1
|
Liu X, Gao Y, Tang S, Ben L, Zhang X, Dong G, Zhou J, Lin L, Yang Z, Zhou Y, Huang J, Yao Y. A Dual-localized Fructose Bisphosphate Aldolase is Essential for Chloroplast Development and Carbon Metabolism in Rice. RICE (NEW YORK, N.Y.) 2025; 18:28. [PMID: 40240707 PMCID: PMC12003240 DOI: 10.1186/s12284-025-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) stands as a pivotal enzyme involved within the Calvin cycle and glycolytic pathways in bacteria and higher plants, but the specific function of OsFBA in rice is still unclear. Here, we identified a chloroplast and mitochondria dual-localized FBA protein, OsFBA1, in rice. Experimental evidence showed that the functionally deficient osfba1 mutants featured a notable decline in chlorophyll content, photosynthetic rate, and severe growth impediment by the three-leaf stage, leading to eventual plant demise. Up-regulation of photosynthetic-pathway genes in the osfba1 mutants indicated the essential role of OsFBA1 in chloroplast development and suggested a compensatory mechanism of other genes in the process. Furthermore, the absence of OsFBA1 impaired the carbon assimilation in young rice seedlings, and supplying exogenous glucose could partially sustain the survival of osfba1 mutant for a few more days. Pathway-specific metabolomics analysis revealed a systemic change of metabolites in the glycolytic pathway, and consequential carbohydrates accumulation due to OsFBA1 disruption. Transcriptomics profiling corroborated the expression changes of photosynthesis, and carbon metabolism pathway genes. We further demonstrated that OsFBA1 serves as the primary FBA enzyme governing energy generation, photosynthesis and carbon metabolism. These results prove that OsFBA1 is an essential core gene in supporting the life cycle of rice, its expression has to be tightly regulated.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingbo Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Siyuan Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linli Ben
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, Jiangsu, China
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lingshang Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianye Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Fei K, Shen L, Gao XD, Nakanishi H, Li Z. Multienzyme Cascade Synthesis of Rare Sugars From Glycerol in Bacillus subtilis. Biotechnol J 2024; 19:e202400539. [PMID: 39726022 DOI: 10.1002/biot.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars. However, its pathogenic nature poses limitations to its widespread applications. Consequently, there is an urgent need to explore biologically safe strains for the efficient production of rare sugars. RESULTS In this study, the generally regarded as safe (GRAS) strain Bacillus subtilis was employed as the chassis cells to produce rare sugars via whole-cell conversion. Three genes encoding alditol oxidase (AldO), L-rhamnulose-1-phosphate aldolase (RhaD), and fructose-1-phosphatase (YqaB) involved in rare sugars biosynthesis were heterogeneously expressed in B. subtilis to convert the only substrate glycerol into rare sugars. To enhance the expression levels of the relevant enzymes in B. subtilis, different promoters for aldO, rhaD, and yqaB were investigated and optimized in this system. Under the optimized reaction conditions, the maximum total production titer was 16.96 g/L of D-allulose and D-sorbose with a conversion yield of 33.9% from glycerol. Furthermore, the engineered strain produced 26.68 g/L of D-allulose and D-sorbose through fed-batch for the whole-cell conversion, representing the highest titer from glycerol reported to date. CONCLUSION This study demonstrated an efficient and cost-effective method for the synthesis of rare sugars, providing a food-grade platform with the potential to meet the growing demand for rare sugars in industries.
Collapse
Affiliation(s)
- Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Dai Y, Zhang J, Jiang B, Zhang T, Chen J. New strategy for rare sugars biosynthesis: Aldol reactions using dihydroxyacetone phosphate (DHAP)-dependent aldolases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, Nemazanyy I, de Moraes FE, Labate C, Guerrera IC, Charbit A. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog 2021; 17:e1009326. [PMID: 34339477 PMCID: PMC8360588 DOI: 10.1371/journal.ppat.1009326] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Collapse
Affiliation(s)
- Héloise Rytter
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Pauline Lagouge-Roussey
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Nicolas Goudin
- Pole Bio-analyse d’images, Structure Fédérative de Recherche Necker INSERM US24- CNRS UMS 3633, Paris, France
| | - Cerina Chhuon
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Université de Paris, Paris, France
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Fabricio Edgar de Moraes
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ida Chiara Guerrera
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
- * E-mail: (ICG); (AC)
| | - Alain Charbit
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
- * E-mail: (ICG); (AC)
| |
Collapse
|
7
|
Roldán R, Hernández K, Joglar J, Bujons J, Parella T, Fessner W, Clapés P. Aldolase-Catalyzed Asymmetric Synthesis of N-Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Adv Synth Catal 2019; 361:2673-2687. [PMID: 31680790 PMCID: PMC6813633 DOI: 10.1002/adsc.201801530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Nitrogen heterocycles are structural motifs found in many bioactive natural products and of utmost importance in pharmaceutical drug development. In this work, a stereoselective synthesis of functionalized N-heterocycles was accomplished in two steps, comprising the biocatalytic aldol addition of ethanal and simple aliphatic ketones such as propanone, butanone, 3-pentanone, cyclobutanone, and cyclopentanone to N-Cbz-protected aminoaldehydes using engineered variants of d-fructose-6-phosphate aldolase from Escherichia coli (FSA) or 2-deoxy-d-ribose-5-phosphate aldolase from Thermotoga maritima (DERA Tma ) as catalysts. FSA catalyzed most of the additions of ketones while DERA Tma was restricted to ethanal and propanone. Subsequent treatment with hydrogen in the presence of palladium over charcoal, yielded low-level oxygenated N-heterocyclic derivatives of piperidine, pyrrolidine and N-bicyclic structures bearing fused cyclobutane and cyclopentane rings, with stereoselectivities of 96-98 ee and 97:3 dr in isolated yields ranging from 35 to 79%.
