of cellular functions. Consequently, investigating the structure-activity relationships (SARs) with well-defined HS ligands emerges as an attractive avenue advancing drug discovery and biosensors. This chapter outlines a modular divergent strategy for synthesizing HS oligosaccharides to elucidate SARs. Here, we provide a literature overview on the synthesis of disaccharide building blocks, employing different orthogonal protecting groups, promoters, and optimization conditions to improve their suitability for subsequent oligosaccharide synthesis. Further, we highlight the synthesis of universal disaccharide building blocks derived from natural polysaccharides. We also provide insights of one-pot method and automated solid-phase synthesis of HS oligosaccharides. Finally, we review the status of SARs of popular heparan sulfate binding proteins (HSBPs).
Collapse
Affiliation(s)
| | | | - Saurabh Anand
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
2
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
3
|
Qvick A, Bratulic S, Carlsson J, Stenmark B, Karlsson C, Nielsen J, Gatto F, Helenius G. Discriminating Benign from Malignant Lung Diseases Using Plasma Glycosaminoglycans and Cell-Free DNA. Int J Mol Sci 2024; 25:9777. [PMID: 39337265 PMCID: PMC11431521 DOI: 10.3390/ijms25189777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA in plasma to differentiate between lung cancer and benign lung disease, in a cohort of 113 patients initially suspected of lung cancer. GAGomes were analyzed in all samples using the MIRAM® Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray ionization triple quadrupole mass spectrometry. In a subset of samples, cfDNA concentration and NGS-data was available. We detected two GAGome features, 0S chondroitin sulfate (CS), and 4S CS, with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity (95% CI: 9.2-54.2%) at 96.4% specificity (95% CI: 95.2-100.0%, n = 113). When we combined the GAGome score with a cfDNA-based model, the sensitivity increased from 42.6% (95% CI: 31.7-60.6%, cfDNA alone) to 70.5% (95% CI: 57.4-81.5%) at 95% specificity (95% CI: 75.1-100%, n = 74). Notably, the combined GAGome and cfDNA testing improved the sensitivity, compared to cfDNA alone, especially in ASCL stage I (55.6% vs 11.1%). Our findings show that plasma GAGome profiles can enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung cancer diagnostics.
Collapse
Affiliation(s)
- Alvida Qvick
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Sinisa Bratulic
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | | | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Francesco Gatto
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
4
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 PMCID: PMC11830984 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T. Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
5
|
Pliego-Arreaga R, Cervantes-Montelongo JA, Silva-Martínez GA, Tristán-Flores FE, Pantoja-Hernández MA, Maldonado-Coronado JR. Joint Hypermobility Syndrome and Membrane Proteins: A Comprehensive Review. Biomolecules 2024; 14:472. [PMID: 38672488 PMCID: PMC11048254 DOI: 10.3390/biom14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ehlers-Danlos syndromes (EDSs) constitute a heterogeneous group of connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Asymptomatic EDSs, joint hypermobility without associated syndromes, EDSs, and hypermobility spectrum disorders are the commonest phenotypes associated with joint hypermobility. Joint hypermobility syndrome (JHS) is a connective tissue disorder characterized by extreme flexibility of the joints, along with pain and other symptoms. JHS can be a sign of a more serious underlying genetic condition, such as EDS, which affects the cartilage, bone, fat, and blood. The exact cause of JHS could be related to genetic changes in the proteins that add flexibility and strength to the joints, ligaments, and tendons, such as collagen. Membrane proteins are a class of proteins embedded in the cell membrane and play a crucial role in cell signaling, transport, and adhesion. Dysregulated membrane proteins have been implicated in a variety of diseases, including cancer, cardiovascular disease, and neurological disorders; recent studies have suggested that membrane proteins may also play a role in the pathogenesis of JHS. This article presents an exploration of the causative factors contributing to musculoskeletal pain in individuals with hypermobility, based on research findings. It aims to provide an understanding of JHS and its association with membrane proteins, addressing the clinical manifestations, pathogenesis, diagnosis, and management of JHS.
Collapse
Affiliation(s)
- Raquel Pliego-Arreaga
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| | - Juan Antonio Cervantes-Montelongo
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | | | | | | | - Juan Raúl Maldonado-Coronado
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| |
Collapse
|
6
|
Almatrafi AM, Hibshi AM, Basit S. Exome Sequencing to Identify Novel Variants Associated with Secondary Amenorrhea and Premature Ovarian Insufficiency (POI) in Saudi Women. Biomedicines 2024; 12:785. [PMID: 38672141 PMCID: PMC11048260 DOI: 10.3390/biomedicines12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Post-pubertal disappearance of menstrual cycles (secondary amenorrhea) associated with premature follicular depletion is a heterogeneous condition. Patients with this disease have low levels of gonadal hormones and high levels of gonadotropins. It is one of the causes of female infertility and a strong genetic component is attributed as an underlying cause of this condition. Although variants in several genes have been associated with the condition, the cause of the disease remains undetermined in the vast majority of cases. Methodology and Materials: Ten Saudi married women experiencing secondary amenorrhea were referred to a center for genetics and inherited diseases for molecular investigation. A family-based study design was used. Intensive clinical examinations, including pelvic ultra-sonography (U/S) and biochemical evaluations, were carried out. Karyotypes were normal in all cases and polycystic ovarian syndrome (PCOS) was excluded by using Rotterdam consensus criteria. Patients' DNA samples were whole-exome sequenced (WES). Bidirectional Sanger sequencing was then utilized to validate the identified candidate variants. The pathogenicity of detected variants was predicted using several types of bioinformatics software. RESULTS Most of the patients have a normal uterus with poor ovarian reserves. Exome sequence data analysis identified candidate variants in genes associated with POI in 60% of cases. Novel variants were identified in HS6ST1, MEIOB, GDF9, and BNC1 in POI-associated genes. Moreover, a homozygous variant was also identified in the MMRN1 gene. Interestingly, mutations in MMRN1 have never been associated with any human disease. The variants identified in this study were not present in 125 healthy Saudi individuals. CONCLUSIONS WES is a powerful tool to identify the underlying variants in genetically heterogeneous diseases like secondary amenorrhea and POI. In this study, we identified six novel variants and expanded the genotype continuum of POI. Unravelling the genetic landscape of POI will help in genetic counselling, management, and early intervention.
