1
|
Bharadwaj N, Sharma R, Subramanian M, Ragini G, Nagarajan SA, Rahi M. Omics Approaches in Understanding Insecticide Resistance in Mosquito Vectors. Int J Mol Sci 2025; 26:1854. [PMID: 40076478 PMCID: PMC11899280 DOI: 10.3390/ijms26051854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the emergence of insecticide resistance has been a major challenge to global public health. Understanding the molecular mechanisms of this phenomenon in mosquito vectors is paramount for the formulation of effective vector control strategies. This review explores the current knowledge of insecticide resistance mechanisms through omics approaches. Genomic, transcriptomic, proteomic, and metabolomics approaches have proven crucial to understand these resilient vectors. Genomic studies have identified multiple genes associated with insecticide resistance, while transcriptomics has revealed dynamic gene expression patterns in response to insecticide exposure and other environmental stimuli. Proteomics and metabolomics offer insights into protein expression and metabolic pathways involved in detoxification and resistance. Integrating omics data holds immense potential to expand our knowledge on the molecular basis of insecticide resistance in mosquitoes via information obtained from different omics platforms to understand regulatory mechanisms and differential expression of genes and protein, and to identify the transcription factors and novel molecules involved in the detoxification of insecticides. Eventually, these data will help construct predictive models, identify novel strategies, and develop targeted interventions to control vector-borne diseases.
Collapse
Affiliation(s)
- Nikhil Bharadwaj
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | - Rohit Sharma
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | | | | | | | | |
Collapse
|
2
|
Du J, Yin H, Li J, Zhang W, Ding G, Zhou D, Sun Y, Shen B. Transcription factor B-H2 regulates CYP9J34 expression conveying deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2024; 80:1991-2000. [PMID: 38092527 DOI: 10.1002/ps.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Huang Y, Xu L, Zheng J, Wu P, Zhang Y, Qiu L. Identification and characterization of both cis- and trans-regulators mediating fenvalerate-induced expression of CYP6B7 in Helicoverpa armigera. Int J Biol Macromol 2024; 258:128995. [PMID: 38159702 DOI: 10.1016/j.ijbiomac.2023.128995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
As we known, inducibility is an important feature of P450 genes. Previous studies indicated that CYP6B7 could be induced and involved in fenvalerate detoxification in Helicoverpa armigera. However, the regulatory mechanism of CYP6B7 induced by fenvalerate is still unclear. In this study, CYP6B7 promoter of H. armigera was cloned and the cis-acting element of fenvalerate was identified to be located between -84 and - 55 bp of CYP6B7 promoter. Subsequently, 33 candidate transcription factors (CYP6B7-fenvalerate association proteins, CAPs) that may bind to the cis-acting element were screened and verified by yeast one-hybrid. Among them, the expression levels of several CAPs were significantly induced by fenvalerate. Knockdown of juvenile hormone-binding protein-like (JHBP), RNA polymerase II-associated protein 3 (RPAP3), fatty acid synthase-like (FAS) and peptidoglycan recognition protein LB-like (PGRP) resulted in significant expression inhibition of CYP6B7, and increased sensitivity of H. armigera to fenvalerate. Co-transfection of reporter gene p (-84/-55) with pFast-CAP showed that JHBP, RPAP3 and PGRP could significantly increase the activity of CYP6B7 promoter. These results suggested that trans-acting factors JHBP, RPAP3 and PGRP may bind with cis-acting elements to regulate the expression of CYP6B7 induced by fenvalerate, and play an important role in the detoxification of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Xu
- College of Resources and Environment and Henan Engineering Research Center of Green Pesticide Creation &Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Pang Y, Liang J. Inferring initial state of the ancestral network of cellular fate decision: a case study of phage lambda. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4436-4439. [PMID: 34892204 PMCID: PMC8957294 DOI: 10.1109/embc46164.2021.9629880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene regulatory networks (GRNs) describe how gene expression is controlled by interactions among DNA and proteins. The decision network controlling prophage induction in phage lambda has served as a paradigm for studying decision control of cellular fate, which has broad implications for understanding phenomena such as embryo development, tissue regeneration, and tumorigenesis. The phage-lambda GRN dictates whether the phage enters the lytic mode or the lysogenic mode. In this work, we study the evolutionary origin of this GRN and explore the initial architecture of the proto-GRN, from which the modern GRN is evolved. Specifically, we examined the model of proto-GRN of phage-lambda containing one operator, from which the modern GRN with three operators evolved. We constructed 9 network architectures of the proto-GRNs by different combinations of the three operators OR3, OR2, OR1 and the three different genomic locations. We quantified the full stochastic behavior of each of these networks through exact computation of their steady-state probability landscapes using the Accurate Chemical Master Equation(ACME) algorithm. We further analyzed changes in the copy numbers of the two key proteins CI and Cro during prophage induction upon UV irradiation at different dosages. By examining the dynamic changes of the protein copy numbers upon different UV irradiations, our results show that the network in which OR1 located at the second site is the most probable architecture for the ancestral phage-lambda network. Our work can be extended for further analysis of the evolutionary trajectories of this cellular fate decision network.
Collapse
|
5
|
Wiberg RAW, Tyukmaeva V, Hoikkala A, Ritchie MG, Kankare M. Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana. Mol Ecol 2021; 30:3783-3796. [PMID: 34047417 DOI: 10.1111/mec.16003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST . This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.
Collapse
Affiliation(s)
- R A W Wiberg
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - V Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - M G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - M Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
7
|
Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, Greenleaf WJ. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet 2021; 53:403-411. [PMID: 33633365 PMCID: PMC8012210 DOI: 10.1038/s41588-021-00790-6] [Citation(s) in RCA: 708] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq).
