1
|
Anaganti N, Ujaoney AK, Padwal MK, Basu B. Biochemical characterization and functional insights into DNA substrate-specific activities of a unique radiation-inducible DR1143 protein from Deinococcus radiodurans. Int J Biol Macromol 2025; 310:143214. [PMID: 40250669 DOI: 10.1016/j.ijbiomac.2025.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The highly radiation-resistant bacterium Deinococcus radiodurans R1 employs various pathways to respond to radiation and other genotoxic stresses, involving the upregulation of several genes. Despite decades of study, the functions of many D. radiodurans genes remain unknown. Among them, the DR1143 gene has been reported transiently induced during the early phase of post-irradiation recovery. The DR1143 protein has been detected in the interactomes of key DNA repair proteins, including Ssb, RecA, and DdrB, suggesting its involvement in DNA repair processes. Our study revealed that DR1143 exhibits structural similarity to structural maintenance proteins (SMC) and exists as a hexamer in its soluble form. The protein showed a preference for binding longer DNA molecules (≥2 kb) and interacted differentially with various DNA forms. It bound single-stranded DNA (ssDNA) with high affinity, compacted, and protected it, indicating a potential role in safeguarding ssDNA during repair. DR1143 also created a single-strand nick in circular double-stranded DNA (dsDNA) while simply binding to linear dsDNA. Its nickase activity likely facilitates DNA end resection and relaxation, a critical step in repair processes. Localization studies using GFP-tagged DR1143 showed its accumulation at cell poles in both Escherichia coli and D. radiodurans, hinting at a functional role in specific subcellular compartments.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Rey P, Rouhier N, Carassus C, de Groot A, Blanchard L. Participation of a cysteine tetrad in the recycling mechanism of methionine sulfoxide reductase A from radiation-tolerant Deinococcus bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141063. [PMID: 39929330 DOI: 10.1016/j.bbapap.2025.141063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
Methionine oxidation leads to the formation of methionine sulfoxide (MetO), which is reduced back to Met by methionine sulfoxide reductases (Msrs). The catalytic mechanism used by A-type Msr (MsrA) for MetO reduction requires a catalytic cysteine (Cys), which is converted to a sulfenic acid. In general, two resolving Cys are required for the regeneration of the catalytic Cys forming two consecutive disulfide bridges, the last one being efficiently reduced by thioredoxin (Trx). Here, we performed the biochemical characterization of MsrA from Deinococcus deserti. It possesses four Cys, two present in the active site motif (18 and 21) and two distal ones (53 and 163). We produced MsrA variants mutated for these cysteines and analyzed their capacity to reduce MetO in the presence of the NADPH-Trx reductase/Trx system, their ability to form heterodimers with Trxs, and their redox status after incubation with MetO. We show that all four Cys are involved in the regeneration process of enzyme activity by Trx. After MetO reduction by Cys18, a first disulfide bridge is formed with Cys21. A second disulfide involving Cys21 with either Cys53 or Cys163 is reduced by Trx, and a third Cys53-Cys163 disulfide can be formed and also reduced by Trx. These findings highlighting for the first time the involvement of a Cys tetrad in the catalytic and regeneration mechanisms for a MsrA are placed in a structural context by performing 3D modelling and discussed in relation to the known recycling mechanisms involving a Cys triad.
Collapse
Affiliation(s)
- Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul-Lez-Durance F-13115, France
| | | | - Chloé Carassus
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul-Lez-Durance F-13115, France; Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France
| | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France.
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France.
| |
Collapse
|
3
|
Wang W, Qi Z, Yan C, Zhou Z, Wang J. A Cold-Induced LEA3 Protein, DohD, Confers Cryoprotective Protection Against Low-Temperature Stress in Deinococcus radiodurans. Int J Mol Sci 2025; 26:3511. [PMID: 40332004 PMCID: PMC12027078 DOI: 10.3390/ijms26083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Deinococcus radiodurans is a remarkably unique microorganism, exhibiting extraordinary tolerance to extreme conditions such as ionizing radiation, ultraviolet light, and desiccation. However, the response mechanisms of D. radiodurans under low-temperature stress remain largely unexplored and have yet to be fully elucidated. The DohD protein is a hydrophilic member of the late embryogenesis abundant 3 (LEA3) family of D. radiodurans, playing a pivotal role in abiotic stress adaptation. Bioinformatics analysis revealed that DohD contains tandem repeats and disordered domains, with a remarkably high α-helix content (91.41%). Furthermore, DohD exhibits extremely low homology with other proteins, highlighting its uniqueness to D. radiodurans. Under low-temperature stress (15 °C), the expression of dohD was significantly upregulated (5-fold), regulated by a dual mechanism involving positive control by DrRRA and negative regulation by Csp. Circular dichroism spectroscopy unveiled temperature-dependent structural plasticity: as the temperature increased from 0 °C to 50° C, the α-helix content decreased from 23.5% to 18.7%, while the antiparallel β-sheet content increased from 31.3% to 50.8%. This suggests an α-helix to β-sheet interconversion mechanism as a strategy for thermal adaptation. Additionally, deletion of dohD impaired the tolerance of D. radiodurans to cold, desiccation, oxidative, and high-salt stresses, accompanied by the reduced activities of antioxidant enzymes (SOD, CAT, POD) and the downregulation of related gene expression. This study elucidates the multifunctional role of DohD in stress resistance through structural dynamics, transcriptional regulation, and redox homeostasis, providing valuable insights into the adaptation mechanisms of extremophiles.
Collapse
Affiliation(s)
- Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhengfu Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Qiu QT, Zhang CY, Gao ZP, Ma BG. Spatial chromosome organization and adaptation of the radiation-resistant extremophile Deinococcus radiodurans. J Biol Chem 2025; 301:108068. [PMID: 39667503 PMCID: PMC11758949 DOI: 10.1016/j.jbc.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Radiation-resistant Deinococcus radiodurans is an extremophilic microorganism capable of withstanding high levels of ionizing radiation and chemical mutagens. It possesses remarkable DNA repair capability and serves as a model organism for studying stress resistance mechanisms. However, our understanding of the spatial chromosome organization of this species remains limited. In this study, we employed chromosome conformation capture (3C) technology to determine the 3D genome structure of D. radiodurans and to further investigate the changes of chromosome conformation induced by ultraviolet (UV) irradiation. We observed that UV irradiation reduced short-range chromosome interactions, and smaller chromosomal interaction domains (CIDs) merged to form larger CIDs. Integrating transcriptomic data analysis, we found that the majority of upregulated differentially expressed genes were significantly enriched near specific CID boundaries. Specifically, we comprehensively elucidated that the nucleoid-associated protein DrEbfC as a global regulatory factor for gene expression, may modulate the efficiency of relevant metabolic pathways by altering the local chromosome structure, thereby influencing the physiological state of the bacterium. Overall, our study revealed the chromosome conformations of D. radiodurans under different conditions and offered valuable insights into the molecular response mechanism of this extremophile to survival stresses.
Collapse
Affiliation(s)
- Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Cai-Yun Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Peng Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Li Y, Niu H, Li S, Yue M, Zhang G. UV-C Exposure Enhanced the Cd 2+ Adsorption Capability of the Radiation-Resistant Strain Sphingomonas sp. M1-B02. Microorganisms 2024; 12:2620. [PMID: 39770822 PMCID: PMC11678681 DOI: 10.3390/microorganisms12122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Microbial adsorption is a cost-effective and environmentally friendly remediation method for heavy metal pollution. The adsorption mechanism of cadmium (Cd) by bacteria inhabiting extreme environments is largely unexplored. This study describes the biosorption of Cd2+ by Sphingomonas sp. M1-B02, which was isolated from the moraine on the north slope of Mount Everest and has a good potential for biosorption. The difference in Cd2+ adsorption of the strain after UV irradiation stimulation indicated that the adsorption reached 68.90% in 24 h, but the adsorption after UV irradiation increased to 80.56%. The genome of strain M1-B02 contained antioxidant genes such as mutL, recA, recO, and heavy metal repair genes such as RS14805, apaG, chrA. Hydroxyl, nitro, and etceteras bonds on the bacterial surface were involved in Cd2+ adsorption through complexation reactions. The metabolites of the strains were significantly different after 24 h of Cd2+ stress, with pyocyanin, L-proline, hypoxanthine, etc., being downregulated and presumably involved in Cd2+ biosorption and upregulated after UV-C irradiation, which may explain the increase in Cd2+ adsorption capacity of the strain after UV-C irradiation, while the strain improved the metabolism of the antioxidant metabolite carnosine, indirectly increasing the adsorption capacity of the strains for Cd2+.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi’an 710069, China; (Y.L.); (S.L.)