Collapse
Affiliation(s)
- Ahmed M. Almatrafi
- Department of Biology, College of Science, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia
| | - Ali M. Hibshi
- Department of Obstetrics & Gynecology, King Sulman Medical City-Madinah Maternity and Children Hospital, Al Madinah Al Munawarah 42319, Saudi Arabia;
| | - Sulman Basit
- Department of Basic Medical Sciences, College of Medicine, and Centre for Genetics and Inherited Diseases, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia;
| |
Collapse
|
7
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. PNAS NEXUS 2024; 3:pgae119. [PMID: 38560529 PMCID: PMC10978064 DOI: 10.1093/pnasnexus/pgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Bosco-Lauth
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Farach-Carson MC, Wu D, França CM. Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology. PROTEOGLYCAN RESEARCH 2024; 2:e21. [PMID: 39584146 PMCID: PMC11584024 DOI: 10.1002/pgr2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 11/26/2024]
Abstract
Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs. The mechanical properties of these tissues depend on the presence and function of PGs, which play important roles in tissue elasticity, osmolarity and pressure sensing, and response to physical activity. Tissue responses depend on cell surface mechanoreceptors that include integrins, CD44, voltage sensitive ion channels, transient receptor potential (TRP) and piezo channels. PGs contribute to cell and molecular interplay in wound healing, fibrosis, and cancer, where they transduce the mechanical properties of the ECM and influence the progression of various context-specific conditions and diseases. The PGs that are most important in mechanobiology vary depending on the tissue and its functions and functional needs. Perlecan, for example, is important in the mechanobiology of basement membranes, cardiac and skeletal muscle, while aggrecan plays a primary role in the mechanical properties of cartilage and joints. A variety of techniques have been used to study the mechanobiology of PGs, including atomic force microscopy, mouse knockout models, and in vitro cell culture experiments with 3D organoid models. These studies have helped to elucidate the tissue-specific roles that PGs play in cell-level mechanosensing and tissue mechanics. Overall, the study of PGs in mechanobiology is yielding fundamental new concepts in the molecular basis of mechanosensing that can open the door to the development of new treatments for a host of conditions related to mechanopathology.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Cristiane Miranda França
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201
| |
Collapse
|
9
|
Xu CL, Zhu CY, Li YN, Gao J, Zhang YW. Heparinase III with High Activity and Stability: Heterologous Expression, Biochemical Characterization, and Application in Depolymerization of Heparin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3045-3054. [PMID: 38307881 DOI: 10.1021/acs.jafc.3c07197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.
Collapse
Affiliation(s)
- Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Gao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
10
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
11
|
Sağlam EC, Yadigaroğlu M, Güzel M, Turan H, Hakan Aksu Ş, Ocak M, Gorgun S, Arslan U, Yücel M. Combined Use of Serum N-terminal Pro-B-Type Natriuretic Peptide and Glypican-6 in the Diagnosis of Heart Failure. Cureus 2023; 15:e45766. [PMID: 37872895 PMCID: PMC10590535 DOI: 10.7759/cureus.45766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the efficacy of serum glypican-6 (GPC-6) levels and the combination of N-terminal pro-B-type natriuretic peptide (NT-ProBNP) and GPC-6 in the diagnosis of heart failure (HF). METHODS In this prospective study, patients older than 18 years of age, admitted to the emergency department of our hospital between December 2021 and April 2022, diagnosed with heart failure (patient group), and healthy volunteers with similar sociodemographic characteristics (control group) were included. The disease severity classification of the patient group was made according to the 2021 ESC guidelines, using echocardiographic findings. Serum GPC-6 and NT-ProBNP levels were measured by the enzyme-linked immunosorbent assay (ELISA) method, which determines the antigen-antibody relationship. Optimal GPC-6 and NT-ProBNP levels for the diagnosis of HF were determined by receiver operating characteristic (ROC) analysis. The patients were divided into three groups according to these levels. Group 1 consisted of patients with both markers below the cutoff values, Group 2 consisted of patients with either of these markers above the cutoff values, and Group 3 consisted of patients with both markers above the cutoff values. RESULTS The study included 65 heart failure patients and 20 healthy volunteers. When the patient and control groups were compared in terms of serum GPC-6 and serum NT-ProBNP levels, both parameters were evaluated as significantly higher in the patient group (p=0.038 and p<0.001; respectively). In the ROC analysis, it was determined that GPC-6 indicated HF with 58.46% sensitivity and 75% specificity for an optimal cutoff value of 390 pg/ml. In the ROC analysis, it was determined that serum NT-ProBNP indicated HF with 89.23% sensitivity and 70% specificity for an optimal cutoff value of 122 pg/ml. When the groups were compared according to the rate of HF, it was found to be higher in Group 3 compared to Group 2 (97.1% vs. 70.3%, p<0.002) and Group 1 (97.1% vs. 38.5%, p<0.001). This rate was seen to be significantly higher in Group 2 compared to Group 1 (70.3% vs. 38.5%, p=0.042). CONCLUSION The combination of GPC-6 and NT-ProBNP may help diagnose HF patients admitted to the emergency department.
Collapse
Affiliation(s)
- Emre Cem Sağlam
- Emergency Medicine, Sadıka Sabancı State Hospital, Sakarya, TUR
| | - Metin Yadigaroğlu
- Emergency Medicine, Samsun University Faculty of Medicine, Samsun, TUR
| | - Murat Güzel
- Emergency Medicine, Samsun University Faculty of Medicine, Samsun, TUR
| | - Hatice Turan
- Emergency Medicine, Kulu State Hospital, Konya, TUR
| | - Şakir Hakan Aksu
- Emergency Medicine, Samsun Education and Research Hospital, Samsun, TUR
| | - Metin Ocak
- Emergency Medicine, Samsun Education and Research Hospital, Samsun, TUR
| | - Selim Gorgun
- Microbiology, University of Health Sciences, Samsun Education and Research Hospital, Samsun, TUR
| | - Uğur Arslan
- Cardiology, Samsun University Faculty of Medicine, Samsun, TUR
| | - Murat Yücel
- Emergency Medicine, Samsun University Faculty of Medicine, Samsun, TUR
| |
Collapse
|
12
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552690. [PMID: 37609165 PMCID: PMC10441409 DOI: 10.1101/2023.08.09.552690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.
Collapse
|
13
|
Wang L, Sorum AW, Huang BS, Kern MK, Su G, Pawar N, Huang X, Liu J, Pohl NLB, Hsieh-Wilson LC. Efficient platform for synthesizing comprehensive heparan sulfate oligosaccharide libraries for decoding glycosaminoglycan-protein interactions. Nat Chem 2023; 15:1108-1117. [PMID: 37349377 PMCID: PMC10979459 DOI: 10.1038/s41557-023-01248-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Glycosaminoglycans (GAGs) are abundant, ubiquitous carbohydrates in biology, yet their structural complexity has limited an understanding of their biological roles and structure-function relationships. Synthetic access to large collections of well defined, structurally diverse GAG oligosaccharides would provide critical insights into this important class of biomolecules and represent a major advance in glycoscience. Here we report a new platform for synthesizing large heparan sulfate (HS) oligosaccharide libraries displaying comprehensive arrays of sulfation patterns. Library synthesis is made possible by improving the overall synthetic efficiency through universal building blocks derived from natural heparin and a traceless fluorous tagging method for rapid purification with minimal manual manipulation. Using this approach, we generated a complete library of 64 HS oligosaccharides displaying all possible 2-O-, 6-O- and N-sulfation sequences in the tetrasaccharide GlcN-IdoA-GlcN-IdoA. These diverse structures provide an unprecedented view into the sulfation code of GAGs and identify sequences for modulating the activities of important growth factors and chemokines.