Collapse
Affiliation(s)
- Jeffrey M Granja
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Program in Biophysics, Stanford University, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Gladstone Institute of Neurological Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sarah E Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - S Tansu Bagdatli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Xu Y, Yang X, Sun X, Li X, Liu Z, Yin Q, Ma L, Zhou D, Sun Y, Shen B, Zhu C. Transcription factor FTZ-F1 regulates mosquito cuticular protein CPLCG5 conferring resistance to pyrethroids in Culex pipiens pallens. Parasit Vectors 2020; 13:514. [PMID: 33054862 PMCID: PMC7559895 DOI: 10.1186/s13071-020-04383-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Culex pipiens pallens poses a serious threat to human health because of its widespread distribution, high carrier capacity for several arboviruses, frequent human-biting, and growth in urban environments. Pyrethroid insecticides have been mainly used to control adult Cx. pipiens pallens during outbreaks of mosquito-borne diseases. Unfortunately, mosquitoes have developed resistance, rendering the insecticides ineffective. Cuticular resistance is the primary mechanism of pyrethroid resistance. Previously, we revealed that cuticular protein of low complexity CPLCG5 is a major cuticular protein associated with deltamethrin resistance in Cx. pipiens pallens, which is enriched in the cuticle of mosquitoes’ legs and participates in pyrethroid resistance by forming a rigid matrix. However, the regulatory mechanisms of its transcription remain unknown. Results First, qRT-PCR analysis revealed that the expression of FTZ-F1 (encoding Fushi tarazu-Factor 1) was ~ 1.8-fold higher in the deltamethrin-resistant (DR) than deltamethrin-susceptible (DS) strains at 24 h post-eclosion (PE) and ~ 2.2-fold higher in the DR strain than in the DS strain at 48 h PE. CPLCG5 and FTZ-F1 were co-expressed in the legs, indicating that they might play an essential role in the legs. Dual luciferase reporter assays and EMSA (electrophoretic mobility shift experiments) revealed that FTZ-F1 regulates the transcription of CPLCG5 by binding to the FTZ-F1 response element (− 870/− 864). Lastly, knockdown of FTZ-F1 not only affected CPLCG5 expression but also altered the cuticle thickness and structure of the legs, increasing the susceptibility of the mosquitoes to deltamethrin in vivo. Conclusions The results revealed that FTZ-F1 regulates the expression of CPLCG5 by binding to the CPLCG5 promoter region, altering cuticle thickness and structure, and increasing the susceptibility of mosquitoes to deltamethrin in vivo. This study revealed part of the mechanism of cuticular resistance, providing a deeper understanding of insecticide resistance.![]()
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaohong Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhihan Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | | |
Collapse
|
9
|
Yildirim N, Aktas ME, Ozcan SN, Akbas E, Ay A. Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach. In Silico Biol 2019; 12:95-127. [PMID: 27497472 DOI: 10.3233/isb-160467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.
Collapse
Affiliation(s)
- Necmettin Yildirim
- Division of Natural Sciences, New College of Florida, Bayshore Road, Sarasota, FL, USA
| | - Mehmet Emin Aktas
- Department of Mathematics, Florida State University, W College Ave, Tallahassee, FL, USA
| | - Seyma Nur Ozcan
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Esra Akbas
- Department of Computer Science, Florida State University, W College Ave, Tallahassee, FL, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Oak Drive, Hamilton, NY, USA
| |
Collapse
|
10
|
Li L, Barth NKH, Hirth E, Taher L. Pairs of Adjacent Conserved Noncoding Elements Separated by Conserved Genomic Distances Act as Cis-Regulatory Units. Genome Biol Evol 2018; 10:2535-2550. [PMID: 30184074 PMCID: PMC6161761 DOI: 10.1093/gbe/evy196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 01/02/2023] Open
Abstract
Comparative genomic studies have identified thousands of conserved noncoding elements (CNEs) in the mammalian genome, many of which have been reported to exert cis-regulatory activity. We analyzed ∼5,500 pairs of adjacent CNEs in the human genome and found that despite divergence at the nucleotide sequence level, the inter-CNE distances of the pairs are under strong evolutionary constraint, with inter-CNE sequences featuring significantly lower transposon densities than expected. Further, we show that different degrees of conservation of the inter-CNE distance are associated with distinct cis-regulatory functions at the CNEs. Specifically, the CNEs in pairs with conserved and mildly contracted inter-CNE sequences are the most likely to represent active or poised enhancers. In contrast, CNEs in pairs with extremely contracted or expanded inter-CNE sequences are associated with no cis-regulatory activity. Furthermore, we observed that functional CNEs in a pair have very similar epigenetic profiles, hinting at a functional relationship between them. Taken together, our results support the existence of epistatic interactions between adjacent CNEs that are distance-sensitive and disrupted by transposon insertions and deletions, and contribute to our understanding of the selective forces acting on cis-regulatory elements, which are crucial for elucidating the molecular mechanisms underlying adaptive evolution and human genetic diseases.
Collapse
Affiliation(s)
- Lifei Li
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolai K H Barth
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Hirth
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Clark E. Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation. PLoS Biol 2017; 15:e2002439. [PMID: 28953896 PMCID: PMC5633203 DOI: 10.1371/journal.pbio.2002439] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/09/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the "pair-rule" genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic "gap" inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Uhl JD, Zandvakili A, Gebelein B. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes. PLoS Genet 2016; 12:e1005981. [PMID: 27058369 PMCID: PMC4825978 DOI: 10.1371/journal.pgen.1005981] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. Enhancers are regulatory elements that interact with transcription factor proteins to control cell-specific gene expression during development. Surprisingly, only a subset of enhancers are highly conserved at the sequence level, even though the expression patterns they control are often conserved and essential for proper development. Why some enhancer sequences are highly conserved whereas others are not is not well understood. In this study, we characterize a highly conserved enhancer that regulates gene expression in leg precursor cells. We find that this enhancer has dual regulatory activities that include gene activation in thoracic segments and gene repression in abdominal segments. Surprisingly, we show that the conserved enhancer can tolerate numerous sequence changes yet mediate robust transcription factor binding and abdominal repression. These findings are consistent with abdominal transcription factors binding numerous different configurations of binding sites. So, why is this enhancer highly conserved? We found that overlapping sequences within the enhancer also contribute to thoracic activation, suggesting the enhancer sequences are under added functional constraints. Altogether, our results provide new insights into why some enhancers are highly conserved at the sequence level while others can tolerate sequence changes.
Collapse
Affiliation(s)
- Juli D Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Arya Zandvakili
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| |
Collapse
|
13
|
Schachat SR, Oliver JC, Monteiro A. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages. BMC Evol Biol 2015; 15:20. [PMID: 25886182 PMCID: PMC4335541 DOI: 10.1186/s12862-015-0300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in the number of repeated traits, or serial homologs, has contributed greatly to animal body plan diversity. Eyespot color patterns of nymphalid butterflies, like arthropod and vertebrate limbs, are an example of serial homologs. These eyespot color patterns originated in a small number of wing sectors on the ventral hindwing surface and later appeared in novel wing sectors, novel wings, and novel wing surfaces. However, the details of how eyespots were co-opted to these novel wing locations are currently unknown. RESULTS We used a large data matrix of eyespot/presence absence data, previously assembled from photographs of contemporary species, to perform a phylogenetic investigation of eyespot origins in nine independent nymphalid lineages. To determine how the eyespot gene regulatory network acquired novel positional information, we used phylogenetic correlation analyses to test for non-independence in the origination of eyespots. We found consistent patterns of eyespot gene network redeployment in the nine lineages, where eyespots first redeployed from the ventral hindwing to the ventral forewing, then to new sectors within the ventral wing surface, and finally to the dorsal wing surface. Eyespots that appeared in novel wing sectors modified the positional information of their serial homolog ancestors in one of two ways: by changing the wing or surface identity while retaining sector identity, or by changing the sector identity while retaining wing and surface identity. CONCLUSIONS Eyespot redeployment to novel sectors, wings, and surfaces happened multiple times in different nymphalid subfamilies following a similar pattern. This indicates that parallel mutations altering expression of the eyespot gene regulatory network led to its co-option to novel wing locations over time.