- Department of Life Science, Northwest University, Xi’an 710069, China
| | - Haoyuan Niu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Shuang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi’an 710069, China; (Y.L.); (S.L.)
- Department of Life Science, Northwest University, Xi’an 710069, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi’an 710069, China; (Y.L.); (S.L.)
- Department of Life Science, Northwest University, Xi’an 710069, China
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710106, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| |
Collapse
|
7
|
Singhvi N, Talwar C, Nagar S, Verma H, Kaur J, Mahato NK, Ahmad N, Mondal K, Gupta V, Lal R. Insights into the radiation and oxidative stress mechanisms in genus Deinococcus. Comput Biol Chem 2024; 112:108161. [PMID: 39116702 DOI: 10.1016/j.compbiolchem.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Deinococcus species, noted for their exceptional resistance to DNA-damaging environmental stresses, have piqued scientists' interest for decades. This study dives into the complex mechanisms underpinning radiation resistance in the Deinococcus genus. We have examined the genomes of 82 Deinococcus species and classified radiation-resistance proteins manually into five unique curated categories: DNA repair, oxidative stress defense, Ddr and Ppr proteins, regulatory proteins, and miscellaneous resistance components. This classification reveals important information about the various molecular mechanisms used by these extremophiles which have been less explored so far. We also investigated the presence or lack of these proteins in the context of phylogenetic relationships, core, and pan-genomes, which offered light on the evolutionary dynamics of radiation resistance. This comprehensive study provides a deeper understanding of the genetic underpinnings of radiation resistance in the Deinococcus genus, with potential implications for understanding similar mechanisms in other organisms using an interactomics approach. Finally, this study reveals the complexities of radiation resistance mechanisms, providing a comprehensive understanding of the genetic components that allow Deinococcus species to flourish under harsh environments. The findings add to our understanding of the larger spectrum of stress adaption techniques in bacteria and may have applications in sectors ranging from biotechnology to environmental research.
Collapse
Affiliation(s)
- Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
| | - Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shekhar Nagar
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Jasvinder Kaur
- Department of Zoology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
| | - Krishnendu Mondal
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun 248001, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun 248001, India.
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi 110019, India.
| |
Collapse
|
8
|
Wang X, Liu Y, Chen Z, Wang K, Liu G, Chen T, Zhang B. Genomic Functional Analysis of Novel Radiation-Resistant Species of Knollia sp. nov. S7-12 T from the North Slope of Mount Everest. Microorganisms 2024; 12:1748. [PMID: 39338423 PMCID: PMC11433714 DOI: 10.3390/microorganisms12091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation protection is an important field of study, as it relates to human health and environmental safety. Radiation-resistance mechanisms in extremophiles are a research hotspot, as this knowledge has great application value in bioremediation and development of anti-radiation drugs. Mount Everest, an extreme environment of high radiation exposure, harbors many bacterial strains resistant to radiation. However, owing to the difficulties in studying them because of the extreme terrain, many remain unexplored. In this study, a novel species (herein, S7-12T) was isolated from the moraine of Mount Everest, and its morphology and functional and genomic characteristics were analyzed. The strain S7-12T is white in color, smooth and rounded, non-spore-forming, and non-motile and can survive at a UV intensity of 1000 J/m2, showing that it is twice as resistant to radiation as Deinococcus radiodurans. Radiation-resistance genes, including IbpA and those from the rec and CspA gene families, were identified. The polyphasic taxonomic approach revealed that the strain S7-12T (=KCTC 59114T =GDMCC 1.3458T) is a new species of the genus Knoellia and is thus proposed to be named glaciei. The in-depth study of the genome of strain S7-12T will enable us to gain further insights into its potential use in radiation resistance. Understanding how microorganisms resist radiation damage could reveal potential biomarkers and therapeutic targets, leading to the discovery of potent anti-radiation compounds, thereby improving human resistance to the threat of radiation.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Zahradka K, Zahradka D, Repar J. Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories. Genes (Basel) 2024; 15:847. [PMID: 39062626 PMCID: PMC11276467 DOI: 10.3390/genes15070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterium Deinococcus radiodurans is known to efficiently and accurately reassemble its genome after hundreds of DNA double-strand breaks (DSBs). Only at very large amounts of radiation-induced DSBs is this accuracy affected in the wild-type D. radiodurans, causing rearrangements in its genome structure. However, changes in its genome structure may also be possible during the propagation and storage of cell cultures. We investigate this possibility by listing structural differences between three completely sequenced genomes of D. radiodurans strains with a recent common ancestor-the type strain stored and sequenced in two different laboratories (of the ATCC 13939 lineage) and the first sequenced strain historically used as the reference (ATCC BAA-816). We detected a number of structural differences and found the most likely mechanisms behind them: (i) transposition/copy number change in mobile interspersed repeats-insertion sequences and small non-coding repeats, (ii) variable number of monomers within tandem repeats, (iii) deletions between long direct DNA repeats, and (iv) deletions between short (4-10 bp) direct DNA repeats. The most surprising finding was the deletions between short repeats because it indicates the utilization of a less accurate DSB repair mechanism in conditions in which a more accurate one should be both available and preferred. The detected structural differences, as well as SNPs and short indels, while being important footprints of deinococcal DNA metabolism and repair, are also a valuable resource for researchers using these D. radiodurans strains.
Collapse
Affiliation(s)
| | | | - Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (K.Z.); (D.Z.)
| |
Collapse
|
10
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
11
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Cheng L, Mu H, Zhang X, Jiang P, Liu L, Li J. Deinococcus arenicola sp. nov., a novel radiation-resistant bacterium isolated from sandy soil in Antarctica. Int J Syst Evol Microbiol 2024; 74. [PMID: 38787370 DOI: 10.1099/ijsem.0.006397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).
Collapse
Affiliation(s)
- Li Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Hongmei Mu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Xinyu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Peiqiang Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Lukuan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Jing Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| |
Collapse
|
13
|
Petersen C, Buonanno M, Guan L, Hinzer A, Urbano J, Hashmi R, Shuryak I, Parker C, Welch D. Susceptibility of extremophiles to far-UVC light for bioburden reduction in spacecraft assembly facilities. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:56-63. [PMID: 38670653 DOI: 10.1016/j.lssr.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 04/28/2024]
Abstract
The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200-230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, Deinococcus radiodurans, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm2 required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, Bacillus pumilus spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D90 of 6.8 mJ/cm2). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.
Collapse
Affiliation(s)
- Camryn Petersen
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Lisa Guan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Akemi Hinzer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Joshua Urbano
- California State Polytechnic University, Pomona, CA, United States
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
14
|
Modi M, Thambiraja M, Cherukat A, Yennamalli RM, Priyadarshini R. Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1. BMC Microbiol 2024; 24:101. [PMID: 38532329 DOI: 10.1186/s12866-024-03225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.
Collapse
Affiliation(s)
- Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Menaka Thambiraja
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Archana Cherukat
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
- Department of Biology, Graduate School of Arts and Sciences, Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
15
|
Timkina E, Kulišová M, Palyzová A, Marešová H, Maťátková O, Řezanka T, Kolouchová IJ. Isolation and characterization of multiple-stress tolerant bacteria from radon springs. PLoS One 2024; 19:e0299532. [PMID: 38451953 PMCID: PMC10919644 DOI: 10.1371/journal.pone.0299532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Radon springs, characterized by their high concentrations of radon gas (Rn222), are extreme environments with unique physicochemical conditions distinct from conventional aquatic ecosystems. Our research aimed to investigate microbial life in radon springs, focusing on isolating extremophilic bacteria and assessing their resistance to adverse conditions. Our study revealed the prevalence of Actinomycetia species in the radon spring environment. We conducted various tests to evaluate the resistance of these isolates to oxidative stress, irradiation, desiccation, and metal ion content. These extremophilic bacteria showed overall higher resistance to these stresses compared to control strains. Lipidomic analysis was also employed to provide insights into the adaptive mechanisms of these bacteria which were found mainly in the correlations among individual clusters and changes in content of fatty acids (FA) as well as differences between content and type of FAs of environmental isolates and type strains.
Collapse
Affiliation(s)
- Elizaveta Timkina
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Marketa Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
16
|
Kordesedehi R, Shahpiri A, Asadollahi MA, Biria D, Nikel PI. Enhanced chaotrope tolerance and (S)-2-hydroxypropiophenone production by recombinant Pseudomonas putida engineered with Pprl from Deinococcus radiodurans. Microb Biotechnol 2024; 17:e14448. [PMID: 38498302 PMCID: PMC10946676 DOI: 10.1111/1751-7915.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.