Collapse
Affiliation(s)
- Lei Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander W Sorum
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mallory K Kern
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Guowei Su
- Glycan Therapeutics Corp, Raleigh, NC, USA
| | - Nitin Pawar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Mahbuba DA, Masuko S, Wang S, Syangtan D, Kang JS, Song Y, Shin TW, Xia K, Zhang F, Linhardt RJ, Boyden ES, Kiessling LL. Dynamic Changes in Heparan Sulfate Nanostructure in Human Pluripotent Stem Cell Differentiation. ACS NANO 2023; 17:7207-7218. [PMID: 37042659 PMCID: PMC11439449 DOI: 10.1021/acsnano.2c10072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heparan sulfate (HS) is a heterogeneous, cell-surface polysaccharide critical for transducing signals essential for mammalian development. Imaging of signaling proteins has revealed how their localization influences their information transfer. In contrast, the contribution of the spatial distribution and nanostructure of information-rich, signaling polysaccharides like HS is not known. Using expansion microscopy (ExM), we found striking changes in HS nanostructure occur as human pluripotent stem (hPS) cells differentiate, and these changes correlate with growth factor signaling. Our imaging studies show that undifferentiated hPS cells are densely coated with HS displayed as hair-like protrusions. This ultrastructure can recruit fibroblast growth factor for signaling. When the hPS cells differentiate into the ectoderm lineage, HS is localized into dispersed puncta. This striking change in HS distribution coincides with a decrease in fibroblast growth factor binding to neural cells. While developmental variations in HS sequence were thought to be the primary driver of alterations in HS-mediated growth factor signaling, our high-resolution images indicate a role for the HS nanostructure. Our study highlights the utility of high-resolution glycan imaging using ExM. In the case of HS, we found that changes in how the polysaccharide is displayed link to profound differences in growth factor binding.
Collapse
Affiliation(s)
- Deena Al Mahbuba
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
| | - Shiwei Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Deepsing Syangtan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tay W. Shin
- Media Arts and Sciences, MIT, Cambridge, MA 02139, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Edward S. Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Media Arts and Sciences, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Centers for Neurobiological Engineering and Extreme Bionics, MIT, Cambridge, MA 02139, USA
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Saito S, Mizumoto S, Yonekura T, Yamashita R, Nakano K, Okubo T, Yamada S, Okamura T, Furuichi T. Mice lacking nucleotide sugar transporter SLC35A3 exhibit lethal chondrodysplasia with vertebral anomalies and impaired glycosaminoglycan biosynthesis. PLoS One 2023; 18:e0284292. [PMID: 37053259 PMCID: PMC10101523 DOI: 10.1371/journal.pone.0284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
SLC35A3 is considered an uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter in mammals and regulates the branching of N-glycans. A missense mutation in SLC35A3 causes complex vertebral malformation (CVM) in cattle. However, the biological functions of SLC35A3 have not been fully clarified. To address these issues, we have established Slc35a3-/-mice using CRISPR/Cas9 genome editing system. The generated mutant mice were perinatal lethal and exhibited chondrodysplasia recapitulating CVM-like vertebral anomalies. During embryogenesis, Slc35a3 mRNA was expressed in the presomitic mesoderm of wild-type mice, suggesting that SLC35A3 transports UDP-GlcNAc used for the sugar modification that is essential for somite formation. In the growth plate cartilage of Slc35a3-/-embryos, extracellular space was drastically reduced, and many flat proliferative chondrocytes were reshaped. Proliferation, apoptosis and differentiation were not affected in the chondrocytes of Slc35a3-/-mice, suggesting that the chondrodysplasia phenotypes were mainly caused by the abnormal extracellular matrix quality. Because these histological abnormalities were similar to those observed in several mutant mice accompanying the impaired glycosaminoglycan (GAG) biosynthesis, GAG levels were measured in the spine and limbs of Slc35a3-/-mice using disaccharide composition analysis. Compared with control mice, the amounts of heparan sulfate, keratan sulfate, and chondroitin sulfate/dermatan sulfate, were significantly decreased in Slc35a3-/-mice. These findings suggest that SLC35A3 regulates GAG biosynthesis and the chondrodysplasia phenotypes were partially caused by the decreased GAG synthesis. Hence, Slc35a3-/- mice would be a useful model for investigating the in vivo roles of SLC35A3 and the pathological mechanisms of SLC35A3-associated diseases.
Collapse
Affiliation(s)
- Soichiro Saito
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tsukasa Yonekura
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
16
|
Shen T, Wang S, Liang Q, Sharp JS, Wei Z. Characterization and antioxidant activities of glycosaminoglycans from dried leech. Glycoconj J 2023; 40:169-178. [PMID: 36749437 DOI: 10.1007/s10719-023-10105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tao Shen
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China
| | - Shangteng Wang
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China
| | - Quntao Liang
- College of Biological Science and Engineering, Fu Zhou University, 350002, Fu Zhou, P.R. China.
- College of Biological Science and Engineering, Fuzhou University, 350002, Fuzhou, P.R. China.
| | - Joshua S Sharp
- Department of BioMolecular Sciences, Department of Chemistry and Biochemistry, University of Mississippi, 38655, Oxford, MS, USA
| | - Zheng Wei
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China.
- College of Biological Science and Engineering, Fuzhou University, 350002, Fuzhou, P.R. China.
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fuzhou University, 350002, Fuzhou, P.R. China.
| |
Collapse
|
17
|
Buyukyilmaz G, Adiguzel KT, Kılıc E. Bisphosphonate treatment at spondylo-ocular syndrome due to a novel compound heterozygote variant in XYLT2 and review of the literature. Am J Med Genet A 2023; 191:1581-1585. [PMID: 36815763 DOI: 10.1002/ajmg.a.63163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Spondylo-ocular syndrome is a rare autosomal recessive disorder characterized by generalized osteoporosis, hearing loss, visual impairment due to cataract, and platyspondyly. Previous studies have revealed that the syndrome is caused by pathogenic variants in the XYLT2 gene. A patient with spondylo-ocular syndrome and two heterozygous pathogenic variant in the XYLT2 gene in compound state are described here. The patient presented with osteoporosis, platyspondyly, ocular findings, hearing loss, kyphosis, scoliosis, facial findings, intellectual disability, and undescended testicles. Previous reports of bisphosphonate treatment response were variable, whereas a long-term follow-up with bisphosphonate treatment in this case resulted in normalization of vertebral structures. Reporting such cases helps to determine the appropriate genotype-phenotype correlation in patients with XYLT2-related pathogenesis.