Collapse
Affiliation(s)
- Sandra R Schachat
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Paleobiology, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jeffrey C Oliver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Antónia Monteiro
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore. .,Yale-NUS College, 138614, Singapore, Singapore.
| |
Collapse
|
14
|
Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer. PLoS One 2014; 9:e91924. [PMID: 24786295 PMCID: PMC4006794 DOI: 10.1371/journal.pone.0091924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.
Collapse
|
15
|
Samee MAH, Sinha S. Quantitative modeling of a gene's expression from its intergenic sequence. PLoS Comput Biol 2014; 10:e1003467. [PMID: 24604095 PMCID: PMC3945089 DOI: 10.1371/journal.pcbi.1003467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Modeling a gene's expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we report the first quantitative model of a gene's expression pattern as a function of its locus. We model the expression readout of a locus in two tiers: 1) combinatorial regulation by transcription factors bound to each enhancer is predicted by a thermodynamics-based model and 2) independent contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene's expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were "shut down" by the model. We applied our model to identify the transcription factors responsible for forming the stripe boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, interference between enhancer activities was a possible factor necessitating enhancer independence in our model.
Collapse
Affiliation(s)
- Md. Abul Hassan Samee
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (MAHS); (SS)
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (MAHS); (SS)
| |
Collapse
|
16
|
Irvine SQ. Study of Cis-regulatory Elements in the Ascidian Ciona intestinalis. Curr Genomics 2013; 14:56-67. [PMID: 23997651 PMCID: PMC3580780 DOI: 10.2174/138920213804999192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/30/2012] [Accepted: 01/01/2013] [Indexed: 01/31/2023] Open
Abstract
The ascidian (sea squirt) C. intestinalis has become an important model organism for the study of cis-regulation. This is largely due to the technology that has been developed for assessing cis-regulatory activity through the use of transient reporter transgenes introduced into fertilized eggs. This technique allows the rapid and inexpensive testing of endogenous or altered DNA for regulatory activity in vivo. This review examines evidence that C. intestinaliscis-regulatory elements are located more closely to coding regions than in other model organisms. I go on to compare the organization of cis-regulatory elements and conserved non-coding sequences in Ciona, mammals, and other deuterostomes for three representative C.intestinalis genes, Pax6, FoxAa, and the DlxA-B cluster, along with homologs in the other species. These comparisons point out some of the similarities and differences between cis-regulatory elements and their study in the various model organisms. Finally, I provide illustrations of how C. intestinalis lends itself to detailed study of the structure of cis-regulatory elements, which have led, and promise to continue to lead, to important insights into the fundamentals of transcriptional regulation.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
17
|
Ilsley GR, Fisher J, Apweiler R, DePace AH, Luscombe NM. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife 2013; 2:e00522. [PMID: 23930223 PMCID: PMC3736529 DOI: 10.7554/elife.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
Transcriptional control ensures genes are expressed in the right amounts at the correct times and locations. Understanding quantitatively how regulatory systems convert input signals to appropriate outputs remains a challenge. For the first time, we successfully model even skipped (eve) stripes 2 and 3+7 across the entire fly embryo at cellular resolution. A straightforward statistical relationship explains how transcription factor (TF) concentrations define eve's complex spatial expression, without the need for pairwise interactions or cross-regulatory dynamics. Simulating thousands of TF combinations, we recover known regulators and suggest new candidates. Finally, we accurately predict the intricate effects of perturbations including TF mutations and misexpression. Our approach imposes minimal assumptions about regulatory function; instead we infer underlying mechanisms from models that best fit the data, like the lack of TF-specific thresholds and the positional value of homotypic interactions. Our study provides a general and quantitative method for elucidating the regulation of diverse biological systems. DOI:http://dx.doi.org/10.7554/eLife.00522.001.
Collapse
Affiliation(s)
- Garth R Ilsley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Nicholas M Luscombe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
18
|
Martinez CA, Barr KA, Kim AR, Reinitz J. A synthetic biology approach to the development of transcriptional regulatory models and custom enhancer design. Methods 2013; 62:91-8. [PMID: 23732772 PMCID: PMC3924567 DOI: 10.1016/j.ymeth.2013.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synthetic biology offers novel opportunities for elucidating transcriptional regulatory mechanisms and enhancer logic. Complex cis-regulatory sequences--like the ones driving expression of the Drosophila even-skipped gene--have proven difficult to design from existing knowledge, presumably due to the large number of protein-protein interactions needed to drive the correct expression patterns of genes in multicellular organisms. This work discusses two novel computational methods for the custom design of enhancers that employ a sophisticated, empirically validated transcriptional model, optimization algorithms, and synthetic biology. These synthetic elements have both utilitarian and academic value, including improving existing regulatory models as well as evolutionary questions. The first method involves the use of simulated annealing to explore the sequence space for synthetic enhancers whose expression output fit a given search criterion. The second method uses a novel optimization algorithm to find functionally accessible pathways between two enhancer sequences. These paths describe a set of mutations wherein the predicted expression pattern does not significantly vary at any point along the path. Both methods rely on a predictive mathematical framework that maps the enhancer sequence space to functional output.
Collapse
Affiliation(s)
- Carlos A Martinez
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The sequences of some gene regulatory elements diverge considerably, even between closely related species. A detailed analysis of the fast-evolving sparkling enhancer in Drosophila now identifies key compensatory mechanisms and 'grammar' elements that are critical for maintaining functional integrity.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
20
|
Struffi P, Corado M, Kaplan L, Yu D, Rushlow C, Small S. Combinatorial activation and concentration-dependent repression of the Drosophila even skipped stripe 3+7 enhancer. Development 2011; 138:4291-9. [PMID: 21865322 DOI: 10.1242/dev.065987] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite years of study, the precise mechanisms that control position-specific gene expression during development are not understood. Here, we analyze an enhancer element from the even skipped (eve) gene, which activates and positions two stripes of expression (stripes 3 and 7) in blastoderm stage Drosophila embryos. Previous genetic studies showed that the JAK-STAT pathway is required for full activation of the enhancer, whereas the gap genes hunchback (hb) and knirps (kni) are required for placement of the boundaries of both stripes. We show that the maternal zinc-finger protein Zelda (Zld) is absolutely required for activation, and present evidence that Zld binds to multiple non-canonical sites. We also use a combination of in vitro binding experiments and bioinformatics analysis to redefine the Kni-binding motif, and mutational analysis and in vivo tests to show that Kni and Hb are dedicated repressors that function by direct DNA binding. These experiments significantly extend our understanding of how the eve enhancer integrates positive and negative transcriptional activities to generate sharp boundaries in the early embryo.