Collapse
Affiliation(s)
- Raquel Roldán
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Karel Hernández
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jesús Joglar
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jordi Bujons
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear.Universitat Autònoma de BarcelonaBellaterraSpain
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtPetersenstraße 22D-64287DarmstadtGermany
| | - Pere Clapés
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| |
Collapse
|
8
|
Yang Z, Zhou Y, Huang J, Hu Y, Zhang E, Xie Z, Ma S, Gao Y, Song S, Xu C, Liang G. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. THE NEW PHYTOLOGIST 2015; 206:807-816. [PMID: 25420550 PMCID: PMC4407918 DOI: 10.1111/nph.13183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 05/29/2023]
Abstract
A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments.
Collapse
Affiliation(s)
- Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
- Department of Biology, East Carolina UniversityGreenville, NC, 27858, USA
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Jinling Huang
- Department of Biology, East Carolina UniversityGreenville, NC, 27858, USA
| | - Yunyun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Enying Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Zhengwen Xie
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Sijia Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Yun Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Song Song
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, 225009, China
| |
Collapse
|
9
|
Tonkin ML, Halavaty AS, Ramaswamy R, Ruan J, Igarashi M, Ngô HM, Boulanger MJ. Structural and functional divergence of the aldolase fold in Toxoplasma gondii. J Mol Biol 2014; 427:840-852. [PMID: 25284756 DOI: 10.1016/j.jmb.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Parasites of the phylum Apicomplexa are highly successful pathogens of humans and animals worldwide. As obligate intracellular parasites, they have significant energy requirements for invasion and gliding motility that are supplied by various metabolic pathways. Aldolases have emerged as key enzymes involved in these pathways, and all apicomplexans express one or both of fructose 1,6-bisphosphate (F16BP) aldolase and 2-deoxyribose 5-phosphate (dR5P) aldolase (DERA). Intriguingly, Toxoplasma gondii, a highly successful apicomplexan parasite, expresses F16BP aldolase (TgALD1), d5RP aldolase (TgDERA), and a divergent dR5P aldolase-like protein (TgDPA) exclusively in the latent bradyzoite stage. While the importance of TgALD1 in glycolysis is well established and TgDERA is also likely to be involved in parasite metabolism, the detailed function of TgDPA remains elusive. To gain mechanistic insight into the function of different T. gondii aldolases, we first determined the crystal structures of TgALD1 and TgDPA. Structural analysis revealed that both aldolases adopt a TIM barrel fold accessorized with divergent secondary structure elements. Structural comparison of TgALD1 and TgDPA with members of their respective enzyme families revealed that, while the active-site residues are conserved in TgALD1, key catalytic residues are absent in TgDPA. Consistent with this observation, biochemical assays showed that, while TgALD1 was active on F16BP, TgDPA was inactive on dR5P. Intriguingly, both aldolases are competent to bind polymerized actin in vitro. Altogether, structural and biochemical analyses of T. gondii aldolase and aldolase-like proteins reveal diverse functionalization of the classic TIM barrel aldolase fold.
Collapse
Affiliation(s)
- Michelle L Tonkin
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Andrei S Halavaty
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Raghavendran Ramaswamy
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Huân M Ngô
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA; BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| | - Martin J Boulanger
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6.
| |
Collapse
|
10
|
Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, Sasaki M, Mikami Y, Shimizu S. Efficient Production of 2-Deoxyribose 5-Phosphate from Glucose and Acetaldehyde by Coupling of the Alcoholic Fermentation System of Baker’s Yeast and Deoxyriboaldolase-ExpressingEscherichia coli. Biosci Biotechnol Biochem 2014; 70:1371-8. [PMID: 16794316 DOI: 10.1271/bbb.50648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.