Collapse
Affiliation(s)
- Reihaneh Kordesedehi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Azar Shahpiri
- Department of Biotechnology, College of AgricultureIsfahan University of TechnologyIsfahanIran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Davoud Biria
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
17
|
Gao F, Li H, Tang K, Zhang T, Bao R, Feng F. Deinococcus rhizophilus sp.nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38226562 DOI: 10.1099/ijsem.0.006232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
A spherical, pink, aerobic, Gram-stain-positive bacterial strain (MIMF12T) was isolated from rhizosphere soil collected in the Inner Mongolia Autonomous Region, PR China. Cellular growth of the strain was observed at pH 6.0-8.0 (optimum, pH 7.0), at 20-37 °C (optimum, 28 °C) and with 0-1 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain MIMF12T was most closely related to Deinococcus terrestris SDU3-2T with a similarity value of 96.0 %. The respiratory quinone was menaquinone 8, the major fatty acids were C15 : 1 ω6c and C17 : 1 ω8c, and the major polar lipids were composed of two aminophospholipids, one phospholipid and four unidentified lipids. The G+C content of the genomic DNA was 70.1 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain MIMF12T and the closest related type strain SDU3-2T were 88.1 and 52.1 %, respectively. The discovery that MIMF12T differs not only from validly named species in the genus Deinococcus, but also from currently unnamed species in the GDTB, gives us new insights into the genus. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, strain MIMF12T represents a novel species of the genus Deinococcus, for which the name Deinococcus rhizophilus sp. nov. is proposed. The type strain is MIMF12T (=CGMCC 1.61579T=KCTC 43572T).
Collapse
Affiliation(s)
- Fengzhi Gao
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Heng Li
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Kai Tang
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Tingting Zhang
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Runze Bao
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Fuying Feng
- Laboratory of Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| |
Collapse
|
18
|
Nisson DM, Kieft TL, Castillo J, Perl SM, Onstott TC. Radiolytic support for oxidative metabolism in an ancient subsurface brine system. ISME COMMUNICATIONS 2024; 4:ycae138. [PMID: 39660010 PMCID: PMC11630799 DOI: 10.1093/ismeco/ycae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs. The relative inaccessibility and low biomass of such systems has led to limited understanding of microbial taxonomic distribution, metabolism, and survival under abiotic stress exposure in these extreme environments. In this study, taxonomic and metabolic annotations of 95 single-cell amplified genomes were obtained for one low biomass (103-104 cells/ml), hypersaline (246 g/L), and radiolytically enriched brine obtained from 3.1 km depth in South Africa's Moab Khotsong mine. The majority of single-cell amplified genomes belonged to three halophilic families (Halomondaceae (58%), Microbacteriaceae (24%), and Idiomarinaceae (8%)) and did not overlap with any family-level identifications from service water or a less saline dolomite aquifer sampled in the same mine. Functional annotation revealed complete metabolic modules for aerobic heterotrophy (organic acids and xenobiotic oxidation), fermentation, denitrification, and thiosulfate oxidation, suggesting metabolic support in a microoxic environment. Single-cell amplified genomes also contained complete modules for degradation of complex organics, amino acid and nucleotide synthesis, and motility. This work highlights a long-isolated subsurface fluid system with microbial metabolism fueled by radiolytically generated substrates, including O2, and suggests subsurface brines with high radionuclide concentrations as putatively habitable and redox-sustainable environments over long (ka-Ga) timescales.
Collapse
Affiliation(s)
- Devan M Nisson
- Department of Geosciences, Princeton University, Princeton, NJ 08540, United States
| | - Thomas L Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, United States
| | - Julio Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Scott M Perl
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, CA 90007, United States
- Blue Marble Space Institute of Science, Seattle, WA 98104, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08540, United States
| |
Collapse
|
19
|
Kovács M, Wojnárovits L, Homlok R, Tegze A, Mohácsi-Farkas C, Takács E, Belák Á. Changes in the behavior of Staphylococcus aureus strains in the presence of oxacillin under the effect of gamma radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122843. [PMID: 37918768 DOI: 10.1016/j.envpol.2023.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Staphylococcus aureus (S. aureus) as a major pathogen is implicated in a wide range of foodborne and hospital-acquired infections, its methicillin resistant variants contribute to the spread of β-lactam antibiotic resistance. It is essentially important to destroy these pathogens, their resistance genes and the antibiotics in wastewaters. For this purpose reactions of reactive radicals (advanced oxidation processes), first of all hydroxyl radicals (•OH), are suggested. Here the radiolysis of water supplied these radicals. In the experiments B.01755 oxacillin sensitive and B.02174 resistant S. aureus strains were used to study their behaviorr in suspensions under the effect of irradiation in presence and absence of oxacillin. Oxacillin inactivation depended on concentration of the antibiotic used (0.042 and 1 g dm-3), higher concentration required a higher dose. When 106-109 CFU cm-3 S. aureus suspensions were irradiated with γ-radiation the bacteria were inactivated at low absorbed doses: 4 orders of magnitude decrease ocurred in the number of culturable cells at ∼0.6 kGy dose. Both cell membrane and DNA suffered considerable damages during irradiation. Due to the membrane damage the cells could not be stained, and the DNA content of cells in several days period was released into the solution. In DNA damage the oxacillin resistance mecA gene was also modified, it did not multiply in PCR test. These findings are important from the point of view of applying irradiation technology to stop the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Mónika Kovács
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| | - László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Renáta Homlok
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Anna Tegze
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| | - Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| |
Collapse
|
20
|
Guo Q, Zhan Y, Zhang W, Wang J, Yan Y, Wang W, Lin M. Development and Regulation of the Extreme Biofilm Formation of Deinococcus radiodurans R1 under Extreme Environmental Conditions. Int J Mol Sci 2023; 25:421. [PMID: 38203592 PMCID: PMC10778927 DOI: 10.3390/ijms25010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.
Collapse
Affiliation(s)
- Qiannan Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhua Zhan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
de Groot A, Blanchard L. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi. Can J Microbiol 2023; 69:416-431. [PMID: 37552890 DOI: 10.1139/cjm-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
22
|
Wang D, Li M, Yang Y, Gao Y, Liu B, Wu W, Xu Y, Wei Y. Genome-based reclassification of Deinococcus saudiensis Hussain et al. 2016 as a later heterotypic synonym of Deinococcus soli Cha et al. 2014. Int J Syst Evol Microbiol 2023; 73. [PMID: 37934673 DOI: 10.1099/ijsem.0.006162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Deinococcus saudiensis YIM F302T was compared with Deinococcus soli N5T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of D. saudiensis YIM F302T showed high similarity (99.9 %) to that of D. soli N5T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Deinococcus. A draft genomic comparison between the two strains revealed average nucleotide identity values of 96.8-97.9 % and a digital DNA-DNA hybridization estimate of 80.7±1.9 %, strongly indicating that the two strains represented a single species. Based on the combined phylogenetic, genomic and phenotypic characterization presented here, we propose D. saudiensis as a later heterotypic synonym of D. soli N5T.
Collapse
Affiliation(s)
- Di Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Mengyuan Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuxue Yang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuxin Gao
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, PR China
| | - Bilin Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Weichao Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yunping Xu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
23
|
Rollo F, Martins GD, Gouveia AG, Ithurbide S, Servant P, Romão CV, Moe E. Insights into the role of three Endonuclease III enzymes for oxidative stress resistance in the extremely radiation resistant bacterium Deinococcus radiodurans. Front Microbiol 2023; 14:1266785. [PMID: 37771704 PMCID: PMC10523315 DOI: 10.3389/fmicb.2023.1266785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two.
Collapse
Affiliation(s)
- Filipe Rollo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Guilherme D. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Deinococcus lineage and Rad52 family-related protein DR0041 is involved in DNA protection and compaction. Int J Biol Macromol 2023; 248:125885. [PMID: 37473881 DOI: 10.1016/j.ijbiomac.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
DR0041 ORF encodes an uncharacterized Deinococcus lineage protein. We earlier reported presence of DR0041 protein in DNA repair complexes of Ssb and RecA in Deinococcus radiodurans. Here, we systematically examined the role of DR0041 in DNA metabolism using various experimental methodologies including electrophoretic mobility assays, nuclease assays, strand exchange assays and transmission electron microscopy. Interaction between DR0041 and the C-terminal acidic tail of Ssb was assessed through co-expression and in vivo cross-linking studies. A knockout mutant was constructed to understand importance of DR0041 ORF for various physiological processes. Results highlight binding of DR0041 protein to single-stranded and double-stranded DNA, interaction with Ssb-coated single-stranded DNA without interference with RecA-mediated strand exchange, protection of DNA from exonucleases, and compaction of high molecular weight DNA molecules into tightly condensed forms. Bridging and compaction of sheared DNA by DR0041 protein might have implications in the preservation of damaged DNA templates to maintain genome integrity upon exposure to gamma irradiation. Our results suggest that DR0041 protein is dispensable for growth under standard growth conditions and following gamma irradiation but contributes to protection of DNA during transformation. We discuss the role of DR0041 protein from the perspective of protection of broken DNA templates and functional redundancy.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
25
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
26
|
Abrevaya XC, Galante D, Tribelli PM, Oppezzo OJ, Nóbrega F, Araujo GG, Rodrigues F, Odert P, Leitzinger M, Ricardi MM, Varela ME, Gallo T, Sanz-Forcada J, Ribas I, Porto de Mello GF, Rodler F, Cerini MF, Hanslmeier A, Horvath JE. Protective Effects of Halite to Vacuum and Vacuum-Ultraviolet Radiation: A Potential Scenario During a Young Sun Superflare. ASTROBIOLOGY 2023; 23:245-268. [PMID: 36577046 DOI: 10.1089/ast.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.