Collapse
Affiliation(s)
- Paolo Struffi
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
21
|
Bahar B, O'Halloran F, Callanan MJ, McParland S, Giblin L, Sweeney T. Bovine lactoferrin (LTF) gene promoter haplotypes have different basal transcriptional activities. Anim Genet 2011; 42:270-9. [PMID: 21554347 DOI: 10.1111/j.1365-2052.2010.02151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic polymorphisms present in the bovine lactoferrin (LTF) gene promoter have the potential to affect milk lactoferrin concentrations. The objectives were: (1) to identify, in silico, SNPs in the promoter region of the LTF gene that could affect transcription factor binding activity, (2) to investigate the effects of these SNPs in vitro by measuring promoter transcriptional activities of different bovine LTF promoter haplotypes and (3) to investigate the genetic association between LTF promoter SNPs and milk lactoferrin concentration. Haplotypes were deduced from sequencing of the 2.2-kb bovine LTF promoter in 78 unrelated animals. In silico analysis of the 2.2-kb promoter revealed two major haplotypes (BtLTF_H1a and BtLTF_H2a) that differed at 10 SNP loci that affect transcription factors of both a constitutive (at -28, -1702) and an inducible (at -131, -270, -586, -2047, -2077, -2122, -2140 and -2151) nature. The basal promoter transcriptional activity of BtLTF_H1a was 1.44-fold higher than that of BtLTF_H2a in mammary epithelial cells. Cows with the BtLTF_H1a haplotype had increased lactoferrin protein concentration in milk at various time points over the lactation curves, compared to herdmates with the BtLTF_H2a haplotype. The SNPs c.-28A>C, c.-131T>C, c.-156A>G, c.-270T>C, c.-586C>T, c.-1702A>G, c.-1953G>A, c.-2047A>G, c.-2077A>G, c.-2122C>T, c.-2140A>G and c.-2151G>A were associated (P < 0.001) with milk lactoferrin content in 372 Holstein-Friesian cows. The identification of bovine LTF promoter haplotypes with different basal transcriptional activities in vitro that are associated with lactoferrin levels in milk in vivo may facilitate the identification of designer dairy herds for increased lactoferrin content in milk.
Collapse
Affiliation(s)
- B Bahar
- Cell and Molecular Biology Laboratory, School of Agriculture, Food Science and Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
23
|
Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2010; 19:753-63. [PMID: 20738425 PMCID: PMC2976824 DOI: 10.1111/j.1365-2583.2010.01032.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Controlled sex-, stage- and tissue-specific expression of antipathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of antipathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5'- and 3'-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An antidengue effector gene, membranes no protein (Mnp), driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva.
Collapse
Affiliation(s)
- Geetika Mathur
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697, USA
| | - Irma Sanchez-Vargas
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Danielle Alvarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697, USA
| | - Ken E. Olson
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697, USA
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, 92697
| |
Collapse
|
24
|
|
25
|
Wei ZJ, Yu M, Tang SM, Yi YZ, Hong GY, Jiang ST. Transcriptional regulation of the gene for prothoracicotropic hormone in the silkworm, Bombyx mori. Mol Biol Rep 2010; 38:1121-7. [PMID: 20563654 DOI: 10.1007/s11033-010-0209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/11/2010] [Indexed: 11/30/2022]
Abstract
Prothoracicotropic hormone (PTTH) is one of key players in regulation of insect growth, molting, metamorphosis, diapause, and is expressed specifically in the two pairs of lateral PTTH-producing neurosecretory cells in the brain. Analysis of cis-regulatory elements of the PTTH promoter might elucidate the regulatory mechanism controlling PTTH expression. In this study, the PTTH gene promoter of Bombyx mori (Bom-PTTH) was cloned and sequenced. The cis-regulatory elements in Bom-PTTH gene promoter were predicted using Matinspector software, including myocyte-specific enhancer factor 2, pre-B-cell leukemia homeobox 1, TATA box, etc. Transient transfection assays using a series of fragments linked to the luciferase reporter gene indicated that the fragment spanning -110 to +33 bp of the Bom-PTTH promoter showed high ability to support reporter gene expression, but the region of +34 to +192 bp and -512 to -111 bp repressed the promoter activity in the BmN and Bm5 cell lines. Electrophoretic mobility shift assays demonstrated that the nuclear protein could specifically bind to the region spanning -124 to -6 bp of the Bom-PTTH promoter. Furthermore, we observed that the nuclear protein could specifically bind to the -59 to -30 bp region of the Bom-PTTH promoter. A classical TATA box, TATATAA, localized at positions -47 to -41 bp, which is a potential site for interaction with TATA box binding protein (TBP). Mutation of this TATA box resulted in no distinct binding band. Taken together, TATA box was involved in regulation of PTTH gene expression in B. mori.