Collapse
Affiliation(s)
- Nobuyuki Horinouchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications. Extremophiles 2013; 18:1-13. [DOI: 10.1007/s00792-013-0593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
|
12
|
|
13
|
Kim HJ, Turner TL, Jin YS. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 2013; 31:976-85. [PMID: 23562845 DOI: 10.1016/j.biotechadv.2013.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022]
Abstract
Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
14
|
Gao C, Wang X, Ma C, Xu P. Production of hydroxypyruvate from glycerate by a novel biotechnological route. BIORESOURCE TECHNOLOGY 2013; 131:552-554. [PMID: 23415941 DOI: 10.1016/j.biortech.2013.01.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
In this work, bio-oxidation of glycerate was introduced for the green production of hydroxypyruvate. Whole cells of Pseudomonas sp. XP-LM were confirmed to have a good ability to produce hydroxypyruvate from glycerate. Under the optimal conditions, Hydroxypyruvate of 98.6 mM was produced from glycerate of 200 mM. Glycerate is now potentially producible from glycerol, a by-product during biodiesel fuel production, through a biotechnological process. Thus, the bioconversion system introduced in this work provided not only a green hydroxypyruvate production process but also a potential pathway of surplus glycerol utilization.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
15
|
|
16
|
Barnard-Britson S, Chi X, Nonaka K, Spork AP, Tibrewal N, Goswami A, Pahari P, Ducho C, Rohr J, Van Lanen SG. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase. J Am Chem Soc 2012; 134:18514-7. [PMID: 23110675 DOI: 10.1021/ja308185q] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lipopeptidyl nucleoside antibiotics represented by A-90289, caprazamycin, and muraymycin are structurally highlighted by a nucleoside core that contains a nonproteinogenic β-hydroxy-α-amino acid named 5'-C-glycyluridine (GlyU). Bioinformatic analysis of the biosynthetic gene clusters revealed a shared open reading frame encoding a protein with sequence similarity to serine hydroxymethyltransferases, resulting in the proposal that this shared enzyme catalyzes an aldol-type condensation with glycine and uridine-5'-aldehyde to furnish GlyU. Using LipK involved in A-90289 biosynthesis as a model, we now functionally assign and characterize the enzyme responsible for the C-C bond-forming event during GlyU biosynthesis as an l-threonine:uridine-5'-aldehyde transaldolase. Biochemical analysis revealed this transformation is dependent upon pyridoxal-5'-phosphate, the enzyme has no activity with alternative amino acids, such as glycine or serine, as aldol donors, and acetaldehyde is a coproduct. Structural characterization of the enzyme product is consistent with stereochemical assignment as the threo diastereomer (5'S,6'S)-GlyU. Thus this enzyme orchestrates C-C bond breaking and formation with concomitant installation of two stereocenters to make a new l-α-amino acid with a nucleoside side chain.
Collapse
Affiliation(s)
- Sandra Barnard-Britson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, 40536, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coincon M, Wang W, Sygusch J, Seah SYK. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity. J Biol Chem 2012; 287:36208-21. [PMID: 22908224 PMCID: PMC3476288 DOI: 10.1074/jbc.m112.400705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of divalent metal-dependent pyruvate aldolase, HpaI, in complex with substrate and cleavage products were determined to 1.8-2.0 Å resolution. The enzyme·substrate complex with 4-hydroxy-2-ketoheptane-1,7-dioate indicates that water molecule W2 bound to the divalent metal ion initiates C3-C4 bond cleavage. The binding mode of the aldehyde donor delineated a solvent-filled capacious binding locus lined with predominantly hydrophobic residues. The absence of direct interactions with the aldehyde aliphatic carbons accounts for the broad specificity and lack of stereospecific control by the enzyme. Enzymatic complex structures formed with keto acceptors, pyruvate, and 2-ketobutyrate revealed bidentate interaction with the divalent metal ion by C1-carboxyl and C2-carbonyl oxygens and water molecule W4 that is within close contact of the C3 carbon. Arg(70) assumes a multivalent role through its guanidinium moiety interacting with all active site enzymatic species: C2 oxygen in substrate, pyruvate, and ketobutyrate; substrate C4 hydroxyl; aldehyde C1 oxygen; and W4. The multiple interactions made by Arg(70) stabilize the negatively charged C4 oxygen following proton abstraction, the aldehyde alignment in aldol condensation, and the pyruvate enolate upon aldol cleavage as well as support proton exchange at C3. This role is corroborated by loss of aldol cleavage ability and pyruvate C3 proton exchange activity and by a 730-fold increase in the dissociation constant toward the pyruvate enolate analog oxalate in the R70A mutant. Based on the crystal structures, a mechanism is proposed involving the two enzyme-bound water molecules, W2 and W4, in acid/base catalysis that facilitates reversible aldol cleavage. The same reaction mechanism promotes decarboxylation of oxaloacetate.
Collapse
Affiliation(s)
- Mathieu Coincon
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Weijun Wang
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jurgen Sygusch
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Stephen Y. K. Seah
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
18
|
Sasaki E, Lin CI, Lin KY, Liu HW. Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN. J Am Chem Soc 2012; 134:17432-5. [PMID: 22989310 DOI: 10.1021/ja308221z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lincomycin A is a potent antimicrobial agent noted for its unusual C1 methylmercapto-substituted 8-carbon sugar. Despite its long clinical history for the treatment of Gram-positive infections, the biosynthesis of the C(8)-sugar, methylthiolincosamide (MTL), is poorly understood. Here, we report our studies of the two initial enzymatic steps in the MTL biosynthetic pathway leading to the identification of D-erythro-D-gluco-octose 8-phosphate as a key intermediate. Our experiments demonstrate that this intermediate is formed via a transaldol reaction catalyzed by LmbR using D-fructose 6-phosphate or D-sedoheptulose 7-phosphate as the C(3) donor and D-ribose 5-phosphate as the C(5) acceptor. Subsequent 1,2-isomerization catalyzed by LmbN converts the resulting 2-keto C(8)-sugar (octulose 8-phosphate) to octose 8-phosphate. These results provide, for the first time, in vitro evidence for the biosynthetic origin of the C(8) backbone of MTL.