Collapse
Affiliation(s)
- Gonul Buyukyilmaz
- Department of Pediatric Endocrinology, Ankara City Hospital, Ankara, Turkey
| | | | - Esra Kılıc
- Department of Pediatric Genetics, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
18
|
Noborn F, Sterky FH. Role of neurexin heparan sulfate in the molecular assembly of synapses - expanding the neurexin code? FEBS J 2023; 290:252-265. [PMID: 34699130 DOI: 10.1111/febs.16251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Syx D, Delbaere S, Bui C, De Clercq A, Larson G, Mizumoto S, Kosho T, Fournel-Gigleux S, Malfait F. Alterations in glycosaminoglycan biosynthesis associated with the Ehlers-Danlos syndromes. Am J Physiol Cell Physiol 2022; 323:C1843-C1859. [PMID: 35993517 DOI: 10.1152/ajpcell.00127.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to β4GalT7 or β3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ostend, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
21
|
Piszczatowski RT, Schwenger E, Sundaravel S, Stein CM, Liu Y, Stanley P, Verma A, Zheng D, Seidel RD, Almo SC, Townley RA, Bülow HE, Steidl U. A glycan-based approach to cell characterization and isolation: Hematopoiesis as a paradigm. J Exp Med 2022; 219:e20212552. [PMID: 36066492 PMCID: PMC9455685 DOI: 10.1084/jem.20212552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/28/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs). Prospective sorting with anti-HS scFvs identifies functionally distinct glycotypes within heterogeneous pools of mouse and human hematopoietic progenitor cells and enables further stratification of immunophenotypically pure megakaryocyte-erythrocyte progenitors. This stratification correlates with expression of a heptad of HS-related genes that is reflective of the HS epitope recognized by specific anti-HS scFvs. While we show that HS glycotyping provides an orthogonal set of tools for resolution of hematopoietic lineages, we anticipate broad utility of this approach in defining and isolating novel, viable cell types across diverse tissues and species.
Collapse
Affiliation(s)
| | - Emily Schwenger
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Catarina M. Stein
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Ronald D. Seidel
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Robert A. Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
22
|
Mundy C, Chung J, Koyama E, Bunting S, Mahimkar R, Pacifici M. Osteochondroma formation is independent of heparanase expression as revealed in a mouse model of hereditary multiple exostoses. J Orthop Res 2022; 40:2391-2401. [PMID: 34996123 PMCID: PMC9259764 DOI: 10.1002/jor.25260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Hereditary multiple exostoses (HME) is a rare, pediatric disorder characterized by osteochondromas that form along growth plates and provoke significant musculoskeletal problems. HME is caused by mutations in heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. Seemingly paradoxically, osteochondromas were found to contain excessive extracellular heparanase (Hpse) that could further reduce HS levels and exacerbate pathogenesis. To test Hpse roles, we asked whether its ablation would protect against osteochondroma formation in a conditional HME model consisting of mice bearing floxed Ext1 alleles in Agr-CreER background (Ext1f/f ;Agr-CreER mice). Mice were crossed with a new global Hpse-null (Hpse-/- ) mice to produce compound Hpse-/- ;Ext1f/f ;Agr-CreER mice. Tamoxifen injection of standard juvenile Ext1f/f ;Agr-CreER mice elicited stochastic Ext1 ablation in growth plate and perichondrium, followed by osteochondroma formation, as revealed by microcomputed tomography and histochemistry. When we examined companion conditional Ext1-deficient mice lacking Hpse also, we detected no major decreases in osteochondroma number, skeletal distribution, and overall structure by the analytical criteria above. The Ext1 mutants used here closely mimic human HME pathogenesis, but have not been previously tested for responsiveness to treatments. To exclude some innate therapeutic resistance in this stochastic model, tamoxifen-injected Ext1f/f ;Agr-CreER mice were administered daily doses of the retinoid Palovarotene, previously shown to prevent ectopic cartilage and bone formation in other mouse disease models. This treatment did inhibit osteochondroma formation compared with vehicle-treated mice. Our data indicate that heparanase is not a major factor in osteochondroma initiation and accumulation in mice. Possible roles of heparanase upregulation in disease severity in patients are discussed.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Jones AA, Diamantopoulou E, Baxendale S, Whitfield TT. Presence of chondroitin sulphate and requirement for heparan sulphate biosynthesis in the developing zebrafish inner ear. Front Cell Dev Biol 2022; 10:959624. [PMID: 36092694 PMCID: PMC9458858 DOI: 10.3389/fcell.2022.959624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Epithelial morphogenesis to form the semicircular canal ducts of the zebrafish inner ear depends on the production of the large glycosaminoglycan hyaluronan, which is thought to contribute to the driving force that pushes projections of epithelium into the lumen of the otic vesicle. Proteoglycans are also implicated in otic morphogenesis: several of the genes coding for proteoglycan core proteins, together with enzymes that synthesise and modify their polysaccharide chains, are expressed in the developing zebrafish inner ear. In this study, we demonstrate the highly specific localisation of chondroitin sulphate to the sites of epithelial projection outgrowth in the ear, present before any morphological deformation of the epithelium. Staining for chondroitin sulphate is also present in the otolithic membrane, whereas the otoliths are strongly positive for keratan sulphate. We show that heparan sulphate biosynthesis is critical for normal epithelial projection outgrowth, otolith growth and tethering. In the ext2 mutant ear, which has reduced heparan sulphate levels, but continues to produce hyaluronan, epithelial projections are rudimentary, and do not grow sufficiently to meet and fuse to form the pillars of tissue that normally span the otic lumen. Staining for chondroitin sulphate and expression of versican b, a chondroitin sulphate proteoglycan core protein gene, persist abnormally at high levels in the unfused projections of the ext2 mutant ear. We propose a model for wild-type epithelial projection outgrowth in which hyaluronan and proteoglycans are linked to form a hydrated gel that fills the projection core, with both classes of molecule playing essential roles in zebrafish semicircular canal morphogenesis.