Collapse
Affiliation(s)
- Zhao-Jun Wei
- Department of Biotechnology, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
26
|
Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Dev Biol 2010; 340:161-9. [DOI: 10.1016/j.ydbio.2009.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/21/2009] [Indexed: 12/26/2022]
|
27
|
Crickmore MA, Ranade V, Mann RS. Regulation of Ubx expression by epigenetic enhancer silencing in response to Ubx levels and genetic variation. PLoS Genet 2009; 5:e1000633. [PMID: 19730678 PMCID: PMC2726431 DOI: 10.1371/journal.pgen.1000633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/05/2009] [Indexed: 11/18/2022] Open
Abstract
For gene products that must be present in cells at defined concentrations, expression levels must be tightly controlled to ensure robustness against environmental, genetic, and developmental noise. By studying the regulation of the concentration-sensitive Drosophila melanogaster Hox gene Ultrabithorax (Ubx), we found that Ubx enhancer activities respond to both increases in Ubx levels and genetic background. Large, transient increases in Ubx levels are capable of silencing all enhancer input into Ubx transcription, resulting in the complete silencing of this gene. Small increases in Ubx levels, brought about by duplications of the Ubx locus, cause sporadic silencing of subsets of Ubx enhancers. Ubx enhancer silencing can also be induced by outcrossing laboratory stocks to D. melanogaster strains established from wild flies from around the world. These results suggest that enhancer activities are not rigidly determined, but instead are sensitive to genetic background. Together, these findings suggest that enhancer silencing may be used to maintain gene product levels within the correct range in response to natural genetic variation. Gene expression is generally governed by cis-regulatory elements, also called enhancers. For genes whose expression levels must be tightly controlled, enhancer activities must be tightly regulated. In this work, we show that enhancers that control the expression of the Hox gene Ultrabithorax (Ubx) in Drosophila are regulated by a negative autoregulatory feedback mechanism. Negative autoregulation can be triggered by less than a two-fold increase in Ubx levels or by varying the genetic background. Together, these data reveal that enhancer activities are not always hardwired, but instead may be sensitive to genetic and environmental variation and, in some cases, to the amount of gene product they regulate. The finding that enhancers are sensitive to genetic background suggests that the regulation of gene expression is more plastic than previously thought and has important implications for how transcription is controlled in vivo.
Collapse
Affiliation(s)
- Michael A. Crickmore
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Vikram Ranade
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mavarez J, Audet C, Bernatchez L. Major disruption of gene expression in hybrids between young sympatric anadromous and resident populations of brook charr (Salvelinus fontinalis Mitchill). J Evol Biol 2009; 22:1708-20. [PMID: 19549137 DOI: 10.1111/j.1420-9101.2009.01785.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-wide analyses of the transcriptome have suggested that male-biased genes are the first targets of genomic incompatibilities (g.i.) in inter-specific hybrids. However, those studies have almost invariably focused on Drosophila species that diverged at least 0.9 Ma, and with sterile male hybrids. Here, we use microarrays to analyse patterns of gene expression in very closely related (divergence <12,000 years), sympatric, but ecologically divergent anadromous and resident populations of brook charr (Salvelinus fontinalis) and their F(1) hybrids. Our results show a dramatic breakdown of gene expression patterns in hybrids compared with their parental relatives. Several disrupted genes are related to energetic metabolism, immune response, osmoregulation and protection against oxidative stress, and none has sex-biased functions. Besides, pure individuals show no expression differences at most of the genes disrupted in hybrids, which may suggest the operation of some form of stabilizing selection. Taken together, these results both confirm the idea that perturbations of regulatory networks represent a significant source of g.i. and support the suggestion that developmental pathways can diverge through time without any manifest change in the phenotypic outcome. While the role of other evolutionary forces (e.g. genetic drift) cannot be ruled out, this study suggests that ecological selective processes may provide the initial driving force behind disruption of gene expression in inter-specific hybrids.
Collapse
Affiliation(s)
- Jesus Mavarez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | | | | |
Collapse
|
29
|
Narlikar L, Ovcharenko I. Identifying regulatory elements in eukaryotic genomes. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:215-30. [PMID: 19498043 DOI: 10.1093/bfgp/elp014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proper development and functioning of an organism depends on precise spatial and temporal expression of all its genes. These coordinated expression-patterns are maintained primarily through the process of transcriptional regulation. Transcriptional regulation is mediated by proteins binding to regulatory elements on the DNA in a combinatorial manner, where particular combinations of transcription factor binding sites establish specific regulatory codes. In this review, we survey experimental and computational approaches geared towards the identification of proximal and distal gene regulatory elements in the genomes of complex eukaryotes. Available approaches that decipher the genetic structure and function of regulatory elements by exploiting various sources of information like gene expression data, chromatin structure, DNA-binding specificities of transcription factors, cooperativity of transcription factors, etc. are highlighted. We also discuss the relevance of regulatory elements in the context of human health through examples of mutations in some of these regions having serious implications in misregulation of genes and being strongly associated with human disorders.
Collapse
Affiliation(s)
- Leelavati Narlikar
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
30
|
Kim J, He X, Sinha S. Evolution of regulatory sequences in 12 Drosophila species. PLoS Genet 2009; 5:e1000330. [PMID: 19132088 PMCID: PMC2607023 DOI: 10.1371/journal.pgen.1000330] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 12/05/2008] [Indexed: 01/07/2023] Open
Abstract
Characterization of the evolutionary constraints acting on cis-regulatory sequences is crucial to comparative genomics and provides key insights on the evolution of organismal diversity. We study the relationships among orthologous cis-regulatory modules (CRMs) in 12 Drosophila species, especially with respect to the evolution of transcription factor binding sites, and report statistical evidence in favor of key evolutionary hypotheses. Binding sites are found to have position-specific substitution rates. However, the selective forces at different positions of a site do not act independently, and the evidence suggests that constraints on sites are often based on their exact binding affinities. Binding site loss is seen to conform to a molecular clock hypothesis. The rate of site loss is transcription factor–specific and depends on the strength of binding and, in some cases, the presence of other binding sites in close proximity. Our analysis is based on a novel computational method for aligning orthologous CRMs on a tree, which rigorously accounts for alignment uncertainties and exploits binding site predictions through a unified probabilistic framework. Finally, we report weak purifying selection on short deletions, providing important clues about overall spatial constraints on CRMs. Our results present a complex picture of regulatory sequence evolution, with substantial plasticity that depends on a number of factors. The insights gained in this study will help us to understand the combinatorial control of gene regulation and how it evolves. They will pave the way for theoretical models that are cognizant of the important determinants of regulatory sequence evolution and will be critical in genome-wide identification of non-coding sequences under purifying or positive selection. The spatial–temporal expression pattern of a gene, which is crucial to its function, is controlled by cis-regulatory DNA sequences. Forming the basic units of regulatory sequences are transcription factor binding sites, often organized into larger modules that determine gene expression in response to combinatorial environmental signals. Understanding the conservation and change of regulatory sequences is critical to our knowledge of the unity as well as diversity of animal development and phenotypes. In this paper, we study the evolution of sequences involved in the regulation of body patterning in the Drosophila embryo. We find that mutations of nucleotides within a binding site are constrained by evolutionary forces to preserve the site's binding affinity to the cognate transcription factor. Functional binding sites are frequently destroyed during evolution and the rate of loss across evolutionary spans is roughly constant. We also find that the evolutionary fate of a site strongly depends on its context; a pair of interacting sites are more likely to survive mutational forces than isolated sites. Together, these findings provide new insights and pose new challenges to our understanding of cis-regulatory sequences and their evolution.