Collapse
Affiliation(s)
- Ximena C Abrevaya
- Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, Pabellón IAFE, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Centro Atómico Constituyentes, Argentina
| | | | - Gabriel G Araujo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Petra Odert
- Institute of Physics, University of Graz, Graz, Austria
| | | | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Varela
- Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE-CONICET), San Juan, Argentina
| | - Tamires Gallo
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | - Ignasi Ribas
- Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Bellaterra, Spain
- Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
| | | | | | | | | | - Jorge E Horvath
- Instituto de Astronomía, Geofísica e Ciencias Atmosfericas (IAG), Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Westover C, Rahmatulloev S, Danko D, Afshin EE, O’Hara NB, Ounit R, Bezdan D, Mason CE. Ozone Disinfection for Elimination of Bacteria and Degradation of SARS-CoV2 RNA for Medical Environments. Genes (Basel) 2022; 14:85. [PMID: 36672826 PMCID: PMC9858956 DOI: 10.3390/genes14010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections. Current disinfection protocols do not address hard-to-access areas or may be beyond line-of-sight treatment, such as with ultraviolet radiation. The COVID-19 pandemic further underscores the demand for reliable and effective disinfection methods to sterilize a wide array of surfaces and to keep up with the supply of personal protective equipment (PPE). We tested the efficacy of Sani Sport ozone devices to treat hospital equipment and surfaces for killing Escherichia coli, Enterococcus faecalis, Bacillus subtilis, and Deinococcus radiodurans by assessing Colony Forming Units (CFUs) after 30 min, 1 h, and 2 h of ozone treatment. Further gene expression analysis was conducted on live E. coli K12 immediately post treatment to understand the oxidative damage stress response transcriptome profile. Ozone treatment was also used to degrade synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as assessed by qPCR CT values. We observed significant and rapid killing of medically relevant and environmental bacteria across four surfaces (blankets, catheter, remotes, and syringes) within 30 min, and up to a 99% reduction in viable bacteria at the end of 2 h treatment cycles. RNA-seq analysis of E. coli K12 revealed 447 differentially expressed genes in response to ozone treatment and an enrichment for oxidative stress response and related pathways. RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into ozone treatment as compared to non-treated controls, and a non-replicative form of the virus was shown to have significant RNA degradation at 30 min. These results show the strong promise of ozone treatment of surfaces for reducing the risk of hospital-acquired infections and as a method for degradation of SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Craig Westover
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Savlatjon Rahmatulloev
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Danko
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY 10044, USA
| | - Evan E. Afshin
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Niamh B. O’Hara
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY 10044, USA
| | - Rachid Ounit
- Department of Computer Science & Engineering, University of California, Riverside, CA 92521, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72074 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72074 Tübingen, Germany
- Yuri GmbH, 88074 Meckenbeuren, Germany
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY 10044, USA
- The Feil Family Brain and Mind Research Institute, New York, NY 10065, USA
| |
Collapse
|
28
|
Liu Y, Zhang Z, Ji M, Hu A, Wang J, Jing H, Liu K, Xiao X, Zhao W. Comparison of prokaryotes between Mount Everest and the Mariana Trench. MICROBIOME 2022; 10:215. [PMID: 36476562 PMCID: PMC9727886 DOI: 10.1186/s40168-022-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Mariana Trench will provide a unique perspective to understanding the composition and distribution of environmental microbiomes on Earth. RESULTS Here, we compared prokaryotic communities between Mount Everest and the Mariana Trench based on shotgun metagenomic analysis. Analyzing 25 metagenomes and 1176 metagenome-assembled genomes showed distinct taxonomic compositions between Mount Everest and the Mariana Trench, with little taxa overlap, and significant differences in genome size, GC content, and predicted optimal growth temperature. However, community metabolic capabilities exhibited striking commonality, with > 90% of metabolic modules overlapping among samples of Mount Everest and the Mariana Trench, with the only exception for CO2 fixations (photoautotrophy in Mount Everest but chemoautotrophy in the Mariana Trench). Most metabolic pathways were common but performed by distinct taxa in the two extreme habitats, even including some specialized metabolic pathways, such as the versatile degradation of various refractory organic matters, heavy metal metabolism (e.g., As and Se), stress resistance, and antioxidation. The metabolic commonality indicated the overall consistent roles of prokaryotes in elemental cycling and common adaptation strategies to overcome the distinct stress conditions despite the intuitively huge differences in Mount Everest and the Mariana Trench. CONCLUSION Our results, the first comparison between prokaryotes in the highest and the deepest habitats on Earth, may highlight the principles of prokaryotic diversity: although taxa are habitat-specific, primary metabolic functions could be always conserved. Video abstract.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Aoran Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
| |
Collapse
|
29
|
Gao Y, Li N, Zhou Y, Zhang Z, Zhang Y, Fan P, Zhou H, Zhang T, Chang L, Gao H, Li Y, Kang X, Xie Q, Lyu Z, Xu P. iTRAQ-based proteomic analysis of Deinococcus radiodurans in response to 12C 6+ heavy ion irradiation. BMC Microbiol 2022; 22:264. [PMID: 36333788 PMCID: PMC9635210 DOI: 10.1186/s12866-022-02676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Deinococcus radiodurans (D. radiodurans) is best known for its extreme resistance to diverse environmental stress factors, including ionizing radiation (IR), ultraviolet (UV) irradiation, oxidative stress, and high temperatures. Robust DNA repair system and antioxidant system have been demonstrated to contribute to extreme resistance in D. radiodurans. However, practically all studies on the mechanism underlying D. radiodurans’s extraordinary resistance relied on the treated strain during the post-treatment recovery lag phase to identify the key elements involved. The direct gene or protein changes of D. radiodurans after stress have not yet been characterized. Results In this study, we performed a proteomics profiling on D. radiodurans right after the heavy ion irradiation treatment, to discover the altered proteins that were quickly responsive to IR in D. radiodurans. Our study found that D. radiodurans shown exceptional resistance to 12C6+ heavy ion irradiation, in contrast to Escherichia coli (E.coli) strains. By using iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)-based quantitative mass spectrometry analysis, the kinetics of proteome changes induced by various dosages of 12C6+ heavy ion irradiation were mapped. The results revealed that 452 proteins were differentially expressed under heavy ion irradiation, with the majority of proteins being upregulated, indicating the upregulation of functional categories of translation, TCA cycle (Tricarboxylic Acid cycle), and antioxidation regulation under heavy ion irradiation. Conclusions This study shows how D. radiodurans reacts to exposure to 12C6+ heavy ion irradiation in terms of its overall protein expression profile. Most importantly, comparing the proteome profiling of D. radiodurans directly after heavy ion irradiation with research on the post-irradiation recovery phase would potentially provide a better understanding of mechanisms underlying the extreme radioresistance in D. radiodurans. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02676-x.
Collapse
Affiliation(s)
- Yuan Gao
- grid.27871.3b0000 0000 9750 7019Central Laboratory of College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Naikang Li
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Yanxia Zhou
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,Beijing Institute of Food Inspection and Research, Beijing Municipal Center for Food Safety Monitoring and Risk Assessment, Beijing, 102206 People’s Republic of China
| | - Zhenpeng Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Yao Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Pengcheng Fan
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Hangfan Zhou
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Tao Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Lei Chang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Huiying Gao
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Yanchang Li
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Xianjiang Kang
- School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Qiong Xie
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100094 People’s Republic of China
| | - Zhitang Lyu
- School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Ping Xu
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China ,grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, 230032 People’s Republic of China ,grid.443382.a0000 0004 1804 268XMedical School of Guizhou University, Guiyang, 550025 People’s Republic of China ,grid.411866.c0000 0000 8848 7685Second Clinical Medicine Collage, Guangzhou University Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
30
|
Banneville AS, Bouthier de la Tour C, De Bonis S, Hognon C, Colletier JP, Teulon JM, Le Roy A, Pellequer JL, Monari A, Dehez F, Confalonieri F, Servant P, Timmins J. Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction. Nucleic Acids Res 2022; 50:7680-7696. [PMID: 35801857 PMCID: PMC9303277 DOI: 10.1093/nar/gkac563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 01/19/2023] Open
Abstract
Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Å and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.