Collapse
Affiliation(s)
- Eita Sasaki
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
19
|
Sayer C, Bommer M, Isupov M, Ward J, Littlechild J. Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase fromSulfolobus solfataricus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:763-72. [DOI: 10.1107/s0907444912011274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/14/2012] [Indexed: 11/10/2022]
|
20
|
Horinouchi N, Sakai T, Kawano T, Matsumoto S, Sasaki M, Hibi M, Shima J, Shimizu S, Ogawa J. Construction of microbial platform for an energy-requiring bioprocess: practical 2'-deoxyribonucleoside production involving a C-C coupling reaction with high energy substrates. Microb Cell Fact 2012; 11:82. [PMID: 22709572 PMCID: PMC3419699 DOI: 10.1186/1475-2859-11-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproduction and sustainability are important for future society, and bioprocesses are one technology that can be used to realize these concepts. However, there is still limited variation in bioprocesses and there are several challenges, especially in the operation of energy-requiring bioprocesses. As an example of a microbial platform for an energy-requiring bioprocess, we established a process that efficiently and enzymatically synthesizes 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase. This method consists of the coupling reactions of the reversible nucleoside degradation pathway and energy generation through the yeast glycolytic pathway. RESULTS Using E. coli that co-express deoxyriboaldolase and phosphopentomutase, a high amount of 2'-deoxyribonucleoside was produced with efficient energy transfer under phosphate-limiting reaction conditions. Keeping the nucleobase concentration low and the mixture at a low reaction temperature increased the yield of 2'-deoxyribonucleoside relative to the amount of added nucleobase, indicating that energy was efficiently generated from glucose via the yeast glycolytic pathway under these reaction conditions. Using a one-pot reaction in which small amounts of adenine, adenosine, and acetone-dried yeast were fed into the reaction, 75 mM of 2'-deoxyinosine, the deaminated product of 2'-deoxyadenosine, was produced from glucose (600 mM), acetaldehyde (250 mM), adenine (70 mM), and adenosine (20 mM) with a high yield relative to the total base moiety input (83%). Moreover, a variety of natural dNSs were further synthesized by introducing a base-exchange reaction into the process. CONCLUSION A critical common issue in energy-requiring bioprocess is fine control of phosphate concentration. We tried to resolve this problem, and provide the convenient recipe for establishment of energy-requiring bioprocesses. It is anticipated that the commercial demand for dNSs, which are primary metabolites that accumulate at very low levels in the metabolic pool, will grow. The development of an efficient production method for these compounds will have a great impact in both fields of applied microbiology and industry and will also serve as a good example of a microbial platform for energy-requiring bioprocesses.
Collapse
Affiliation(s)
- Nobuyuki Horinouchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Romo AJ, Liu HW. Mechanisms and structures of vitamin B(6)-dependent enzymes involved in deoxy sugar biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1534-47. [PMID: 21315852 PMCID: PMC3115481 DOI: 10.1016/j.bbapap.2011.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/08/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
PLP is well-regarded for its role as a coenzyme in a number of diverse enzymatic reactions. Transamination, deoxygenation, and aldol reactions mediated by PLP-dependent enzymes enliven and enrich deoxy sugar biosynthesis, endowing these compounds with unique structures and contributing to their roles as determinants of biological activity in many natural products. The importance of deoxy aminosugars in natural product biosynthesis has spurred several recent structural investigations of sugar aminotransferases. The structure of a PMP-dependent enzyme catalyzing the C-3 deoxygenation reaction in the biosynthesis of ascarylose was also determined. These studies, and the crystal structures they have provided, offer a wealth of new insights regarding the enzymology of PLP/PMP-dependent enzymes in deoxy sugar biosynthesis. In this review, we consider these recent achievements in the structural biology of deoxy sugar biosynthetic enzymes and the important implications they hold for understanding enzyme catalysis and natural product biosynthesis in general. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Anthony J. Romo
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
22
|
Labbé G, de Groot S, Rasmusson T, Milojevic G, Dmitrienko GI, Guillemette JG. Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts. Protein Expr Purif 2011; 80:224-33. [PMID: 21763425 DOI: 10.1016/j.pep.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/01/2022]
Abstract
Fructose 1,6-bisphosphate (FBP) aldolase has been used as biocatalyst in the synthesis of several pharmaceutical compounds such as monosaccharides and analogs. Is has been suggested that microbial metal-dependant Class II aldolases could be better industrial catalysts than mammalian Class I enzyme because of their greater stability. The Class II aldolases from four microbes were subcloned into the Escherichia coli vector pT7-7, expressed and purified to near homogeneity. The kinetic parameters, temperature stability, pH profile, and tolerance to organic solvents of the Class II enzymes were determined, and compared with the properties of the Class I aldolase from rabbit muscle. Contrary to results obtained previously with the E. coli Class II aldolase, which was reported to be more stable than the mammalian enzyme, other recombinant Class II aldolases were found to be generally less stable than the Class I enzyme, especially in the presence of organic solvents. Class II aldolase from Bacillus cereus showed higher temperature stability than the other enzymes tested, but only the Mycobacterium tuberculosis Class II aldolase had a stability comparable to the Class I mammalian enzyme under assay conditions. The turnover number of the recombinant M. tuberculosis and Magnaporthe grisea Class II type A aldolases was comparable or higher than that of the Class I enzyme. The recombinant B. cereus and Pseudomonas aeruginosa Class II type B aldolases had very low turnover numbers and low metal content, indicating that the E. coli overexpression system may not be suitable for the Class II type B aldolases from these microorganisms.