Collapse
Affiliation(s)
- Jaebum Kim
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xin He
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 2008; 4:e1000106. [PMID: 18584029 PMCID: PMC2430619 DOI: 10.1371/journal.pgen.1000106] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/22/2008] [Indexed: 12/31/2022] Open
Abstract
The gene expression pattern specified by an animal regulatory sequence is generally viewed as arising from the particular arrangement of transcription factor binding sites it contains. However, we demonstrate here that regulatory sequences whose binding sites have been almost completely rearranged can still produce identical outputs. We sequenced the even-skipped locus from six species of scavenger flies (Sepsidae) that are highly diverged from the model species Drosophila melanogaster, but share its basic patterns of developmental gene expression. Although there is little sequence similarity between the sepsid eve enhancers and their well-characterized D. melanogaster counterparts, the sepsid and Drosophila enhancers drive nearly identical expression patterns in transgenic D. melanogaster embryos. We conclude that the molecular machinery that connects regulatory sequences to the transcription apparatus is more flexible than previously appreciated. In exploring this diverse collection of sequences to identify the shared features that account for their similar functions, we found a small number of short (20-30 bp) sequences nearly perfectly conserved among the species. These highly conserved sequences are strongly enriched for pairs of overlapping or adjacent binding sites. Together, these observations suggest that the local arrangement of binding sites relative to each other is more important than their overall arrangement into larger units of cis-regulatory function.
Collapse
Affiliation(s)
- Emily E. Hare
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Brant K. Peterson
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Center for Integrative Genomics, University of California Berkeley, Berkeley, California, United States of America
| | - Venky N. Iyer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Center for Integrative Genomics, University of California Berkeley, Berkeley, California, United States of America
- Genomics Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, Berkeley, California, United States of America
| |
Collapse
|
32
|
Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev Cell 2008; 14:86-96. [PMID: 18194655 DOI: 10.1016/j.devcel.2007.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The development of the Drosophila leg requires both Decapentaplegic (Dpp) and Wingless (Wg), two signals that establish the proximo-distal (PD) axis by activating target genes such as Distalless (Dll). Dll expression in the leg depends on a Dpp- and Wg-dependent phase and a maintenance phase that is independent of these signals. Here, we show that accurate Dll expression in the leg results from the synergistic interaction between two cis-regulatory elements. The Leg Trigger (LT) element directly integrates Wg and Dpp inputs and is only active in cells receiving high levels of both signals. The Maintenance (M) element is able to maintain Wg- and Dpp-independent expression, but only when in cis to LT. M, which includes the native Dll promoter, functions as an autoregulatory element by directly binding Dll. The "trigger-maintenance" model describes a mechanism by which secreted morphogens act combinatorially to induce the stable expression of target genes.
Collapse
|
33
|
Noyes MB, Meng X, Wakabayashi A, Sinha S, Brodsky MH, Wolfe SA. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res 2008; 36:2547-60. [PMID: 18332042 PMCID: PMC2377422 DOI: 10.1093/nar/gkn048] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Specificity data for groups of transcription factors (TFs) in a common regulatory network can be used to computationally identify the location of cis-regulatory modules in a genome. The primary limitation for this type of analysis is the paucity of specificity data that is available for the majority of TFs. We describe an omega-based bacterial one-hybrid system that provides a rapid method for characterizing DNA-binding specificities on a genome-wide scale. Using this system, 35 members of the Drosophila melanogaster segmentation network have been characterized, including representative members of all of the major classes of DNA-binding domains. A suite of web-based tools was created that uses this binding site dataset and phylogenetic comparisons to identify cis-regulatory modules throughout the fly genome. These tools allow specificities for any combination of factors to be used to perform rapid local or genome-wide searches for cis-regulatory modules. The utility of these factor specificities and tools is demonstrated on the well-characterized segmentation network. By incorporating specificity data on an additional 66 factors that we have characterized, our tools utilize ∼14% of the predicted factors within the fly genome and provide an important new community resource for the identification of cis-regulatory modules.
Collapse
Affiliation(s)
- Marcus B Noyes
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
34
|
Estella C, Mann RS. Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg. Development 2008; 135:627-36. [PMID: 18184724 DOI: 10.1242/dev.014670] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila leg development requires the cooperation of two secreted signals, Decapentaplegic (Dpp) and Wingless (Wg), to form the proximodistal (PD) axis. Wg and Dpp are also required to pattern the dorsoventral (DV) axis of the leg. Here, we show that Distalless (Dll) and dachshund (dac), genes expressed at different positions along the PD axis, are activated by Wg signaling and repressed by Brinker (Brk), a transcriptional repressor in the Dpp pathway. The levels of both Brk and Wg determine which of these PD genes is activated. Surprisingly, Brk does not play a role in DV axis specification in the leg, suggesting that Dpp uses two distinct mechanisms for generating the PD and DV axes. Based on these results, we present a model for how Dpp and Wg, which are present as dorsal and ventral gradients, respectively, induce nearly circular domains of gene expression along the PD axis.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| | | |
Collapse
|
35
|
Simpson P, Ayyar S. Chapter 3 Evolution of Cis‐Regulatory Sequences in Drosophila. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:67-106. [DOI: 10.1016/s0065-2660(07)00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Zartman JJ, Shvartsman SY. Enhancer Organization: Transistor with a Twist or Something in a Different Vein? Curr Biol 2007; 17:R1048-50. [DOI: 10.1016/j.cub.2007.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Abstract
This is an introductory review on how genes interact to produce biological functions. Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific binding sites can be identified by genomic analysis, and these undergo a stochastic evolution process governed by selection, mutations, and genetic drift. We focus on the links between the biophysical function and the evolution of regulatory elements. In particular, we infer fitness landscapes of binding sites from genomic data, leading to a quantitative evolutionary picture of regulation.
Collapse
Affiliation(s)
- Michael Lässig
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str, 77, 50937 Köln, Germany.
| |
Collapse
|
38
|
Landry CR, Hartl DL, Ranz JM. Genome clashes in hybrids: insights from gene expression. Heredity (Edinb) 2007; 99:483-93. [PMID: 17687247 DOI: 10.1038/sj.hdy.6801045] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In interspecific hybrids, novel phenotypes often emerge from the interaction of two divergent genomes. Interactions between the two transcriptional networks are assumed to contribute to these unpredicted new phenotypes by inducing novel patterns of gene expression. Here we provide a review of the recent literature on the accumulation of regulatory incompatibilities. We review specific examples of regulatory incompatibilities reported at particular loci as well as genome-scale surveys of gene expression in interspecific hybrids. Finally, we consider and preview novel technologies that could help decipher how divergent transcriptional networks interact in hybrids between species.