Collapse
Affiliation(s)
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Cécilia Hognon
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | | | | | - Aline Le Roy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Antonio Monari
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France,Université Paris Cité, CNRS, Itodys, F-75006 Paris, France
| | - François Dehez
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Joanna Timmins
- To whom correspondence should be addressed. Tel: +33 4 57 42 86 78;
| |
Collapse
|
31
|
Structural and Functional Characterization of the Holliday Junction Resolvase RuvC from Deinococcus radiodurans. Microorganisms 2022; 10:microorganisms10061160. [PMID: 35744678 PMCID: PMC9228767 DOI: 10.3390/microorganisms10061160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Holliday junctions (HJs) are four-way DNA structures, which are an important intermediate in the process of homologous recombination. In most bacteria, HJs are cleaved by specific nucleases called RuvC resolvases at the end of homologous recombination. Deinococcus radiodurans is an extraordinary radiation-resistant bacterium and is known as an ideal model organism for elucidating DNA repair processes. Here, we described the biochemical properties and the crystal structure of RuvC from D. radiodurans (DrRuvC). DrRuvC exhibited an RNase H fold that belonged to the retroviral integrase family. Among many DNA substrates, DrRuvC specifically bound to HJ DNA and cleaved it. In particular, Mn2+ was the preferred bivalent metal co-factor for HJ cleavage, whereas high concentrations of Mg2+ inhibited the binding of DrRuvC to HJ. In addition, DrRuvC was crystallized and the crystals diffracted to 1.6 Å. The crystal structure of DrRuvC revealed essential amino acid sites for cleavage and binding activities, indicating that DrRuvC was a typical resolvase with a characteristic choice for metal co-factor.
Collapse
|
32
|
Velbel MA, Cockell CS, Glavin DP, Marty B, Regberg AB, Smith AL, Tosca NJ, Wadhwa M, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Hutzler A, McCubbin FM, Pratt LM, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Westall F, Zorzano MP. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S112-S164. [PMID: 34904892 DOI: 10.1089/ast.2021.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive-they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report. Executive Summary A high priority of the planned NASA/ESA Mars Sample Return Campaign is to establish whether life on Mars exists or existed where and when allowed by paleoenvironmental conditions. To answer these questions from analyses of the returned samples would require measurement of many different properties and characteristics by multiple and diverse instruments. Planetary Protection requirements may determine that unsterilized subsamples cannot be safely released to non-Biosafety Level-4 (BSL-4) terrestrial laboratories. Consequently, it is necessary to determine what, if any, are the negative effects that sterilization might have on sample integrity, specifically the fidelity of the subsample properties that are to be measured. Sample properties that do not survive sterilization intact should be measured on unsterilized subsamples, and the Sample Receiving Facility (SRF) should support such measurements. This report considers the effects that sterilization of subsamples might have on the science goals of the MSR Campaign. It assesses how the consequences of sterilization affect the scientific usefulness of the subsamples and hence our ability to conduct high-quality science investigations. We consider the sterilization effects of (a) the application of dry heat under two temperature-time regimes (180°C for 3 hours; 250°C for 30 min) and (b) γ-irradiation (1 MGy), as provided to us by the NASA and ESA Planetary Protection Officers (PPOs). Measurements of many properties of volatile-rich materials are sterilization sensitive-they would be compromised by application of either sterilization mode to the subsample. Such materials include organic molecules, hydrous minerals (crystalline solids), and hydrous amorphous (non-crystalline) solids. Either proposed sterilization method would modify the abundances, isotopes, or oxidation-reduction (redox) states of the six most abundant chemical elements in biological molecules (i.e., carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulphur, CHNOPS), and of other key redox-sensitive elements that include iron (Fe), other first-row transition elements (FRTE), and cerium (Ce). As a result of these modifications, such evidence of Mars' life, paleoenvironmental history, potential habitability, and potential biosignatures would be corrupted or destroyed. Modifications of the abundances of some noble gases in samples heated during sterilization would also reset scientifically important radioisotope geochronometers and atmospheric-evolution measurements. Sterilization is designed to render terminally inactive (kill) all living microorganisms and inactivate complex biological structures (including bacterial spores, viruses, and prions). Sterilization processes do so by breaking certain pre-sterilization chemical bonds (including strong C-C, C-O, C-N, and C-H bonds of predominantly covalent character, as well as weaker hydrogen and van der Waals bonds) and forming different bonds and compounds, disabling the biological function of the pre-sterilization chemical compound. The group finds the following: No sterilization process could destroy the viability of cells whilst still retaining molecular structures completely intact. This applies not only to the organic molecules of living organisms, but also to most organic molecular biosignatures of former life (molecular fossils). As a matter of biological principle, any sterilization process would result in the loss of biological and paleobiological information, because this is the mechanism by which sterilization is achieved. Thus, almost all life science investigations would be compromised by sterilizing the subsample by either mode. Sterilization by dry heat at the proposed temperatures would lead to changes in many of the minerals and amorphous solids that are most significant for the study of paleoenvironments, habitability, potential biosignatures, and the geologic context of life-science observations. Gamma-(γ-)irradiation at even sub-MGy doses induces radiolysis of water. The radiolysis products (e.g., free radicals) react with redox-sensitive chemical species of interest for the study of paleoenvironments, habitability, and potential biosignatures, thereby adversely affecting measurements of those species. Heat sterilization and radiation also have a negative effect on CHNOPS and redox-sensitive elements. MSPG2 was unable to identify with confidence any measurement of abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements (e.g., Fe and other FRTE; Ce), or their isotopes that would be affected by only one, but not both, of the considered sterilization methods. Measurements of many attributes of volatile-rich subsamples are sterilization sensitive to both heat and γ-irradiation. Such a measurement is not useful to Mars science if what remains in the subsample is evidence of sterilization conditions and effects instead of evidence of conditions on Mars. Most measurements relating to the detection of evidence for extant or extinct life are sterilization sensitive. Many measurements other than those for life-science seek to retrieve Mars' paleoenvironmental information from the abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements, or their isotopes (and some noble gases) in returned samples. Such measurements inform scientific interpretations of (paleo)atmosphere composition and evolution, (paleo)surface water origin and chemical evolution, potential (paleo)habitability, (paleo)groundwater-porewater solute chemistry, origin and evolution, potential biosignature preservation, metabolic element or isotope fractionation, and the geologic, geochronological, and geomorphic context of life-sciences observations. Most such measurements are also sterilization sensitive. The sterilization-sensitive attributes cannot be meaningfully measured in any such subsample that has been sterilized by heat or γ-irradiation. Unless such subsamples are deemed biohazard-safe for release to external laboratories in unsterilized form, all such measurements must be made on unsterilized samples in biocontainment. An SRF should have the capability to carry out scientific investigations that are sterilization-sensitive to both PPO-provided sterilization methods (Figure SE1). The following findings have been recognized in the Report. Full explanations of the background, scope, and justification precede the presentation of each Finding in the Section identified for that Finding. One or more Findings follow our assessment of previous work on the effects of each provided sterilization method on each of three broad categories of measurement types-biosignatures of extant or ancient life, geological evidence of paleoenvironmental conditions, and gases. Findings are designated Major if they explicitly refer to both PPO-provided sterilization methods or have specific implications for the functionalities that need to be supported within an SRF. FINDING SS-1: More than half of the measurements described by iMOST for investigation into the presence of (mostly molecular) biosignatures (iMOST Objectives 2.1, 2.2 and 2.3) in returned martian samples are sterilization-sensitive and therefore cannot be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2. That proportion rises to 86% of the measurements specific to the investigation of extant or recent life (iMOST Objective 2.3) (see Section 2.5). This Finding supersedes Finding #4 of the MSPG Science in Containment report (MSPG, 2019). FINDING SS-2: Almost three quarters (115 out of 160; 72%) of the measurements described by iMOST for science investigations not associated with Objective 2 but associated with Objectives concerning geological phenomena that include past interactions with the hydrosphere (Objectives 1 and 3) and the atmosphere (Objective 4) are sterilization-tolerant and therefore