Collapse
Affiliation(s)
- Geneviève Labbé
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L3G1, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Baker P, Carere J, Seah SYK. Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI. Biochemistry 2011; 50:3559-69. [DOI: 10.1021/bi101947g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jason Carere
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Brovetto M, Gamenara D, Méndez PS, Seoane GA. C-C bond-forming lyases in organic synthesis. Chem Rev 2011; 111:4346-403. [PMID: 21417217 DOI: 10.1021/cr100299p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Margarita Brovetto
- Grupo de Fisicoquímica Orgánica y Bioprocesos, Departamento de Química Orgánica, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Gral. Flores 2124, 11800 Montevideo, Uruguay
| | | | | | | |
Collapse
|
25
|
Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P, Weissman KJ, Bode HB, Müller R. Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. MOLECULAR BIOSYSTEMS 2011; 7:1549-63. [PMID: 21365089 DOI: 10.1039/c0mb00240b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The anti-fungal leupyrrins are secondary metabolites produced by several strains of the myxobacterium Sorangium cellulosum. These intriguing compounds incorporate an atypically substituted γ-butyrolactone ring, as well as pyrrole and oxazolinone functionalities, which are located within an unusual asymmetrical macrodiolide. Previous feeding studies revealed that this novel structure arises from the homologation of four distinct structural units, nonribosomally-derived peptide, polyketide, isoprenoid and a dicarboxylic acid, coupled with modification of the various building blocks. Here we have attempted to reconcile the biosynthetic pathway proposed on the basis of the feeding studies with the underlying enzymatic machinery in the S. cellulosum strain So ce690. Gene products can be assigned to many of the suggested steps, but inspection of the gene set provokes the reconsideration of several key transformations. We support our analysis by the reconstitution in vitro of the biosynthesis of the pyrrole carboxylic starter unit along with gene inactivation. In addition, this study reveals that a significant proportion of the genes for leupyrrin biosynthesis are located outside the core cluster, a 'split' organization which is increasingly characteristic of the myxobacteria. Finally, we report the generation of four novel deshydroxy leupyrrin analogues by genetic engineering of the pathway.
Collapse
Affiliation(s)
- Maren Kopp
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
LowKam C, Liotard B, Sygusch J. Structure of a class I tagatose-1,6-bisphosphate aldolase: investigation into an apparent loss of stereospecificity. J Biol Chem 2010; 285:21143-52. [PMID: 20427286 PMCID: PMC2898290 DOI: 10.1074/jbc.m109.080358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/28/2010] [Indexed: 11/06/2022] Open
Abstract
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (alpha/beta)(8) fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys(205), different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.
Collapse
Affiliation(s)
- Clotilde LowKam
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Brigitte Liotard
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jurgen Sygusch
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Wang W, Baker P, Seah SYK. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Biochemistry 2010; 49:3774-82. [PMID: 20364820 DOI: 10.1021/bi100251u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HpaI and BphI are two pyruvate class II aldolases found in aromatic meta-cleavage degradation pathways that catalyze similar reactions but are not related in sequence. Steady-state kinetic analysis of the aldol addition reactions and product inhibition assays showed that HpaI exhibits a rapid equilibrium random order mechanism while BphI exhibits a compulsory order mechanism, with pyruvate binding first. Both aldolases are able to utilize aldehyde acceptors two to five carbons in length; however, HpaI showed broader specificity and had a preference for aldehydes containing longer linear alkyl chains or C2-OH substitutions. Both enzymes were able to bind 2-keto acids larger than pyruvate, but only HpaI was able to utilize both pyruvate and 2-ketobutanoate as carbonyl donors in the aldol addition reaction. HpaI lacks stereospecific control producing racemic mixtures of 4-hydroxy-2-oxopentanoate (HOPA) from pyruvate and acetaldehyde while BphI synthesizes only (4S)-HOPA. BphI is also able to utilize acetaldehyde produced by the reduction of acetyl-CoA catalyzed by the associated aldehyde dehydrogenase, BphJ. This aldehyde was directly channeled from the dehydrogenase to the aldolase active sites, with an efficiency of 84%. Furthermore, the BphJ reductive deacylation reaction increased 4-fold when BphI was catalyzing the aldol addition reaction. Therefore, the BphI-BphJ enzyme complex exhibits unique bidirectionality in substrate channeling and allosteric activation.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
28
|
Suau T, Calveras J, Clapés P, Dolors Benaiges M, Álvaro G. Immobilization of fuculose-1-phosphate aldolase fromE. colito glyoxal-agarose gels by multipoint covalent attachment. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500208720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kim YM, Chang YH, Choi NS, Kim Y, Song JJ, Kim JS. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015. Protein Expr Purif 2009; 68:196-200. [PMID: 19505577 DOI: 10.1016/j.pep.2009.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 11/29/2022]
Abstract
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The specific activity was 137 micromol/min/mg. The Michaelis constant (k(m) value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 degrees C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.