Collapse
Affiliation(s)
- C R Landry
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
39
|
Janssens TKS, Mariën J, Cenijn P, Legler J, van Straalen NM, Roelofs D. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 2007; 7:88. [PMID: 17562010 PMCID: PMC1913499 DOI: 10.1186/1471-2148-7-88] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/11/2007] [Indexed: 11/16/2022] Open
Abstract
Background Metallothionein (mt) transcription is elevated in heavy metal tolerant field populations of Orchesella cincta (Collembola). This suggests that natural selection acts on transcriptional regulation of mt in springtails at sites where cadmium (Cd) levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (pmt) and their functional significance for mt expression. Results We sequenced approximately 1600 bp upstream the mt coding region by genome walking. Nine pmt alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer) and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in mt induction levels between these two stressors were observed. Conclusion The pmt alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.
Collapse
Affiliation(s)
- Thierry KS Janssens
- Vrije Universiteit, Institute of Ecological Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Janine Mariën
- Vrije Universiteit, Institute of Ecological Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Peter Cenijn
- Vrije Universiteit Amsterdam, Institute for Environmental Studies (IVM), de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - J Legler
- Vrije Universiteit Amsterdam, Institute for Environmental Studies (IVM), de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Nico M van Straalen
- Vrije Universiteit, Institute of Ecological Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Dick Roelofs
- Vrije Universiteit, Institute of Ecological Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
40
|
Mathias D, Jacky L, Bradshaw WE, Holzapfel CM. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 2007; 176:391-402. [PMID: 17339202 PMCID: PMC1893043 DOI: 10.1534/genetics.106.068726] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide variety of temperate animals rely on length of day (photoperiodism) to anticipate and prepare for changing seasons by regulating the timing of development, reproduction, dormancy, and migration. Although the molecular basis of circadian rhythms regulating daily activities is well defined, the molecular basis for the photoperiodic regulation of seasonal activities is largely unknown. We use geographic variation in the photoperiodic control of diapause in the pitcher-plant mosquito Wyeomyia smithii to create the first QTL map of photoperiodism in any animal. For critical photoperiod (CPP), we detect QTL that are unique, a QTL that is sex linked, QTL that overlap with QTL for stage of diapause (SOD), and a QTL that interacts epistatically with the circadian rhythm gene, timeless. Results presented here confirm earlier studies concluding that CPP is under directional selection over the climatic gradient of North America and that the evolution of CPP is genetically correlated with SOD. Despite epistasis between timeless and a QTL for CPP, timeless is not located within any detectable QTL, indicating that it plays an ancillary role in the evolution of photoperiodism in W. smithii. Finally, we highlight one region of the genome that includes loci contributing to CPP, SOD, and hormonal regulation of development.
Collapse
Affiliation(s)
- Derrick Mathias
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403-5289, USA
| | | | | | | |
Collapse
|
41
|
Ohler U. Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Res 2006; 34:5943-50. [PMID: 17068082 PMCID: PMC1635271 DOI: 10.1093/nar/gkl608] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The reliable recognition of eukaryotic RNA polymerase II core promoters, and the associated transcription start sites (TSSs) of genes, has been an ongoing challenge for computational biology. High throughput experimental methods such as tiling arrays or 5' SAGE/EST sequencing have recently lead to much larger datasets of core promoters, and to the assessment that the well-known core promoter sequence elements such as the TATA box appear to be much less frequent than thought. Here, we address the co-occurrence of several previously identified core promoter sequence motifs in Drosophila melanogaster to determine frequently occurring core promoter modules. We then use this in a new strategy to model core promoters as a set of alternative submodels for different core promoter architectures reflecting these different motif modules. We show that this system improves greatly on computational promoter recognition and leads to highly accurate in silico TSS prediction. Our results indicate that at least for the case of the fruit fly, we are getting closer to an understanding of how the beginning of a gene is defined in a eukaryotic genome.
Collapse
Affiliation(s)
- Uwe Ohler
- Institute for Genome Sciences and Policy, Durham, NC 27708, USA.
| |
Collapse
|
42
|
Qian J, Lin J, Zack DJ. Characterization of binding sites of eukaryotic transcription factors. GENOMICS PROTEOMICS & BIOINFORMATICS 2006; 4:67-79. [PMID: 16970547 PMCID: PMC5054036 DOI: 10.1016/s1672-0229(06)60019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To explore the nature of eukaryotic transcription factor (TF) binding sites and determine how they differ from surrounding DNA sequences, we examined four features associated with DNA binding sites: G+C content, pattern complexity, palindromic structure, and Markov sequence ordering. Our analysis of the regulatory motifs obtained from the TRANSFAC database, using yeast intergenic sequences as background, revealed that these four features show variable enrichment in motif sequences. For example, motif sequences were more likely to have palindromic structure than were background sequences. In addition, these features were tightly localized to the regulatory motifs, indicating that they are a property of the motif sequences themselves and are not shared by the general promoter “environment” in which the regulatory motifs reside. By breaking down the motif sequences according to the TF classes to which they bind, more specific associations were identified. Finally, we found that some correlations, such as G+C content enrichment, were species-specific, while others, such as complexity enrichment, were universal across the species examined. The quantitative analysis provided here should increase our understanding of protein-DNA interactions and also help facilitate the discovery of regulatory motifs through bioinformatics.
Collapse
Affiliation(s)
- Jiang Qian
- The Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
43
|
Abstract
Cis-regulatory sequences direct patterns of gene expression essential for development and physiology. Evolutionary changes in these sequences contribute to phenotypic divergence. Despite their importance, cis-regulatory regions remain one of the most enigmatic features of the genome. Patterns of sequence evolution can be used to identify cis-regulatory elements, but the power of this approach depends upon the relationship between sequence and function. Comparative studies of gene regulation among Diptera reveal that divergent sequences can underlie conserved expression, and that expression differences can evolve despite largely similar sequences. This complex structure-function relationship is the primary impediment for computational identification and interpretation of cis-regulatory sequences. Biochemical characterization and in vivo assays of cis-regulatory sequences on a genomic-scale will relieve this barrier.