Collapse
|
24
|
Rahman M, Ramirez‐Suarez NJ, Diaz‐Balzac CA, Bülow HE. Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning. EMBO Rep 2022; 23:e54163. [PMID: 35586945 PMCID: PMC9253746 DOI: 10.15252/embr.202154163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 09/19/2023] Open
Abstract
N-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate an extracellular protein complex involved in the patterning of somatosensory dendrites in Caenorhabditis elegans. Specifically, aman-2/Golgi alpha-mannosidase II, a conserved key enzyme in the biosynthesis of specific N-glycans, regulates the activity of the Menorin adhesion complex without obviously affecting the protein stability and localization of its components. AMAN-2 functions cell-autonomously to allow for decoration of the neuronal transmembrane receptor DMA-1/LRR-TM with the correct set of high-mannose/hybrid/paucimannose N-glycans. Moreover, distinct types of N-glycans on specific N-glycosylation sites regulate DMA-1/LRR-TM receptor function, which, together with three other extracellular proteins, forms the Menorin adhesion complex. In summary, specific N-glycan structures regulate dendrite patterning by coordinating the activity of an extracellular adhesion complex, suggesting that the molecular diversity of N-glycans can contribute to developmental specificity in the nervous system.
Collapse
Affiliation(s)
- Maisha Rahman
- Department of GeneticsAlbert Einstein College of MedicineBronxNYUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNYUSA
| | - Nelson J Ramirez‐Suarez
- Department of GeneticsAlbert Einstein College of MedicineBronxNYUSA
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Carlos A Diaz‐Balzac
- Department of GeneticsAlbert Einstein College of MedicineBronxNYUSA
- Present address:
University of RochesterRochesterNYUSA
| | - Hannes E Bülow
- Department of GeneticsAlbert Einstein College of MedicineBronxNYUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
25
|
Singh VK, Misra R, Almo SC, Steidl UG, Bülow HE, Zheng D. HSMotifDiscover: identification of motifs in sequences composed of non-single-letter elements. Bioinformatics 2022; 38:4036-4038. [PMID: 35771633 PMCID: PMC9364371 DOI: 10.1093/bioinformatics/btac437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/24/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023] Open
Abstract
SUMMARY The functional sub-string(s) of a biopolymer sequence defines the specificity of its interaction with other biomolecules and is often referred to as motifs. Computational algorithms and software have been broadly developed for finding such motifs in sequences in which the individual elements are single characters, such as those in DNA and protein sequences. However, there are more complex scenarios where the motifs exist in non-single-letter contexts, e.g. preferred patterns of chemical modifications on proteins, DNAs, RNAs or polysaccharides. To search for those motifs, we describe a new method that converts the modified sequence elements to representative single-letter codes and then uses a modified Gibbs-sampling algorithm to define the position specific scoring matrix representing the motif(s). As a proof of principle, we describe the implementation and application of an R package for discovering heparan sulfate (HS) motifs in glycan sequences, which are important in regulating protein-protein interactions. This software can be valuable for analyzing high-throughput glycoprotein binding data using microarrays with HS oligosaccharides or other biological polymers. AVAILABILITY AND IMPLEMENTATION HSMotifDiscover is freely available as an open source R package released under an MIT license at https://github.com/bioinfoDZ/HSMotifDiscover and also available in the form of an app at https://hsmotifdiscover.shinyapps.io/HSMotifDiscover_ShinyApp/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vinod Kumar Singh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rohan Misra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich G Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
26
|
Stancanelli E, Liu W, Wander R, Li J, Wang Z, Arnold K, Su G, Kanack A, Pham TQ, Pagadala V, Padmanabhan A, Xu Y, Liu J. Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras. ACS Chem Biol 2022; 17:1207-1214. [PMID: 35420777 DOI: 10.1021/acschembio.2c00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are two structurally distinct natural polysaccharides. Here, we report the synthesis of a library of seven structurally homogeneous HS and CS chimeric dodecasaccharides (12-mers). The synthesis was accomplished using six HS biosynthetic enzymes and four CS biosynthetic enzymes. The chimeras contain a CS domain on the reducing end and a HS domain on the nonreducing end. The synthesized chimeras display anticoagulant activity as measured by both in vitro and ex vivo experiments. Furthermore, the anticoagulant activity of H/C 12-mer 5 is reversible by protamine, a U.S. Food and Drug Administration-approved polypeptide to neutralize anticoagulant drug heparin. Our findings demonstrate the synthesis of unnatural HS-CS chimeric oligosaccharides using natural biosynthetic enzymes, offering a new class of glycan molecules for biological research.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Adam Kanack
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Truong Quang Pham
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Anand Padmanabhan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
28
|
Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. Eur Respir Rev 2022; 31:31/163/210202. [PMID: 35264410 DOI: 10.1183/16000617.0202-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| |
Collapse
|
29
|
Liu YC, Wierbowski BM, Salic A. Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate. J Cell Sci 2022; 135:274739. [PMID: 35142364 PMCID: PMC8977055 DOI: 10.1242/jcs.259297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that play critical roles in multiple cell signaling pathways. Glypicans consist of a globular core, an unstructured stalk modified with sulfated glycosaminoglycan chains, and a glycosylphosphatidylinositol anchor. Though these structural features are conserved, their individual contribution to glypican function remains obscure. Here, we investigate how glypican 3 (GPC3), which is mutated in Simpson-Golabi-Behmel tissue overgrowth syndrome, regulates Hedgehog signaling. We find that GPC3 is necessary for the Hedgehog response, surprisingly controlling a downstream signal transduction step. Purified GPC3 ectodomain rescues signaling when artificially recruited to the surface of GPC3-deficient cells but has dominant-negative activity when unattached. Strikingly, the purified stalk, modified with heparan sulfate but not chondroitin sulfate, is necessary and sufficient for activity. Our results demonstrate a novel function for GPC3-associated heparan sulfate and provide a framework for the functional dissection of glycosaminoglycans by in vivo biochemical complementation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Hood College, Frederick, MD 21701, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Missaghian P, Dierker T, Khosrowabadi E, Axling F, Eriksson I, Ghanem A, Kusche-Gullberg M, Kellokumpu S, Kjellén L. OUP accepted manuscript. Glycobiology 2022; 32:518-528. [PMID: 35137078 PMCID: PMC9132247 DOI: 10.1093/glycob/cwac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
NDST1 (glucosaminyl N-deacetylase/N-sulfotransferase) is a key enzyme in heparan sulfate (HS) biosynthesis, where it is responsible for HS N-deacetylation and N-sulfation. In addition to the full length human enzyme of 882 amino acids, here designated NDST1A, a shorter form containing 825 amino acids (NDST1B) is synthesized after alternative splicing of the NDST1 mRNA. NDST1B is mostly expressed at a low level, but increased amounts are seen in several types of cancer where it is associated with shorter survival. In this study, we aimed at characterizing the enzymatic properties of NDST1B and its effect on HS biosynthesis. Purified recombinant NDST1B lacked both N-deacetylase and N-sulfotransferase activities. Interestingly, HEK293 cells overexpressing NDST1B synthesized HS with reduced sulfation and altered domain structure. Fluorescence resonance energy transfer-microscopy demonstrated that both NDST1A and NDST1B had the capacity to interact with the HS copolymerase subunits EXT1 and EXT2 and also to form NDST1A/NDST1B dimers. Since lysates from cells overexpressing NDST1B contained less NDST enzyme activity than control cells, we suggest that NDST1B works in a dominant negative manner, tentatively by replacing the active endogenous NDST1 in the enzyme complexes taking part in biosynthesis.