can (generally) be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2 (see Section 2.5). This Finding supports Finding #6 of the MSPG Science in Containment report (MSPG, 2019). MSPG2 endorses the previously proposed strategy of conducting as many measurements as possible outside the SRF where the option exists. FINDING SS-3: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures and, more importantly, the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to temperatures associated with sterilization above those typical of a habitable surface or subsurface environment results in a loss of biological information. If extant life is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 3.2). FINDING SS-4: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures, including the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to γ-radiation results in a loss of biological information through molecular damage and/or destruction. If extant life is a target for subsample analysis, sterilization of material via γ-radiation would likely compromise any such analysis (see Section 3.3). FINDING SS-5: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), as well as compounds associated with cell membranes such as lipids, sterols, and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 4.2). FINDING SS-6: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and compounds associated with cell membranes such as lipids, sterols and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to radiation results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via γ-irradiation would likely compromise any such analysis (see Section 4.3). [Figure: see text] MAJOR FINDING SS-7: The use of heat or γ-irradiation sterilization should be avoided for subsamples intended to be used for organic biosignature investigations (for extinct or extant life). Studies of organic molecules from extinct or extant life (either indigenous or contaminants, viable or dead cells) or even some organic molecules derived from abiotic chemistry cannot credibly be done on subsamples that have been sterilized by any means. The concentrations of amino acids and other reduced organic biosignatures in the returned martian samples may also be so low that additional heat and/or γ-irradiation sterilization would reduce their concentrations to undetectable levels. It is a very high priority that these experiments be done on unsterilized subsamples inside containment (see Section 4.4). FINDING SS-8: Solvent extraction and acid hydrolysis at ∼100°C of unsterilized martian samples will inactivate any biopolymers in the extract and would not require additional heat or radiation treatment for the subsamples to be rendered sterile. Hydrolyzed extracts should be safe for analysis of soluble free organic molecules outside containment and may provide useful information about their origin for biohazard assessments; this type of approach, if approved, is strongly preferred and endorsed (see Section 4.4). FINDING SS-9: Minerals and amorphous materials formed by low temperature processes on Mars are highly sensitive to thermal alteration, which leads to irreversible changes in composition and/or structure when heated. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, has the potential to alter them from their as-received state. Sterilization by dry heat at the proposed sterilization temperatures would lead to changes in many of the minerals that are most significant for the study of paleoenvironments, habitability, and potential biosignatures or biosignature hosts. It is crucial that the returned samples are not heated to temperatures above which mineral transitions occur (see Section 5.3). FINDING SS-10: Crystal structure, major and non-volatile minor element abundances, and stoichiometric compositions of minerals are unaffected by γ-irradiation of up to 0.3-1 MGy, but crystal structures are completely destroyed at 130 MGy. Measurements of these specific properties cannot be acquired from subsamples γ-irradiated at the notional 1 MGy dose-they are sterilization-sensitive (see Section 5.4). FINDING SS-11: Sterilization by γ-irradiation (even at sub-MGy doses) results in significant changes to the redox state of elements bound within a mineral lattice. Redox-sensitive elements include Fe and other first-row transition elements (FRTE) as well as C, H, N, O, P and S. Almost all minerals and naturally occurring amorphous materials that formed under habitable conditions, including the ambient paleotemperatures of Mars' surface or shallow subsurface, contain at least one of these redox-sensitive elements. Therefore, measurements and investigations of the listed properties of such geological materials are sterilization sensitive and should not be performed on γ-irradiated subsamples (see Section 5.4). FINDING SS-12: A significant fraction of investigations that focus on high-temperature magmatic and impact-related processes, their chronology, and the chronology of Mars' geophysical evolution are sterilization-tolerant. While there may be a few analyses involved in such investigations that could be affected to some degree by heat sterilization, most of these analyses would not be affected by sterilization involving γ-irradiation (see Section 5.6). MAJOR FINDING SS-13: Scientific investigations of materials containing hydrous or otherwise volatile-rich minerals and/or X-ray amorphous materials that formed or were naturally modified at low (Mars surface-/near-surface) temperature are sterilization-sensitive in that they would be compromised by changes in the abundances, redox states, and isotopes of CHNOPS and other volatiles (e.g., noble gases for chronometry), FRTE, and Ce, and cannot be performed on subsamples that have been sterilized by either dry heat or γ-irradiation (see Section 5.7). MAJOR FINDING SS-14: It would be far preferable to work on sterilized gas samples outside of containment, if the technical issues can all be worked out, than to build and operate a large gas chemistry laboratory inside containment. Depending on their reactivity (or inertness), gases extracted from sample tubes could be sterilized by dry heat or γ-irradiation and analyzed outside containment. Alternatively, gas samples could be filtered through an inert grid and the filtered gas analyzed outside containment (see Section 6.5). MAJOR FINDING SS-15: It is fundamental to the campaign-level science objectives of the Mars Sample Return Campaign that the SRF support characterization of samples returned from Mars that contain organic matter and/or minerals formed under habitable conditions that include the ambient paleotemperatures of Mars' surface or subsurface (<∼200°C)-such as most clays, sulfates, and carbonates-in laboratories on Earth in their as-received-at-the-SRF condition (see Section 7.1). MAJOR FINDING SS-16: The search for any category of potential biosignature would be adversely affected by either of the proposed sterilization methods (see Section 7.1). MAJOR FINDING SS-17: Carbon, hydrogen, nitrogen, oxygen, sulfur, phosphorus, and other volatiles would be released from a subsample during the sterilization step. The heat and γ-ray sterilization chambers should be able to monitor weight loss from the subsample during sterilization. Any gases produced in the sample headspace and sterilization chamber during sterilization should be captured and contained for future analyses of the chemical and stable isotopic compositions of the evolved elements and compounds for all sterilized subsamples to characterize and document fully any sterilization-induced alteration and thereby recover some important information that would otherwise be lost (see Section 7.2). This report shows that most of the sterilization-sensitive iMOST measurement types are among either the iMOST objectives for life detection and life characterization (half or more of the measurements for life-science sub-objectives are critically sterilization sensitive) or the iMOST objectives for inferring paleoenvironments, habitability, preservation of potential biosignatures, and the geologic context of life-science observations (nearly half of the measurements for sub-objectives involving geological environments, habitability, potential biosignature preservation, and gases/volatiles are critically sterilization sensitive) (Table 2; see Beaty et al., 2019 for the full lists of iMOST objectives, goals, investigations, and sample measurement types). Sterilization-sensitive science about ancient life on Mars and its relationship to its ancient environment will be severely impaired or lost if the samples collected by Perseverance cannot be analyzed in an unsterilized condition. Summary: ○The SRF should have the capability to carry out or otherwise support scientific investigations that are sensitive to both PPO-provided sterilization methods. ○Measurements of most life-sciences and habitability-related (paleoenvironmental) phenomena are sensitive to both PPO-provided sterilization modes. (Major Finding SS-7, SS-15, SS-16 and Finding SS-1, SS-3, SS-4, SS-5, SS-6, SS-9, SS-11, SS-13) If subsamples for sterilization-sensitive measurement cannot be deemed safe for release, then additional contingency analytical capabilities are needed in the SRF to complete MSR Campaign measurements of sterilization-sensitive sample properties on unsterilized samples in containment (Figure SE1, below). ○Measurements of high-temperature (low-volatile) phenomena are tolerant of both PPO-provided sterilization modes (Finding SS-12). Subsamples for such measurements may be sterilized and released to laboratories outside containment without compromising the scientific value of the measurements. ○Capturing, transporting, and analyzing gases is important and will require careful design of apparatus. Doing so for volatiles present as headspace gases and a dedicated atmosphere sample will enable important atmospheric science (Major Finding SS-14). Similarly, capturing and analyzing gases evolved during subsample sterilization (i.e., gas from the sterilization chamber) would compensate for some sterilization-induced loss of science data from volatile-rich solid (geological) subsamples (Finding SS-14, SS-17; other options incl. SS-8).