Collapse
Affiliation(s)
- Yong-Mo Kim
- Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 580-185, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
The role of a conserved histidine residue in a pyruvate-specific Class II aldolase. FEBS Lett 2008; 582:3385-8. [DOI: 10.1016/j.febslet.2008.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/19/2008] [Accepted: 08/27/2008] [Indexed: 11/20/2022]
|
31
|
Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: Application to rhamnulose 1-phosphate aldolase. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Popp A, Nguyen HTT, Boulahya K, Bideaux C, Alfenore S, Guillouet SE, Nevoigt E. Fermentative production of L-glycerol 3-phosphate utilizing a Saccharomyces cerevisiae strain with an engineered glycerol biosynthetic pathway. Biotechnol Bioeng 2008; 100:497-505. [PMID: 18438874 DOI: 10.1002/bit.21777] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in L-glycerol 3-phosphate (L-G3P) production via microbial fermentation is due to the compound's potential to replace the unstable substrate dihydroxyacetone phosphate (DHAP) in one-pot enzymatic carbohydrate syntheses. A Saccharomyces cerevisiae strain with deletions in both genes encoding specific L-G3Pases (GPP1 and GPP2) and multicopy overexpression of L-glycerol 3-phosphate dehydrogenase (GPD1) was studied via small-scale (100 mL) batch fermentations under quasi-anaerobic conditions. Intracellular accumulation of L-G3P reached extremely high levels (roughly 200 mM) but thereafter declined. Extracellular L-G3P was also detected and its concentration continuously increased throughout the fermentation, such that most of the total L-G3P was found outside the cells as fermentation concluded. Moreover, in spite of the complete elimination of specific L-G3Pase activity, the strain showed considerable glycerol formation suggesting unspecific dephosphorylation as a mechanism to relieve cells of intracellular L-G3P accumulation. Up-scaling the process employed fed-batch fermentation with repeated glucose feeding, plus an aerobic growth phase followed by an anaerobic product accumulation phase. This produced a final product titer of about 325 mg total L-G3P per liter of fermentation broth.
Collapse
Affiliation(s)
- A Popp
- Department of Microbiology and Genetics, Berlin University of Technology, Seestr. 13, D-13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ. Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg Med Chem 2008; 16:710-20. [PMID: 17981470 PMCID: PMC3326530 DOI: 10.1016/j.bmc.2007.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/05/2007] [Accepted: 10/12/2007] [Indexed: 11/29/2022]
Abstract
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.
Collapse
Affiliation(s)
- Matthew J Walters
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
34
|
Markert M, Mahrwald R. Total Syntheses of Carbohydrates: Organocatalyzed Aldol Additions of Dihydroxyacetone. Chemistry 2007; 14:40-8. [DOI: 10.1002/chem.200701334] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Abstract
A procedure for the preparation of optically pure alpha-keto-gamma-hydroxy carboxylic acids through stereospecific aldol addition catalyzed by pyruvate aldolases from the Entner-Doudoroff and the DeLey-Doudoroff glycolytic pathways is described. This highly versatile fragment serves as a precursor for a variety of commonly encountered functionalities, including beta-hydroxy aldehydes and carboxylic acids, alpha-amino-gamma-hydroxy carboxylic acids and alpha,gamma-dihydroxy carboxylic acids. The protocol described here uses recombinant His6-tagged KDPG aldolase for the synthesis of (S)-4-hydroxy-2-keto-4-(2'-pyridyl)butyrate. A protocol for evaluating enantiomeric excess through formation of the gamma-lactone of the dithioacetal followed by chiral-phase gas-liquid chromatography is also described. Enzyme expression and enzymatic synthesis can be accomplished in approximately 1 week. The enzymatic aldol addition proceeds in nearly quantitative yields with enantiomeric excesses greater than 99.7%.
Collapse
Affiliation(s)
- Matthew J Walters
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
36
|
Suri JT, Mitsumori S, Albertshofer K, Tanaka F, Barbas CF. Dihydroxyacetone variants in the organocatalytic construction of carbohydrates: mimicking tagatose and fuculose aldolases. J Org Chem 2007; 71:3822-8. [PMID: 16674055 DOI: 10.1021/jo0602017] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydroxyacetone variants have been explored as donors in organocatalytic aldol reactions with various aldehyde and ketone acceptors. The protected form of dihydroxyacetone that was chosen for in-depth study was 2,2-dimethyl-1,3-dioxan-5-one, 1. Among the catalysts surveyed here, proline proved to be superior in terms of yield and stereoselectivities in the construction of various carbohydrate scaffolds. In a fashion analogous to aldolase enzymes, the de novo preparation of L-ribulose, L-lyxose, D-ribose, D-tagatose, 1-amino-1-deoxy-D-lyxitol, and other carbohydrates was accomplished via the use of 1 and proline. In reactions using 2,2-dimethyl-1,3-dioxan-5-one 1 as a donor, (S)-proline can be used as a functional mimic of tagatose aldolase, whereas (R)-proline can be regarded as an organocatalytic mimic of fuculose aldolase.