Collapse
Affiliation(s)
- Parisa Missaghian
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, Aapistie 7A, 90220 Oulu, Finland
| | - Fredrik Axling
- Department of Surgical Sciences, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Inger Eriksson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Abdurrahman Ghanem
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | | | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Aapistie 7A, 90220 Oulu, Finland
| | - Lena Kjellén
- Corresponding author: Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, 751 23 Uppsala, Sweden.
| |
Collapse
|
31
|
Bülow HE. Imaging Glycosaminoglycan Modification Patterns In Vivo. Methods Mol Biol 2022; 2303:539-557. [PMID: 34626406 DOI: 10.1007/978-1-0716-1398-6_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfates (HS) or chondroitin sulfates (CS) are long unbranched polymers of a disaccharide comprised of hexuronic acid and hexosamine. Attached to a protein backbone via a characteristic tetrasaccharide, the GAG chains are non-uniformly modified by sulfations, epimerizations, and deacetylations. The resultant glycan chains contain highly modified domains, separated by sections of sparse or no modifications. These GAG domains are central to the role of glycans in binding to proteins and mediating protein-protein interactions. Since HS and CS domains are not genetically encoded, they cannot be visualized and studied with conventional methods in vivo. We describe a transgenic approach using single chain variable fragment (scFv) antibodies that bind HS or CS. By transgenically expressing fluorescently tagged scFv antibodies, we can directly visualize both HS and CS domains in live Caenorhabditis elegans revealing unprecedented cellular specificity and evolutionary conservation (Attreed et al., Nat Methods 9(5): 477-479, 2012; Attreed et al., Glycobiology 26(8): 862-870, 2016) (unpublished). The approach allows concomitant co-labeling of multiple GAG domains, the study of GAG dynamics, and could lend itself to a genetic analysis of GAG domain biosynthesis or function.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Ehlers Danlos Syndrome with Glycosaminoglycan Abnormalities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:235-249. [PMID: 34807422 DOI: 10.1007/978-3-030-80614-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a genetically and clinically heterogeneous group of connective tissue disorders that typically present with skin hyperextensibility, joint hypermobility, and tissue fragility. The major cause of EDS appears to be impaired biosynthesis and enzymatic modification of collagen. In this chapter, we discuss two types of EDS that are associated with proteoglycan abnormalities: spondylodysplastic EDS and musculocontractural EDS. Spondylodysplastic EDS is caused by pathogenic variants in B4GALT7 or B3GALT6, both of which encode key enzymes that initiate glycosaminoglycan synthesis. Musculocontractural EDS is caused by mutations in CHST14 or DSE, both of which encode enzymes responsible for the post-translational biosynthesis of dermatan sulfate. The clinical and molecular characteristics of both types of EDS are described in this chapter.
Collapse
|
33
|
Identification of Cell Autonomous and Non-Cell Autonomous Functions of Heparan Sulfate Glycosaminoglycan Chains by Creating Chimeric Mouse Embryos. Methods Mol Biol 2021. [PMID: 34626408 DOI: 10.1007/978-1-0716-1398-6_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell surface-tethered heparan sulfate glycosaminoglycan chains primarily function in a cell autonomous manner, while extracellular matrix-associated heparan sulfate glycosaminoglycan chains function in a non-cell autonomous manner. In addition, the cleaved forms of cell surface-tethered heparan sulfate chains enzymatically released by proteases and heparanases, called shedding, can contribute to non-cell autonomous mechanisms. The movement of heparan sulfate chains to surrounding cells mediated by transcytosis or filopodia also involves another non-cell autonomous mechanism. To determine cell autonomous or non-cell autonomous roles of heparan sulfate glycosaminoglycan chains during early embryogenesis, direct conclusions can be drawn by analyzing chimeric embryos which are composed of wild-type and heparan sulfate glycosaminoglycan chain-deficient cells. Here, we describe methods of production of these chimeric embryos and analysis of their cellular phenotypes with immunohistochemistry at a single-cell level.
Collapse
|
34
|
Huang YF, Mizumoto S, Fujita M. Novel Insight Into Glycosaminoglycan Biosynthesis Based on Gene Expression Profiles. Front Cell Dev Biol 2021; 9:709018. [PMID: 34552927 PMCID: PMC8450405 DOI: 10.3389/fcell.2021.709018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are covalently attached to core proteins to form proteoglycans. More than 50 gene products are involved in the biosynthesis of GAGs. We recently developed a comprehensive glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan structures based on gene expression profiles. Using this tool, the expression levels of GAG biosynthetic genes were analyzed in various human tissues as well as tumor tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be up- and down-regulated, respectively, which are consistent with biochemical findings published in the literature. In addition, the expression levels of the chondroitin sulfate-proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and down-regulated, respectively. These findings may provide new insight into GAG profiles in various human diseases including cancerous tumors as well as neurodegenerative disease using GlycoMaple analysis.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
36
|
Chowdhury R, Wang Y, Campbell M, Goderie SK, Doyle F, Tenenbaum SA, Kusek G, Kiehl TR, Ansari SA, Boles NC, Temple S. STAU2 binds a complex RNA cargo that changes temporally with production of diverse intermediate progenitor cells during mouse corticogenesis. Development 2021; 148:271165. [PMID: 34345913 DOI: 10.1242/dev.199376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
STAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time. To test this, we combine RNA-immunoprecipitation with sequencing (RIP-seq) over four stages of mouse cortical development, generating a comprehensive cargo profile for STAU2. A subset of the cargo was 'stable', present at all stages, and involved in chromosome organization, macromolecule localization, translation and DNA repair. Another subset was 'dynamic', changing with cortical stage, and involved in neurogenesis, cell projection organization, neurite outgrowth, and included cortical layer markers. Notably, the dynamic STAU2 cargo included determinants of IPC versus neuronal fates and genes contributing to abnormal corticogenesis. Knockdown of one STAU2 target, Taf13, previously linked to microcephaly and impaired myelination, reduced oligodendrogenesis in vitro. We conclude that STAU2 contributes to the timing of corticogenesis by binding and delivering complex and temporally regulated RNA cargo into IPCs.