Collapse
Affiliation(s)
- Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi Lee Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
33
|
Shukla SK, Manobala T, Rao TS. The role of S-layer Protein (SlpA) in biofilm-formation of Deinococcus radiodurans. J Appl Microbiol 2022; 133:796-807. [PMID: 35507240 DOI: 10.1111/jam.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the molecular basis of biofilm formation in a recombinant lab strain of Deinococcus radiodurans with a plasmid harbouring gfp and kanR that acquired the biofilm-forming ability. METHODS AND RESULTS D. radiodurans R1 is known as a non-biofilm former bacterium and so far there are no reports on its biofilm-producing capabilities. In this study, we investigated the molecular basis of biofilm formation in a recombinant strain of D. radiodurans using classical biofilm assays, confocal laser scanning microscopy, and real-time PCR. Biochemical analysis of D. radiodurans biofilm matrix revealed that it consisted predominantly of protein and carbohydrate complexes with a little amount of extracellular DNA (eDNA). Further, studies showed that D. radiodurans biofilm formation was enhanced in the presence of 25 mM Ca2+ , which enhanced the exopolysaccharide and protein content in the biofilm matrix. Enzymatic treatments with proteinase K, alginate lyase, and DNase I indicated the involvement of some proteinaceous components to be critical in the biofilm formation. RT-PCR studies showed that enhanced expression of a surface layer protein SlpA conferred the biofilm ability to D. radiodurans. CONCLUSION Overexpression of SlpA in D. radiodurans conferred the biofilm formation ability to the bacterium, in which a partial role was also played by the recombinant plasmid pKG. It was also shown that the presence of Ca2+ in the growth medium enhanced SlpA production, thus improving biofilm stability and biofilm maturation of D. radiodurans. SIGNIFICANCE AND IMPACT This study shows how biofilm formation can be augmented in D. radiodurans. The finding has implications for the development of D. radiodurans biofilm-based biotechnological applications.
Collapse
Affiliation(s)
- Sudhir K Shukla
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, India.,Homi Bhabha National Institute, Mumbai 400094, India
| | - T Manobala
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu 600 025, India
| | - T Subba Rao
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, India.,Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
34
|
Zrehen A, Hili U, Weil N, Ben-David O, Yosef A, Eitan B. UV surface disinfection in a wearable drug delivery device. BIOMEDICAL OPTICS EXPRESS 2022; 13:2144-2155. [PMID: 35519282 PMCID: PMC9045911 DOI: 10.1364/boe.453270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The advent of recombinant DNA technology fundamentally altered the drug discovery landscape, replacing traditional small-molecule drugs with protein and peptide-based biologics. Being susceptible to degradation via the oral route, biologics require comparatively invasive injections, most commonly by intravenous infusion (IV). Significant academic and industrial efforts are underway to replace IV transport with subcutaneous delivery by wearable infusion devices. To further complement the ease-of-use and safety of disposable infusion devices, surface disinfection of the drug container can be automated. For ease of use, the desired injector is a combination device, where the drug is inside the injector as a single solution combination device. The main obstacle of the desired solution is the inability to sterilize both injector and drug in the same chamber or using the same method (Gamma for the drug and ETO for the injector). This leads to the assembly of both drug container and injector after sterilization, resulting in at least one transition area that is not sterilized. To automate the delivery of the drug to the patient, a disinfection step before the drug delivery through the injector is required on the none-sterilized interface. As an innovative solution, the autoinjector presented here is designed with a single ultraviolet light-emitting diode (UV LED) for surface disinfection of the drug container and injector interface. In order to validate microbial disinfection similar to ethanol swabbing on the injector, a bacterial 3 or 6 log reduction needed to be demonstrated. However, the small disinfection chamber surfaces within the device are incapable of holding an initial bacterial load for demonstrating the 3 or 6 log reduction, complicating the validation method, and presenting a dilemma as to how to achieve the log reduction while producing real chamber conditions. The suggested solution in this paper is to establish a correlation model between the UV irradiance distribution within the disinfection chamber and a larger external test setup, which can hold the required bacterial load and represents a worse-case test scenario. Bacterial log reduction was subsequently performed on nine different microorganisms of low to high UV-tolerance. The procedure defined herein can be adopted for other surface or chamber disinfection studies in which the inoculation space is limited.
Collapse
Affiliation(s)
| | - Uri Hili
- Eitan Medical, Netanya 4250529, Israel
| | - Noam Weil
- Eitan Medical, Netanya 4250529, Israel
| | | | | | | |
Collapse
|
35
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
36
|
Basu B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100153. [PMID: 35909625 PMCID: PMC9325910 DOI: 10.1016/j.crmicr.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author.
| |
Collapse
|
37
|
TERATO HIROAKI, TOKUYAMA YUKA, NISHIYAMA HIROKI, MATSUNAGA TAKASHI, YOSHIDA YUKI, IHARA SATOSHI. Sterilizing Ability of High-Voltage Pulsed Discharge Plasma with Cavitation for Microorganisms Including Radio-Resistant Bacterium in Water. Biocontrol Sci 2022; 27:41-46. [DOI: 10.4265/bio.27.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - YUKA TOKUYAMA
- Analytical Research Center for Experimental Sciences, Saga University
| | | | | | - YUKI YOSHIDA
- Graduate School of Science and Engineering, Saga University
| | - SATOSHI IHARA
- Graduate School of Science and Engineering, Saga University
| |
Collapse
|
38
|
Xiong J, Wang P, Shao WX, Li G, Ding JH, Xie NB, Wang M, Cheng QY, Xie C, Feng YQ, Ci W, Yuan BF. Genome-wide mapping of N4-methylcytosine at single-base resolution by APOBEC3A-mediated deamination sequencing. Chem Sci 2022; 13:9960-9972. [PMID: 36128236 PMCID: PMC9430668 DOI: 10.1039/d2sc02446b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
N4-methylcytosine (4mC) is a natural DNA modification occurring in thermophiles and plays important roles in restriction-modification (R-M) systems in bacterial genomes. However, the precise location and sequence context of 4mC in the whole genome are limited. In this study, we developed an APOBEC3A-mediated deamination sequencing (4mC-AMD-seq) method for genome-wide mapping of 4mC at single-base resolution. In the 4mC-AMD-seq method, cytosine and 5-methylcytosine (5mC) are deaminated by APOBEC3A (A3A) protein to generate uracil and thymine, both of which are read as thymine in sequencing, while 4mC is resistant to deamination and therefore read as cytosine. Thus, the readouts of cytosines from sequencing could manifest the original 4mC sites in genomes. With the 4mC-AMD-seq method, we achieved the genome-wide mapping of 4mC in Deinococcus radiodurans (D. radiodurans). In addition, we confirmed that 4mC, but not 5mC, was the major modification in the D. radiodurans genome. We identified 1586 4mC sites in the genome of D. radiodurans, among which 564 sites were located in the CCGCGG motif. The average methylation levels in the CCGCGG motif and non-CCGCGG sequence were 70.0% and 22.8%, respectively. We envision that the 4mC-AMD-seq method will facilitate the investigation of 4mC functions, including the 4mC-involved R-M systems, in uncharacterized but potentially useful strains. Genome-wide mapping of N4-methylcytosine (4mC) at single-base resolution with APOBEC3A-mediated deamination sequencing (4mC-AMD-seq).![]()
Collapse
Affiliation(s)
- Jun Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Xuan Shao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Hui Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Min Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, China
| |
Collapse
|
39
|
Fujiwara D, Kawaguchi Y, Kinoshita I, Yatabe J, Narumi I, Hashimoto H, Yokobori SI, Yamagishi A. Mutation Analysis of the rpoB Gene in the Radiation-Resistant Bacterium Deinococcus radiodurans R1 Exposed to Space during the Tanpopo Experiment at the International Space Station. ASTROBIOLOGY 2021; 21:1494-1504. [PMID: 34694920 DOI: 10.1089/ast.2020.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase β-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase β-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Iori Kinoshita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Jun Yatabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
40
|
Deinococcus aestuarii sp. nov. and Deinococcus aquaedulcis sp. nov., two novel resistant bacteria isolated from pearl river estuary. Antonie van Leeuwenhoek 2021; 115:59-68. [PMID: 34761295 DOI: 10.1007/s10482-021-01680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Two novel species of the genus Deinococcus, designated SYSU M49105T and SYSU M42101T, were isolated from freshwater samples of the Pearl River estuary in Guangdong, China. Phylogenetic analysis using 16S rRNA gene sequence indicated that strains SYSU M49105T and SYSU M42101T showed the highest sequence similarities to Deinococcus aetherius JCM 11751 T (93.6%) and Deinococcus multiflagellatus NBRC 112888 T (97.3%), respectively. Cells of both strains were Gram-staining positive, aerobic, coccus-shaped, oxidase-negative and non-motile. The cell wall contained meso-diaminopimelic acid as their diagnostic diamino acid. MK-8 was the predominant respiratory quinone for both strains. The polar lipid profile of SYSU M49105T contained two unidentified phosphoglycolipids, nine unidentified glycolipids, and five unidentified polar lipids. SYSU M42101T had one unidentified phosphoglycolipid, nine unidentified glycolipids, one unidentified aminophospholipid and four unidentified polar lipids. The major fatty acids of strains SYSU M49105T and SYSU M42101T were summed feature 3 (C16:1 ω7c and/ or C16:1 ω6c) and C16:0. The G + C contents of the novel isolates based on genomic DNAs were 69.6% and 67.4%, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strains SYSU M49105T and SYSU M42101T should be considered to represent two novel species in the genus Deinococcus, for which the names Deinococcus aestuarii sp. nov. and Deinococcus aquaedulcis sp. nov. were proposed with the type strains SYSU M49105T (= KCTC 43258 T = CGMCC 1.18609 T) and SYSU M42101T (= KCTC 43257 T = CGMCC 1.18614 T), respectively.