Collapse
Affiliation(s)
- Jeff T Suri
- Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
37
|
Sugiyama M, Hong Z, Greenberg WA, Wong CH. In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD). Bioorg Med Chem 2007; 15:5905-11. [PMID: 17572092 PMCID: PMC1992742 DOI: 10.1016/j.bmc.2007.05.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/15/2007] [Accepted: 05/30/2007] [Indexed: 11/27/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases have been widely used for organic synthesis. The major drawback of DHAP-dependent aldolases is their strict donor substrate specificity toward DHAP, which is expensive and unstable. Here we report the development of an in vivo selection system for the directed evolution of the DHAP-dependent aldolase, L-rhamnulose-1-phosphate aldolase (RhaD), to alter its donor substrate specificity from DHAP to dihydroxyacetone (DHA). We also report preliminary results on mutants that were discovered with this screen. A strain deficient in the L-rhamnose metabolic pathway in Escherichia coli (DeltarhaDAB, DE3) was constructed and used as a selection host strain. Co-expression of L-rhamnose isomerase (rhaA) and rhaD in the selection host did not restore its growth on minimal plate supplemented with L-rhamnose as a sole carbon source, because of the lack of L-rhamnulose kinase (RhaB) activity and the inability of WT RhaD aldolase to use unphosphorylated L-rhamnulose as a substrate. Use of this selection host and co-expression vector system gives us an in vivo selection for the desired mutant RhaD which can cleave unphosphorylated L-rhamnulose and allow the mutant to grow in the minimal media. An error-prone PCR (ep-PCR) library of rhaD gene on the co-expression vector was constructed and introduced into the rha-mutant, and survivors were selected in minimal media with l-rhamnose (MMRha media). An initial round of screening gave mutants allowing the selection strain to grow on MMRha plates. This in vivo selection system allows rapid screening of mutated aldolases that can utilize dihydroxyacetone as a donor substrate.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Wolterink-van Loo S, van Eerde A, Siemerink MAJ, Akerboom J, Dijkstra BW, van der Oost J. Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 2007; 403:421-30. [PMID: 17176250 PMCID: PMC1876368 DOI: 10.1042/bj20061419] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aldolases are enzymes with potential applications in biosynthesis, depending on their activity, specificity and stability. In the present study, the genomes of Sulfolobus species were screened for aldolases. Two new KDGA [2-keto-3-deoxygluconate (2-oxo-3-deoxygluconate) aldolases] from Sulfolobus acidocaldarius and Sulfolobus tokodaii were identified, overexpressed in Escherichia coli and characterized. Both enzymes were found to have biochemical properties similar to the previously characterized S. solfataricus KDGA, including the condensation of pyruvate and either D,L-glyceraldehyde or D,L-glyceraldehyde 3-phosphate. The crystal structure of S. acidocaldarius KDGA revealed the presence of a novel phosphate-binding motif that allows the formation of multiple hydrogen-bonding interactions with the acceptor substrate, and enables high activity with glyceraldehyde 3-phosphate. Activity analyses with unnatural substrates revealed that these three KDGAs readily accept aldehydes with two to four carbon atoms, and that even aldoses with five carbon atoms are accepted to some extent. Water-mediated interactions permit binding of substrates in multiple conformations in the spacious hydrophilic binding site, and correlate with the observed broad substrate specificity.
Collapse
|
39
|
Sugiyama M, Hong Z, Whalen L, Greenberg W, Wong CH. Borate as a Phosphate Ester Mimic in Aldolase-Catalyzed Reactions: Practical Synthesis ofL-Fructose andL-Iminocyclitols. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200600356] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ. Mechanism of the Class I KDPG aldolase. Bioorg Med Chem 2006; 14:3002-10. [PMID: 16403639 PMCID: PMC3315828 DOI: 10.1016/j.bmc.2005.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/04/2005] [Accepted: 12/09/2005] [Indexed: 11/17/2022]
Abstract
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.
Collapse
Affiliation(s)
- Matthew J. Walters
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Andrew R. McEwan
- Centre for Biomolecular Sciences, The University of St. Andrews, St. Andrews KY169ST, UK
| | - James H. Naismith
- Centre for Biomolecular Sciences, The University of St. Andrews, St. Andrews KY169ST, UK
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA
| | - Eric J. Toone
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
41
|
Samland AK, Sprenger GA. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments. Appl Microbiol Biotechnol 2006; 71:253-64. [PMID: 16614860 DOI: 10.1007/s00253-006-0422-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C-C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.
Collapse
Affiliation(s)
- Anne K Samland
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | |
Collapse
|
42
|
A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Suri JT, Ramachary DB, Barbas CF. Mimicking Dihydroxy Acetone Phosphate-Utilizing Aldolases through Organocatalysis: A Facile Route to Carbohydrates and Aminosugars. Org Lett 2005; 7:1383-5. [PMID: 15787512 DOI: 10.1021/ol0502533] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A practical and environmentally friendly organocatalytic strategy designed to mimic the DHAP aldolases has been developed and shown to be effective in the preparation of carbohydrates and aminosugars. (S)-Proline and (S)-2-pyrrolidine-tetrazole catalyzed the aldol reaction between dihydroxy acetone variants such as 1,3-dioxan-5-one and 2,2-dimethyl-1,3-dioxan-5-one with aldehydes to give the corresponding polyols in good yields with very high ees.
Collapse
Affiliation(s)
- Jeff T Suri
- The Skaggs Institute for Chemical Biology and the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
44
|
|
45
|
Suau T, Alvaro G, Benaiges MD, López-Santín J. Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases. Biotechnol Bioeng 2005; 93:48-55. [PMID: 16302255 DOI: 10.1002/bit.20690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of secondary reactions on DHAP-dependent aldolase stereoselective synthesis yields is reported. The fuculose-1-phosphate aldolase catalyzed synthesis between DHAP and Cbz-S-alaninal has been chosen as case study. It has been demonstrated that DHAP is not only chemically degraded in the reaction medium, but also enzymatically. The last reaction has been shown to take place when type II aldolases are used as biocatalysts. In order to minimize the effect of non-desired reactions, temperature reduction has been shown to be favorable, and operation at 4 degrees C has been chosen as appropriate. On the other hand, the fed-batch addition of DHAP also increased the synthesis yields and, combined with low temperature, led to almost quantitative conversion.