Collapse
Affiliation(s)
- Rebecca Chowdhury
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Yue Wang
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Melissa Campbell
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Susan K Goderie
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Francis Doyle
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Gretchen Kusek
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Thomas R Kiehl
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Suraiya A Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nathan C Boles
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| |
Collapse
|
37
|
Amin M, Barzegari E, Pourshohod A, Zeinali M, Jamalan M. 3D structure prediction, dynamic investigation and rational construction of an epitope-masked thermostable bovine hyaluronidase. Int J Biol Macromol 2021; 187:544-553. [PMID: 34298049 DOI: 10.1016/j.ijbiomac.2021.07.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
Hyaluronidase (HAase) from bovine testes (BTH) has long been used in broad pharmaceutical areas, while it is associated with drawbacks in aspects of solubility, immunogenicity and pharmacokinetics. These issues can be addressed by gaining structural insights and designing rational modifications to the enzyme structure, as proposed in this study. A 3D structural model was built for HAase and underwent 40 ns of molecular dynamic simulation to examine its thermostability under normal, melting, and extreme conditions. The enzyme activity of BTH was measured against temperature and pH by kinetic assays. The interaction of bovine HAase with HA and chondroitin was defined by molecular docking. Furthermore, immunogenic properties of the enzyme were explored by immunoinformatics. Thermal effects on bovine HAase structural model and the HAase interactions with its substrates were described. We identified some B- and T-cell epitopes and showed that the protein could be recognized by human immune receptor molecules. Epitope masking by adding polyethylene glycol (PEG) to amine groups of residues presenting on the surface of the protein structure was adopted as a surface modification to enhance pharmacological properties of BTH. Assays showed that PEGylated BTH had higher thermostability and similar activity compared to the native enzyme.
Collapse
Affiliation(s)
- Mansour Amin
- Department of Microbiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aminollah Pourshohod
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
38
|
Zhivodernikov I, Ratushnyy A, Buravkova L. Simulated Microgravity Remodels Extracellular Matrix of Osteocommitted Mesenchymal Stromal Cells. Int J Mol Sci 2021; 22:ijms22115428. [PMID: 34063955 PMCID: PMC8196606 DOI: 10.3390/ijms22115428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
The extracellular matrix (ECM) is the principal structure of bone tissue. Long-term spaceflights lead to osteopenia, which may be a result of the changes in composition as well as remodeling of the ECM by osteogenic cells. To elucidate the cellular effects of microgravity, human mesenchymal stromal cells (MSCs) and their osteocommitted progeny were exposed to simulated microgravity (SMG) for 10 days using random positioning machine (RPM). After RPM exposure, an imbalance of MSC collagen/non-collagen ratio at the expense of a decreased level of collagenous proteins was detected. At the same time, the secretion of proteases (cathepsin A, cathepsin D, MMP3) was increased. No significant effects of SMG on the expression of stromal markers and cell adhesion molecules on the MSC surface were noted. Upregulation of COL11A1, CTNND1, TIMP3, and TNC and downregulation of HAS1, ITGA3, ITGB1, LAMA3, MMP1, and MMP11 were detected in RPM exposed MSCs. ECM-associated transcriptomic changes were more pronounced in osteocommitted progeny. Thus, 10 days of SMG provokes a decrease in the collagenous components of ECM, probably due to the decrease in collagen synthesis and activation of proteases. The presented data demonstrate that ECM-associated molecules of both native and osteocommitted MSCs may be involved in bone matrix reorganization during spaceflight.
Collapse
|
39
|
Sharmin S, Pradhan J, Zhang Z, Bellingham M, Simmons D, Piper M. Perineuronal net abnormalities in Slc13a4 +/- mice are rescued by postnatal administration of N-acetylcysteine. Exp Neurol 2021; 342:113734. [PMID: 33945789 DOI: 10.1016/j.expneurol.2021.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Disruptions to either sulfate supply or sulfation enzymes can affect brain development and have long-lasting effects on brain function, yet our understanding of the molecular mechanisms governing this are incomplete. Perineuronal nets (PNNs) are highly sulfated, specialized extracellular matrix structures that regulate the maturation of synaptic connections and neuronal plasticity. We have previously shown that mice heterozygous for the brain sulfate transporter Slc13a4 have abnormal social interactions, memory, exploratory behaviors, stress and anxiety of postnatal origin, pointing to potential deficits in PNN biology, and implicate SLC13A4 as a critical factor required for regulating normal synaptic connectivity and function. Here, we sought to investigate aberrant PNN formation as a potential mechanism contributing to the functional deficits displayed by Slc13a4+/- mice. Following social interactions, we reveal reduced neuronal activation in the somatosensory cortex of Slc13a4+/- mice, and altered inhibitory and excitatory postsynaptic currents. In line with this, we found a reduction in parvalbumin-expressing neurons decorated with PNNs, as well as reduced expression of markers for PNN maturation. Finally, we reveal that postnatal administration of N-acetylcysteine prevented PNN abnormalities from manifesting in Slc13a4+/- adult animals. Collectively, these data highlight a central role for postnatal SLC13A4 in normal PNN formation, circuit function and subsequent animal behavior.
Collapse
Affiliation(s)
- Sazia Sharmin
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonu Pradhan
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhe Zhang
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mark Bellingham
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Simmons
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
40
|
Habermann FA, Kaltner H, Higuero AM, García Caballero G, Ludwig AK, C. Manning J, Abad-Rodríguez J, Gabius HJ. What Cyto- and Histochemistry Can Do to Crack the Sugar Code. Acta Histochem Cytochem 2021; 54:31-48. [PMID: 34012175 PMCID: PMC8116616 DOI: 10.1267/ahc.21-00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
As letters form the vocabulary of a language, biochemical 'symbols' (the building blocks of oligo- and polymers) make writing molecular messages possible. Compared to nucleotides and amino acids, sugars have chemical properties that facilitate to reach an unsurpassed level of oligomer diversity. These glycans are a part of the ubiquitous cellular glycoconjugates. Cyto- and histochemically, the glycans' structural complexity is mapped by glycophenotyping of cells and tissues using receptors ('readers', thus called lectins), hereby revealing its dynamic spatiotemporal regulation: these data support the concept of a sugar code. When proceeding from work with plant (haem)agglutinins as such tools to the discovery of endogenous (tissue) lectins, it became clear that a broad panel of biological meanings can indeed be derived from the sugar-based vocabulary (the natural glycome incl. post-synthetic modifications) by glycan-lectin recognition in situ. As consequence, the immunocyto- and histochemical analysis of lectin expression is building a solid basis for the steps toward tracking down functional correlations, for example in processes leading to cell adhesion, apoptosis, autophagy or growth regulation as well as targeted delivery of glycoproteins. Introduction of labeled tissue lectins to glycan profiling assists this endeavor by detecting counterreceptor(s) in situ. Combining these tools and their applications strategically will help to take the trip toward the following long-range aim: to compile a dictionary for the glycan vocabulary that translates each message (oligosaccharide) into its bioresponse(s), that is to crack the sugar code.