Collapse
|
41
|
Marszalkowski M, Werner A, Feltens R, Helmecke D, Gößringer M, Westhof E, Hartmann RK. Comparative study on tertiary contacts and folding of RNase P RNAs from a psychrophilic, a mesophilic/radiation-resistant, and a thermophilic bacterium. RNA (NEW YORK, N.Y.) 2021; 27:1204-1219. [PMID: 34266994 PMCID: PMC8457005 DOI: 10.1261/rna.078735.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In most bacterial type A RNase P RNAs (P RNAs), two major loop-helix tertiary contacts (L8-P4 and L18-P8) help to orient the two independently folding S- and C-domains for concerted recognition of precursor tRNA substrates. Here, we analyze the effects of mutations in these tertiary contacts in P RNAs from three different species: (i) the psychrophilic bacterium Pseudoalteromonas translucida (Ptr), (ii) the mesophilic radiation-resistant bacterium Deinococcus radiodurans (Dra), and (iii) the thermophilic bacterium Thermus thermophilus (Tth). We show by UV melting experiments that simultaneous disruption of these two interdomain contacts has a stabilizing effect on all three P RNAs. This can be inferred from reduced RNA unfolding at lower temperatures and a more concerted unfolding at higher temperatures. Thus, when the two domains tightly interact via the tertiary contacts, one domain facilitates structural transitions in the other. P RNA mutants with disrupted interdomain contacts showed severe kinetic defects that were most pronounced upon simultaneous disruption of the L8-P4 and L18-P8 contacts. At 37°C, the mildest effects were observed for the thermostable Tth RNA. A third interdomain contact, L9-P1, makes only a minor contribution to P RNA tertiary folding. Furthermore, D. radiodurans RNase P RNA forms an additional pseudoknot structure between the P9 and P12 of its S-domain. This interaction was found to be particularly crucial for RNase P holoenzyme activity at near-physiological Mg2+ concentrations (2 mM). We further analyzed an exceptionally stable folding trap of the G,C-rich Tth P RNA.
Collapse
Affiliation(s)
- Michal Marszalkowski
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Andreas Werner
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Ralph Feltens
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Dominik Helmecke
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Markus Gößringer
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Eric Westhof
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
42
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
43
|
Bruckbauer ST, Minkoff BB, Sussman MR, Cox MM. Proteome Damage Inflicted by Ionizing Radiation: Advancing a Theme in the Research of Miroslav Radman. Cells 2021; 10:cells10040954. [PMID: 33924085 PMCID: PMC8074248 DOI: 10.3390/cells10040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Oxidative proteome damage has been implicated as a major contributor to cell death and aging. Protein damage and aging has been a particular theme of the recent research of Miroslav Radman. However, the study of how cellular proteins are damaged by oxidative processes is still in its infancy. Here we examine oxidative changes in the proteomes of four bacterial populations—wild type E. coli, two isolates from E. coli populations evolved for high levels of ionizing radiation (IR) resistance, and D. radiodurans—immediately following exposure to 3000 Gy of ionizing radiation. By a substantial margin, the most prominent intracellular oxidation events involve hydroxylation of methionine residues. Significant but much less frequent are carbonylation events on tyrosine and dioxidation events on tryptophan. A few proteins are exquisitely sensitive to targeted oxidation events, notably the active site of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in E. coli. Extensive experimental evolution of E. coli for IR resistance has decreased overall proteome sensitivity to oxidation but not to the level seen in D. radiodurans. Many observed oxidation events may reflect aspects of protein structure and/or exposure of protein surfaces to water. Proteins such as GAPDH and possibly Ef-Tu may have an evolved sensitivity to oxidation by H2O2.
Collapse
Affiliation(s)
- Steven T. Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
| | - Benjamin B. Minkoff
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
- Correspondence:
| |
Collapse
|
44
|
Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Cells 2021; 10:cells10040924. [PMID: 33923690 PMCID: PMC8072749 DOI: 10.3390/cells10040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.
Collapse
|
45
|
Zhou X, Chen X, An Y, Lu H, Wang L, Xu H, Tian B, Zhao Y, Hua Y. Biochemical characterization of a unique DNA polymerase A from the extreme radioresistant organism Deinococcus radiodurans. Biochimie 2021; 185:22-32. [PMID: 33727139 DOI: 10.1016/j.biochi.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023]
Abstract
Deinococcus radiodurans survives extraordinary doses of ionizing radiation and desiccation that cause numerous DNA strand breaks. D. radiodurans DNA polymerase A (DrPolA) is essential for reassembling the shattered genome, while its biochemical property has not been fully demonstrated. In this study, we systematically examined the enzymatic activities of DrPolA and characterized its unique features. DrPolA contains an N-terminal nuclease domain (DrPolA-NTD) and a C-terminal Klenow fragment (KlenDr). Compared with the Klenow fragment of E. coli Pol I, KlenDr shows higher fidelity despite the lacking of 3'-5' exonuclease proofreading activity and prefers double-strand DNA rather than Primer-Template substrates. Apart from the well-annotated 5'-3' exonuclease and flap endonuclease activities, DrPolA-NTD displays approximately 140-fold higher gap endonuclease activity than its homolog in E. coli and Human FEN1. Its 5'-3' exonuclease activity on ssDNA, gap endonuclease, and Holliday junction cleavage activities are greatly enhanced by Mn2+. The DrPolA-NTD deficient strain shows increased sensitivity to UV and gamma-ray radiation. Collectively, our results reveal distinct biochemical characteristics of DrPolA during DNA degradation and re-synthesis, which provide new insight into the outstanding DNA repair capacity of D. radiodurans.
Collapse
Affiliation(s)
- Xingru Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Xuanyi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ying An
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Huizhi Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Liangyan Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Hong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Bing Tian
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ye Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Yuejin Hua
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China.
| |
Collapse
|
46
|
Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep 2021; 11:4528. [PMID: 33633226 PMCID: PMC7907104 DOI: 10.1038/s41598-021-84026-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.
Collapse
|
47
|
Selveshwari S, Lele K, Dey S. Genomic signatures of UV resistance evolution in
Escherichia coli
depend on the growth phase during exposure. J Evol Biol 2021; 34:953-967. [DOI: 10.1111/jeb.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- S Selveshwari
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Kasturi Lele
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
48
|
Narasimha A, Basu B. New insights into the activation of Radiation Desiccation Response regulon in Deinococcus radiodurans. J Biosci 2021. [DOI: 10.1007/s12038-020-00123-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol 2021; 59:186-201. [DOI: 10.1007/s12275-021-0523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
|
50
|
Kumar J, Ghosh P, Kumar A. Ultraviolet-B Radiation Stress-Induced Toxicity and Alterations in Proteome of Deinococcus radiodurans. Microb Physiol 2020; 31:1-15. [PMID: 33341800 DOI: 10.1159/000512018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Deinococcus radiodurans is a polyextremophilic bacterium capable to survive and grow at high doses of ionizing radiation. Besides resistance to ionizing radiation, the bacterium is also resistant to toxic chemicals and desiccation. This study deals with the effects of non-ionizing radiation (ultraviolet-B) on survival, alterations in proteomic profile, and gene expression in D. radiodurans. Exposure of culture to UV-B caused decrease in the percentage survival with increasing duration, complete killing occurred after 16 h. D. radiodurans also showed enhancement in the generation of reactive oxygen species and activities of antioxidative enzymes. Separation of proteins by 2-dimensional gel electrophoresis revealed major changes in number and abundance of different proteins. Twenty-eight differentially abundant protein spots were identified by MALDI-TOF MS/MS analysis and divided into 8 groups including unknown proteins. Gene expression of a few identified proteins was also analyzed employing qRT-PCR, which showed differential expression corresponding to the respective proteins. In silico analysis of certain hypothetical proteins (HPs) suggested that these are novel and as yet not reported from D. radiodurans subjected to UV-B stress. These HPs may prove useful in future studies especially for assessing their significance in the adaptation and management of stress responses against UV-B stress.
Collapse
Affiliation(s)
- Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Paushali Ghosh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India,
| |
Collapse
|