Collapse
Affiliation(s)
- Trinitat Suau
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Unitat de Biocatàlisi Aplicada associada al IIQA, CSIC, Universitat Autònoma de Barcelona, Edifici Cn, 08193-Bellaterra, Spain
| | | | | | | |
Collapse
|
46
|
Durany O, Caminal G, de Mas C, López-Santı́n J. Studies on the expression of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00302-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Izard T, Sygusch J. Induced fit movements and metal cofactor selectivity of class II aldolases: structure of Thermus aquaticus fructose-1,6-bisphosphate aldolase. J Biol Chem 2003; 279:11825-33. [PMID: 14699122 DOI: 10.1074/jbc.m311375200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase is an essential glycolytic enzyme that reversibly cleaves its ketohexose substrate into triose phosphates. Here we report the crystal structure of a metallo-dependent or class II FBP aldolase from an extreme thermophile, Thermus aquaticus (Taq). The quaternary structure reveals a tetramer composed of two dimers related by a 2-fold axis. Taq FBP aldolase subunits exhibit two distinct conformational states corresponding to loop regions that are in either open or closed position with respect to the active site. Loop closure remodels the disposition of chelating active site histidine residues. In subunits corresponding to the open conformation, the metal cofactor, Co(2+), is sequestered in the active site, whereas for subunits in the closed conformation, the metal cation exchanges between two mutually exclusive binding loci, corresponding to a site at the active site surface and an interior site vicinal to the metal-binding site in the open conformation. Cofactor site exchange is mediated by rotations of the chelating histidine side chains that are coupled to the prior conformational change of loop closure. Sulfate anions are consistent with the location of the phosphate-binding sites of the FBP substrate and determine not only the previously unknown second phosphate-binding site but also provide a mechanism that regulates loop closure during catalysis. Modeling of FBP substrate into the active site is consistent with binding by the acyclic keto form, a minor solution species, and with the metal cofactor mediating keto bond polarization. The Taq FBP aldolase structure suggests a structural basis for different metal cofactor specificity than in Escherichia coli FBP aldolase structures, and we discuss its potential role during catalysis. Comparison with the E. coli structure also indicates a structural basis for thermostability by Taq FBP aldolase.
Collapse
Affiliation(s)
- Tina Izard
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38111, USA
| | | |
Collapse
|
48
|
Abstract
Biocatalysis has emerged as an important tool in the industrial synthesis of bulk chemicals, pharmaceutical and agrochemical intermediates, active pharmaceuticals, and food ingredients. However, the number and diversity of the applications are modest, perhaps in part because of perceived or real limitations of biocatalysts, such as limited enzyme availability, substrate scope, and operational stability. Recent scientific breakthroughs in genomics, directed enzyme evolution, and the exploitation of biodiversity should help to overcome these limitations. As a result, we expect many new industrial applications of biocatalysis to be realized, from single-step enzymatic conversions to customized multistep microbial synthesis by means of metabolic pathway engineering.
Collapse
Affiliation(s)
- Hans E Schoemaker
- DSM Research, Life Science Products, Post Office Box 18, 6160 MD Geleen, Netherlands.
| | | | | |
Collapse
|
49
|
Enzymatic synthesis of 1-deoxysugar-phosphates using E. coli 1-deoxy-d-xylulose 5-phosphate synthase. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)02018-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Hall DR, Bond CS, Leonard GA, Watt CI, Berry A, Hunter WN. Structure of tagatose-1,6-bisphosphate aldolase. Insight into chiral discrimination, mechanism, and specificity of class II aldolases. J Biol Chem 2002; 277:22018-24. [PMID: 11940603 DOI: 10.1074/jbc.m202464200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tagatose-1,6-bisphosphate aldolase (TBPA) is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phosphate to produce tagatose 1,6-bisphosphate. The high resolution (1.45 A) crystal structure of the Escherichia coli enzyme, encoded by the agaY gene, complexed with phosphoglycolohydroxamate (PGH) has been determined. Two subunits comprise the asymmetric unit, and a crystallographic 2-fold axis generates the functional tetramer. A complex network of hydrogen bonds position side chains in the active site that is occupied by two cations. An unusual Na+ binding site is created using a pi interaction with Tyr183 in addition to five oxygen ligands. The catalytic Zn2+ is five-coordinate using three histidine nitrogens and two PGH oxygens. Comparisons of TBPA with the related fructose-1,6-bisphosphate aldolase (FBPA) identifies common features with implications for the mechanism. Because the major product of the condensation catalyzed by the enzymes differs in the chirality at a single position, models of FBPA and TBPA with their cognate bisphosphate products provide insight into chiral discrimination by these aldolases. The TBPA active site is more open on one side than FBPA, and this contributes to a less specific enzyme. The availability of more space and a wider range of aldehyde partners used by TBPA together with the highly specific nature of FBPA suggest that TBPA might be a preferred enzyme to modify for use in biotransformation chemistry.
Collapse
Affiliation(s)
- David R Hall
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|