Collapse
Affiliation(s)
- Felix A. Habermann
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Alonso M. Higuero
- Membrane and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Joachim C. Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - José Abad-Rodríguez
- Membrane and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
41
|
A complement factor H homolog, heparan sulfation, and syndecan maintain inversin compartment boundaries in C. elegans cilia. Proc Natl Acad Sci U S A 2021; 118:2016698118. [PMID: 33859044 DOI: 10.1073/pnas.2016698118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.
Collapse
|
42
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
43
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
44
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
45
|
Huang H, Mao J, Liang Q, Lin J, Jiang L, Liu S, Sharp JS, Wei Z. Structural analysis of glycosaminoglycans from Oviductus ranae. Glycoconj J 2021; 38:25-33. [PMID: 33411075 DOI: 10.1007/s10719-020-09962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
Oviductus ranae (O.ran.) has been widely used as a tonic and a traditional animal-based Chinese medicine. O.ran. extracts have been reported to have numerous biological activities, including activities that are often associated with mammalian glycosaminoglycans such as anti-inflammatory, antiosteoperotic, and anti-asthmatic. Glycosaminoglycans are complex linear polysaccharides ubiquitous in mammals that possess a wide range of biological activities. However, their presence and possible structural characteristics within O.ran. were previously unknown. In this study, glycosaminoglycans were isolated from O.ran. and their disaccharide compositions were analyzed by liquid chromatography-ion trap/time-of-flight mass spectrometry (LC-MS-ITTOF). Heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate (DS) and hyaluronic acid (HA) were detected in O.ran. with varied disaccharide compositions. HS species contain highly acetylated disaccharides, and have various structures in their constituent chains. CS/DS chains also possess a heterogeneous structure with different sulfation patterns and densities. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of O.ran..
Collapse
Affiliation(s)
- Haiyue Huang
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Jin Mao
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Quntao Liang
- College of Biological Science and Engineering, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Jianghui Lin
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Lilong Jiang
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Shutao Liu
- College of Biological Science and Engineering, Fu Zhou University, Fu Zhou, 350002, People's Republic of China
| | - Joshua S Sharp
- Department of BioMolecular Sciences, Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38655, USA
| | - Zheng Wei
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, Fu Zhou, 350002, People's Republic of China.
| |
Collapse
|
46
|
Modulating the Crosstalk between the Tumor and the Microenvironment Using SiRNA: A Flexible Strategy for Breast Cancer Treatment. Cancers (Basel) 2020; 12:cancers12123744. [PMID: 33322132 PMCID: PMC7763441 DOI: 10.3390/cancers12123744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary With this review we aimed to collect the most relevant scientific findings regarding siRNA therapeutic tools against breast cancer microenvironment. Remarkably, breast cancer treatments have been redirected towards the tumor microenvironment components, mainly involved in patients’ relapse and pharmacological resistance. Therefore, siRNAs represent a promising strategy to jeopardize the tumor microenvironment interplay thanks to their non-toxic and specific effects. Abstract Tumorigenesis is a complex and multistep process in which sequential mutations in oncogenes and tumor-suppressor genes result in enhanced proliferation and apoptosis escape. Over the past decades, several studies have provided evidence that tumors are more than merely a mass of malignant cancer cells, with the tumor microenvironment (TME) also contributing to cancer progression. For this reason, the focus of cancer research in recent years has shifted from the malignant cancer cell itself to the TME and its interactions. Since the TME actively participates in tumor progression, therapeutic strategies targeting it have created great interest. In this context, much attention has been paid to the potential application of small interfering RNA (siRNA), a class of non-coding RNA that has the ability to downregulate the expression of target genes in a sequence-specific way. This is paving the way for a novel therapeutic approach for the treatment of several diseases, including cancer. In this review, we describe recent efforts in developing siRNA therapeutics for the treatment of breast cancer, with particular emphasis on TME regulation. We focus on studies that adapt siRNA design to reprogram/re-educate the TME and eradicate the interplay between cancer cells and TME.
Collapse
|
47
|
Ozturk F, Atici A, Barman HA. Can Glypican-6 Level Predict Ejection Fraction Decline After Myocardial Infarction? Angiology 2020; 72:582-588. [PMID: 33094648 DOI: 10.1177/0003319720968376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The main goals in the treatment of acute coronary syndrome are to prevent myocardial ischemia, damage, and possible complications. Accordingly, we evaluated the predictive value of glypican-6 (GPC6) for cardiac remodeling after myocardial infarction (MI). Baseline plasma GPC6 levels were measured in patients who underwent primary percutaneous coronary intervention (PCI) for acute MI. Left ventricular ejection fraction (LVEF) was measured at baseline and at 6 months with transthoracic echocardiography. Reduced LVEF persisted in 89 out of 276 patients after 6 months. The majority of the patients were male (n = 198, 72%) and the mean age was 57.8 ± 10.8 years. Glypican-6, N-terminal pro-brain natriuretic peptide (NT-proBNP), and high-sensitive troponin levels were significantly lower in the improved LVEF group compared with the low LVEF group (10.54 ± 4.46 vs 6.98 ± 3.34 ng/mL, P < .001; 500 pg/mL [range, 300-600 pg/mL] vs 350 pg/mL [range, 200-550 pg/mL], P = .008; 396 pg/mL [range, 159-579 pg/mL] vs 300 pg/mL [range, 100-500 pg/mL], P = .016, respectively). Logistic regression analysis revealed the SYNTAX Score 2, GPC6, and NT-proBNP as significant independent predictors of low LVEF (hazard ratio [HR]: 1.064, P = .041; HR: 1.215, P < .001; HR: 1.179, P < .001). Glypican-6 may prove to be useful for the detection of low LVEF development in patients undergoing PCI following MI.
Collapse
Affiliation(s)
- Fatih Ozturk
- Department of Cardiology, 64162Faculty of Medicine, Yuzunci Yil University, Van, Turkey
| | - Adem Atici
- Department of Cardiology, 64071Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Hasan Ali Barman
- Department of Cardiology, Institute of Cardiology, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
48
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
49
|
Ultraviolet photodissociation of fondaparinux generates signature antithrombin-like 3-O-sulfated -GlcNS3S6S- monosaccharide fragment (Y3/C3). Anal Bioanal Chem 2020; 412:7925-7935. [DOI: 10.1007/s00216-020-02925-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
|
50
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|