Collapse
Affiliation(s)
- P J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, 1061 Natural Science Building, 830 North University Ave., Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
44
|
Abstract
Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
45
|
Brown RP, Feder ME. Reverse transcriptional profiling: non-correspondence of transcript level variation and proximal promoter polymorphism. BMC Genomics 2005; 6:110. [PMID: 16107220 PMCID: PMC1192798 DOI: 10.1186/1471-2164-6-110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/17/2005] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Variation in gene expression between two Drosophila melanogaster strains, as revealed by transcriptional profiling, seldom corresponded to variation in proximal promoter sequence for 34 genes analyzed. Two sets of protein-coding genes were selected from pre-existing microarray data: (1) those whose expression varied significantly and reproducibly between strains, and (2) those whose transcript levels did not vary. Only genes whose regulation of expression was uncharacterized were chosen. At least one kB of the proximal promoters of 15-19 genes in each set was sequenced and compared between strains (Oregon R and Russian 2b). RESULTS Of the many promoter polymorphisms, 89.6% were SNPs and 10.4% were indels, including homopolymer tracts, microsatellite repeats, and putative transposable element footprints. More than half of the SNPs were changes within a nucleotide class. Hypothetically, genes differing in expression between the two strains should have more proximal promoter polymorphisms than those whose expression is similar. The number, frequency, and type of polymorphism, however, were the same in both sets of genes. In fact, the promoters of six genes with significantly different mRNA expression were identical in sequence. CONCLUSION For these genes, sequences external to the proximal promoter, such as enhancers or in trans, must play a greater role than the proximal promoter in transcriptomic variation between D. melanogaster strains.
Collapse
Affiliation(s)
- Rebecca Petersen Brown
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Martin E Feder
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Pappu KS, Ostrin EJ, Middlebrooks BW, Sili BT, Chen R, Atkins MR, Gibbs R, Mardon G. Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 2005; 132:2895-905. [PMID: 15930118 DOI: 10.1242/dev.01869] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila eye development is controlled by a conserved network of retinal determination (RD) genes. The RD genes encode nuclear proteins that form complexes and function in concert with extracellular signal-regulated transcription factors. Identification of the genomic regulatory elements that govern the eye-specific expression of the RD genes will allow us to better understand how spatial and temporal control of gene expression occurs during early eye development. We compared conserved non-coding sequences (CNCSs) between five Drosophilids along the approximately 40 kb genomic locus of the RD gene dachshund (dac). Our analysis uncovers two separate eye enhancers in intron eight and the 3' non-coding regions of the dac locus defined by clusters of highly conserved sequences. Loss- and gain-of-function analyses suggest that the 3' eye enhancer is synergistically activated by a combination of eya, so and dpp signaling, and only indirectly activated by ey, whereas the 5' eye enhancer is primarily regulated by ey, acting in concert with eya and so. Disrupting conserved So-binding sites in the 3' eye enhancer prevents reporter expression in vivo. Our results suggest that the two eye enhancers act redundantly and in concert with each other to integrate distinct upstream inputs and direct the eye-specific expression of dac.
Collapse
Affiliation(s)
- Kartik S Pappu
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Papatsenko D, Levine M. Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo. Proc Natl Acad Sci U S A 2005; 102:4966-71. [PMID: 15795372 PMCID: PMC555988 DOI: 10.1073/pnas.0409414102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 01/26/2023] Open
Abstract
Dorsal is a sequence-specific transcription factor that is distributed in a broad nuclear gradient across the dorsal-ventral (DV) axis of the early Drosophila embryo. It initiates gastrulation by regulating at least 30-50 target genes in a concentration-dependent fashion. Previous studies identified 18 enhancers that are directly regulated by different concentrations of Dorsal. Here, we employ computational methods to determine the basis for these distinct transcriptional outputs. Orthologous enhancers were identified in a variety of divergent Drosophila species, and their comparison revealed several conserved sequence features responsible for DV patterning. In particular, the quality of Dorsal and Twist recognition sequences correlates with the DV coordinates of gene expression relative to the Dorsal gradient. These findings are entirely consistent with a gradient threshold model for DV patterning, whereby the quality of individual Dorsal binding sites determines in vivo occupancy of target enhancers by the Dorsal gradient. Linked Dorsal and Twist binding sites constitute a conserved composite element in certain "type 2" Dorsal target enhancers, which direct gene expression in ventral regions of the neurogenic ectoderm in response to intermediate levels of the Dorsal gradient. Similar motif arrangements were identified in orthologous loci in the distant mosquito genome, Anopheles gambiae. We discuss how Dorsal and Twist work either additively or synergistically to activate different target enhancers.
Collapse
Affiliation(s)
- Dmitri Papatsenko
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 16 Barker Hall No. 3204, Berkeley, CA 94720-3204, USA.
| | | |
Collapse
|
48
|
Abstract
Lack of knowledge about how regulatory regions evolve in relation to their structure-function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module-the even-skipped stripe 2 enhancer-from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure-function, mechanisms of speciation and computational identification of regulatory modules.
Collapse
|
49
|
Oda-Ishii I, Bertrand V, Matsuo I, Lemaire P, Saiga H. Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 2005; 132:1663-74. [PMID: 15743880 DOI: 10.1242/dev.01707] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ascidian embryos develop with a fixed cell lineage into simple tadpoles. Their lineage is almost perfectly conserved, even between the evolutionarily distant species Halocynthia roretzi and Ciona intestinalis, which show no detectable sequence conservation in the non-coding regions of studied orthologous genes. To address how a common developmental program can be maintained without detectable cis-regulatory sequence conservation, we compared in both species the regulation of Otx, a gene with a shared complex expression pattern. We found that in Halocynthia, the regulatory logic is based on the use of very simple cell line-specific regulatory modules, the activities of which are conserved, in most cases, in the Ciona embryo. The activity of each of these enhancer modules relies on the conservation of a few repeated crucial binding sites for transcriptional activators, without obvious constraints on their precise number, order or orientation, or on the surrounding sequences. We propose that a combination of simplicity and degeneracy allows the conservation of the regulatory logic, despite drastic sequence divergence. The regulation of Otx in the anterior endoderm by Lhx and Fox factors may even be conserved with vertebrates.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
50
|
Zhu C, Perry SE. Control of expression and autoregulation of AGL15, a member of the MADS-box family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:583-94. [PMID: 15686521 DOI: 10.1111/j.1365-313x.2004.02320.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AGL15 is an Arabidopsis thaliana MADS-domain regulatory factor that not only preferentially accumulates during embryogenesis but is also expressed at lower levels after the completion of germination. To better understand the control of expression of AGL15, a series of 5' and internal deletions within the regulatory regions of AGL15 was generated. Regions important for the level of expression, including a region involved in expression in response to auxin, were identified. Additionally, AGL15 expression was found to respond to AGL15 accumulation amounts and to altered forms of AGL15. This feedback loop is at least in part due to direct regulation, as assessed by in vivo and in vitro binding of AGL15 to its own regulatory regions and by site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Cong Zhu
- Department of Agronomy, University of Kentucky, Lexington, KY 40546-0312, USA
| | | |
Collapse
|